

What readers are saying about Hello, Android

This is a most excellent book: very well written, easy to read, and fun.

In addition, any of Android’s quirks are explained along with just the

right amount of detail to ensure quality programming principles are

followed.

Anthony Stevens

Founder and CTO, PocketJourney and Top 20 Winner of

Google Android Competition

Ed Burnette covers an impressive amount of ground in a nicely com-

pact book while retaining the popular Pragmatic style. For the mate-

rial on 2D and 3D graphics alone, this is worthy of a spot in any

Android developer’s library.

Mark Murphy

Founder, CommonsWare

I remember when I first started to work with Android; it was like a

huge maze. With this book, the introduction would have been much

less painful. I am convinced that by reading this book new Android

programmers will have an easier start.

Gabor Paller

Senior Software Architect, OnRelay, Ltd.

Prepared exclusively for Trieu Nguyen

Hello, Android
Introducing Google’s

Mobile Development Platform

Ed Burnette

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas

Prepared exclusively for Trieu Nguyen

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Portions of the book’s cover are reproduced from work created and shared by Google and

used according to terms described in the Creative Commons 2.5 Attribution License. See

http://code.google.com/policies.html#restrictions for details.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2008 Ed Burnette.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-17-4

ISBN-13: 978-1-934356-17-3

Printed on acid-free paper.

P1.5 printing, July 21, 2009

Version: 2009-7-21

Prepared exclusively for Trieu Nguyen

http://code.google.com/policies.html#restrictions
http://www.pragprog.com

Contents
Acknowledgments 10

Changes (Cupcake Updates) 11

P1.5—July 21 . 11

P1.4—July 6 . 11

P1.3—June 22 . 12

P1.2—June 9 . 12

P1.1—May 26 . 12

TODO in future releases . 13

Preface 14

What Makes Android Special? 14

Who Should Read This Book? 15

What’s in This Book? . 16

What’s New for Cupcake? . 16

Online Resources . 17

Fast-Forward >> . 17

I Introducing Android 19

1 Quick Start 20

1.1 Installing the Tools . 20

1.2 Creating Your First Program 24

1.3 Running on the Emulator 24

1.4 Running on a Real Phone 29

1.5 Fast-Forward >> . 29

2 Key Concepts 30

2.1 The Big Picture . 30

2.2 It’s Alive! . 35

2.3 Building Blocks . 39

2.4 Using Resources . 40

Prepared exclusively for Trieu Nguyen

CONTENTS 6

2.5 Safe and Secure . 41

2.6 Fast-Forward >> . 42

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=6

CONTENTS 7

II Android Basics 43

3 Designing the User Interface 44

3.1 Introducing the Sudoku Example 44

3.2 Designing by Declaration 45

3.3 Creating the Opening Screen 46

3.4 Using Alternate Resources 54

3.5 Implementing an About Box 58

3.6 Applying a Theme . 62

3.7 Adding a Menu . 63

3.8 Adding Settings . 66

3.9 Starting a New Game . 68

3.10 Debugging with Log Messages 70

3.11 Debugging with the Debugger 71

3.12 Exiting the Game . 71

3.13 Fast-Forward >> . 72

4 Exploring 2D Graphics 73

4.1 Learning the Basics . 73

4.2 Adding Graphics to Sudoku 78

4.3 Handling Input . 87

4.4 The Rest of the Story . 93

4.5 Making More Improvements 102

4.6 Fast-Forward >> . 103

5 Multimedia 104

5.1 Playing Audio . 104

5.2 Playing Video . 110

5.3 Adding Sounds to Sudoku 115

5.4 Fast-Forward >> . 118

6 Storing Local Data 119

6.1 Adding Options to Sudoku 119

6.2 Continuing an Old Game 121

6.3 Remembering the Current Position 123

6.4 Accessing the Internal File System 125

6.5 Accessing SD Cards . 126

6.6 Fast-Forward >> . 127

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=7

CONTENTS 8

III Beyond the Basics 128

7 The Connected World 129

7.1 Browsing by Intent . 130

7.2 Web with a View . 134

7.3 From JavaScript to Java and Back 139

7.4 Using Web Services . 146

7.5 Fast-Forward >> . 156

8 Locating and Sensing 158

8.1 Location, Location, Location 158

8.2 Set Sensors to Maximum 164

8.3 Bird’s-Eye View . 168

8.4 Fast-Forward >> . 173

9 Putting SQL to Work 175

9.1 Introducing SQLite . 175

9.2 SQL 101 . 176

9.3 Hello, Database . 178

9.4 Data Binding . 186

9.5 Using a ContentProvider 189

9.6 Implementing a ContentProvider 192

9.7 Fast-Forward >> . 193

10 3D Graphics in OpenGL 195

10.1 Understanding 3D Graphics 195

10.2 Introducing OpenGL . 196

10.3 Building an OpenGL Program 197

10.4 Managing Threads . 199

10.5 Building a Model . 205

10.6 Lights, Camera, ... 208

10.7 Action! . 210

10.8 Applying Texture . 213

10.9 Peekaboo . 216

10.10 Fast-Forward >> . 217

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=8

CONTENTS 9

IV Appendixes 218

A Java vs. the Android Language and APIs 219

A.1 Language Subset . 219

A.2 Standard Library Subset 221

A.3 Third-Party Libraries . 222

B Hello, Widget 223

B.1 Creating Your First Widget 223

B.2 Calling All Widgets! . 225

B.3 Stretch to Fit . 226

B.4 The Rest of the Story . 227

B.5 Running the Widget . 228

B.6 Keeping Up to Date . 228

B.7 Go Wild . 231

C Publishing to the Android Market 233

D Bibliography 234

Index 235

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=9

Acknowledgments
I’d like to thank the many people who made this book possible, includ-

ing my reviewers Anthony Stevens, Gabor Paller, Fred Burke, Dianne

Hackborn, and Laurent Pontier for their attention to detail; my editor

Susannah Pfalzer for her great suggestions and good cheer in the face

of impossible deadlines; and especially my family for their patience in

putting up with all the long hours.

Prepared exclusively for Trieu Nguyen

Changes (Cupcake Updates)
Android 1.5, also known as Cupcake, was released this spring. Cup-

cake contains a number of user- and programmer-facing changes that

broke examples in this book, and rendered some sections obsolete. This

series of updates will address these changes, and add new sections and

appendixes based on the Cupcake release.

All changes since the original printing will be flagged with an orange

color, like this text.

Please give us your feedback on the new and updated material by post-

ing in the forum1 or by submitting errata.

P1.5—July 21

This update contains the following changes:

• Chapter 7, The Connected World, on page 129: Added better sup-

port for the Android 1.5 soft keyboard.

• Chapter 8, Locating and Sensing, on page 158: Updated the Sen-

sorTest sample to use the new Sensors API, and the MyMap sample

to use the new setBuiltInZoomControls() method.

• Chapter 9, Putting SQL to Work, on page 175: Added missing imports

and string resources to the Events example.

P1.4—July 6

This update contains the following changes:

1. http://forums.pragprog.com/forums/67

Prepared exclusively for Trieu Nguyen

http://forums.pragprog.com/forums/67

P1.3—JUNE 22 12

• Appendix B, on page 223: New appendix on how to create simple

Home screen app widgets. Readers: please look over this carefully

because it is all new material.

• Appendix A, on page 219: Updated for Cupcake. Moved java.beans

from the unsupported to the supported list.

P1.3—June 22

This update contains the following changes:

• Chapter 4, Exploring 2D Graphics, on page 73: Tried to clarify a

few parts that were confusing people.

• Chapter 5, Multimedia, on page 104: Updated for Cupcake. Changed

the recommended video format from MPEG-4 to H.263.

• Chapter 6, Storing Local Data, on page 119: Updated for Cupcake.

It is no longer necessary to use the mksdcard command.

P1.2—June 9

This update contains the following changes:

• Chapter 2, Key Concepts, on page 30: Updated for Cupcake. Added

a short explanation of widgets and a mention of upcoming native

development support. Took new screenshots with 1.5_r2 and ADT

0.9.1v200905011822-1621. Redid the architecture diagram to include

widgets.

• Chapter 3, Designing the User Interface, on page 44: Updated for

Cupcake. Took lots of new screenshots.

P1.1—May 26

This update contains the following changes:

• Chapter , Changes (Cupcake Updates), on the preceding page: New

section (you’re reading it now) that will detail the changes made in

each release.

• Chapter , Preface, on page 14: Updated for Cupcake.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=12

TODO IN FUTURE RELEASES 13

• Chapter 1, Quick Start, on page 20: Updated for Cupcake. Added

new material on Android Virtual Devices (AVDs). Took new screen-

shots with 1.5_r1 and ADT 0.9.1v200905011822-1621.

• Appendix B, on page 223: New appendix on writing widgets (just

a placeholder for now).

• Appendix C, on page 233: New appendix on signing and publishing

(just a placeholder for now).

• Updated all sample source code files2 so they build and run with

1.5. I haven’t updated the text that describes the samples.

• Tested all samples on 1.5 firmware on a real phone except for

MyMap.

• Various: Cleared up all outstanding errata.3

• Various: Fixed URLs that Google broke since the first printing.

TODO in future releases

Here are the items I’m working on next.

• Update Chapter 10, 3D Graphics in OpenGL, on page 195. Update

the OpenGL sample to use new API.

• Create Appendix C, on page 233.

2. http://www.pragprog.com/titles/eband/source_code

3. http://www.pragprog.com/titles/eband/errata

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://www.pragprog.com/titles/eband/source_code
http://www.pragprog.com/titles/eband/errata
http://books.pragprog.com/titles/eband/errata/add?pdf_page=13

Preface
Android is a new open source software toolkit for mobile phones that

was created by Google and the Open Handset Alliance. In a few years,

it’s expected to be found in millions of cell phones and other mobile

devices, making Android a major platform for application developers.

Whether you’re a hobbyist or a professional programmer, whether you

are doing it for fun or for profit, it’s time to learn more about developing

for Android. This book will help you get started.

What Makes Android Special?

There are already many mobile platforms on the market today, includ-

ing Symbian, iPhone, Windows Mobile, BlackBerry, Java Mobile Edi-

tion, Linux Mobile (LiMo), and more. When I tell people about Android,

their first question is often, Why do we need another mobile standard?

Where’s the “wow”?

Although some of its features have appeared before, Android is the first

environment that combines the following:

• A truly open, free development platform based on Linux and open

source: Handset makers like it because they can use and cus-

tomize the platform without paying a royalty. Developers like it

because they know that the platform “has legs” and is not locked

into any one vendor that may go under or be acquired.

• A component-based architecture inspired by Internet mashups:

Parts of one application can be used in another in ways not orig-

inally envisioned by the developer. You can even replace built-in

components with your own improved versions. This will unleash a

new round of creativity in the mobile space.

• Tons of built-in services out of the box: Location-based services use

GPS or cell tower triangulation to let you customize the user expe-

rience depending on where you are. A full-powered SQL database

Prepared exclusively for Trieu Nguyen

WHO SHOULD READ THIS BOOK? 15

lets you harness the power of local storage for occasionally con-

nected computing and synchronization. Browser and map views

can be embedded directly in your applications. All these built-in

capabilities help raise the bar on functionality while lowering your

development costs.

• Automatic management of the application life cycle: Programs are

isolated from each other by multiple layers of security, which will

provide a level of system stability not seen before in smart phones.

The end user will no longer have to worry about what applications

are active or close some programs so that others can run. Android

is optimized for low-power, low-memory devices in a fundamental

way that no previous platform has attempted.

• High-quality graphics and sound: Smooth, antialiased 2D vector

graphics and animation inspired by Flash are melded with 3D

accelerated OpenGL graphics to enable new kinds of games and

business applications. Codecs for the most common industry-

standard audio and video formats are built right in, including

H.264 (AVC), MP3, and AAC.

• Portability across a wide range of current and future hardware:

All your programs are written in Java and executed by Android’s

Dalvik virtual machine, so your code will be portable across

ARM, x86, and other architectures. Support for a variety of input

methods is included such as keyboard, touch, and trackball.

User interfaces can be customized for any screen resolution and

orientation.

Android offers a fresh take on the way mobile applications interact with

users, along with the technical underpinnings to make it possible. But

the best part of Android is the software that you are going to write for

it. This book will help you get off to a great start.

Who Should Read This Book?

The only requirement is a basic understanding of programming in Java

or a similar object-oriented language (C# will do in a pinch). You don’t

need any prior experience developing software for mobile devices. In

fact, if you do, it’s probably best if you try to forget that experience.

Android is so different that it’s good to start with an open mind.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=15

WHAT’S IN THIS BOOK? 16

What’s in This Book?

Hello, Android is divided into three parts. Roughly speaking, the book

progresses from less advanced to more advanced topics, or from more

common to less common aspects of Android.

Several chapters share a common example: an Android Sudoku game.

By gradually adding features to the game, you’ll learn about many

aspects of Android programming including user interfaces, multime-

dia, and the Android life cycle.

In Part I, we’ll start with an introduction to Android. This is where you’ll

learn how to install the Android emulator and how to use an integrated

development environment (IDE) to write your first program. Then we’ll

introduce a few key concepts like the Android life cycle. Programming

in Android is a little different from what you’re probably used to, so

make sure you get these concepts before moving on.

Part II talks about Android’s user interface, two-dimensional graphics,

multimedia components, and simple data access. These features will be

used in most programs you write.

Part III digs deeper into the Android platform. Here you’ll learn about

connecting to the outside world, location-based services, the built-in

SQLite database, and three-dimensional graphics.

At the end of the book, you’ll find appendices that cover the differences

between Android and Java Standard Edition (SE), how to create a wid-

get, and publishing your application.

What’s New for Cupcake?

Android 1.5 (Cupcake) introduced a number of enhancements to the

Android platform including support for soft (on-screen) keyboards, video

recording, and application widgets. Under the covers, there were over

1,000 changes to the Android API between 1.1 and 1.5.4

To accommodate the new version, every page and example in this book

has been reviewed and updated so it will work with 1.5. Most of the

changes were small but a few sections needed major revisions. If you’ve

read this book before then be sure to check out these updated chapters:

4. http://developer.android.com/sdk/1.5_r2/upgrading.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://developer.android.com/sdk/1.5_r2/upgrading.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=16

ONLINE RESOURCES 17

• Chapter 1, Quick Start, on page 20 includes instructions on using

target SDKs and Android Virtual Devices (AVDs).

• Chapter 8, Locating and Sensing, on page 158 now uses the new

SensorManager APIs.

• Chapter 10, 3D Graphics in OpenGL, on page 195 has been greatly

simplified thanks to the new GLSurfaceView class.

In addition, by popular demand we’ve added two new appendices:

• Appendix B, on page 223 shows you how to create a Widget for the

Home screen. This is a new feature of Cupcake.

• Appendix C, on page 233 guides you through the steps of mak-

ing your application available for sale or for free on the Android

Market.

By the time you read this, Android 1.5 (or later) will be available for

all shipping Android devices. All new devices will have it installed, and

Google expects existing Android users to quickly upgrade. Therefore

this printing of the book will not cover version 1.1 or earlier.

Online Resources

At the website for this book, http://pragprog.com/titles/eband, you’ll find

the following:

• The full source code for all the sample programs used in this book

• An errata page, listing any mistakes in the current edition (let’s

hope that will be empty!)

• A discussion forum where you can communicate directly with the

author and other Android developers (let’s hope that will be full!)

You are free to use the source code in your own applications as you see

fit. Note: If you’re reading the PDF version of this book, you can also

click the little gray rectangle before the code listings to download that

source file directly.

Fast-Forward >>

Although most authors expect you to read every word in their books, I

know you’re not going to do that. You want to read just enough to let

you get something done, and then maybe you’ll come back later and

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://pragprog.com/titles/eband
http://books.pragprog.com/titles/eband/errata/add?pdf_page=17

FAST -FORWARD >> 18

read something else to let you get another piece done. So, I’ve tried to

provide you with a little help so you won’t get lost.

Each chapter in this book ends with a “Fast-Forward >> section.” These

sections will provide some guidance for where you should go next when

you need to read the book out of order. You’ll also find pointers to other

resources such as books and online documentation here in case you

want to learn more about the subject.

So, what are you waiting for? The next chapter—Chapter 1, Quick Start,

on page 20—drops you right into the deep end with your first Android

program. Chapter 2, Key Concepts, on page 30 takes a step back and

introduces you to the basic concepts and philosophy of Android, and

Chapter 3, Designing the User Interface, on page 44 digs into the user

interface, which will be the most important part of most Android

programs.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=18

Part I

Introducing Android

19
Prepared exclusively for Trieu Nguyen

Chapter 1

Quick Start
Android combines the ubiquity of cell phones, the excitement of open

source software, and the corporate backing of Google and other Open

Handset Alliance members like Intel, TI, T-Mobile, and NTT DoCoMo.

The result is a mobile platform you can’t afford not to learn.

Luckily, getting started developing with Android is easy. You don’t even

need access to an Android phone—just a computer where you can

install the Android SDK and phone emulator.

In this chapter, I’ll show you how to get all the development tools

installed, and then we’ll jump right in and create a working applica-

tion: Android’s version of “Hello, World.”

1.1 Installing the Tools

The Android software development kit (SDK) works on Windows, Linux,

and Mac OS X. The applications you create, of course, can be deployed

on any Android devices.

Before you start coding, you need to install Java, an IDE, and the

Android SDK.

Java 5.0+

First you need a copy of Java. All the Android development tools require

it, and programs you write will be using the Java language. JDK 5 or 6

is required.

It’s not enough to just have a runtime environment (JRE); you need

the full development kit. I recommend getting the latest Sun JDK 6.0

Prepared exclusively for Trieu Nguyen

INSTALLING THE TOOLS 21

update from the Sun download site.1 Mac OS X users should get the

latest version of Mac OS X and the JDK from the Apple website.

To verify you have the right version, run this command from your shell

window. Here’s what I get when I run it:

C:\> java -version

java version "1.6.0_13"

Java(TM) SE Runtime Environment (build 1.6.0_13-b03)

Java HotSpot(TM) Client VM (build 11.3-b02, mixed mode, sharing)

You should see something similar, with version “1.6.something” or later.

Eclipse

Next, you should install a Java development environment if you don’t

have one already. I recommend Eclipse, because it’s free and because

it’s used and supported by the Google developers who created Android.

If you don’t want to use Eclipse (there’s always one in every crowd),

support for other IDEs such as NetBeans and JetBrains IDEA is avail-

able from their respective communities. Or if you’re really old-school,

you can forgo an IDE entirely and just use the command-line tools.2

The minimum version of Eclipse is 3.3.1, but you should always use

whatever is the most up-to-date production version. Note that you need

more than just the standard Eclipse SDK “classic” platform. Go to the

Eclipse downloads page,3 and pick “Eclipse IDE for Java Developers.”

Follow the directions there for downloading, unpacking, and installing

Eclipse into a suitable location (like C:\Eclipse on Windows).

Android

Next, download the latest Android SDK from Google. The Android down-

load page4 has packages for Windows, Mac OS X, and Linux. After

downloading the package that’s right for you, unpack the .zip file to

a convenient directory (for example, C:\Google).

By default, the SDK will be expanded into a subdirectory like android-

sdk-windows-1.5_r2. This is your SDK install directory; make a note of the

full path so you can refer to it later.

1. http://java.sun.com/javase/downloads

2. See http://d.android.com/guide/developing/tools/index.html for documentation on the

command-line tools.
3. http://www.eclipse.org/downloads

4. http://d.android.com/sdk

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://java.sun.com/javase/downloads
http://d.android.com/guide/developing/tools/index.html
http://www.eclipse.org/downloads
http://d.android.com/sdk
http://books.pragprog.com/titles/eband/errata/add?pdf_page=21

INSTALLING THE TOOLS 22

Figure 1.1: Installing the Android Development Toolkit

No special install program is needed but I do recommend you add the

SDK’s bin directory to your PATH. The next step is to start Eclipse and

configure it.

Eclipse Plug-In

To make development easier, Google has written a plug-in for Eclipse

called the Android Development Toolkit (ADT). To install the plug-in,

follow these steps (note these directions are for Eclipse 3.4—different

versions may have slightly different menus and options):

1. Start Eclipse, and select Help > Software Updates....

2. Click the Available Software tab if it’s not already selected.

3. Click the Add Site... button.

4. Enter the location of the Android update site: https://dl-ssl.google.

com/android/eclipse/. If you have trouble with this address, try

using http in the location instead of https.

Once you’ve filled it out, the dialog box should look like Figure 1.1.

Click OK.

5. The Android site should now appear in the Available Software

view. Select the checkbox next to it, and then click Install.... If

you get an error message, then you may not have the right version

of Eclipse. I strongly recommend using either the prebuilt Eclipse

IDE for Java or the Eclipse IDE for Java EE Development pack-

ages, version 3.4 or newer.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

https://dl-ssl.google.com/android/eclipse/
https://dl-ssl.google.com/android/eclipse/
http://books.pragprog.com/titles/eband/errata/add?pdf_page=22

INSTALLING THE TOOLS 23

Joe Asks. . .

It Says “Connection Error,” So Now What?

If you get a connection error, the most likely cause is some kind
of firewall erected by your system administrators. To get outside
the firewall, you’ll need to configure Eclipse with the address
of your proxy server. This is the same proxy server you use for
your web browser, but unfortunately Eclipse isn’t smart enough
to pick up the setting from there.

To tell Eclipse about the proxy, select Preferences > Network
Connections, turn on the option for Manual proxy configura-
tion, enter the server name and port number, and click OK. If
you don’t see the option, you may be running an older ver-
sion of Eclipse. Try looking under Preferences > Install/Update,
or search the preferences for the word proxy.

If you have a custom install of Eclipse, then to use the Android

editors you will also need to install the Web Standard Tools (WST)

plug-in and all its prerequisites.

See the Web Tools platform home page5 for more details and down-

load links. These are already built into the recommended packages

mentioned earlier.

6. Click Next, accept the license agreements, and then click Finish

to start the download and install process.

7. Once the install is done, restart Eclipse.

8. When Eclipse comes back up, you may see a few error messages

because you need to tell it where the Android SDK is located.

Select Window > Preferences > Android (Eclipse > Preferences on

Mac OS X), and enter the SDK install directory you noted earlier.

Click OK.

Whew! Luckily, you have to do that only once (or at least once every

time a new version of ADT or Eclipse comes out). Now that everything

is installed, it’s time to write your first program.

5. http://www.eclipse.org/webtools

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://www.eclipse.org/webtools
http://books.pragprog.com/titles/eband/errata/add?pdf_page=23

CREATING YOUR FIRST PROGRAM 24

1.2 Creating Your First Program

ADT comes with a built-in example program, or template, that we’re

going to use to create a simple “Hello, Android” program in just a few

seconds. Get your stopwatch ready. Ready? Set? Go!

Select File > New > Project... to open the New Project dialog box. Then

select Android > Android Project, and click Next.

Enter the following information:

Project name: HelloAndroid

Build Target: Android 1.5

Application name: Hello, Android

Package name: org.example.hello

Create Activity: Hello

When you’re done, it should look something like Figure 1.2, on the

following page.

Click Finish. The Android plug-in will create the project and fill it in

with some default files. Eclipse will build it and package it up so it will

be ready to execute. If you get an error about missing source folders,

select Project > Clean to fix it.

OK, that takes care of writing the program; now all that’s left is to try

running it. First we’ll run it under the Android Emulator.

1.3 Running on the Emulator

To run your Android program, go to the Package Explorer window,

right-click the HelloAndroid project, and select Run As > Android Appli-

cation. If you’re following along in Eclipse you may see an error dialog

like the one in Figure 1.3, on page 26. This indicates we haven’t told

the Emulator what kind of phone to emulate.

Creating an AVD

To do this, you need to create an Android Virtual Device (AVD), using

either Eclipse or the android avd command.6 It’s easier to use Eclipse,

so select Yes in the AVD Error dialog to open the AVD Manager. You

can open the manager again later by selecting Window > Android AVD

Manager.

In the AVD Manager dialog, fill out the fields for the new AVD as follows:

6. http://d.android.com/guide/developing/tools/avd.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/developing/tools/avd.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=24

RUNNING ON THE EMULATOR 25

Figure 1.2: New Android project

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=25

RUNNING ON THE EMULATOR 26

Keeping Up with the Plug-In

The Android Eclipse plug-in is a work in progress that changes
much more often than the Android SDK. The version you down-
load may be different than the one I used when writing this
book, and it may contain a few, shall we say, idiosyncrasies. I
recommend you check the plug-in site monthly to pick up any
new features and fixes.

Figure 1.3: Missing Android Virtual Device (AVD)

Name: em15

Target: Android 1.5 - 1.5

SDCard: 128M

Skin: Default (HVGA)

This tells Eclipse to set up a generic device called “em15” which has

the Android 1.5 (Cupcake) firmware installed. A 128MB virtual Secure

Digital (SD) Card will be allocated, along with a half-VGA (320x480)

display.

When you’re done you should see something like Figure 1.4, on the

following page. Due to updates in the plug-in since this was written

your screen may look slightly different.

Click on Create AVD (not Finish) to create the virtual device. A few sec-

onds later you should see a message that the device has been created.

Click OK, and then you can click Finish.

Let’s Try That Again

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=26

RUNNING ON THE EMULATOR 27

Figure 1.4: Creating an AVD in Eclipse

Once you have a valid AVD, the Android emulator window will start

up and boot the Android operating system. The first time you do this,

it may take a minute or two, so be patient. If you see an error mes-

sage saying that the application is not responding, select the option to

continue waiting.

After the emulator window starts, Eclipse will send it a copy of your

program to execute. The application screen comes up, and your “Hello,

Android” program is now running (see Figure 1.5, on the next page).

That’s it! Congratulations on your first Android program.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=27

RUNNING ON THE EMULATOR 28

Figure 1.5: Running the “Hello, Android” program

Shortening the Turnaround

Starting the emulator is expensive. Think about it this way—
when you first turn on your phone, it needs to boot up just like
any computer system. Closing the emulator is just like turning off
the phone or pulling the batteries out. So, don’t turn it off!

Leave the emulator window running as long as Eclipse is run-
ning. The next time you start an Android program, Eclipse will
notice the emulator is already there and will just send it the new
program to run.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=28

RUNNING ON A REAL PHONE 29

1.4 Running on a Real Phone

Running an Android program on a physical device such as the T-Mobile

G1 during development is almost identical to running it on the emula-

tor. All you need to do is connect your phone to the computer with a

USB cable and install a special device driver.7 Close the emulator win-

dow if it’s already open. As long as the phone is plugged in, applications

will be loaded and run there instead.

When you’re ready to publish your application for others to use, there

are a few more steps you’ll need to take. Appendix C, on page 233 will

cover that in more detail.

1.5 Fast-Forward >>

Thanks to the Eclipse plug-in, creating a skeletal Android program

takes only a few seconds. In Chapter 3, Designing the User Interface, on

page 44, we’ll begin to flesh out that skeleton with a real application—a

Sudoku game. This sample will be used in several chapters to demon-

strate Android’s API.

But before delving into that, you should take a few minutes to read

Chapter 2, Key Concepts, on the following page. Once you grasp the

basic concepts such as activities and life cycles, the rest will be much

easier to understand.

Although the use of Eclipse to develop Android programs is optional,

I highly recommend it. If you’ve never used Eclipse before, you may

want to invest in a quick reference such as the Eclipse IDE Pocket

Guide [Bur05].

7. You can find the device driver and installation instructions at

http://d.android.com/guide/developing/device.html.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/developing/device.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=29

Chapter 2

Key Concepts
Now that you have an idea of what Android is, let’s take a look at how it

works. Some parts of Android may be familiar, such as the Linux ker-

nel, OpenGL, and the SQL database. Others will be completely foreign,

such as Android’s idea of the application life cycle.

You’ll need a good understanding of these key concepts in order to write

well-behaved Android applications, so if you read only one chapter in

this book, read this one.

2.1 The Big Picture

Let’s start by taking a look at the overall system architecture—the key

layers and components that make up the Android open source software

stack. In Figure 2.1, on the next page, you can see the “20,000-foot”

view of Android. Study it closely—there will be a test tomorrow.

Each layer uses the services provided by the layers below it. Starting

from the bottom, the following sections highlight the layers provided by

Android.

Linux Kernel

Android is built on top of a solid and proven foundation: the Linux

kernel. Created by Linus Torvalds in 1991 while he was a student at

the University of Helsinki, Linux can be found today in everything from

wristwatches to supercomputers. Linux provides the hardware abstrac-

tion layer for Android, allowing Android to be ported to a wide variety

of platforms in the future.

Prepared exclusively for Trieu Nguyen

THE BIG PICTURE 31

Figure 2.1: Android system architecture

Internally, Android uses Linux for its memory management, process

management, networking, and other operating system services. The

Android phone user will never see Linux and your programs will not

make Linux calls directly. As a developer, though, you’ll need to be

aware it’s there.

Some utilities you need during development interact with Linux. For

example, the adb shell command1 will open a Linux shell in which you

can enter other commands to run on the device. From there you can

examine the Linux file system, view active processes, and so forth, sub-

ject to security restrictions.

Native Libraries

The next layer above the kernel contains the Android native libraries.

These shared libraries are all written in C or C++, compiled for the

particular hardware architecture used by the phone, and preinstalled

by the phone vendor.

1. http://d.android.com/guide/developing/tools/adb.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/developing/tools/adb.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=31

THE BIG PICTURE 32

Some of the most important native libraries include the following:

• Surface Manager: Android uses a compositing window manager

similar to Vista or Compiz, but it’s much simpler. Instead of draw-

ing directly to the screen buffer, your drawing commands go into

offscreen bitmaps that are then combined with other bitmaps to

form the display the user sees. This lets the system create all

sorts of interesting effects such as see-through windows and fancy

transitions.

• 2D and 3D graphics: Two- and three-dimensional elements can be

combined in a single user interface with Android. The library will

use 3D hardware if the device has it or a fast software renderer if

it doesn’t. See Chapter 4, Exploring 2D Graphics, on page 73 and

Chapter 10, 3D Graphics in OpenGL, on page 195.

• Media codecs: Android can play video and record and play back

audio in a variety of formats including AAC, AVC (H.264), H.263,

MP3, and MPEG-4. See Chapter 5, Multimedia, on page 104 for an

example.

• SQL database: Android includes the lightweight SQLite database

engine,2 the same database used in Firefox and the Apple iPhone.

You can use this for persistent storage in your application. See

Chapter 9, Putting SQL to Work, on page 175 for an example.

• Browser engine: For the fast display of HTML content, Android

uses the WebKit library.3 This is the same engine used in the

Google Chrome browser, Apple’s Safari browser, the Apple iPhone,

and Nokia’s S60 platform. See Chapter 7, The Connected World,

on page 129 for an example.

These libraries are not applications that stand by themselves. They

exist only to be called by higher level programs. In a future version of

Android (code named “Donut”), you’ll be able to write and deploy your

own native libraries using the Native Development Toolkit (NDK).

Android Runtime

Also sitting on top of the kernel is the Android runtime, including the

Dalvik virtual machine and the core Java libraries.

2. http://www.sqlite.org

3. http://www.webkit.org

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://www.sqlite.org
http://www.webkit.org
http://books.pragprog.com/titles/eband/errata/add?pdf_page=32

THE BIG PICTURE 33

Joe Asks. . .

What’s a Dalvik?

Dalvik is a virtual machine (VM) designed and written by Dan
Bornstein at Google. Your code gets compiled into machine-
independent instructions called bytecodes, which are then
executed by the Dalvik VM on the mobile device.

Although the bytecode formats are a little different, Dalvik is
essentially a Java virtual machine optimized for low memory
requirements. It allows multiple VM instances to run at once and
takes advantage of the underlying operating system (Linux) for
security and process isolation.

Bornstein named Dalvik after a fishing village in Iceland where
some of his ancestors lived.

The Dalvik VM is Google’s implementation of Java, optimized for mobile

devices. All the code you write for Android will be written in Java and

run within the VM.

Dalvik differs from traditional Java in two important ways:

• The Dalvik VM runs .dex files, which are converted at compile time

from standard .class and .jar files. .dex files are more compact and

efficient than class files, an important consideration for the limited

memory and battery-powered devices that Android targets.

• The core Java libraries that come with Android are different from

both the Java Standard Edition (Java SE) libraries and the Java

Mobile Edition (Java ME) libraries. There is a substantial amount

of overlap, however. In Appendix A, on page 219, you’ll find a com-

parison of Android and standard Java libraries.

Application Framework

Sitting above the native libraries and runtime, you’ll find the Applica-

tion Framework layer. This layer provides the high-level building blocks

you will use to create your applications. The framework comes prein-

stalled with Android, but you can also extend it with your own compo-

nents as needed.

The most important parts of the framework are as follows:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=33

THE BIG PICTURE 34

• Activity manager: This controls the life cycle of applications (see

Section 2.2, It’s Alive!, on the following page) and maintains a

common “backstack” for user navigation.

• Content providers: These objects encapsulate data that needs to be

shared between applications, such as contacts. See Section 2.3,

Content Providers, on page 40.

• Resource manager: Resources are anything that goes with your

program that is not code. See Section 2.4, Using Resources, on

page 40.

• Location manager: An Android phone always knows where it is.

See Chapter 8, Locating and Sensing, on page 158.

• Notification manager: Events such as arriving messages, appoint-

ments, proximity alerts, alien invasions, and more can be pre-

sented in an unobtrusive fashion to the user.

Applications and Widgets

The highest layer in the Android architecture diagram is the Applica-

tions and Widgets layer. Think of this as the tip of the Android iceberg.

End users will see only these programs, blissfully unaware of all the

action going on below the waterline. As an Android developer, however,

you know better.

Applications are programs that can take over the whole screen and

interact with the user. On the other hand, Widgets (sometimes called

gadgets), only operate in a small rectangle of the Home screen applica-

tion.

The majority of this book will cover application development, because

that’s what most of you will be writing. Widget development is covered

in Appendix B, on page 223.

When someone buys an Android phone, it will come prepackaged with

a number of standard system applications, including the following:

• Phone dialer

• Email

• Contacts

• Web browser

• Android Market

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=34

IT’S ALIVE! 35

Embrace and Extend

One of the unique and powerful qualities of Android is that all
applications have a level playing field. What I mean is that the
system applications have to go through the same public API
that you use. You can even tell Android to make your applica-
tion replace the standard applications if you want.

Using the Android Market, the user will be able to download new pro-

grams to run on their phone. That’s where you come in. By the time

you finish this book, you’ll be able to write your own killer applications

for Android.

Now let’s take a closer look at the life cycle of an Android application.

It’s a little different from what you’re used to seeing.

2.2 It’s Alive!

On your standard Linux or Windows desktop, you can have many appli-

cations running and visible at once in different windows. One of the

windows has keyboard focus, but otherwise all the programs are equal.

You can easily switch between them, but it’s your responsibility as the

user to move the windows around so you can see what you’re doing and

close programs you don’t need anymore.

Android doesn’t work that way.

In Android, there is one foreground application, which typically takes

over the whole display except for the status line. When the user turns

on their phone, the first application they see is the Home application

(see Figure 2.2, on the next page).This program typically shows a back-

ground image, a search or clock widget, and a scrollable list of other

applications the user can invoke.

When the user runs an application, Android starts it and brings it to the

foreground. From that application, the user might invoke another appli-

cation, or another screen in the same application, and then another and

another. All these programs and screens are recorded on the applica-

tion stack by the system’s Activity Manager. At any time, the user can

press the Back button to return to the previous screen on the stack.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=35

IT’S ALIVE! 36

Figure 2.2: The Home application

From the user’s point of view, it works a lot like the history in a web

browser. Pressing Back returns them to the previous page.

Process != Application

Internally, each user interface screen is represented by an Activity class

(see Section 2.3, Activities, on page 39). Each activity has its own life

cycle. An application is one or more activities plus a Linux process to

contain them. That sounds pretty straightforward, doesn’t it? But don’t

get comfortable yet; I’m about to throw you a curve ball.

In Android, an application can be “alive” even if its process has been

killed. Put another way, the activity life cycle is not tied to the process

life cycle. Processes are just disposable containers for activities. This is

probably different from every other system you’re familiar with, so let’s

take a closer look before moving on.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=36

IT’S ALIVE! 37

Figure 2.3: Life cycle of an Android activity

Life Cycles of the Rich and Famous

During its lifetime, each activity of an Android program can be in one of

several states, as shown in Figure 2.3. You, the developer, do not have

control over what state your program is in. That’s all managed by the

system. However, you do get notified when the state is about to change

through the onXX () method calls.

You override these methods in your Activity class, and Android will call

them at the appropriate time:

• onCreate(Bundle): This is called when the activity first starts up.

You can use it to perform one-time initialization such as creating

the user interface. onCreate() takes one parameter that is either

null or some state information previously saved by the onSaveIn-

stanceState() method.

• onStart(): This indicates the activity is about to be displayed to the

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=37

IT’S ALIVE! 38

user.

• onResume(): This is called when your activity can start interacting

with the user. This is a good place to start animations and music.

• onPause(): This runs when the activity is about to go into the back-

ground, usually because another activity has been launched in

front of it. This is where you should save your program’s persis-

tent state, such as a database record being edited.

• onStop(): This is called when your activity is no longer visible to

the user and it won’t be needed for a while. If memory is tight,

onStop() may never be called (the system may simply terminate

your process).

• onRestart(): If this method is called, it indicates your activity is

being redisplayed to the user from a stopped state.

• onDestroy(): This is called right before your activity is destroyed. If

memory is tight, onDestroy() may never be called (the system may

simply terminate your process).

• onSaveInstanceState(Bundle): Android will call this method to allow

the activity to save per-instance state, such as a cursor position

within a text field. Usually you won’t need to override it because

the default implementation saves the state for all your user inter-

face controls automatically.4

• onRestoreInstanceState(Bundle): This is called when the activity is

being reinitialized from a state previously saved by the onSave-

InstanceState() method. The default implementation restores the

state of your user interface.

Activities that are not running in the foreground may be stopped or

the Linux process that houses them may be killed at any time in order

to make room for new activities. This will be a common occurrence,

so it’s important that your application be designed from the beginning

with this in mind. In some cases, the onPause() method may be the last

method called in your activity, so that’s where you should save any data

you want to keep around for next time.

4. Before version 0.9_beta, onSaveInstanceState() was called onFreeze(), and the saved

state was called an icicle. You may still see the old names in some documentation and

examples.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=38

BUILDING BLOCKS 39

Flipping the Lid

Here’s a quick way to test that your state-saving code is working
correctly. In current versions of Android, an orientation change
(between portrait and landscape modes) will cause the system
to go through the process of saving instance state, pausing,
stopping, destroying, and then creating a new instance of the
activity with the saved state. On the T-Mobile G1 phone, for
example, flipping the lid on the keyboard will trigger this, and
on the Android emulator pressing Ctrl+F11 or the 7 or 9 key
on the keypad will do it.

In addition to managing your program’s life cycle, the Android frame-

work provides a number of building blocks that you use to create your

applications. Let’s take a look at those next.

2.3 Building Blocks

A few objects are defined in the Android SDK that every developer needs

to be familiar with. The most important ones are activities, intents,

services, and content providers. You’ll see several examples of them in

the rest of the book, so I’d like to briefly introduce them now.

Activities

An activity is a user interface screen. Applications can define one or

more activities to handle different phases of the program. As discussed

in Section 2.2, It’s Alive!, on page 35, each activity is responsible for

saving its own state so that it can be restored later as part of the

application life cycle. See Section 3.3, Creating the Opening Screen, on

page 46 for an example.

Intents

An intent is a mechanism for describing a specific action, such as “pick

a photo,” “phone home,” or “open the pod bay doors.” In Android, just

about everything goes through intents, so you have plenty of opportu-

nities to replace or reuse components. See Section 3.5, Implementing

an About Box, on page 58 for an example of an intent.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=39

USING RESOURCES 40

For example, there is an intent for “send an email.” If your application

needs to send mail, you can invoke that intent. Or if you’re writing a

new email application, you can register an activity to handle that intent

and replace the standard mail program. The next time somebody tries

to send an email, they’ll get the option to use your program instead of

the standard one.

Services

A service is a task that runs in the background without the user’s direct

interaction, similar to a Unix daemon. For example, consider a music

player. The music may be started by an activity, but you want it to

keep playing even when the user has moved on to a different program.

So, the code that does the actual playing should be in a service. Later,

another activity may bind to that service and tell it to switch tracks

or stop playing. Android comes with many services built in, along with

convenient APIs to access them.

Content Providers

A content provider is a set of data wrapped up in a custom API to read

and write it. This is the best way to share global data between appli-

cations. For example, Google provides a content provider for contacts.

All the information there—names, addresses, phone numbers, and so

forth—can be shared by any application that wants to use it. See Sec-

tion 9.5, Using a ContentProvider, on page 189 for an example.

2.4 Using Resources

A resource is a localized text string, bitmap, or other small piece of

noncode information that your program needs. At build time all your

resources get compiled into your application.

You will create and store your resources in the res directory inside your

project. The Android resource compiler (aapt)5 processes resources

according to which subfolder they are in and the format of the file. For

example, PNG and JPG format bitmaps should go in the res/drawable

directory, and XML files that describe screen layouts should go in the

res/layout directory.

5. http://d.android.com/guide/developing/tools/aapt.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/developing/tools/aapt.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=40

SAFE AND SECURE 41

The resource compiler compresses and packs your resources and then

generates a class named R that contains identifiers you use to reference

those resources in your program. This is a little different from standard

Java resources, which are referenced by key strings. Doing it this way

allows Android to make sure all your references are valid and saves

space by not having to store all those resource keys. Eclipse uses a

similar method to store and reference the resources in Eclipse plug-ins.

We’ll see an example of the code to access a resource in Chapter 3,

Designing the User Interface, on page 44.

2.5 Safe and Secure

As mentioned earlier, every application runs in its own Linux process.

The hardware forbids one process from accessing another process’s

memory. Furthermore, every application is assigned a specific user ID.

Any files it creates cannot be read or written by other applications.

In addition, access to certain critical operations are restricted, and you

must specifically ask for permission to use them in a file named Android-

Manifest.xml. When the application is installed, the Package Manager

either grants or doesn’t grant the permissions based on certificates

and, if necessary, user prompts. Here are some of the most common

permissions you will need:

• INTERNET: Access the Internet.

• READ_CONTACTS: Read (but don’t write) the user’s contacts data.

• WRITE_CONTACTS: Write (but don’t read) the user’s contacts data.

• RECEIVE_SMS: Monitor incoming SMS (text) messages.

• ACCESS_COARSE_LOCATION: Use a coarse location provider such as

cell towers or wifi.

• ACCESS_FINE_LOCATION: Use a more accurate location provider such

as GPS.

For example, to monitor incoming SMS messages, you would specify

this in the manifest file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.google.android.app.myapp" >

<uses-permission android:name="android.permission.RECEIVE_SMS" />

</manifest>

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=41

FAST -FORWARD >> 42

Android can even restrict access to entire parts of the system. Using

XML tags in AndroidManifest.xml, you can restrict who can start an activ-

ity, start or bind to a service, broadcast intents to a receiver, or access

the data in a content provider. This kind of control is beyond the scope

of this book, but if you want to learn more, read the online help for the

Android security model.6

2.6 Fast-Forward >>

The rest of this book will use all the concepts introduced in this chap-

ter. In Chapter 3, Designing the User Interface, on page 44, we’ll use

activities and life-cycle methods to define a sample application. Chap-

ter 4, Exploring 2D Graphics, on page 73 will use some of the graphics

classes in the Android native libraries. Media codecs will be explored

in Chapter 5, Multimedia, on page 104, and content providers will be

covered in Chapter 9, Putting SQL to Work, on page 175.

6. http://d.android.com/guide/topics/security/security.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/topics/security/security.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=42

Part II

Android Basics

43
Prepared exclusively for Trieu Nguyen

Chapter 3

Designing the User Interface
In Chapter 1, Quick Start, on page 20, we used the Android Eclipse

plug-in to put together a simple “Hello, Android” program in a few min-

utes. In Part II, we’ll create a more substantial example: a Sudoku

game. By gradually adding features to the game, you’ll learn about

many aspects of Android programming. We’ll start with the user inter-

face.

You can find all the sample code used in this book at http://pragprog.

com/titles/eband. If you’re reading the PDF version of this book, you can

click the little gray rectangle before the code listings to download that

file directly.

3.1 Introducing the Sudoku Example

Sudoku makes a great sample program for Android because the game

itself is so simple. You have a grid of eighty-one tiles (nine across and

nine down), and you try to fill them in with numbers so that each col-

umn, each row, and each of the three-by-three boxes contains the num-

bers 1 through 9 only once. When the game starts, some of the numbers

(the givens) are already filled in. All the player has to do is supply the

rest. A true Sudoku puzzle has only one unique solution.

Sudoku is usually played with pencil and paper, but computerized ver-

sions are quite popular too. With the paper version, it’s easy to make

a mistake early on, and when that happens, you have to go back and

erase most of your work. In the Android version, you can change the

tiles as often as you like without having to brush away all those pesky

eraser shavings.

Prepared exclusively for Trieu Nguyen

http://pragprog.com/titles/eband
http://pragprog.com/titles/eband

DESIGNING BY DECLARATION 45

Sudoku Trivia

Most people think Sudoku is some kind of ancient Japanese
game, but it’s not. Although similar puzzles can be traced
to 19th-century French magazines, most experts credit retired
American architect Howard Garns with the invention of mod-
ern Sudoku. Number Place, as it was known at the time, was
first published in the United States in 1979 by Dell Magazines.

Android Sudoku (see Figure 3.1, on the following page) will also offer a

few hints to take some of the grunt work out of puzzle solving. At one

extreme, it could just solve the puzzle for you, but that wouldn’t be any

fun, would it? So, we have to balance the hints against the challenge

and not make it too easy.

3.2 Designing by Declaration

User interfaces can be designed using one of two methods: procedural

and declarative. Procedural simply means in code. For example, when

you’re programming a Swing application, you write Java code to cre-

ate and manipulate all the user interface objects such as JFrame and

JButton. Thus, Swing is procedural.

Declarative design, on the other hand, does not involve any code. When

you’re designing a simple web page, you use HTML, a markup language

based on XML that describes what you want to see on the page, not how

you want to do it. HTML is declarative.

Android tries to straddle the gap between the procedural and declar-

ative worlds by letting you create user interfaces in either style. You

can stay almost entirely in Java code, or you can stay almost entirely

in XML descriptors. If you look up the documentation for any Android

user interface component, you’ll see both the Java APIs and the corre-

sponding declarative XML attributes that do the same thing.

Which should you use? Either way is valid, but Google’s advice is to use

declarative XML as much as possible. The XML code is often shorter

and easier to understand than the corresponding Java code, and it’s

less likely to change in future versions.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=45

CREATING THE OPENING SCREEN 46

Figure 3.1: The Sudoku example program for Android

Now let’s see how we can use this information to create the Sudoku

opening screen.

3.3 Creating the Opening Screen

We’ll start with a skeleton Android program created by the Eclipse plug-

in. Just as you did in Section 1.2, Creating Your First Program, on

page 24, create a new “Hello, Android” project, but this time use the

following values:

Project name: Sudoku

Build Target: Android 1.5

Application name: Sudoku

Package name: org.example.sudoku

Create Activity: Sudoku

In a real program, of course, you would use your own names here. The

package name is particularly important. Each application in the system

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=46

CREATING THE OPENING SCREEN 47

must have a unique package name. Once you choose a package name,

it’s a little tricky to change it because it’s used in so many places.

I like to keep the Android emulator window up all the time and run the

program after every change, since it takes only a few seconds. If you

do that and run the program now, you’ll see a blank screen that just

contains the words “Hello World, Sudoku.” The first order of business is

to change that into an opening screen for the game, with buttons to let

the player start a new game, continue a previous one, get information

about the game, or exit. So, what do we have to change to do that?

As discussed in Chapter 2, Key Concepts, on page 30, Android applica-

tions are a loose collection of activities, each of which define a user

interface screen. When you create the Sudoku project, the Android

plug-in makes a single activity for you in Sudoku.java:

Download Sudokuv0/src/org/example/sudoku/Sudoku.java

package org.example.sudoku;

import android.app.Activity;

import android.os.Bundle;

public class Sudoku extends Activity {

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

}

}

Android calls the onCreate() method of your activity to initialize it. The

call to setContentView() fills in the contents of the activity’s screen with

an Android view widget.

We could have used several lines of Java code, and possibly another

class or two, to define the user interface procedurally. But instead,

the plug-in chose the declarative route, and we’ll continue along those

lines. In the previous code, R.layout.main is a resource identifier that

refers to the main.xml file in the res/layout directory (see Figure 3.2, on

the next page). main.xml declares the user interface in XML, so that’s

the file we need to modify. At runtime, Android parses and instanti-

ates (inflates) the resource defined there and sets it as the view for the

current activity.

It’s important to note that the R class is managed automatically by the

Android Eclipse plug-in. When you put a file anywhere in the res direc-

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv0/src/org/example/sudoku/Sudoku.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=47

CREATING THE OPENING SCREEN 48

Figure 3.2: Initial resources in the Sudoku project

tory, the plug-in notices the change and adds resource IDs in R.java

in the gen directory for you. If you remove or change a resource file,

R.java is kept in sync. If you bring up the file in the editor, it will look

something like this:

Download Sudokuv0/gen/org/example/sudoku/R.java

/* AUTO-GENERATED FILE. DO NOT MODIFY.

*

* This class was automatically generated by the

* aapt tool from the resource data it found. It

* should not be modified by hand.

*/

package org.example.sudoku;

public final class R {

public static final class attr {

}

public static final class drawable {

public static final int icon=0x7f020000;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv0/gen/org/example/sudoku/R.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=48

CREATING THE OPENING SCREEN 49

Joe Asks. . .

Why Does Android Use XML? Isn’t That Inefficient?

Android is optimized for mobile devices with limited memory
and horsepower, so you may find it strange that it uses XML so
pervasively. After all, XML is a verbose, human-readable format
not known for its brevity or efficiency, right?

Although you see XML when writing your program, the Eclipse
plug-in invokes the Android resource compiler, aapt, to prepro-
cess the XML into a compressed binary format. It is this format,
not the original XML text, that is stored on the device.

}

public static final class layout {

public static final int main=0x7f030000;

}

public static final class string {

public static final int app_name=0x7f040001;

public static final int hello=0x7f040000;

}

}

The hex numbers are just integers that the Android resource manager

uses to load the real data, the strings, and the other assets that are

compiled into your package. You don’t need to worry about their values.

Just keep in mind that they are handles that refer to the data, not the

objects that contain the data. Those objects won’t be inflated until they

are needed. Note that almost every Android program, including the base

Android framework itself, has an R class. See the online documentation

on android.R for all the built-in resources you can use.1

So, now we know we have to modify main.xml. Let’s dissect the origi-

nal definition to see what we have to change. Double-click main.xml in

Eclipse to open it. Depending on how you have Eclipse set up, you may

see either a visual layout editor or an XML editor. In current versions

of ADT, the visual layout editor isn’t that useful, so click main.xml or

Source tab at the bottom to see the XML.

The first line of main.xml is as follows:

1. http://d.android.com/reference/android/R.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/reference/android/R.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=49

CREATING THE OPENING SCREEN 50

<?xml version="1.0" encoding="utf-8"?>

All Android XML files start with this line. It just tells the compiler that

the file is XML format, in UTF-8 encoding. UTF-8 is almost exactly like

regular ASCII text, except it has escape codes for non-ASCII characters

such as Japanese glyphs.

Next we see a reference to <LinearLayout>:

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<!-- ... -->

</LinearLayout>

A layout is a container for one or more child objects and a behavior to

position them on the screen within the rectangle of the parent object.

Here is a list of the most common layouts provided by Android:

• FrameLayout: Arranges its children so they all start at the top left

of the screen. This is used for tabbed views and image switchers.

• LinearLayout: Arranges its children in a single column or row. This

is the most common layout you will use.

• RelativeLayout: Arranges its children in relation to each other or to

the parent. This is often used in forms.

• TableLayout: Arranges its children in rows and columns, similar to

an HTML table.

Some parameters are common to all layouts:

xmlns:android="http://schemas.android.com/apk/res/android"

Defines the XML namespace for Android. You should define this

once, on the first XML tag in the file.

android:layout_width="fill_parent", android:layout_height="fill_parent"

Takes up the entire width and height of the parent (in this case,

the window). Possible values are fill_parent and wrap_content.

Inside the <LinearLayout> tag you’ll find one child widget:

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/hello" />

This defines a simple text label. Let’s replace that with some different

text and a few buttons. Here’s our first attempt:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=50

CREATING THE OPENING SCREEN 51

Download Sudokuv1/res/layout/main1.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/main_title" />

<Button

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/continue_label" />

<Button

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/new_game_label" />

<Button

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/about_label" />

<Button

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/exit_label" />

</LinearLayout>

If you see warnings in the editor about missing grammar constraints

(DTD or XML schema), just ignore them.

Instead of hard-coding English text into the layout file, we use the

@string/resid syntax to refer to strings in the res/values/strings.xml file. You

can have different versions of this and other resource files based on the

locale or other parameters such as screen resolution and orientation.

Open that file now, switch to the strings.xml tab at the bottom if neces-

sary, and enter this:

Download Sudokuv1/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Sudoku</string>

<string name="main_title">Android Sudoku</string>

<string name="continue_label">Continue</string>

<string name="new_game_label">New Game</string>

<string name="about_label">About</string>

<string name="exit_label">Exit</string>

</resources>

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/res/layout/main1.xml
http://media.pragprog.com/titles/eband/code/Sudokuv1/res/values/strings.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=51

CREATING THE OPENING SCREEN 52

Figure 3.3: First version of the opening screen

Save strings.xml so Eclipse will rebuild the project. When you run the

program now, you should see something like Figure 3.3. It’s readable,

but it could use some cosmetic changes.

Let’s make the title text larger and centered, make the buttons smaller,

and use a different background color. Here’s the color definition, which

you should put in res/values/colors.xml:

Download Sudokuv1/res/values/colors.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="background">#3500ffff</color>

</resources>

And here’s the new layout:

Download Sudokuv1/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/res/values/colors.xml
http://media.pragprog.com/titles/eband/code/Sudokuv1/res/layout/main.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=52

CREATING THE OPENING SCREEN 53

xmlns:android="http://schemas.android.com/apk/res/android"

android:background="@color/background"

android:layout_height="fill_parent"

android:layout_width="fill_parent"

android:padding="30dip"

android:orientation="horizontal">

<LinearLayout

android:orientation="vertical"

android:layout_height="wrap_content"

android:layout_width="fill_parent"

android:layout_gravity="center">

<TextView

android:text="@string/main_title"

android:layout_height="wrap_content"

android:layout_width="wrap_content"

android:layout_gravity="center"

android:layout_marginBottom="25dip"

android:textSize="24.5sp" />

<Button

android:id="@+id/continue_button"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/continue_label" />

<Button

android:id="@+id/new_button"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/new_game_label" />

<Button

android:id="@+id/about_button"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/about_label" />

<Button

android:id="@+id/exit_button"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:text="@string/exit_label" />

</LinearLayout>

</LinearLayout>

In this version, we introduce a new syntax, @+id/resid. Instead of refer-

ring to a resource ID defined somewhere else, this is how you create

a new resource ID to which others can refer. For example, @+id/about_

button defines the ID for the About button, which we’ll use later to make

something happen when the user presses that button.

The result is shown in Figure 3.4, on the next page. This new screen

looks good in portrait mode (when the screen is taller than it is wide),

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=53

USING ALTERNATE RESOURCES 54

Figure 3.4: Opening screen with new layout

but how about landscape mode (wide-screen)? The user can switch

modes at any time, for example, by flipping out the keyboard or turning

the phone on its side, so you need to handle that.

3.4 Using Alternate Resources

As a test, try switching the emulator to landscape mode (Ctrl+F11 or

the 7 or 9 key on the keypad). Oops! The Exit button runs off the

bottom of the screen (see Figure 3.5, on page 56). How do we fix that?

You could try to adjust the layout so that it works with all orienta-

tions. Unfortunately, that’s often not possible or leads to odd-looking

screens. When that happens, you’ll need to create a different layout for

landscape mode. That’s the approach we’ll take here.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=54

USING ALTERNATE RESOURCES 55

Joe Asks. . .

What Are Dips and Sps?

Historically, programmers always designed computer interfaces
in terms of pixels. For example, you might make a field 300 pixels
wide, allow 5 pixels of spacing between columns, and define
icons 16-by-16 pixels in size. The problem is that if you run that
program on new displays with more and more dots per inch
(dpi), the user interface appears smaller and smaller. At some
point, it becomes too hard to read.

Resolution-independent measurements help solve this problem.
Android supports all the following units:

• px (pixels): Dots on the screen.

• in (inches): Size as measured by a ruler.

• mm (millimeters): Size as measured by a ruler.

• pt (points): 1/72 of an inch.

• dp (density-independent pixels): An abstract unit based
on the density of the screen. On a display with 160 dots
per inch, 1dp = 1px.

• dip: Synonym for dp, used more often in Google examples.

• sp (scale-independent pixels): Similar to dp but also scaled
by the user’s font size preference.

To make your interface scalable to any current and future type
of display, I recommend you always use the sp unit for text sizes
and the dip unit for everything else. You should also consider
using vector graphics instead of bitmaps (see Chapter 4, Explor-
ing 2D Graphics, on page 73).

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=55

USING ALTERNATE RESOURCES 56

Figure 3.5: In landscape mode, we can’t see the Exit button.

Create a file called res/layout-land/main.xml (note the -land suffix) that

contains the following layout:

Download Sudokuv1/res/layout-land/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:background="@color/background"

android:layout_height="fill_parent"

android:layout_width="fill_parent"

android:padding="15dip"

android:orientation="horizontal">

<LinearLayout

android:orientation="vertical"

android:layout_height="wrap_content"

android:layout_width="fill_parent"

android:layout_gravity="center"

android:paddingLeft="20dip"

android:paddingRight="20dip">

<TextView

android:text="@string/main_title"

android:layout_height="wrap_content"

android:layout_width="wrap_content"

android:layout_gravity="center"

android:layout_marginBottom="20dip"

android:textSize="24.5sp" />

<TableLayout

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/res/layout-land/main.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=56

USING ALTERNATE RESOURCES 57

Figure 3.6: Using a landscape-specific layout lets us see all the buttons.

android:layout_height="wrap_content"

android:layout_width="wrap_content"

android:layout_gravity="center"

android:stretchColumns="*">

<TableRow>

<Button

android:id="@+id/continue_button"

android:text="@string/continue_label" />

<Button

android:id="@+id/new_button"

android:text="@string/new_game_label" />

</TableRow>

<TableRow>

<Button

android:id="@+id/about_button"

android:text="@string/about_label" />

<Button

android:id="@+id/exit_button"

android:text="@string/exit_label" />

</TableRow>

</TableLayout>

</LinearLayout>

</LinearLayout>

This uses a TableLayout to create two columns of buttons. Now run the

program again (see Figure 3.6). Even in landscape mode, all the buttons

are visible.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=57

IMPLEMENTING AN ABOUT BOX 58

You can use resource suffixes to specify alternate versions of any re-

sources, not just the layout. For example, you can use them to provide

localized text strings in different languages. Each alternate resource file

must define exactly the same set of IDs.

Android supports suffixes for the current language, region, pixel den-

sity, resolution, input method, and more. See the Android resources

documentation for an up-to-date list of suffixes and inheritance rules.2

3.5 Implementing an About Box

When the user selects the About button, meaning that either they touch

it (if they have a touch screen) or they navigate to it with the D-pad

(directional pad) or trackball and press the selection button, we want

to pop up a window with some information about Sudoku.

After scrolling through the text, the user can press the Back button to

dismiss the window.

We can accomplish this in several ways:

• Define a new Activity and start it.

• Use the AlertDialog class and show it.

• Subclass Android’s Dialog class, and show that.

For this example, let’s define a new activity. Like the main Sudoku activ-

ity, the About activity will need a layout file. We will name it res/layout/

about.xml:

Download Sudokuv1/res/layout/about.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:padding="10dip">

<TextView

android:id="@+id/about_content"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/about_text" />

</ScrollView>

2. http://d.android.com/guide/topics/resources/resources-i18n.html#AlternateResources

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/res/layout/about.xml
http://d.android.com/guide/topics/resources/resources-i18n.html#AlternateResources
http://books.pragprog.com/titles/eband/errata/add?pdf_page=58

IMPLEMENTING AN ABOUT BOX 59

We need only one version of this layout because it will look fine in both

portrait and landscape modes.

Now add strings for the title of the About dialog box and the text it

contains to res/values/strings.xml:

Download Sudokuv1/res/values/strings.xml

<string name="about_title">About Android Sudoku</string>

<string name="about_text">\

Sudoku is a logic-based number placement puzzle.

Starting with a partially completed 9x9 grid, the

objective is to fill the grid so that each

row, each column, and each of the 3x3 boxes

(also called <i>blocks</i>) contains the digits

1 to 9 exactly once.

</string>

Note how a string resource can contain simple HTML formatting and

can span multiple lines. In case you’re wondering, the backslash char-

acter (\) in about_text prevents an extra blank from appearing before

the first word.

The About activity should be defined in About.java. All it needs to do is

override onCreate() and call setContentView():

Download Sudokuv1/src/org/example/sudoku/About.java

package org.example.sudoku;

import android.app.Activity;

import android.os.Bundle;

public class About extends Activity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.about);

}

}

Next we need to wire all this up to the About button in the Sudoku class.

Start by adding a few imports we’ll need to Sudoku.java:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

import android.content.Intent;

import android.view.View;

import android.view.View.OnClickListener;

In the onCreate() method, add code to call findViewById() to look up an

Android view given its resource ID and setOnClickListener() to tell Android

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/res/values/strings.xml
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/About.java
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=59

IMPLEMENTING AN ABOUT BOX 60

which object to tickle when the user touches or clicks the view:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

/** Called when the activity is first created. */

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// Set up click listeners for all the buttons

View continueButton = findViewById(R.id.continue_button);

continueButton.setOnClickListener(this);

View newButton = findViewById(R.id.new_button);

newButton.setOnClickListener(this);

View aboutButton = findViewById(R.id.about_button);

aboutButton.setOnClickListener(this);

View exitButton = findViewById(R.id.exit_button);

exitButton.setOnClickListener(this);

}

While we’re in here, we do the same for all the buttons. Recall that

constants like R.id.about_button are created by the Eclipse plug-in in

R.java when it sees @+id/about_button in res/layout/main.xml.

The code uses this as the receiver, so the Sudoku class needs to imple-

ment the OnClickListener interface and define a method called onClick:3

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

public class Sudoku extends Activity implements OnClickListener {

// ...

public void onClick(View v) {

switch (v.getId()) {

case R.id.about_button:

Intent i = new Intent(this, About.class);

startActivity(i);

break;

// More buttons go here (if any) ...

}

}

}

To start an activity in Android, we first need to create an instance of

the Intent class. There are two kinds of intents: public (named) intents

that are registered with the system and can be called from any appli-

cation and private (anonymous) intents that are used within a single

application. For this example, we just need the latter kind.

3. We could have used an anonymous inner class to handle clicks, but according to the

Android developers, every new inner class takes up an extra 1KB of memory.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=60

IMPLEMENTING AN ABOUT BOX 61

Figure 3.7: Mountain View, we have a problem

If you run the program and select the About button now, you will get

an error (see Figure 3.7). What happened?

We forgot one important step: every activity needs to be declared in

AndroidManifest.xml. To do that, double-click the file to open it, switch

to XML mode if necessary by selecting the AndroidManifest.xml tab at the

bottom, and add a new <activity> tag after the closing tag of the first

one:

Download Sudokuv1/AndroidManifest.first.xml

<activity android:name=".About"

android:label="@string/about_title">

</activity>

Now if you save the manifest, run the program again, and select the

About button, you should see something like Figure 3.8, on the fol-

lowing page. Press the Back button (Esc on the emulator) when you’re

done.

That looks OK, but wouldn’t it be nice if we could see the initial screen

behind the About text?

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/AndroidManifest.first.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=61

APPLYING A THEME 62

Figure 3.8: First version of the About screen

3.6 Applying a Theme

A theme is a collection of styles that override the look and feel of Android

widgets. Themes were inspired by Cascading Style Sheets (CSS) used

for web pages—they separate the content of a screen and its presen-

tation or style. Android is packaged with several themes that you can

reference by name,4 or you can make up your own theme by subclass-

ing existing ones and overriding their default values.

We could define our own custom theme in res/values/styles.xml, but for

this example we’ll just take advantage of a predefined one. To use it,

open the AndroidManifest.xml editor again, and change the definition of

the About activity so it has a theme property.

4. See http://d.android.com/reference/android/R.style.html for symbols beginning with

“Theme_.”

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/reference/android/R.style.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=62

ADDING A MENU 63

Figure 3.9: About screen after applying the dialog box theme

Download Sudokuv1/AndroidManifest.xml

<activity android:name=".About"

android:label="@string/about_title"

android:theme="@android:style/Theme.Dialog">

</activity>

The @android: prefix in front of the style name means this is a refer-

ence to a resource defined by Android, not one that is defined in your

program.

Running the program again, the About box now looks like Figure 3.9.

Many programs need menus and options, so the next two sections will

show you how to define them.

3.7 Adding a Menu

Android supports two kinds of menus. First, there is the menu you get

when you press the physical Menu button. Second, there is a context
Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/AndroidManifest.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=63

ADDING A MENU 64

Joe Asks. . .

Why Not Use an HTML View?

Android supports embedding a web browser directly into a
view through the WebView class (see Section 7.2, Web with a
View , on page 134). So, why didn’t we just use that for the
About box?

Actually, you could do it either way. A WebView would support
far more sophisticated formatting than a simple TextView, but
it does have some limitations (such as the inability to use a
transparent background). Also, WebView is a heavyweight wid-
get that will be slower and take more memory than TextView.
For your own applications, use whichever one makes the most
sense for your needs.

menu that pops up when you press and hold your finger on the screen

(or press and hold the trackball or the D-pad center button).

Let’s do the first kind so that when the user presses the Menu key,

they’ll open a menu like the one in Figure 3.10, on the next page. First

we need to define a few strings that we’ll use later:

Download Sudokuv1/res/values/strings.xml

<string name="settings_label">Settings...</string>

<string name="settings_title">Sudoku settings</string>

<string name="settings_shortcut">s</string>

<string name="music_title">Music</string>

<string name="music_summary">Play background music</string>

<string name="hints_title">Hints</string>

<string name="hints_summary">Show hints during play</string>

Then we define the menu using XML in res/menu/menu.xml:

Download Sudokuv1/res/menu/menu.xml

<?xml version="1.0" encoding="utf-8"?>

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/settings"

android:title="@string/settings_label"

android:alphabeticShortcut="@string/settings_shortcut" />

</menu>

Next we need to modify the Sudoku class to bring up the menu we just

defined. To do that, we’ll need a few more imports:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/res/values/strings.xml
http://media.pragprog.com/titles/eband/code/Sudokuv1/res/menu/menu.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=64

ADDING A MENU 65

Figure 3.10: Press the Menu button to open the menu.

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

import android.view.Menu;

import android.view.MenuInflater;

import android.view.MenuItem;

Then we override the Sudoku.onCreateOptionsMenu() method:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

@Override

public boolean onCreateOptionsMenu(Menu menu) {

super.onCreateOptionsMenu(menu);

MenuInflater inflater = getMenuInflater();

inflater.inflate(R.menu.menu, menu);

return true;

}

getMenuInflater() returns an instance of MenuInflater that we use to read

the menu definition from XML and turns it into a real view.

When the user selects any menu item, onOptionsItemSelected() will be

called. Here’s the definition for that method:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

@Override

public boolean onOptionsItemSelected(MenuItem item) {

switch (item.getItemId()) {

case R.id.settings:

startActivity(new Intent(this, Settings.class));

return true;

// More items go here (if any) ...

}

return false;

}

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=65

ADDING SETTINGS 66

Settings is a class that we’re going to define that displays all our prefer-

ences and allows the user to change them.

3.8 Adding Settings

Android provides a nice facility for defining what all your program pref-

erences are and how to display them using almost no code. You define

the preferences in a resource file called res/xml/settings.xml:

Download Sudokuv1/res/xml/settings.xml

<?xml version="1.0" encoding="utf-8"?>

<PreferenceScreen

xmlns:android="http://schemas.android.com/apk/res/android">

<CheckBoxPreference

android:key="music"

android:title="@string/music_title"

android:summary="@string/music_summary"

android:defaultValue="true" />

<CheckBoxPreference

android:key="hints"

android:title="@string/hints_title"

android:summary="@string/hints_summary"

android:defaultValue="true" />

</PreferenceScreen>

The Sudoku program has two settings: one for background music and

one for displaying hints. The keys are constant strings that will be used

under the covers in Android’s preferences database.

Next define the Settings class, and make it extend PreferenceActivity:

Download Sudokuv1/src/org/example/sudoku/Settings.java

package org.example.sudoku;

import android.os.Bundle;

import android.preference.PreferenceActivity;

public class Settings extends PreferenceActivity {

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.settings);

}

}

The addPreferencesFromResource() method reads the settings definition

from XML and inflates it into views in the current activity. All the heavy

lifting takes place in the PreferenceActivity class.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/res/xml/settings.xml
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Settings.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=66

ADDING SETTINGS 67

Figure 3.11: It’s not much to look at, but we got it for free.

Don’t forget to register the Settings activity in AndroidManifest.xml:

Download Sudokuv1/AndroidManifest.xml

<activity android:name=".Settings"

android:label="@string/settings_title">

</activity>

Now rerun Sudoku, press the Menu key, select the Settings... item,

and watch with amazement as the Sudoku settings page appears (see

Figure 3.11). Try changing the values there and exiting the program,

and then come back in and make sure they’re all still set.

Code that reads the settings and does something with them will be

discussed in a different chapter (Chapter 6, Storing Local Data, on

page 119). For now let’s move on to the New Game button.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/AndroidManifest.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=67

STARTING A NEW GAME 68

3.9 Starting a New Game

If you’ve played any Sudoku games, you know that some are easy and

some are maddeningly hard. So when the user selects New Game, we

want to pop up a dialog box asking them to select between three diffi-

culty levels. Selecting from a list of things is easy to do in Android. First

we’ll need a few more strings in res/values/strings.xml:

Download Sudokuv1/res/values/strings.xml

<string name="new_game_title">Difficulty</string>

<string name="easy_label">Easy</string>

<string name="medium_label">Medium</string>

<string name="hard_label">Hard</string>

Create the list of difficulties as an array resource in res/values/arrays.xml:

Download Sudokuv1/res/values/arrays.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<array name="difficulty">

<item>@string/easy_label</item>

<item>@string/medium_label</item>

<item>@string/hard_label</item>

</array>

</resources>

We’ll need a few more imports in the Sudoku class:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

import android.app.AlertDialog;

import android.content.DialogInterface;

import android.util.Log;

Add code in the switch statement of the onClick() method to handle a

click on the New Game button:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

case R.id.new_button:

openNewGameDialog();

break;

The openNewGameDialog() method takes care of creating the user inter-

face for the difficulty list.

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

private static final String TAG = "Sudoku";

/** Ask the user what difficulty level they want */

private void openNewGameDialog() {

new AlertDialog.Builder(this)

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/res/values/strings.xml
http://media.pragprog.com/titles/eband/code/Sudokuv1/res/values/arrays.xml
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=68

STARTING A NEW GAME 69

Figure 3.12: Difficulty selection dialog box

.setTitle(R.string.new_game_title)

.setItems(R.array.difficulty,

new DialogInterface.OnClickListener() {

public void onClick(DialogInterface dialoginterface,

int i) {

startGame(i);

}

})

.show();

}

/** Start a new game with the given difficulty level */

private void startGame(int i) {

Log.d(TAG, "clicked on " + i);

// Start game here...

}

The setItems() method takes two parameters: the resource ID of the item

list and a listener that will be called when one of the items is selected.

When you run the program now and press New Game, you’ll get the

dialog box in Figure 3.12.

We’re not actually going to start the game yet, so instead when you

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=69

DEBUGGING WITH LOG MESSAGES 70

Figure 3.13: Debugging output in the LogCat view

select a difficulty level, we just print a debug message using the Log.d()

method, passing it a tag string and a message to print.

3.10 Debugging with Log Messages

The Log class provides several static methods to print messages of var-

ious severity levels to the Android system log:

• Log.e(): Errors

• Log.w(): Warnings

• Log.i(): Information

• Log.d(): Debugging

• Log.v(): Verbose

Users will never see this log, but as a developer you can view it in a

couple ways. In Eclipse, open the LogCat view by selecting Window >

Show View > Other... > Android > LogCat (see Figure 3.13). The view

can be filtered by severity or by the tag you specified on the method

call.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=70

DEBUGGING WITH THE DEBUGGER 71

If you’re not using Eclipse, you can see the same output by running

the adb logcat command.5 I recommend you start this command in a

separate window and leave it running all the time that the emulator is

running. It won’t interfere with any other monitors.

I can’t stress enough how useful the Android log will be during devel-

opment. Remember that error we saw earlier with the About box (Fig-

ure 3.7, on page 61)? If you had opened the LogCat view at that point,

you would have seen this message: “ActivityNotFoundException: Un-

able to find explicit activity class...have you declared this activity in

your AndroidManifest.xml?” It doesn’t get any plainer than that.

3.11 Debugging with the Debugger

In addition to log messages, you can use the Eclipse debugger to set

breakpoints, single step, and view the state of your program. First, en-

able your project for debugging by adding the android:debuggable="true"

option in your AndroidManifest.xml file:6

Download Sudokuv1/AndroidManifest.xml

<application android:icon="@drawable/icon"

android:label="@string/app_name"

android:debuggable="true">

Then, simply right-click the project, and select Debug As > Android

Application.

3.12 Exiting the Game

This game doesn’t really need an Exit button, because the user can just

press the Back key or the Home key to do something else. But I wanted

to add one to show you how to terminate an activity. Add this to the

switch statement in the onClick() method:

Download Sudokuv1/src/org/example/sudoku/Sudoku.java

case R.id.exit_button:

finish();

break;

5. http://d.android.com/guide/developing/tools/adb.html

6. This is optional if you’re using the emulator but required on a real device. Just

remember to remove the option before releasing your code to the public.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv1/AndroidManifest.xml
http://media.pragprog.com/titles/eband/code/Sudokuv1/src/org/example/sudoku/Sudoku.java
http://d.android.com/guide/developing/tools/adb.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=71

FAST -FORWARD >> 72

When the Exit button is selected, we call the finish() method. This shuts

down the activity and returns control to the next activity on the Android

application stack (usually the Home screen).

3.13 Fast-Forward >>

Whew, that was a lot to cover in one chapter! Starting from scratch, you

learned how to use layout files to organize your user interface and how

to use Android resources for text, colors, and more. You added controls

such as buttons and text fields, applied themes to change the program’s

appearance, and even added menus and preferences for good measure.

Android is a complex system, but you don’t have to know all of it to

get started. When you need help, the hundreds of pages of reference

material online go into more depth on all the classes and methods used

here.7Another great source for tips and tricks is the Android Devel-

oper’s Blog.8 And of course, if you get stuck you can always drop by the

discussion forum for this book.9 The other readers and I will be happy

to help you out.

In Chapter 4, Exploring 2D Graphics, on the next page, we’ll use Android’s

graphics API to draw the tiles for the Sudoku game.

7. To view the online documentation, open documentation.html from your Android SDK

install location, or point your browser to http://d.android.com/guide/index.html.
8. http://android-developers.blogspot.com

9. http://forums.pragprog.com/forums/67

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/index.html
http://android-developers.blogspot.com
http://forums.pragprog.com/forums/67
http://books.pragprog.com/titles/eband/errata/add?pdf_page=72

Chapter 4

Exploring 2D Graphics
So far, we’ve covered the basic concepts and philosophy of Android and

how to create a simple user interface with a few buttons and a dialog

box. You’re really starting to get the hang of this Android thing. But

something is missing...what is it? Oh yeah, the fun!

Good graphics can add a bit of fun and excitement to any application.

Android puts one of the most powerful graphics libraries available on a

mobile device at your fingertips. Actually, it puts two of them there: one

for two-dimensional graphics and one for three-dimensional graphics.1

In this chapter, we will cover 2D graphics and apply that knowledge

to implement the game part of our Sudoku example. Chapter 10, 3D

Graphics in OpenGL, on page 195 will cover 3D graphics using the

OpenGL ES library.

4.1 Learning the Basics

Android provides a complete native two-dimensional graphics library

in its android.graphics package. With a basic understanding of classes

such as Color and Canvas, you’ll be up and drawing in no time.

Color

Android colors are represented with four numbers, one each for alpha,

red, green, and blue (ARGB). Each component can have 256 possible

values, or 8 bits, so a color is typically packed into a 32-bit integer. For

1. Functionality for four-dimensional graphics was considered for Android, but it was

dropped because of a lack of time.

Prepared exclusively for Trieu Nguyen

LEARNING THE BASICS 74

efficiency, Android code uses an integer instead of an instance of the

Color class.

Red, green, and blue are self-explanatory, but alpha might not be.

Alpha is a measure of transparency. The lowest value, 0, indicates the

color is completely transparent. It doesn’t really matter what the val-

ues for RGB are, if A is 0. The highest value, 255, indicates the color

is completely opaque. Values in the middle are used for translucent, or

semitransparent, colors. They let you see some of what is underneath

the object being drawn in the foreground.

To create a color, you can use one of the static constants on the Color

class, like this:

int color = Color.BLUE; // solid blue

or if you know the alpha, red, green, and blue numbers, you can use

one of the static factory methods such as the following:

// Translucent purple

color = Color.argb(127, 255, 0, 255);

If possible, though, you’re usually better off defining all your colors in

an XML resource file. This lets you change them easily in one place

later:

<?xml version="1.0" encoding="utf-8"?>

<resources>

<color name="mycolor">#7fff00ff</color>

</resources>

You can reference colors by name in other XML files, as we did in Chap-

ter 3, or you can use them in Java code like this:

color = getResources().getColor(R.color.mycolor);

The getResources() method returns the ResourceManager class for the

current activity, and getColor() asks the manager to look up a color

given a resource ID.

Paint

One of the Android native graphics library’s most important classes is

the Paint class. It holds the style, color, and other information needed

to draw any graphics including bitmaps, text, and geometric shapes.

Normally when you paint something on the screen, you want to draw it

in a solid color. You set that color with the Paint.setColor() method.

For example:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=74

LEARNING THE BASICS 75

cPaint.setColor(Color.LTGRAY);

This uses the predefined color value for light gray.

Canvas

The Canvas class represents a surface on which you draw. Initially can-

vases start off devoid of any content, like blank transparencies for an

overhead projector. Methods on the Canvas class let you draw lines,

rectangles, circles, or other arbitrary graphics on the surface.

In Android, the display screen is taken up by an Activity, which hosts a

View, which in turn hosts a Canvas. You get an opportunity to draw on

that canvas by overriding the View.onDraw() method. The only parameter

to onDraw() is a canvas on which you can draw.

Here’s an example activity called Graphics, which contains a view called

GraphicsView:

public class Graphics extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(new GraphicsView(this));

}

static public class GraphicsView extends View {

public GraphicsView(Context context) {

super(context);

}

@Override

protected void onDraw(Canvas canvas) {

// Drawing commands go here

}

}

We’re going to put some drawing commands into the onDraw() method

in the next section.

Path

The Path class holds a set of vector-drawing commands such as lines,

rectangles, and curves. Here’s an example that defines a circular path:

circle = new Path();

circle.addCircle(150, 150, 100, Direction.CW);

This defines a circle at position x=150, y=150, with a radius of 100

pixels. Now that we’ve defined the path, let’s use it to draw the circle’s

outline plus some text around the inside:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=75

LEARNING THE BASICS 76

Figure 4.1: Drawing text around a circle

private static final String QUOTE = "Now is the time for all " +

"good men to come to the aid of their country.";

canvas.drawPath(circle, cPaint);

canvas.drawTextOnPath(QUOTE, circle, 0, 20, tPaint);

You can see the result in Figure 4.1. Since the circle was drawn in the

clockwise direction (Direction.CW), the text is also drawn that way.

If you want to get really fancy, Android provides a number of PathEffect

classes that let you do things such as apply a random permutation to a

path, cause all the line segments along a path to be smoothed out with

curves or broken up into segments, and create other effects.

Drawable

In Android, a Drawable class is used for a visual element like a bitmap or

solid color that is intended for display only. You can combine drawables

with other graphics, or you can use them in user interface widgets (for

example, as the background for a button or view).

Drawables can take a variety of forms:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=76

LEARNING THE BASICS 77

• Bitmap: A PNG or JPEG image.

• NinePatch: A stretchable PNG image, so named because originally

it divided the image into nine sections. These are used for the

background of resizable bitmap buttons.

• Shape: Vector-drawing commands, based on Path. This is sort of a

poor man’s SVG.

• Layers: A container for child drawables that draw on top of each

other in a certain z-order.

• States: A container that shows one of its child drawables based on

its state (a bit mask). One use is to set various selection and focus

states for buttons.

• Levels: A container that shows only one of its child drawables

based on its level (a range of integers). This could be used for a

battery or signal strength gauge.

• Scale: A container for one child drawable that modifies its size

based on the current level. One use might be a zoomable picture

viewer.

Drawables are almost always defined in XML. Here’s a common exam-

ple where a drawable is defined to be a gradient from one color to

another (in this case, white to gray). The angle specifies the direction of

the gradient (270 degrees means top to bottom). This will be used for

the background of a view:

<?xml version="1.0" encoding="utf-8"?>

<shape xmlns:android="http://schemas.android.com/apk/res/android">

<gradient

android:startColor="#FFFFFF"

android:endColor="#808080"

android:angle="270" />

</shape>

To use it, we could either refer to it in XML with the android:background=

attribute or call the Canvas.setBackgroundResource() method in the view’s

onCreate() method like this:

setBackgroundResource(R.drawable.background);

This gives our GraphicsView example a nice gradient background, as

shown in Figure 4.2, on the following page.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=77

ADDING GRAPHICS TO SUDOKU 78

Figure 4.2: Using a gradient background defined in XML

4.2 Adding Graphics to Sudoku

It’s time to apply what we’ve learned to our Sudoku example. When we

left it at the end of Chapter 3, the Sudoku game had an opening screen,

an About dialog box, and a way to start a new game. But it was missing

one very important part: the game! We’ll use the native 2D graphics

library to implement that part.

Starting the Game

First we need to fill in the code that starts the game. startGame() takes

one parameter, the index of the difficulty name selected from the list.Here’s

the new definition:

Download Sudokuv2/src/org/example/sudoku/Sudoku.java

/** Start a new game with the given difficulty level */

private void startGame(int i) {

Log.d(TAG, "clicked on " + i);

Intent intent = new Intent(Sudoku.this, Game.class);

intent.putExtra(Game.KEY_DIFFICULTY, i);

startActivity(intent);

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Sudoku.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=78

ADDING GRAPHICS TO SUDOKU 79

Sudoku Trivia

A few years after it was published in the United States, Num-
ber Place was picked up by the Japanese publisher Nikoli, who
gave it the much cooler-sounding name Sudoku (which means
“single number” in Japanese). From there it was exported
around the world, and the rest is history. Sadly, Garns died in
1989 before getting a chance to see his creation become a
worldwide sensation.

}

The game part of Sudoku will be another activity called Game, so we

create a new intent to kick it off. We place the difficulty number in an

extraData area provided in the intent, and then we call the startActivity()

method to launch the new activity.

The extraData area is a map of key/value pairs that will be passed along

to the intent. The keys are strings, and the values can be any primitive

type, array of primitives, Bundle, or a subclass of Serializable or Parce-

lable.

Defining the Game Class

Here’s the outline of the Game activity:

Download Sudokuv2/src/org/example/sudoku/Game.java

package org.example.sudoku;

import android.app.Activity;

import android.app.Dialog;

import android.os.Bundle;

import android.util.Log;

import android.view.Gravity;

import android.widget.Toast;

public class Game extends Activity {

private static final String TAG = "Sudoku";

public static final String KEY_DIFFICULTY =

"org.example.sudoku.difficulty";

public static final int DIFFICULTY_EASY = 0;

public static final int DIFFICULTY_MEDIUM = 1;

public static final int DIFFICULTY_HARD = 2;

private int puzzle[] = new int[9 * 9];

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=79

ADDING GRAPHICS TO SUDOKU 80

private PuzzleView puzzleView;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Log.d(TAG, "onCreate");

int diff = getIntent().getIntExtra(KEY_DIFFICULTY,

DIFFICULTY_EASY);

puzzle = getPuzzle(diff);

calculateUsedTiles();

puzzleView = new PuzzleView(this);

setContentView(puzzleView);

puzzleView.requestFocus();

}

// ...

}

The onCreate() method fetches the difficulty number from the intent

and selects a puzzle to play. Then it creates an instance of the PuzzleView

class, setting the PuzzleView as the new contents of the view. Since this

is a fully customized view, it was easier to do this in code than in XML.

The calculateUsedTiles() method, which is defined in Section 4.4, The

Rest of the Story, on page 93, uses the rules of Sudoku to figure out, for

each tile in the nine-by-nine grid, which numbers are not valid for the

tile because they appear elsewhere in the horizontal or vertical direction

or in the three-by-three subgrid.

This is an activity, so we need to register it in AndroidManifest.xml:

Download Sudokuv2/AndroidManifest.xml

<activity android:name=".Game"

android:label="@string/game_title"/>

We also need to add a few more string resources to res/values/strings.xml:

Download Sudokuv2/res/values/strings.xml

<string name="game_title">Game</string>

<string name="no_moves_label">No moves</string>

<string name="keypad_title">Keypad</string>

Defining the PuzzleView Class

Next we need to define the PuzzleView class. Instead of using an XML

layout, this time let’s do it entirely in Java.

Here’s the outline:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/AndroidManifest.xml
http://media.pragprog.com/titles/eband/code/Sudokuv2/res/values/strings.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=80

ADDING GRAPHICS TO SUDOKU 81

What Size Is It Anyway?

A common mistake made by new Android developers is to use
the width and height of a view inside its constructor. When
a view’s constructor is called, Android doesn’t know yet how
big the view will be, so the sizes are set to zero. The real sizes
are calculated during the layout stage, which occurs after
construction but before anything is drawn. You can use the
onSizeChanged() method to be notified of the values when they
are known, or you can use the getWidth() and getHeight() meth-
ods later, such as in the onDraw() method.

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

package org.example.sudoku;

import android.content.Context;

import android.graphics.Canvas;

import android.graphics.Paint;

import android.graphics.Rect;

import android.graphics.Paint.FontMetrics;

import android.graphics.Paint.Style;

import android.util.Log;

import android.view.KeyEvent;

import android.view.MotionEvent;

import android.view.View;

import android.view.animation.AnimationUtils;

public class PuzzleView extends View {

private static final String TAG = "Sudoku";

private final Game game;

public PuzzleView(Context context) {

super(context);

this.game = (Game) context;

setFocusable(true);

setFocusableInTouchMode(true);

}

// ...

}

In the constructor we keep a reference to the Game class and set the

option to allow user input in the view. Inside PuzzleView, we need to

implement the onSizeChanged() method. This is called after the view is

created and Android knows how big everything is.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=81

ADDING GRAPHICS TO SUDOKU 82

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

private float width; // width of one tile

private float height; // height of one tile

private int selX; // X index of selection

private int selY; // Y index of selection

private final Rect selRect = new Rect();

@Override

protected void onSizeChanged(int w, int h, int oldw, int oldh) {

width = w / 9f;

height = h / 9f;

getRect(selX, selY, selRect);

Log.d(TAG, "onSizeChanged: width " + width + ", height "

+ height);

super.onSizeChanged(w, h, oldw, oldh);

}

private void getRect(int x, int y, Rect rect) {

rect.set((int) (x * width), (int) (y * height), (int) (x

* width + width), (int) (y * height + height));

}

We use onSizeChanged() to calculate the size of each tile on the screen

(1/9th of the total view width and height). Note this is a floating-point

number, so it’s possible that we could end up with a fractional num-

ber of pixels. selRect is a rectangle we’ll use later to keep track of the

selection cursor.

At this point we’ve created a view for the puzzle, and we know how big

it is. The next step is to draw the grid lines that separate the tiles on

the board.

Drawing the Board

Android calls a view’s onDraw() method every time any part of the view

needs to be updated. To simplify things, onDraw() pretends that you’re

re-creating the entire screen from scratch. In reality, you may be draw-

ing only a small portion of the view as defined by the canvas’s clip

rectangle. Android takes care of doing the clipping for you.

Start by defining a few new colors to play with in res/values/colors.xml:

Download Sudokuv2/res/values/colors.xml

<color name="puzzle_background">#ffe6f0ff</color>

<color name="puzzle_hilite">#ffffffff</color>

<color name="puzzle_light">#64c6d4ef</color>

<color name="puzzle_dark">#6456648f</color>

<color name="puzzle_foreground">#ff000000</color>

<color name="puzzle_hint_0">#64ff0000</color>

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/res/values/colors.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=82

ADDING GRAPHICS TO SUDOKU 83

Other Ways to Do It

When I was writing this example, I tried several different
approaches such as using a button for each tile or declaring a
grid of ImageView classes in XML. After many false starts, I found
that the approach of having one view for the entire puzzle and
drawing lines and numbers inside that proved to be the fastest
and easiest way for this application.

It does have its drawbacks, though, such as the need to draw
the selection and explicitly handle keyboard and touch events.
When designing your own program, I recommend trying stan-
dard widgets and views first and then falling back to custom
drawing only if that doesn’t work for you.

<color name="puzzle_hint_1">#6400ff80</color>

<color name="puzzle_hint_2">#2000ff80</color>

<color name="puzzle_selected">#64ff8000</color>

Here’s the basic outline for onDraw():

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

@Override

protected void onDraw(Canvas canvas) {

// Draw the background...

Paint background = new Paint();

background.setColor(getResources().getColor(

R.color.puzzle_background));

canvas.drawRect(0, 0, getWidth(), getHeight(), background);

// Draw the board...

// Draw the numbers...

// Draw the hints...

// Draw the selection...

}

The first parameter is the Canvas on which to draw. In this code, we’re

just drawing a background for the puzzle using the puzzle_background

color.

Now let’s add the code to draw the grid lines for the board:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the board...

// Define colors for the grid lines

Paint dark = new Paint();

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=83

ADDING GRAPHICS TO SUDOKU 84

dark.setColor(getResources().getColor(R.color.puzzle_dark));

Paint hilite = new Paint();

hilite.setColor(getResources().getColor(R.color.puzzle_hilite));

Paint light = new Paint();

light.setColor(getResources().getColor(R.color.puzzle_light));

// Draw the minor grid lines

for (int i = 0; i < 9; i++) {

canvas.drawLine(0, i * height, getWidth(), i * height,

light);

canvas.drawLine(0, i * height + 1, getWidth(), i * height

+ 1, hilite);

canvas.drawLine(i * width, 0, i * width, getHeight(),

light);

canvas.drawLine(i * width + 1, 0, i * width + 1,

getHeight(), hilite);

}

// Draw the major grid lines

for (int i = 0; i < 9; i++) {

if (i % 3 != 0)

continue;

canvas.drawLine(0, i * height, getWidth(), i * height,

dark);

canvas.drawLine(0, i * height + 1, getWidth(), i * height

+ 1, hilite);

canvas.drawLine(i * width, 0, i * width, getHeight(), dark);

canvas.drawLine(i * width + 1, 0, i * width + 1,

getHeight(), hilite);

}

The code uses three different colors for the grid lines: a light color

between each tile, a dark color between the three-by-three blocks, and

a highlight color drawn on the edge of each tile to make them look

like they have a little depth. The order in which the lines are drawn is

important, since lines drawn later will be drawn over the top of earlier

lines. You can see what this will look like in Figure 4.3, on the following

page. Next, we need some numbers to go inside those lines.

Drawing the Numbers

The following code draws the puzzle numbers on top of the tiles. The

tricky part here is getting each number positioned and sized so it goes

in the exact center of its tile.

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the numbers...

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=84

ADDING GRAPHICS TO SUDOKU 85

Figure 4.3: Drawing the grid lines with three colors for effect

// Define color and style for numbers

Paint foreground = new Paint(Paint.ANTI_ALIAS_FLAG);

foreground.setColor(getResources().getColor(

R.color.puzzle_foreground));

foreground.setStyle(Style.FILL);

foreground.setTextSize(height * 0.75f);

foreground.setTextScaleX(width / height);

foreground.setTextAlign(Paint.Align.CENTER);

// Draw the number in the center of the tile

FontMetrics fm = foreground.getFontMetrics();

// Centering in X: use alignment (and X at midpoint)

float x = width / 2;

// Centering in Y: measure ascent/descent first

float y = height / 2 - (fm.ascent + fm.descent) / 2;

for (int i = 0; i < 9; i++) {

for (int j = 0; j < 9; j++) {

canvas.drawText(this.game.getTileString(i, j), i

* width + x, j * height + y, foreground);

}

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=85

ADDING GRAPHICS TO SUDOKU 86

Figure 4.4: Centering the numbers inside the tiles

}

We call the getTileString() method (defined in Section 4.4, The Rest of the

Story, on page 93) to find out what numbers to display. To calculate the

size of the numbers, we set the font height to three-fourths the height

of the tile, and we set the aspect ratio to be the same as the tile’s aspect

ratio. We can’t use absolute pixel or point sizes because we want the

program to work at any resolution.

To determine the position of each number, we center it in both the x

and y dimensions. The x direction is easy—just divide the tile width

by 2. But for the y direction, we have to adjust the starting position

downward a little so that the midpoint of the tile will be the midpoint

of the number instead of its baseline. We use the graphics library’s

FontMetrics class to tell how much vertical space the letter will take in

total, and then we divide that in half to get the adjustment. You can see

the results in Figure 4.4.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=86

HANDLING INPUT 87

That takes care of displaying the puzzle’s starting numbers (the givens).

The next step is to allow the player to enter their guesses for all the

blank spaces.

4.3 Handling Input

One difference in Android programming—as opposed to, say, iPhone

programming—is that Android phones come in many shapes and sizes

and have a variety of input methods. They might have a keyboard, a

D-pad, a touch screen, a trackball, or some combination of these.

A good Android program, therefore, needs to be ready to support what-

ever input hardware is available, just like it needs to be ready to support

any screen resolution.

Defining and Updating the Selection

First we’re going to implement a little cursor that shows the player

which tile is currently selected. The selected tile is the one that will

be modified when the player enters a number. This code will draw the

selection in onDraw():

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the selection...

Log.d(TAG, "selRect=" + selRect);

Paint selected = new Paint();

selected.setColor(getResources().getColor(

R.color.puzzle_selected));

canvas.drawRect(selRect, selected);

We use the selection rectangle calculated earlier in onSizeChanged() to

draw an alpha-blended color on top of the selected tile.

Next we provide a way to move the selection by overriding the onKey-

Down() method:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

@Override

public boolean onKeyDown(int keyCode, KeyEvent event) {

Log.d(TAG, "onKeyDown: keycode=" + keyCode + ", event="

+ event);

switch (keyCode) {

case KeyEvent.KEYCODE_DPAD_UP:

select(selX, selY - 1);

break;

case KeyEvent.KEYCODE_DPAD_DOWN:

select(selX, selY + 1);

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=87

HANDLING INPUT 88

Figure 4.5: Drawing and moving the selection

break;

case KeyEvent.KEYCODE_DPAD_LEFT:

select(selX - 1, selY);

break;

case KeyEvent.KEYCODE_DPAD_RIGHT:

select(selX + 1, selY);

break;

default:

return super.onKeyDown(keyCode, event);

}

return true;

}

If the user has a directional pad (D-pad) and they press the up, down,

left, or right button, we call select() to move the selection cursor in that

direction.

How about a trackball? We could override the onTrackballEvent() method,

but it turns out that if you don’t handle trackball events, Android will

translate them into D-pad events automatically. Therefore, we can leave

it out for this example.

Inside the select() method, we calculate the new x and y coordinate of

the selection and then use getRect() again to calculate the new selection

rectangle:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

private void select(int x, int y) {

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=88

HANDLING INPUT 89

invalidate(selRect);

selX = Math.min(Math.max(x, 0), 8);

selY = Math.min(Math.max(y, 0), 8);

getRect(selX, selY, selRect);

invalidate(selRect);

}

Notice the two calls to invalidate(). The first one tells Android that the

area covered by the old selection rectangle (on the left of Figure 4.5,

on the previous page) needs to be redrawn. The second invalidate() call

says that the new selection area (on the right of the figure) needs to be

redrawn too. We don’t actually draw anything here.

This is an important point: never call any drawing functions except in

the onDraw() method. Instead, you use the invalidate() method to mark

rectangles as dirty. The window manager will combine all the dirty rect-

angles at some point in the future and call onDraw() again for you. The

dirty rectangles become the clip region, so screen updates are optimized

to only those areas that change.

Now let’s provide a way for the player to enter a new number on the

selected tile.

Entering Numbers

To handle keyboard input, we just add a few more cases to the onKey-

Down() method for the numbers 0 through 9 (0 or space means erase

the number).

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

case KeyEvent.KEYCODE_0:

case KeyEvent.KEYCODE_SPACE: setSelectedTile(0); break;

case KeyEvent.KEYCODE_1: setSelectedTile(1); break;

case KeyEvent.KEYCODE_2: setSelectedTile(2); break;

case KeyEvent.KEYCODE_3: setSelectedTile(3); break;

case KeyEvent.KEYCODE_4: setSelectedTile(4); break;

case KeyEvent.KEYCODE_5: setSelectedTile(5); break;

case KeyEvent.KEYCODE_6: setSelectedTile(6); break;

case KeyEvent.KEYCODE_7: setSelectedTile(7); break;

case KeyEvent.KEYCODE_8: setSelectedTile(8); break;

case KeyEvent.KEYCODE_9: setSelectedTile(9); break;

case KeyEvent.KEYCODE_ENTER:

case KeyEvent.KEYCODE_DPAD_CENTER:

game.showKeypadOrError(selX, selY);

break;

To support the D-pad, we check for the Enter or center D-pad button

in onKeyDown() and have it pop up a keypad that lets the user select

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=89

HANDLING INPUT 90

Optimizing Refreshes

In an earlier version of this example, I invalidated the entire
screen whenever the cursor was moved. Thus, on every key
press, the whole puzzle had to be redrawn. This caused it to lag
noticeably. Switching the code to invalidate only the smallest
rectangles that changed made it run much faster.

which number to place.

For touch, we override the onTouchEvent() method and show the same

keypad, which will be defined later:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

@Override

public boolean onTouchEvent(MotionEvent event) {

if (event.getAction() != MotionEvent.ACTION_DOWN)

return super.onTouchEvent(event);

select((int) (event.getX() / width),

(int) (event.getY() / height));

game.showKeypadOrError(selX, selY);

Log.d(TAG, "onTouchEvent: x " + selX + ", y " + selY);

return true;

}

Ultimately, all roads will lead back to a call to setSelectedTile() to change

the number on a tile:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

public void setSelectedTile(int tile) {

if (game.setTileIfValid(selX, selY, tile)) {

invalidate();// may change hints

} else {

// Number is not valid for this tile

Log.d(TAG, "setSelectedTile: invalid: " + tile);

}

}

The showKeypadOrError() and setTileIfValid() methods will be defined in

Section 4.4, The Rest of the Story, on page 93.

Note the call to invalidate() with no parameters. That marks the whole

screen as dirty, which violates my own advice earlier! However, in this

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=90

HANDLING INPUT 91

case, it’s necessary because any new numbers added or removed might

change the hints that we are about to implement in the next section.

Adding Hints

How can we help the player out a little without solving the whole puzzle

for them? How about if we draw the background of each tile differently

depending on how many possible moves it has. Add this to onDraw()

before drawing the selection:

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Draw the hints...

// Pick a hint color based on #moves left

Paint hint = new Paint();

int c[] = { getResources().getColor(R.color.puzzle_hint_0),

getResources().getColor(R.color.puzzle_hint_1),

getResources().getColor(R.color.puzzle_hint_2), };

Rect r = new Rect();

for (int i = 0; i < 9; i++) {

for (int j = 0; j < 9; j++) {

int movesleft = 9 - game.getUsedTiles(i, j).length;

if (movesleft < c.length) {

getRect(i, j, r);

hint.setColor(c[movesleft]);

canvas.drawRect(r, hint);

}

}

}

We use three states for zero, one, and two possible moves. If there

are zero moves, that means the player has done something wrong and

needs to backtrack.

The result will look like Figure 4.6, on the next page. Can you spot the

mistake(s) made by the player?2

Shaking Things Up

What if the user tries to enter an obviously invalid number, such as a

number that already appears in the three-by-three block? Just for fun,

let’s make the screen wiggle back and forth when they do that. First we

add a call to the invalid number case in setSelectedTile():

Download Sudokuv2/src/org/example/sudoku/PuzzleView.java

// Number is not valid for this tile

Log.d(TAG, "setSelectedTile: invalid: " + tile);

2. The two numbers on the bottom row, middle block, are wrong.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=91

HANDLING INPUT 92

Figure 4.6: Tiles are highlighted based on how many possible values

the tile can have.

startAnimation(AnimationUtils.loadAnimation(game,

R.anim.shake));

This loads and runs a resource called R.anim.shake, defined in res/anim/

shake.xml, that shakes the screen for 1,000 milliseconds (1 second) by

10 pixels from side to side.

Download Sudokuv2/res/anim/shake.xml

<?xml version="1.0" encoding="utf-8"?>

<translate

xmlns:android="http://schemas.android.com/apk/res/android"

android:fromXDelta="0"

android:toXDelta="10"

android:duration="1000"

android:interpolator="@anim/cycle_7" />

The number of times to run the animation and the velocity and accel-

eration of the animation are controlled by an animation interpolator

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/res/anim/shake.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=92

THE REST OF THE STORY 93

defined in XML.

Download Sudokuv2/res/anim/cycle_7.xml

<?xml version="1.0" encoding="utf-8"?>

<cycleInterpolator

xmlns:android="http://schemas.android.com/apk/res/android"

android:cycles="7" />

This particular one will cause the animation to be repeated seven times.

4.4 The Rest of the Story

Now let’s go back and tie up a few loose ends, starting with the Key-

pad class. These pieces are necessary for the program to compile and

operate but have nothing to do with graphics. Feel free to skip ahead to

Section 4.5, Making More Improvements, on page 102 if you like.

Creating the Keypad

The keypad is handy for phones that don’t have keyboards. It displays

a grid of the numbers 1 through 9 in an activity that appears on top of

the puzzle. The whole purpose of the keypad dialog box is to return a

number selected by the player.

Here’s the user interface layout from res/layout/keypad.xml:

Download Sudokuv2/res/layout/keypad.xml

<?xml version="1.0" encoding="utf-8"?>

<TableLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/keypad"

android:orientation="vertical"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:stretchColumns="*">

<TableRow>

<Button android:id="@+id/keypad_1"

android:text="1">

</Button>

<Button android:id="@+id/keypad_2"

android:text="2">

</Button>

<Button android:id="@+id/keypad_3"

android:text="3">

</Button>

</TableRow>

<TableRow>

<Button android:id="@+id/keypad_4"

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/res/anim/cycle_7.xml
http://media.pragprog.com/titles/eband/code/Sudokuv2/res/layout/keypad.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=93

THE REST OF THE STORY 94

android:text="4">

</Button>

<Button android:id="@+id/keypad_5"

android:text="5">

</Button>

<Button android:id="@+id/keypad_6"

android:text="6">

</Button>

</TableRow>

<TableRow>

<Button android:id="@+id/keypad_7"

android:text="7">

</Button>

<Button android:id="@+id/keypad_8"

android:text="8">

</Button>

<Button android:id="@+id/keypad_9"

android:text="9">

</Button>

</TableRow>

</TableLayout>

Next let’s define the Keypad class. Here’s the outline:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

package org.example.sudoku;

import android.app.Dialog;

import android.content.Context;

import android.os.Bundle;

import android.view.KeyEvent;

import android.view.View;

public class Keypad extends Dialog {

protected static final String TAG = "Sudoku";

private final View keys[] = new View[9];

private View keypad;

private final int useds[];

private final PuzzleView puzzleView;

public Keypad(Context context, int useds[], PuzzleView puzzleView) {

super(context);

this.useds = useds;

this.puzzleView = puzzleView;

}

@Override

protected void onCreate(Bundle savedInstanceState) {

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Keypad.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=94

THE REST OF THE STORY 95

Figure 4.7: Invalid values are hidden in the keypad view.

super.onCreate(savedInstanceState);

setTitle(R.string.keypad_title);

setContentView(R.layout.keypad);

findViews();

for (int element : useds) {

if (element != 0)

keys[element - 1].setVisibility(View.INVISIBLE);

}

setListeners();

}

// ...

}

If a particular number is not valid (for example, the same number

already appears in that row), then we make the number invisible in

the grid so the player can’t select it (see Figure 4.7).

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=95

THE REST OF THE STORY 96

The findViews() method fetches and saves the views for all the keypad

keys and the main keypad window:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

private void findViews() {

keypad = findViewById(R.id.keypad);

keys[0] = findViewById(R.id.keypad_1);

keys[1] = findViewById(R.id.keypad_2);

keys[2] = findViewById(R.id.keypad_3);

keys[3] = findViewById(R.id.keypad_4);

keys[4] = findViewById(R.id.keypad_5);

keys[5] = findViewById(R.id.keypad_6);

keys[6] = findViewById(R.id.keypad_7);

keys[7] = findViewById(R.id.keypad_8);

keys[8] = findViewById(R.id.keypad_9);

}

setListeners() loops through all the keypad keys and sets a listener for

each one. It also sets a listener for the main keypad window:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

private void setListeners() {

for (int i = 0; i < keys.length; i++) {

final int t = i + 1;

keys[i].setOnClickListener(new View.OnClickListener(){

public void onClick(View v) {

returnResult(t);

}});

}

keypad.setOnClickListener(new View.OnClickListener(){

public void onClick(View v) {

returnResult(0);

}});

}

When the player selects one of the buttons on the keypad, it calls

the returnResult() method with the number for that button. If the player

selects a place that doesn’t have a button, then returnResult() is called

with a zero, indicating the tile should be erased.

onKeyDown() is called when the player uses the keyboard to enter a

number:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

@Override

public boolean onKeyDown(int keyCode, KeyEvent event) {

int tile = 0;

switch (keyCode) {

case KeyEvent.KEYCODE_0:

case KeyEvent.KEYCODE_SPACE: tile = 0; break;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Keypad.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Keypad.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Keypad.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=96

THE REST OF THE STORY 97

case KeyEvent.KEYCODE_1: tile = 1; break;

case KeyEvent.KEYCODE_2: tile = 2; break;

case KeyEvent.KEYCODE_3: tile = 3; break;

case KeyEvent.KEYCODE_4: tile = 4; break;

case KeyEvent.KEYCODE_5: tile = 5; break;

case KeyEvent.KEYCODE_6: tile = 6; break;

case KeyEvent.KEYCODE_7: tile = 7; break;

case KeyEvent.KEYCODE_8: tile = 8; break;

case KeyEvent.KEYCODE_9: tile = 9; break;

default:

return super.onKeyDown(keyCode, event);

}

if (isValid(tile)) {

returnResult(tile);

}

return true;

}

If the number is valid for the current tile, then it calls returnResult();

otherwise, the keystroke is ignored.

The isValid() method checks to see whether the given number is valid for

the current position:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

private boolean isValid(int tile) {

for (int t : useds) {

if (tile == t)

return false;

}

return true;

}

If it appears in the used array, then it’s not valid because the same

number is already used in the current row, column, or block.

The returnResult() method is called to return the number selected to the

calling activity:

Download Sudokuv2/src/org/example/sudoku/Keypad.java

/** Return the chosen tile to the caller */

private void returnResult(int tile) {

puzzleView.setSelectedTile(tile);

dismiss();

}

We call the PuzzleView.setSelectedTile method to change the puzzle’s cur-

rent tile. The dismiss call terminates the Keypad dialog box.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Keypad.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Keypad.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=97

THE REST OF THE STORY 98

Now that we have the activity, let’s call it in the Game class and retrieve

the result:

Download Sudokuv2/src/org/example/sudoku/Game.java

/** Open the keypad if there are any valid moves */

protected void showKeypadOrError(int x, int y) {

int tiles[] = getUsedTiles(x, y);

if (tiles.length == 9) {

Toast toast = Toast.makeText(this,

R.string.no_moves_label, Toast.LENGTH_SHORT);

toast.setGravity(Gravity.CENTER, 0, 0);

toast.show();

} else {

Log.d(TAG, "showKeypad: used=" + toPuzzleString(tiles));

Dialog v = new Keypad(this, tiles, puzzleView);

v.show();

}

}

To decide which numbers are possible, we pass the Keypad a string in

the extraData area containing all the numbers that have already been

used.

Implementing the Game Logic

The rest of the code in Game.java concerns itself with the logic of the

game, in particular with determining which are and aren’t valid moves

according to the rules. The setTileIfValid() method is a key part of that.

Given an x and y position and the new value of a tile, it changes the tile

only if the value provided is valid.

Download Sudokuv2/src/org/example/sudoku/Game.java

/** Change the tile only if it's a valid move */

protected boolean setTileIfValid(int x, int y, int value) {

int tiles[] = getUsedTiles(x, y);

if (value != 0) {

for (int tile : tiles) {

if (tile == value)

return false;

}

}

setTile(x, y, value);

calculateUsedTiles();

return true;

}

To detect valid moves, we create an array for every tile in the grid. For

each position, it keeps a list of filled-in tiles that are currently visible

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=98

THE REST OF THE STORY 99

from that position. If a number appears on the list, then it won’t be

valid for the current tile.

The getUsedTiles() method retrieves that list for a given tile position:

Download Sudokuv2/src/org/example/sudoku/Game.java

/** Cache of used tiles */

private final int used[][][] = new int[9][9][];

/** Return cached used tiles visible from the given coords */

protected int[] getUsedTiles(int x, int y) {

return used[x][y];

}

The array of used tiles is somewhat expensive to compute, so we cache

the array and recalculate it only when necessary by calling calcula-

teUsedTiles():

Download Sudokuv2/src/org/example/sudoku/Game.java

/** Compute the two dimensional array of used tiles */

private void calculateUsedTiles() {

for (int x = 0; x < 9; x++) {

for (int y = 0; y < 9; y++) {

used[x][y] = calculateUsedTiles(x, y);

// Log.d(TAG, "used[" + x + "][" + y + "] = "

// + toPuzzleString(used[x][y]));

}

}

}

calculateUsedTiles() simply calls calculateUsedTiles(x, y) on every position

in the nine-by-nine grid:

Download Sudokuv2/src/org/example/sudoku/Game.java

Line 1 /** Compute the used tiles visible from this position */
- private int[] calculateUsedTiles(int x, int y) {
- int c[] = new int[9];
- // horizontal
5 for (int i = 0; i < 9; i++) {
- if (i == y)
- continue;
- int t = getTile(x, i);
- if (t != 0)

10 c[t - 1] = t;
- }
- // vertical
- for (int i = 0; i < 9; i++) {
- if (i == x)

15 continue;
- int t = getTile(i, y);

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=99

THE REST OF THE STORY 100

- if (t != 0)
- c[t - 1] = t;
- }

20 // same cell block
- int startx = (x / 3) * 3;
- int starty = (y / 3) * 3;
- for (int i = startx; i < startx + 3; i++) {
- for (int j = starty; j < starty + 3; j++) {

25 if (i == x && j == y)
- continue;
- int t = getTile(i, j);
- if (t != 0)
- c[t - 1] = t;

30 }
- }
- // compress
- int nused = 0;
- for (int t : c) {

35 if (t != 0)
- nused++;
- }
- int c1[] = new int[nused];
- nused = 0;

40 for (int t : c) {
- if (t != 0)
- c1[nused++] = t;
- }
- return c1;

45 }

We start with an array of nine zeros. On line 5, we check all the tiles on

the same horizontal row as the current tile, and if a tile is occupied, we

stuff its number into the array:

On line 13, we do the same thing for all the tiles on the same vertical

column, and on line 21, we do the same for tiles in the three-by-three

block.

The last step, starting at line 33, is to compress the zeros out of the

array before we return it. We do this so that array.length can be used to

quickly tell how many used tiles are visible from the current position.

Miscellaneous

Here are a few other utility functions and variables that round out the

implementation. easyPuzzle, mediumPuzzle, and hardPuzzle are our hard-

coded Sudoku puzzles for easy, medium, and hard difficulty levels,

respectively.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=100

THE REST OF THE STORY 101

Download Sudokuv2/src/org/example/sudoku/Game.java

private final String easyPuzzle =

"360000000004230800000004200" +

"070460003820000014500013020" +

"001900000007048300000000045";

private final String mediumPuzzle =

"650000070000506000014000005" +

"007009000002314700000700800" +

"500000630000201000030000097";

private final String hardPuzzle =

"009000000080605020501078000" +

"000000700706040102004000000" +

"000720903090301080000000600";

getPuzzle() simply takes a difficulty level and returns a puzzle:

Download Sudokuv2/src/org/example/sudoku/Game.java

/** Given a difficulty level, come up with a new puzzle */

private int[] getPuzzle(int diff) {

String puz;

// TODO: Continue last game

switch (diff) {

case DIFFICULTY_HARD:

puz = hardPuzzle;

break;

case DIFFICULTY_MEDIUM:

puz = mediumPuzzle;

break;

case DIFFICULTY_EASY:

default:

puz = easyPuzzle;

break;

}

return fromPuzzleString(puz);

}

Later we’ll change getPuzzle() to implement a continue function.

toPuzzleString() converts a puzzle from an array of integers to a string.

fromPuzzleString() does the opposite.

Download Sudokuv2/src/org/example/sudoku/Game.java

/** Convert an array into a puzzle string */

static private String toPuzzleString(int[] puz) {

StringBuilder buf = new StringBuilder();

for (int element : puz) {

buf.append(element);

}

return buf.toString();

}

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=101

MAKING MORE IMPROVEMENTS 102

/** Convert a puzzle string into an array */

static protected int[] fromPuzzleString(String string) {

int[] puz = new int[string.length()];

for (int i = 0; i < puz.length; i++) {

puz[i] = string.charAt(i) - '0';

}

return puz;

}

The getTile() method takes x and y positions and returns the number

currently occupying that tile. If it’s zero, that means the tile is blank.

Download Sudokuv2/src/org/example/sudoku/Game.java

/** Return the tile at the given coordinates */

private int getTile(int x, int y) {

return puzzle[y * 9 + x];

}

/** Change the tile at the given coordinates */

private void setTile(int x, int y, int value) {

puzzle[y * 9 + x] = value;

}

getTileString() is used when displaying a tile. It will return either a string

with the value of the tile or an empty string if the tile is blank.

Download Sudokuv2/src/org/example/sudoku/Game.java

/** Return a string for the tile at the given coordinates */

protected String getTileString(int x, int y) {

int v = getTile(x, y);

if (v == 0)

return "";

else

return String.valueOf(v);

}

Once all these pieces are in place, you should have a playable Sudoku

game. Give it a try to verify it works. As with any code, though, there is

room for improvement.

4.5 Making More Improvements

Although the code presented in this chapter performs acceptably for

a Sudoku game, more complex programs will likely need to be more

carefully written in order to squeeze the last drop of performance out

of the device. In particular, the onDraw() method is a very performance-

critical piece of code, so it’s best to do as little as possible there.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://media.pragprog.com/titles/eband/code/Sudokuv2/src/org/example/sudoku/Game.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=102

FAST -FORWARD >> 103

Here are some ideas for speeding up this method:

• If possible, avoid doing any object allocations in the method

onDraw().

• Prefetch things such as color constants elsewhere (for example, in

the view’s constructor).

• Create your Paint objects up front, and just use existing instances

in onDraw().

• For values used multiple times, such as the width returned by

getWidth(), retrieve the value at the beginning of the method and

then access it from your local copy.

As a further exercise for the reader, I encourage you to think about how

you could make the Sudoku game graphically richer. For example, you

could add some fireworks when the player solves the puzzle or make the

tiles spin around like Vanna White does. A moving background behind

the puzzle might be interesting. Let your imagination go wild. If you

want to make a top-notch product, touches like this can add pizzazz to

an otherwise ordinary offering.

In Chapter 5, Multimedia, on the following page, we’ll enhance the pro-

gram with a little mood music, and in Chapter 6, Storing Local Data,

on page 119, we’ll see how to remember the puzzle state and finally

implement that Continue button.

4.6 Fast-Forward >>

In this chapter, we just scratched the surface of Android’s graphics

capabilities. The native 2D library is quite large, so as you’re actually

writing your programs, be sure to take advantage of the tooltips, auto-

completion, and Javadoc provided by the Android Eclipse plug-in. The

online documentation for the android.graphics3 package goes into much

more detail if you need it.

If your program needs more advanced graphics, you may want to look

ahead a bit and read Chapter 10, 3D Graphics in OpenGL, on page 195.

There you’ll find information on how to use Android’s 3D graphics

library, which is based on the OpenGL ES standard. Otherwise, turn to

the next chapter for an introduction to the wonderful world of Android

audio and video.

3. http://d.android.com/reference/android/graphics/package-summary.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/reference/android/graphics/package-summary.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=103

Chapter 5

Multimedia
Remember those Apple television ads with the silhouette people danc-

ing wildly to the beat of their iPods? That’s the kind of excitement

you want your products to generate.1 Music, sound effects, and video

can make your programs more immersive and engaging than text and

graphics alone.

This chapter will show you how to add multimedia to your Android

application. You may not have your users cavorting in the aisles, but if

you do it properly, you can at least put smiles on their faces.

5.1 Playing Audio

It was a dark and stormy night.... There goes the starting shot, and

they’re off.... The crowd goes wild as State sinks a three-pointer with

one second remaining....

Audio cues permeate the environment and set the tempo for our emo-

tions. Think of sound as another way to get into your user’s head. Just

like you use graphics on the display to convey some information to the

user, you can use audio to back that up and reinforce it.

Android supports sound and music output through the MediaPlayer

class in the android.media package.2 Let’s try it with a simple example

that plays sounds when you press a key on the keyboard or D-pad.

1. Of course, normal people older than the age of 8 can’t dance like that. Except perhaps

that time when my kids put a lizard in my...but I digress.
2. http://d.android.com/guide/topics/media/index.html

Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/topics/media/index.html

PLAYING AUDIO 105

Figure 5.1: Save sound effects in a compressed format that Android can

play.

We’ll start by creating a “Hello, Android” project, using the following

parameters in the New Android Project dialog box:

Project name: Audio

Build Target: Android 1.5

Application name: Audio

Package name: org.example.audio

Create Activity: Audio

Next we’ll need a few sounds to play. For this example, I created my own

with the Windows Sound Recorder program (Start > Programs > Acces-

sories > Entertainment > Sound Recorder on Windows XP) and an inex-

pensive headset. After getting the sound levels right, I recorded each

sound, selected File > Save As... from the menu, clicked the Change...

button, and selected a format Android can recognize (see Figure 5.1).

You can find all the sound files and source code for these examples on

the book’s website.

Copy the sound files into the res/raw directory of your project. As you

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=105

PLAYING AUDIO 106

Figure 5.2: Copy audio files into the res/raw directory of your project.

recall from Section 2.4, Using Resources, on page 40, simply copying a

file into the res directory causes the Android Eclipse plug-in to define

a Java symbol for you in the R class. When you’re done, the project

should look like Figure 5.2.

Now it’s time to fill out the Audio activity. First we declare a new Medi-

aPlayer instance for each sound and initialize the instances in the onCre-

ate() method.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=106

PLAYING AUDIO 107

Joe Asks. . .

What Audio Formats Does Android Support?

Well, there’s support on paper, there’s support in the emulator,
and there’s support on the actual devices. On paper, Android
supports the following file types (this is subject to change with
new releases):

• WAV (PCM uncompressed)

• AAC (Apple iPod format, unprotected)

• MP3 (MPEG-3)

• WMA (Windows media audio)

• AMR (Speech codec)

• OGG (Ogg Vorbis)∗

• MIDI (Instruments)

In reality, I’ve found that only the OGG, WAV, and MP3 formats
work well in the emulator, and thus those are the only ones
that I can recommend for application development. Android’s
native audio format appears to be 44.1kHz 16-bit stereo. How-
ever, since WAV files at that rate are huge, you should just stick
to OGG or MP3 files (mono for voice or stereo for music). OGG
files seem to work best for short clips like game sound effects.

Stay away from unusual rates like 8kHz because the resam-
pling artifacts make those rates sound terrible. Use 11kHz, 22kHz,
or 44.1kHz sampling rates for the best results. Remember that
although the phone may have a tiny speaker, many of your
users are going to be plugging in headphones (like an iPod), so
you want your audio to be high quality.

∗. http://www.vorbis.com

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://www.vorbis.com
http://books.pragprog.com/titles/eband/errata/add?pdf_page=107

PLAYING AUDIO 108

Download Audio/src/org/example/audio/Audio.java

package org.example.audio;

import android.app.Activity;

import android.media.MediaPlayer;

import android.os.Bundle;

import android.view.KeyEvent;

public class Audio extends Activity {

private MediaPlayer up, down, left, right, enter;

private MediaPlayer a, s, d, f;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

// Native rate is 44.1kHz 16 bit stereo, but

// to save space we just use MPEG-3 22kHz mono

up = MediaPlayer.create(this, R.raw.up);

down = MediaPlayer.create(this, R.raw.down);

left = MediaPlayer.create(this, R.raw.left);

right = MediaPlayer.create(this, R.raw.right);

enter = MediaPlayer.create(this, R.raw.enter);

a = MediaPlayer.create(this, R.raw.a);

s = MediaPlayer.create(this, R.raw.s);

d = MediaPlayer.create(this, R.raw.d);

f = MediaPlayer.create(this, R.raw.f);

}

}

There are other ways to do this; for example, you could declare one

MediaPlayer and keep reusing it. This would prevent sounds from over-

lapping, though, which may or may not be the effect you want.

Another method you may be tempted to try is to create a new Medi-

aPlayer whenever you want to make a sound. However, this doesn’t work

in practice. For one thing, it slows the program down a little. Worse, in

my testing it has a tendency to crash after playing just a few sounds.

Therefore, I recommend you stick with the tried-and-true method of

setting up your players ahead of time and playing them when needed.

Now that we have our sounds loaded up and ready to go, we just need

to intercept the key presses and play the right sounds. We do that by

overriding the Activity.onKeyDown() method.

Download Audio/src/org/example/audio/Audio.java

Line 1 @Override
- public boolean onKeyDown(int keyCode, KeyEvent event) {

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Audio/src/org/example/audio/Audio.java
http://media.pragprog.com/titles/eband/code/Audio/src/org/example/audio/Audio.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=108

PLAYING AUDIO 109

- MediaPlayer mp;
- switch (keyCode) {
5 case KeyEvent.KEYCODE_DPAD_UP:
- mp = up;
- break;
- case KeyEvent.KEYCODE_DPAD_DOWN:
- mp = down;

10 break;
- case KeyEvent.KEYCODE_DPAD_LEFT:
- mp = left;
- break;
- case KeyEvent.KEYCODE_DPAD_RIGHT:

15 mp = right;
- break;
- case KeyEvent.KEYCODE_DPAD_CENTER:
- case KeyEvent.KEYCODE_ENTER:
- mp = enter;

20 break;
- case KeyEvent.KEYCODE_A:
- mp = a;
- break;
- case KeyEvent.KEYCODE_S:

25 mp = s;
- break;
- case KeyEvent.KEYCODE_D:
- mp = d;
- break;

30 case KeyEvent.KEYCODE_F:
- mp = f;
- break;
- default:
- return super.onKeyDown(keyCode, event);

35 }
- mp.seekTo(0);
- mp.start();
- return true;
- }

The first part of the method selects a media player based on which key

you pressed. Then on line 36, we call the seekTo() method to rewind

the sound and the start() method to begin playing it. The start() method

is asynchronous, so it returns immediately regardless of how long the

sound lasts. If you like, you can use setOnCompletionListener() to be noti-

fied when the clip is finished.

If you run the program now and then press one of the keys (for example,

the Enter key or the center D-pad key), you should hear a sound. If you

don’t hear anything, check your volume control (don’t laugh), or look at

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=109

PLAYING VIDEO 110

When Things Go Wrong

If you do much multimedia programming, you’ll soon discover
that Android’s MediaPlayer can be a fickle beast.The version in
Android 1.5 is much improved over its predecessors but it can
still crash at the slightest provocation. One reason this happens
is that MediaPlayer is mostly a native application with a thin layer
of Java on top of it. The native player code is optimized for
performance, and it doesn’t seem to do much error checking.

Fortunately, Android’s strong Linux process protections prevent
any harm from being done if a crash occurs. The emulator (or
the phone if you’re running on a real device) and other appli-
cations will continue to run normally. The user would just see the
application go away, possibly with a dialog box containing an
error message.

During development, though, you can get considerably more
diagnostic information to help you determine what went
wrong. Messages and tracebacks will be printed to the Android
system log, which you can view with the LogCat view in Eclipse
or the adb logcat command (see Section 3.10, Debugging with
Log Messages, on page 70).

the debugging messages in the LogCat view.3

For our next trick, we’ll play a movie using only one line of code.

5.2 Playing Video

Video is more than just a bunch of pictures shown one right after

another. It’s sound as well, and the sound has to be closely synchro-

nized with the images.

Android’s MediaPlayer class works with video the same way it does with

plain audio. The only difference is that you need to create a Surface for

the player to use to draw the images. You can use the start() and stop()

methods to control playback.

3. Audio output may be choppy or delayed in some cases. Try different formats (such

as OGG instead of MP3) and lower bit rates. You may also want to investigate using the

SoundPool class, which explicitly supports simultaneous streams. It was buggy and poorly

documented in the 1.0 release, but as of 1.5 it appears to be stable.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=110

PLAYING VIDEO 111

Joe Asks. . .

What Kind of Video Can You Watch on Android?

Here’s what is officially supported:

• MP4 (MPEG-4 low bit rate)

• H.263 (3GP)

• H.264 (AVC)

As of Android 1.5, H.263 is the recommended video format
because every hardware platform supports it and it’s relatively
efficient to encode and decode. It is also compatible with
other devices such as the iPhone. You can use a program like
QuickTime Pro∗ to convert video from one format to another.
Use the lowest resolution and bit rate that you can in order to
save space, but don’t set it so low that you sacrifice quality.

∗. http://www.apple.com/quicktime/pro

I’m not going to show you another MediaPlayer example, however, be-

cause there is a simpler way to embed videos in your application: the

VideoView class. To demonstrate it, create a new Android project called

Video using these parameters:

Project name: Video

Build Target: Android 1.5

Application name: Video

Package name: org.example.video

Create Activity: Video

Change the layout (res/layout/main.xml) to this:

Download Videov1/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<FrameLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<VideoView

android:id="@+id/video"

android:layout_height="wrap_content"

android:layout_width="wrap_content"

android:layout_gravity="center" />

</FrameLayout>

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://www.apple.com/quicktime/pro
http://media.pragprog.com/titles/eband/code/Videov1/res/layout/main.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=111

PLAYING VIDEO 112

Figure 5.3: Embedding a video is easy with VideoView.

Open Video.java, and change the onCreate() method as follows:

Download Videov1/src/org/example/video/Video.java

package org.example.video;

import android.app.Activity;

import android.os.Bundle;

import android.widget.VideoView;

public class Video extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

// Fill view from resource

setContentView(R.layout.main);

VideoView video = (VideoView) findViewById(R.id.video);

// Load and start the movie

video.setVideoPath("/data/samplevideo.3gp");

video.start();

}

}

The setVideoPath() method opens the file, sizes it to its container while

preserving the aspect ratio, and begins playing it.

Now you need to upload something to play. To do that, run the following

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Videov1/src/org/example/video/Video.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=112

PLAYING VIDEO 113

command:

C:\> adb push c:\code\samplevideo.3gp /data/samplevideo.3gp

1649 KB/s (369870 bytes in 0.219s)

You can find samplevideo.3gp in the download package for this book, or

you can create one of your own. The directory used here (/data) is just

for illustrative purposes and should not really be used for media files.

It will only work on the emulator because that directory is protected on

real devices.

Note that Android doesn’t seem to care what extension you give the

file. You can also upload and download files in Eclipse with the File

Explorer view in the Android perspective, but I find the command line

to be easier for simple things like this.

There’s one more thing: we’d like the video to take over the whole screen

including the title bar and status bar. To do that, all you need to do is

specify the right theme in AndroidManifest.xml:

Download Videov1/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="org.example.video"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<activity android:name=".Video"

android:label="@string/app_name"

android:theme="@android:style/Theme.NoTitleBar.Fullscreen">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="3" />

</manifest>

Once all that is done, when you run the program, you should see and

hear the movie clip (see Figure 5.3, on the previous page). Try rotating

the display to verify it works in both portrait and landscape modes.

Voila! Instant video goodness.

Now let’s polish up the Sudoku sample with a little mood music.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Videov1/AndroidManifest.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=113

PLAYING VIDEO 114

Joe Asks. . .

Why Does It Restart the Video When I Rotate the Display?

Android assumes by default that your program knows nothing
about screen rotations. To pick up possible resource changes,
Android destroys and re-creates your activity from scratch. That
means onCreate() is called again, which means the video is
started again (as this example is currently written).

This behavior will be fine for 90 percent of all applications,
so most developers will not have to worry about it. It’s even
a useful way to test your application life-cycle and state-
saving/restoring code (see Section 2.2, It’s Alive!, on page 35).
However, there are a couple of ways to be smarter and opti-
mize the transition.

The simplest way is to implement onRetainNonConfigurationIn-

stance() in your activity to save some data that will be kept
across the calls to onDestroy() and onCreate(). When you
come back, you use getLastNonConfigurationInstance() in the
new instance of your activity to recover that information. You
can keep anything, even references to your current intent and
running threads.

The more complicated way is to use the android:configChanges=

property in AndroidManifest.xml to inform Android which
changes you can handle. For example, if you set it to
keyboardHidden|orientation, then Android will not destroy and
re-create your activity when the user flips the keyboard.
Instead, it will call onConfigurationChanged(Configuration) and
assume you know what you’re doing.∗

∗. For more details, see http://d.android.com/reference/android/app/Activity.html#ConfigurationChanges.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/reference/android/app/Activity.html#ConfigurationChanges
http://books.pragprog.com/titles/eband/errata/add?pdf_page=114

ADDING SOUNDS TO SUDOKU 115

Sudoku Trivia

Dozens of Sudoku variants exist, although none has gained the
popularity of the original. One uses a sixteen-by-sixteen grid,
with hexadecimal numbers. Another, called Gattai 5 or Samurai
Sudoku, uses five nine-by-nine grids that overlap at the corner
regions.

5.3 Adding Sounds to Sudoku

In this section, we’re going to take what we’ve learned and add back-

ground music to the Sudoku game we’ve been building. One song will

play during the opening screen, and another will play during the actual

game. This will demonstrate not just how to play music but also some

important life-cycle considerations.

To add music to the main screen, we just need to override these two

methods in the Sudoku class:

Download Sudokuv3/src/org/example/sudoku/Sudoku.java

@Override

protected void onResume() {

super.onResume();

Music.play(this, R.raw.main);

}

@Override

protected void onPause() {

super.onPause();

Music.stop(this);

}

If you recall from Section 2.2, It’s Alive!, on page 35, the onResume()

method is called when the activity is ready to begin interacting with the

user. This is a good place to start up the music, so we put a Music.start()

call there. The Music class will be defined shortly.

R.raw.main refers to res/raw/main.mp3. You can find these sound files

in the Sudokuv3 project of the downloadable samples on the book’s

website.

The onPause() method is the paired bookend for onResume(). Android

pauses the current activity prior to resuming a new one, so in Sudoku,

when you start a new game, the Sudoku activity will be paused, and then

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv3/src/org/example/sudoku/Sudoku.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=115

ADDING SOUNDS TO SUDOKU 116

Joe Asks. . .

Shouldn’t We Use a Background Service for Music?

We haven’t said much about the Android Service class, but you
may have seen it used in some music-playing examples on the
Web. Basically, a Service is a way to start a background pro-
cess that can run even after your current activity finishes. Ser-
vices are similar to, but not quite the same as, Linux daemons.
If you’re writing a general-purpose music player and want the
music to continue while you’re reading mail or browsing the
Web, then, yes, a Service would be appropriate. In most cases,
though, you want the music to end when your program ends,
so you don’t need to use the Service class.

the Game activity will be started. onPause() will also be called when the

user presses the Back or Home key. These are all places where we want

our title music to stop, so we call Music.stop() in onPause().

Now let’s do something similar for the music on the Game activity:

Download Sudokuv3/src/org/example/sudoku/Game.java

@Override

protected void onResume() {

super.onResume();

Music.play(this, R.raw.game);

}

@Override

protected void onPause() {

super.onPause();

Music.stop(this);

}

If you compare this to what we did to the Sudoku class, you’ll notice

that we’re referencing a different sound resource, R.raw.game (res/raw/

game.mp3).

The final piece of the musical puzzle is the Music class, which will man-

age the MediaPlayer class used to play the current music:

Download Sudokuv3/src/org/example/sudoku/Music.java

Line 1 package org.example.sudoku;
-

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv3/src/org/example/sudoku/Game.java
http://media.pragprog.com/titles/eband/code/Sudokuv3/src/org/example/sudoku/Music.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=116

ADDING SOUNDS TO SUDOKU 117

- import android.content.Context;
- import android.media.MediaPlayer;
5

- public class Music {
- private static MediaPlayer mp = null;
-

- /** Stop old song and start new one */
10 public static void play(Context context, int resource) {

- stop(context);
- mp = MediaPlayer.create(context, resource);
- mp.setLooping(true);
- mp.start();

15 }
-

- /** Stop the music */
- public static void stop(Context context) {
- if (mp != null) {

20 mp.stop();
- mp.release();
- mp = null;
- }
- }

25 }

The play() method first calls the stop() method to halt whatever music

is currently playing. Next, it creates a new MediaPlayer instance using

MediaPlayer.create(), passing it a context and a resource ID.

After we have a player, we then set an option to make it repeat the

music in a loop and then start it playing. The start() method comes

back immediately.

The stop() method that begins on line 18 is simple. After a little defen-

sive check to make sure we actually have a MediaPlayer to work with,

we call its stop() and release() methods. The MediaPlayer.stop() method,

strangely enough, stops the music. The release() method frees system

resources associated with the player. Since those are native resources,

we can’t wait until normal Java garbage collection reclaims them. Leav-

ing out release() is a good way to make your program fail unexpectedly

(not that this has ever happened to me, of course; I’m just saying you

should keep that in mind).

Now comes the fun part—try playing Sudoku with these changes in

place. Stress test it in every way you can imagine, such as switching to

different activities, pressing the Back button and the Home button from

different points in the game, starting the program when it’s already

running at different points, rotating the display, and so forth. Proper life

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=117

FAST -FORWARD >> 118

cycle management is a pain sometimes, but your users will appreciate

the effort.

5.4 Fast-Forward >>

In this chapter, we covered playing audio and video clips using the

Android SDK. We didn’t discuss recording because most programs will

not need to do that, but if you happen to be the exception, then look up

the MediaRecorder class in the online documentation.4

In Chapter 6, Storing Local Data, on the following page, you’ll learn

about some simple ways Android programs can store data between

invocations. If you don’t need to do that, then you can skip ahead to

Chapter 7, The Connected World, on page 129 and learn about network

access.

4. http://d.android.com/reference/android/media/MediaRecorder.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/reference/android/media/MediaRecorder.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=118

Chapter 6

Storing Local Data
So far, we’ve concentrated on writing applications that don’t need to

keep data around when they exit. They start up, run, and go away,

leaving no trace that they were ever there. However, most real programs

need persistent state, whether it’s a simple font size setting, an embar-

rassing photo from your last office party, or next week’s meal plan.

Whatever it is, Android lets you permanently store it on your mobile

device for later use and protects it from accidental or malicious access

by other programs.

Your application can store data using several different techniques de-

pending on the size of the data, its structure, its lifetime, and whether it

will be shared with other programs. In this chapter, we’ll take a look at

three simple methods to keep local data: the preferences API, instance

state bundles, and flash memory files. In Chapter 9, Putting SQL to

Work, on page 175, we’ll delve into more advanced techniques using

the built-in SQLite database engine.

6.1 Adding Options to Sudoku

In Section 3.7, Adding a Menu, on page 63, we used the onCreateOp-

tionsMenu() method to add a menu containing one item to the main

Sudoku screen. When the user presses the Menu key and selects the

Settings... item, the code starts the Settings activity, which lets the user

change the options for the game. Because Settings extends PreferenceAc-

tivity, the values for the settings are stored in the program’s preferences

area, but originally we didn’t do anything with them. Now we’re going

to implement them.

Prepared exclusively for Trieu Nguyen

ADDING OPTIONS TO SUDOKU 120

Sudoku Trivia

There are 6,670,903,752,021,072,936,960 possible classic Sudoku
solution grids. If you eliminate duplicates that are just rotations,
reflections, or relabelings of each other, you’re left with “only”
5,472,730,538 solutions.

First let’s modify the Settings class to add a couple of getter methods that

retrieve the current values of our two options. Here’s the new definition:

Download Sudokuv4/src/org/example/sudoku/Settings.java

package org.example.sudoku;

import android.content.Context;

import android.os.Bundle;

import android.preference.PreferenceActivity;

import android.preference.PreferenceManager;

public class Settings extends PreferenceActivity {

// Option names and default values

private static final String OPT_MUSIC = "music";

private static final boolean OPT_MUSIC_DEF = true;

private static final String OPT_HINTS = "hints";

private static final boolean OPT_HINTS_DEF = true;

@Override

protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

addPreferencesFromResource(R.xml.settings);

}

/** Get the current value of the music option */

public static boolean getMusic(Context context) {

return PreferenceManager.getDefaultSharedPreferences(context)

.getBoolean(OPT_MUSIC, OPT_MUSIC_DEF);

}

/** Get the current value of the hints option */

public static boolean getHints(Context context) {

return PreferenceManager.getDefaultSharedPreferences(context)

.getBoolean(OPT_HINTS, OPT_HINTS_DEF);

}

}

Be careful that the option keys (music and hints) match the keys used

in res/xml/settings.xml.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv4/src/org/example/sudoku/Settings.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=120

CONTINUING AN OLD GAME 121

Music.play() has to be modified to check for the music preference:

Download Sudokuv4/src/org/example/sudoku/Music.java

/** Stop old song and start new one */

public static void play(Context context, int resource) {

stop(context);

// Start music only if not disabled in preferences

if (Settings.getMusic(context)) {

mp = MediaPlayer.create(context, resource);

mp.setLooping(true);

mp.start();

}

}

And PuzzleView.onDraw() also needs to be modified to check for the hints

preference:

Download Sudokuv4/src/org/example/sudoku/PuzzleView.java

if (Settings.getHints(getContext())) {

// Draw the hints...

}

If getHints() returns true, we draw the highlights for the hints, as shown

in Figure 4.6, on page 92. Otherwise, we just skip that part.

Next I’ll show you how to use the preferences API to store things other

than just options.

6.2 Continuing an Old Game

At any time the player can decide to quit playing our Sudoku game

and go do something else. Maybe their boss walked in, or they got a

phone call or a notification of an important appointment. Whatever the

reason, we want to allow the player to come back later and continue

where they left off.

First we need to save the current state of the puzzle somewhere. The

preferences API can be used for more than just options; it can store

any small stand-alone bits of information that go with your program.

In this case, the state of the puzzle can be saved as a string of eighty-

one characters, one for each tile.

In the Game class, we’ll start by defining a couple of constants—one for

the puzzle data key and one for a flag to tell us to continue the previous

game rather than start a new one.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv4/src/org/example/sudoku/Music.java
http://media.pragprog.com/titles/eband/code/Sudokuv4/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=121

CONTINUING AN OLD GAME 122

Download Sudokuv4/src/org/example/sudoku/Game.java

private static final String PREF_PUZZLE = "puzzle" ;

protected static final int DIFFICULTY_CONTINUE = -1;

Next we need to save the current puzzle whenever the game is paused.

See Section 2.2, It’s Alive!, on page 35 for a description of onPause() and

the other life-cycle methods.

Download Sudokuv4/src/org/example/sudoku/Game.java

@Override

protected void onPause() {

super.onPause();

Log.d(TAG, "onPause");

Music.stop(this);

// Save the current puzzle

getPreferences(MODE_PRIVATE).edit().putString(PREF_PUZZLE,

toPuzzleString(puzzle)).commit();

}

Now the puzzle is saved, but how do we read the saved data? Remember

that when the game is started, the getPuzzle() method is called, and the

difficulty level is passed in. We’ll use that for continuing as well.

Download Sudokuv4/src/org/example/sudoku/Game.java

/** Given a difficulty level, come up with a new puzzle */

private int[] getPuzzle(int diff) {

String puz;

switch (diff) {

case DIFFICULTY_CONTINUE:

puz = getPreferences(MODE_PRIVATE).getString(PREF_PUZZLE,

easyPuzzle);

break;

// ...

}

return fromPuzzleString(puz);

}

All we need to do is add a check for DIFFICULTY_CONTINUE. If that is set,

then instead of starting with a fresh puzzle, we read the one we stuffed

into the preferences.

Next, we need to make the Continue button on the main screen (see

Figure 3.4, on page 54) actually do something. Here is where we set

that up.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv4/src/org/example/sudoku/Game.java
http://media.pragprog.com/titles/eband/code/Sudokuv4/src/org/example/sudoku/Game.java
http://media.pragprog.com/titles/eband/code/Sudokuv4/src/org/example/sudoku/Game.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=122

REMEMBERING THE CURRENT POSITION 123

Download Sudokuv4/src/org/example/sudoku/Sudoku.java

public void onClick(View v) {

switch (v.getId()) {

case R.id.continue_button:

startGame(Game.DIFFICULTY_CONTINUE);

break;

// ...

}

}

We added a case in Sudoku.onClick() to call startGame() when the Con-

tinue button is pressed, passing it DIFFICULTY_CONTINUE. startGame()

passes the difficulty to the Game activity, and Game.onCreate() calls

Intent.getIntExtra() to read the difficulty and passes that to getPuzzle()

(you can see the code for that in Section 4.2, Starting the Game, on

page 78).

There’s one more thing to do: restore from our saved game when our

activity goes away and comes back on its own (such as if another activ-

ity is started and then the user comes back to the Game activity). This

modification to the Game.onCreate() method will take care of that:

Download Sudokuv4/src/org/example/sudoku/Game.java

@Override

protected void onCreate(Bundle savedInstanceState) {

// ...

// If the activity is restarted, do a continue next time

getIntent().putExtra(KEY_DIFFICULTY, DIFFICULTY_CONTINUE);

}

That pretty much covers it for preferences. Next let’s look at saving

instance state.

6.3 Remembering the Current Position

If you change the screen orientation while Sudoku is running, you’ll

notice that it forgets where its cursor is. That’s because we use a cus-

tom PuzzleView view. Normal Android views save their view state auto-

matically, but since we made our own, we don’t get that for free.

Unlike persistent state, instance state is not permanent. It lives in a

Bundle class on Android’s application stack. Instance state is intended

to be used for small bits of information such as cursor positions.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv4/src/org/example/sudoku/Sudoku.java
http://media.pragprog.com/titles/eband/code/Sudokuv4/src/org/example/sudoku/Game.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=123

REMEMBERING THE CURRENT POSITION 124

Here’s what we have to do to implement it:

Download Sudokuv4/src/org/example/sudoku/PuzzleView.java

Line 1 import android.os.Bundle;
- import android.os.Parcelable;
-

- public class PuzzleView extends View {
5 private static final String SELX = "selX";
- private static final String SELY = "selY";
- private static final String VIEW_STATE = "viewState";
- private static final int ID = 42;
-

10 public PuzzleView(Context context) {
- // ...
- setId(ID);
- }
-

15 @Override
- protected Parcelable onSaveInstanceState() {
- Parcelable p = super.onSaveInstanceState();
- Log.d(TAG, "onSaveInstanceState");
- Bundle bundle = new Bundle();

20 bundle.putInt(SELX, selX);
- bundle.putInt(SELY, selY);
- bundle.putParcelable(VIEW_STATE, p);
- return bundle;
- }

25 @Override
- protected void onRestoreInstanceState(Parcelable state) {
- Log.d(TAG, "onRestoreInstanceState");
- Bundle bundle = (Bundle) state;
- select(bundle.getInt(SELX), bundle.getInt(SELY));

30 super.onRestoreInstanceState(bundle.getParcelable(VIEW_STATE));
- return;
- }
- // ...
- }

On line 5, we define some constants for keys to save and restore the

cursor position. We need to save both our own x and y positions, plus

any state needed by the underlying View class.

As part of Activity.onSaveInstanceState() processing, Android will walk

down the view hierarchy and call View.onSaveInstanceState() on every

view it finds that has an ID. The same thing happens for onRestoreIn-

stanceState(). Normally, this ID would come from XML, but since Puzzle-

View was created in code, we need to set it ourselves. We make up an

arbitrary number on line 8 (any value will do as long as it’s positive)

and then use the setId() method to assign it on line 12.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Sudokuv4/src/org/example/sudoku/PuzzleView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=124

ACCESSING THE INTERNAL FILE SYSTEM 125

The onSaveInstanceState() method is defined on line 16. We call the

superclass to get its state, and then we save ours and theirs in a Bundle.

Failing to call the superclass will result in a runtime error.

Later, onRestoreInstanceState() (line 26) will be called to tease out the

information we saved. We get our own x and y positions from the Bundle,

and then we call the superclass to let it get whatever it needs. After

making these changes, the cursor will be remembered by PuzzleView,

just like any other Android view.

Next let’s look at keeping data in plain old files.

6.4 Accessing the Internal File System

Android runs Linux under the covers, so there’s a real file system

mounted in there with a root directory and everything. The files are

stored on nonvolatile flash memory built into the device, so they are

not lost when the phone is turned off.

All of the usual Java file I/O routines from the java.io package are avail-

able for your program to use, with the caveat that your process has

limited permissions so it can’t mess up any other application’s data. In

fact, the main thing it can access is a package private directory created

at install time (/data/data/packagename).

A few helper methods are provided on the Context class (and thus on

the Activity class extended by each of your activities) to let you read and

write data there. Here are the ones you’re most likely to need:

deleteFile() Delete a private file. Returns true if it worked, false

otherwise.

fileList() Return a list of all files in the application’s private

area in a String array.

openFileInput() Open a private file for reading. Returns a

java.io.FileInputStream.

openFileOutput() Open a private file for writing. Returns a

java.io.FileOutputStream.

However, since this internal memory is limited, I recommend you keep

the size of any data you put there low, say a megabyte or two at the

most, and carefully handle I/O errors when writing in case the space

runs out.

Luckily, internal memory isn’t the only storage that you have to work

with.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=125

ACCESSING SD CARDS 126

All in the Family

If you recall from Section 2.5, Safe and Secure, on page 41,
each application normally gets its own user ID at install time.
That user ID is the only one that is allowed to read and write from
the application’s private directory. However, if two applica-
tions are signed∗ by the same digital certificate, then Android
assumes they are from the same developer and gives them the
same user ID.

On the one hand, that allows them to share all sorts of data with
each other if they so choose. But on the other, it also means
they’ll need to take special care to stay out of each other’s
way.

∗. http://d.android.com/guide/topics/security/security.html#signing

6.5 Accessing SD Cards

Some Android devices will include a slot for additional flash memory to

be plugged in, typically a Secure Digital (SD) card. These memory cards,

if present, are much larger than the built-in memory, and thus they’re

ideal for storing multimegabyte music and video files. They cannot be

used for code, and every application can read and write files there.

In Section 5.2, Playing Video, on page 110, we uploaded a sample video

file to the /data directory of the emulated device. This is the wrong

place for it, since we’re not supposed to put large files on the internal

file system. So, now I’m going to show you a better way.

The first step is to create and format a virtual SD card that we can “plug

in” to the emulator. Luckily we’ve already done this—if you recall, in

Section 1.3, Creating an AVD, on page 24 when we created the “em15”

virtual device, we gave it a 128MB virtual SD card as well. You can

make it any size you like, but if you make it too small, it may cause

the emulator to crash; if you make it too big, you’ll just waste space on

your computer’s disk drive.

Next, let’s copy the sample video to the SD card:

C:\> adb push c:\code\samplevideo.3gp /sdcard/samplevideo.3gp

1468 KB/s (369870 bytes in 0.246s)

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/topics/security/security.html#signing
http://books.pragprog.com/titles/eband/errata/add?pdf_page=126

FAST -FORWARD >> 127

Then we need to modify the onCreate() method of the Video class to play

the movie from the SD card instead of the /data directory:

Download Videov2/src/org/example/video/Video.java

// Load and start the movie

video.setVideoPath("/sdcard/samplevideo.3gp");

video.start();

Now try to run the program. The video should play normally.

6.6 Fast-Forward >>

In this chapter, we covered a couple of basic ways to store local data on

the Android platform. That should be enough to get you started, but for

structured data such as phone lists and recipes, you’ll need something

more advanced. See Chapter 9, Putting SQL to Work, on page 175 for

directions on how to use Android’s built-in SQLite database and how to

share information between applications using content providers.

This brings us to the end of Part II. With the help of the Sudoku exam-

ple, you’ve learned all the basics of Android programming, including

user interfaces, 2D graphics, audio, video, and simple data storage.

Now it’s time to leave Sudoku behind and move beyond the basics.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Videov2/src/org/example/video/Video.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=127

Part III

Beyond the Basics

128
Prepared exclusively for Trieu Nguyen

Chapter 7

The Connected World
Over the next few chapters, we’ll cover more advanced topics such as

network access and location-based services. You can write many useful

applications without these features, but going beyond the basic fea-

tures of Android will really help you add value to your programs, giving

them much more functionality with a minimum of effort.

What do you use your mobile phone for? Aside from making calls, more

and more people are using their phones as mobile Internet devices.

Analysts predict that in a few years mobile phones will surpass desktop

computers as the number-one way to connect to the Internet.1 This

point has already been reached in some parts of the world.2

Android phones are well equipped for the new connected world of the

mobile Internet. First, Android provides a full-featured web browser

based on the WebKit open source project.3 This is the same engine you

will find in Google Chrome, the Apple iPhone, and the Safari desktop

browser but with a twist. Android lets you use the browser as a compo-

nent right inside your application.

Second, Android gives your programs access to standard network ser-

vices like TCP/IP sockets. This lets you consume web services from

Google, Yahoo, Amazon, and many other sources on the Internet.

1. http://www.idc.com/getdoc.jsp?containerId=prUS21303808

2. http://www.comscore.com/press/release.asp?press=1742

3. http://webkit.org

Prepared exclusively for Trieu Nguyen

http://www.idc.com/getdoc.jsp?containerId=prUS21303808
http://www.comscore.com/press/release.asp?press=1742
http://webkit.org

BROWSING BY INTENT 130

Figure 7.1: Opening a browser using an Android intent

In this chapter, you’ll learn how to take advantage of all these features

and more through four example programs:

• BrowserIntent: Demonstrates opening an external web browser

using an Android intent

• BrowserView: Shows you how to embed a browser directly into

your application

• LocalBrowser: Explains how JavaScript in an embedded WebView

and Java code in your Android program can talk to each other

• Translate: Uses data binding, threading, and web services for an

amusing purpose

7.1 Browsing by Intent

The simplest thing you can do with Android’s networking API is to open

a browser on a web page of your choice. You might want to do this to

provide a link to your home page from your program or to access some

server-based application such as an ordering system. In Android all it

takes is three lines of code.

To demonstrate, let’s write a new example called BrowserIntent, which

will have an edit field where you can enter a URL and a Go button you

press to open the browser on that URL (see Figure 7.1).

Start by creating a new “Hello, Android” project with the following val-

ues in the New Project wizard:

Project name: BrowserIntent

Build Target: Android 1.5

Application name: BrowserIntent

Package name: org.example.browserintent

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=130

BROWSING BY INTENT 131

Create Activity: BrowserIntent

Once you have a the basic program, change the layout file (res/layout/

main.xml) so it looks like this:

Download BrowserIntent/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<EditText

android:id="@+id/url_field"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_weight="1.0"

android:lines="1"

android:inputType="textUri"

android:imeOptions="actionGo" />

<Button

android:id="@+id/go_button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/go_button" />

</LinearLayout>

This defines our two controls, an EditText control and a Button.

On EditText, we set android:layout_weight="1.0" to make the text area fill

up all the horizontal space to the left of the button, and we also set

android:lines="1" to limit the height of the control to one vertical line.

Note that this has no effect on the amount of text the user can enter

here, just the way it is displayed.

Android 1.5 introduced support for soft keyboards and other alternate

input methods. The options for android:inputType="textUri" and

android:imeOptions="actionGo" are hints for how the soft keyboard should

appear. They tell Android to replace the standard keyboard with one

that has convenient buttons for “.com” and “/” for entering web addresses

and a “Go” button that opens the web page.4

As always, human-readable text should be put in a resource file, res/

values/strings.xml:

4. See http://d.android.com/reference/android/widget/TextView.html and

http://android-developers.blogspot.com/2009/04/updating-applications-for-on-screen.html for

more information on input options.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/BrowserIntent/res/layout/main.xml
http://d.android.com/reference/android/widget/TextView.html
http://android-developers.blogspot.com/2009/04/updating-applications-for-on-screen.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=131

BROWSING BY INTENT 132

Download BrowserIntent/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">BrowserIntent</string>

<string name="go_button">Go</string>

</resources>

Next we need to fill in the onCreate() method in the BrowserIntent class.

This is where we’ll build the user interface and hook up all the behavior.

If you don’t feel like typing all this in, the complete source code for the

examples is available online.

Download BrowserIntent/src/org/example/browserintent/BrowserIntent.java

Line 1 package org.example.browserintent;
-

- import android.app.Activity;
- import android.content.Intent;
5 import android.net.Uri;
- import android.os.Bundle;
- import android.view.KeyEvent;
- import android.view.View;
- import android.view.View.OnClickListener;

10 import android.view.View.OnKeyListener;
- import android.widget.Button;
- import android.widget.EditText;
-

- public class BrowserIntent extends Activity {
15 private EditText urlText;

- private Button goButton;
-

- @Override
- public void onCreate(Bundle savedInstanceState) {

20 super.onCreate(savedInstanceState);
- setContentView(R.layout.main);
-

- // Get a handle to all user interface elements
- urlText = (EditText) findViewById(R.id.url_field);

25 goButton = (Button) findViewById(R.id.go_button);
-

- // Setup event handlers
- goButton.setOnClickListener(new OnClickListener() {
- public void onClick(View view) {

30 openBrowser();
- }
- });
- urlText.setOnKeyListener(new OnKeyListener() {
- public boolean onKey(View view, int keyCode, KeyEvent event) {

35 if (keyCode == KeyEvent.KEYCODE_ENTER) {
- openBrowser();
- return true;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/BrowserIntent/res/values/strings.xml
http://media.pragprog.com/titles/eband/code/BrowserIntent/src/org/example/browserintent/BrowserIntent.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=132

BROWSING BY INTENT 133

- }
- return false;

40 }
- });
- }
- }

Inside onCreate(), we call setContentView() on line 21 to load the view

from its definition in the layout resource, and then we call findViewById()

on line 24 to get a handle to our two user interface controls.

Line 28 tells Android to run some code when the user selects the Go

button, either by touching it or by navigating to it and pressing the

center D-pad button. When that happens, we call the openBrowser()

method, which will be defined in a moment.

As a convenience, if the user types an address and hits the Enter key

(if their phone has one), we want the browser to open just like they

had clicked Go. To do this, we define a listener starting on line 33 that

will be called every time the user types a keystroke into the edit field.

If it’s the enter key, then we call the openBrowser() method to open the

browser; otherwise, we return false to let the text control handle the key

normally.

Now comes the part you’ve been waiting for: the openBrowser() method.

As promised, it’s three lines long:

Download BrowserIntent/src/org/example/browserintent/BrowserIntent.java

/** Open a browser on the URL specified in the text box */

private void openBrowser() {

Uri uri = Uri.parse(urlText.getText().toString());

Intent intent = new Intent(Intent.ACTION_VIEW, uri);

startActivity(intent);

}

The first line retrieves the address of the web page as a string (for exam-

ple, “http://www.android.com”) and converts it to a uniform resource

identifier (URI). The next line creates a new Intent class with an action

of VIEW_ACTION, passing it the Uri class just created as the object we

want to view. Finally, we call the startActivity() method to request that

this action be performed.

When the Browser activity starts, it will create its own view (see Fig-

ure 7.2, on the next page), and your program will be paused. If the user

presses the Back key at that point, the browser window will go away,

and your application will continue. But what if you want to see some of

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/BrowserIntent/src/org/example/browserintent/BrowserIntent.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=133

WEB WITH A VIEW 134

Figure 7.2: Viewing a web page with the default browser

your user interface and a web page at the same time? Android allows

you to do that by using the WebView class.

7.2 Web with a View

On your desktop computer, a web browser is a large, complicated,

memory-gobbling program with all sorts of features like bookmarks,

plug-ins, Flash animations, tabs, scroll bars, printing, and so forth.

When I was working on the Eclipse project and someone suggested

replacing some common text views with embedded web browsers, I

thought they were crazy. Wouldn’t it make more sense, I argued, to

simply enhance the text viewer to do italics or tables or whatever it was

that was missing?

It turns out they weren’t crazy because:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=134

WEB WITH A VIEW 135

• A web browser can be (relatively) lean and mean if you strip out

everything but the basic rendering engine.

• If you enhance a text view to add more and more things that a

browser engine can do, you end up with either an overly compli-

cated, bloated text viewer or an underpowered browser.

Android provides a wrapper around the WebKit browser engine called

WebView that you can use to get the real power of a browser with as little

as 1MB of overhead. Although 1MB is still significant on an embedded

device, there are many cases where using a WebView is appropriate.

WebView works pretty much like any other Android view except that it

has a few extra methods specific to the browser. I’m going to show you

how it works by doing an embedded version of the previous example.

This one will be called BrowserView instead of BrowserIntent, since it

uses an embedded View instead of an Intent.

Start by creating a new “Hello, Android” project using these settings:

Project name: BrowserView

Build Target: Android 1.5

Application name: BrowserView

Package name: org.example.browserview

Create Activity: BrowserView

The layout file for BrowserView is similar to the one in BrowserIntent,

except we’ve added a WebView at the bottom:

Download BrowserView/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<LinearLayout

android:orientation="horizontal"

android:layout_width="fill_parent"

android:layout_height="wrap_content">

<EditText

android:id="@+id/url_field"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_weight="1.0"

android:lines="1"

android:inputType="textUri"

android:imeOptions="actionGo" />

<Button

android:id="@+id/go_button"

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/BrowserView/res/layout/main.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=135

WEB WITH A VIEW 136

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/go_button" />

</LinearLayout>

<WebView

android:id="@+id/web_view"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:layout_weight="1.0" />

</LinearLayout>

We use two LinearLayout controls to make everything appear in the right

place. The outermost control divides the screen into top and bottom

regions; the top has the text area and button, and the bottom has the

WebView. The innermost LinearLayout is the same as before; it just makes

the text area go on the left and the button on the right.

The onCreate() method for BrowserView is exactly the same as before,

except that now there is one extra view to look up:

Download BrowserView/src/org/example/browserview/BrowserView.java

import android.webkit.WebView;

// ...

public class BrowserView extends Activity {

private WebView webView;

// ...

@Override

public void onCreate(Bundle savedInstanceState) {

// ...

webView = (WebView) findViewById(R.id.web_view);

// ...

}

}

The openBrowser() method, however, is different:

Download BrowserView/src/org/example/browserview/BrowserView.java

/** Open a browser on the URL specified in the text box */

private void openBrowser() {

webView.getSettings().setJavaScriptEnabled(true);

webView.loadUrl(urlText.getText().toString());

}

The loadUrl() method causes the browser engine to begin loading and

displaying a web page at the given address. It returns immediately even

though the actual loading may take some time (if it finishes at all).

Don’t forget to update the string resources:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/BrowserView/src/org/example/browserview/BrowserView.java
http://media.pragprog.com/titles/eband/code/BrowserView/src/org/example/browserview/BrowserView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=136

WEB WITH A VIEW 137

Figure 7.3: Embedding a browser using WebView

Download BrowserView/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">BrowserView</string>

<string name="go_button">Go</string>

</resources>

We need to make one more change to the program. Add this line to

AndroidManifest.xml before the <application> tag:

Download BrowserView/AndroidManifest.xml

<uses-permission android:name="android.permission.INTERNET" />

If you leave this out, Android will not give your application access to

the Internet, and you’ll get a “Web page not available” error.

Try running the program now, and enter a valid web address starting

with “http://”; when you press Enter or select the Go button, the web

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/BrowserView/res/values/strings.xml
http://media.pragprog.com/titles/eband/code/BrowserView/AndroidManifest.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=137

WEB WITH A VIEW 138

Joe Asks. . .

Why Didn’t BrowserIntent Need <uses-permission>?

The previous example, BrowserIntent, simply fired off an intent to
request that some other application view the web page. That
other application (the browser) is the one that needs to ask for
Internet permissions in its own AndroidManifest.xml.

page should appear (see Figure 7.3, on the preceding page).

WebView has dozens of other methods you can use to control what is

being displayed or get notifications on state changes.

You can find a complete list in the online documentation for WebView,

but here are the methods you are most likely to need:

• addJavascriptInterface(): Allows a Java object to be accessed from

JavaScript (more on this one in the next section)

• createSnapshot(): Creates a screenshot of the current page

• getSettings(): Returns a WebSettings object used to control the

settings

• loadData(): Loads the given string data into the browser

• loadDataWithBaseURL(): Loads the given data using a base URL

• loadUrl(): Loads a web page from the given URL

• setDownloadListener(): Registers callbacks for download events,

such as when the user downloads a .zip or .apk file

• setWebChromeClient(): Registers callbacks for events that need to

be done outside the WebView rectangle, such as updating the title

or progress bar or opening a JavaScript dialog box

• setWebViewClient(): Lets the application set hooks in the browser to

intercept events such as resource loads, key presses, and autho-

rization requests

• stopLoading(): Stops the current page from loading

One of the most powerful things you can do with the WebView control

is to talk back and forth between it and the Android application that

contains it. Let’s take a closer look at this feature now.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=138

FROM JAVASCRIPT TO JAVA AND BACK 139

Joe Asks. . .

Is Allowing JavaScript to Call Java Dangerous?

Whenever you allow a web page to access local resources or
call functions outside the browser sandbox, you need to con-
sider the security implications very carefully. For example, you
wouldn’t want to create a method to allow JavaScript to read
data from any arbitrary path name because that might expose
some private data to a malicious site that knew about your
method and your filenames.

Here are a few things to keep in mind. First, don’t rely on
security by obscurity. Enforce limits on the pages that can use
your methods and on the things those methods can do. And
remember the golden rule of security: don’t rule things out;
rule them in. In other words, don’t try to check for all the
bad things that someone can ask you to do (for example,
invalid characters in a query). You’re bound to miss something.
Instead, disallow everything, and pass only the good things you
know are safe.

7.3 From JavaScript to Java and Back

Your Android device can do a number of cool things such as store local

data, draw graphics, play music, make calls, and determine its location.

Wouldn’t it be nice if you could access that functionality from a web

page? With an embedded WebView control, you can.

The key is the addJavascriptInterface() method in the WebView class.

You can use it to extend the Document Object Model (DOM) inside the

embedded browser and to define a new object that JavaScript code can

access. When the JavaScript code invokes methods on that object, it

will actually be invoking methods in your Android program.

You can call JavaScript methods from your Android program too. All

you have to do is call the loadUrl() method, passing it a URL of the form

javascript:code-to-execute. Instead of going to a new page, the browser

will execute the given JavaScript expression inside the current page.

You can call a method, change JavaScript variables, modify the browser

document—anything you need.

To demonstrate calls between JavaScript in the WebView and Java in

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=139

FROM JAVASCRIPT TO JAVA AND BACK 140

Figure 7.4: Communicating between Android and an embedded Web-

View

the Android program, let us now build a program that is half HTML/

JavaScript and half Android (see Figure 7.4). The top part of the appli-

cation window is a WebView control, and the bottom part is a TextView

and Button from the Android user interface. When you click the buttons

and links, it makes calls between the two environments.

Start by creating a “Hello, Android” program using these parameters:

Project name: LocalBrowser

Build Target: Android 1.5

Application name: LocalBrowser

Package name: org.example.localbrowser

Create Activity: LocalBrowser

The user interface for this program will be split into two parts. The first

part is defined in the Android layout file, res/layout/main.xml:

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=140

FROM JAVASCRIPT TO JAVA AND BACK 141

Download LocalBrowser/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<WebView

android:id="@+id/web_view"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:layout_weight="1.0" />

<LinearLayout

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:layout_weight="1.0"

android:padding="5sp">

<TextView

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:textSize="24sp"

android:text="TextView" />

<Button

android:id="@+id/button"

android:text="@string/call_javascript_from_android"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:textSize="18sp" />

<TextView

android:id="@+id/text_view"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:textSize="18sp" />

</LinearLayout>

</LinearLayout>

The second part is the index.html file that will be loaded into the Web-

View. This file goes in the assets directory, not the res directory, because

it’s not a compiled resource. Anything in the assets directory is copied

verbatim onto local storage when your program is installed. The direc-

tory is intended to be used for local copies of HTML, images, and scripts

that the browser can view without being connected to the network.

Download LocalBrowser/assets/index.html

Line 1 <html>
- <head>
- <script language="JavaScript">
- function callJS(arg) {

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocalBrowser/res/layout/main.xml
http://media.pragprog.com/titles/eband/code/LocalBrowser/assets/index.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=141

FROM JAVASCRIPT TO JAVA AND BACK 142

5 document.getElementById('replaceme').innerHTML = arg;
- }
- </script>
- </head>
- <body>

10 <h1>WebView</h1>
- <p>
-
- Display JavaScript alert
- </p>

15 <p>
-
- Call Android from JavaScript
- </p>
- <p id="replaceme">

20 </p>
- </body>
- </html>

Line 4 of index.html defines the callJS() function that our Android pro-

gram will be calling later. It takes a string argument and inserts it at

the replaceme tag, which is at line 19.

In Figure 7.4, on page 140, you see two HTML links that are defined

starting at line 12. The first one just calls a standard window.alert() func-

tion to open a window displaying a short message. The second link, at

line 16, calls the callAndroid() method on the window.an-

droid object. If you loaded this page into a normal web browser, win-

dow.android would be undefined. But since we’re embedding a browser

into an Android application, we can define the object ourselves so the

page can use it.

Next we turn to the Android code in the LocalBrowser class. Here’s the

basic outline, including all the imports we’ll need later:

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

Line 1 package org.example.localbrowser;
-

- import android.app.Activity;
- import android.os.Bundle;
5 import android.os.Handler;
- import android.util.Log;
- import android.view.View;
- import android.view.View.OnClickListener;
- import android.webkit.JsResult;

10 import android.webkit.WebChromeClient;
- import android.webkit.WebView;
- import android.widget.Button;
- import android.widget.TextView;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocalBrowser/src/org/example/localbrowser/LocalBrowser.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=142

FROM JAVASCRIPT TO JAVA AND BACK 143

- import android.widget.Toast;
15

- public class LocalBrowser extends Activity {
- private static final String TAG = "LocalBrowser";
- private final Handler handler = new Handler();
- private WebView webView;

20 private TextView textView;
- private Button button;
-

- @Override
- public void onCreate(Bundle savedInstanceState) {

25 super.onCreate(savedInstanceState);
- setContentView(R.layout.main);
-

- // Find the Android controls on the screen
- webView = (WebView) findViewById(R.id.web_view);

30 textView = (TextView) findViewById(R.id.text_view);
- button = (Button) findViewById(R.id.button);
- // Rest of onCreate follows...
- }
- }

Note the initialization of a Handler object at line 18. JavaScript calls

come in on a special thread dedicated to the browser, but Android user

interface calls can be made only from the main (GUI) thread. We’ll use

the Handler class to make the transition.

To call Android Java code from JavaScript, you need to define a plain

old Java object with one or more methods, like this:

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

/** Object exposed to JavaScript */

private class AndroidBridge {

public void callAndroid(final String arg) { // must be final

handler.post(new Runnable() {

public void run() {

Log.d(TAG, "callAndroid(" + arg + ")");

textView.setText(arg);

}

});

}

}

When JavaScript calls the callAndroid() method, the application creates

a new Runnable object and post it on the running queue of the main

thread using Handler.post(). As soon as the main thread gets a chance,

it will invoke the run() method, which will call setText() to change the text

on the TextView object.

Now it’s time to tie everything together in the onCreate() method. First

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocalBrowser/src/org/example/localbrowser/LocalBrowser.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=143

FROM JAVASCRIPT TO JAVA AND BACK 144

we turn on JavaScript (it’s off by default) and register our bridge to

JavaScript:

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

// Turn on JavaScript in the embedded browser

webView.getSettings().setJavaScriptEnabled(true);

// Expose a Java object to JavaScript in the browser

webView.addJavascriptInterface(new AndroidBridge(),

"android");

Then we create an anonymous WebChromeClient object and register it

with the setWebChromeClient() method.

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

// Set up a function to be called when JavaScript tries

// to open an alert window

webView.setWebChromeClient(new WebChromeClient() {

@Override

public boolean onJsAlert(final WebView view,

final String url, final String message,

JsResult result) {

Log.d(TAG, "onJsAlert(" + view + ", " + url + ", "

+ message + ", " + result + ")");

Toast.makeText(LocalBrowser.this, message, 3000).show();

result.confirm();

return true; // I handled it

}

});

The term chrome here refers to all the trimmings around a browser

window. If this were a full-blown browser client, we’d need to handle

navigation, bookmarks, menus, and so forth. In this case, all we want

to do is change what happens with JavaScript code when the browser

tries to open a JavaScript alert (using window.alert()). Inside onJsAlert()

we use the Android Toast class to create a message window that will

appear for a short amount of time (in this case, 3000 milliseconds, or 3

seconds).

Once we finish configuring the WebView, we can use loadUrl() to load the

local web page:

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

// Load the web page from a local asset

webView.loadUrl("file:///android_asset/index.html");

URLs of the form “file:///android_asset/filename” (note the three for-

ward slashes) have a special meaning to Android’s browser engine. As

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocalBrowser/src/org/example/localbrowser/LocalBrowser.java
http://media.pragprog.com/titles/eband/code/LocalBrowser/src/org/example/localbrowser/LocalBrowser.java
http://media.pragprog.com/titles/eband/code/LocalBrowser/src/org/example/localbrowser/LocalBrowser.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=144

FROM JAVASCRIPT TO JAVA AND BACK 145

you might have guessed, they refer to files in the assets directory. In this

case, we’re loading the index.html file defined earlier.

Here is the res/values/strings.xml file for the LocalBrowser example:

Download LocalBrowser/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">LocalBrowser</string>

<string name="call_javascript_from_android">

Call JavaScript from Android

</string>

</resources>

The last thing we have to do is wire up the button at the bottom of the

screen so it will make a JavaScript call (a call from Java to JavaScript).

Download LocalBrowser/src/org/example/localbrowser/LocalBrowser.java

// This function will be called when the user presses the

// button on the Android side

button.setOnClickListener(new OnClickListener() {

public void onClick(View view) {

Log.d(TAG, "onClick(" + view + ")");

webView.loadUrl("javascript:callJS('Hello from Android')");

}

});

To do that, we set a listener for button clicks using setOnClickListener().

When the button is pressed, onClick() is called, which turns around and

calls WebView.loadUrl(), passing it a JavaScript expression to evaluate in

the browser. The expression is a call to the callJS() function defined in

index.html.

Run the program now, and try it. When you click “Display JavaScript

alert,” an Android message window will appear. When you click “Call

Android from JavaScript,” the string “Hello from Browser” will be dis-

played in an Android text control. And finally, when you press the “Call

JavaScript from Android” button, the string “Hello from Android” is sent

to the browser and inserted in the HTML where it will be displayed at

the end of the web page.

Sometimes you don’t need to display a web page, but you just need to

access some kind of web service or other server-side resource. In the

next section, I’ll show you how to do this.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocalBrowser/res/values/strings.xml
http://media.pragprog.com/titles/eband/code/LocalBrowser/src/org/example/localbrowser/LocalBrowser.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=145

USING WEB SERVICES 146

7.4 Using Web Services

Android provides a full set of Java-standard networking APIs, such as

the java.net.HttpURLConnection package, that you can use in your pro-

grams. The tricky part is to make the calls asynchronously so that your

program’s user interface will be responsive at all times.

Consider what would happen if you just make a blocking network call

in your main (GUI) thread. Until that call returns (and it might never

return), your application cannot respond to any user interface events

such as keystrokes or button presses. It will appear hung to the user.

Obviously, that’s something you’ll have to avoid.

The java.util.concurrent package is perfect for this kind of work. First cre-

ated by Doug Lea as a stand-alone library and later incorporated into

Java 5, this package supports concurrent programming at a higher

level than the regular Java Thread class. The ExecutorService class man-

ages one or more threads for you, and all you have to do is submit

tasks (instances of Runnable or Callable) to the executor to have them

run. An instance of the Future class is returned, which is a reference to

some as-yet-unknown future value that will be returned by your task

(if any). You can limit the number of threads that are created, and you

can interrupt running tasks if necessary.

To illustrate these concepts, let’s create a fun little program that calls

the Google Translation API.5 Have you ever laughed at strange trans-

lations to and from foreign languages, especially computer-generated

translations? This program will let the user enter a phrase in one lan-

guage, ask Google to translate to a second language, and then ask

Google to translate it back into the first language. Ideally, you’d end

up with the same words you started with, but this is not always the

case, as you can see in Figure 7.5, on the next page.

To use this program, simply select the starting and target languages,

and then start typing a phrase. As you type, the program will use the

Google Translation web service to translate your text into and out of

the target language.

To create this application, start with a “Hello, Android” application

using these parameters:

Project name: Translate

5. http://code.google.com/apis/ajaxlanguage

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://code.google.com/apis/ajaxlanguage
http://books.pragprog.com/titles/eband/errata/add?pdf_page=146

USING WEB SERVICES 147

Figure 7.5: Machine translation is still a work in progress.

Lost in Translation

When I first thought of this example, I imagined that it would be
easy to get some hilarious results. Unfortunately (or fortunately,
depending on your point of view), the Google service does
a pretty good job with most languages. If you find any espe-
cially funny cases where the translator really flubs up, please
post them on the discussion forum at the book’s website (http://

pragprog.com/titles/eband) for others to enjoy.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://pragprog.com/titles/eband
http://pragprog.com/titles/eband
http://books.pragprog.com/titles/eband/errata/add?pdf_page=147

USING WEB SERVICES 148

Build Target: Android 1.5

Application name: Translate

Package name: org.example.translate

Create Activity: Translate

Since this example will access the Internet to make a web service call,

we will need to tell Android to grant us permission. Add this line to

AndroidManifest.xml before the <application> XML tag:

Download Translate/AndroidManifest.xml

<uses-permission android:name="android.permission.INTERNET" />

The layout for this example is a little more complicated than usual, so

we’ll use the TableLayout view. TableLayout lets you arrange your views

into rows and columns, taking care of alignment and stretching the

columns to fit the content. It’s similar to using <table> and <tr> tags

in HTML.

Download Translate/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TableLayout

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:stretchColumns="1"

android:padding="10dip">

<TableRow>

<TextView android:text="@string/from_text" />

<Spinner android:id="@+id/from_language" />

</TableRow>

<EditText

android:id="@+id/original_text"

android:hint="@string/original_hint"

android:padding="10dip"

android:textSize="18sp" />

<TableRow>

<TextView android:text="@string/to_text" />

<Spinner android:id="@+id/to_language" />

</TableRow>

<TextView

android:id="@+id/translated_text"

android:padding="10dip"

android:textSize="18sp" />

<TextView android:text="@string/back_text" />

<TextView

android:id="@+id/retranslated_text"

android:padding="10dip"

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Translate/AndroidManifest.xml
http://media.pragprog.com/titles/eband/code/Translate/res/layout/main.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=148

USING WEB SERVICES 149

android:textSize="18sp" />

</TableLayout>

</ScrollView>

In this example, we have five rows, each row containing one or two

columns. Note that if there is only one view in a row, you don’t have

to use a TableRow to contain it. Also, it’s not necessary to use android:

layout_width= and android:layout_height= on every view like you have to

with LinearLayout.

The Spinner class is a new one we haven’t seen before. It’s similar to a

combo box in other user interface toolkits. The user selects the spin-

ner (for example, by touching it), and a list of possible values appears

for them to pick.6 In this example, we’re going to use this control for

selecting from a list of languages.

The actual list is stored as an Android resource in the file res/values/

arrays.xml:

Download Translate/res/values/arrays.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<array name="languages">

<item>Bulgarian (bg)</item>

<item>Chinese Simplified (zh-CN)</item>

<item>Chinese Traditional (zh-TW)</item>

<item>Catalan (ca)</item>

<item>Croatian (hr)</item>

<item>Czech (cs)</item>

<item>Danish (da)</item>

<item>Dutch (nl)</item>

<item>English (en)</item>

<item>Filipino (tl)</item>

<item>Finnish (fi)</item>

<item>French (fr)</item>

<item>German (de)</item>

<item>Greek (el)</item>

<item>Indonesian (id)</item>

<item>Italian (it)</item>

<item>Japanese (ja)</item>

<item>Korean (ko)</item>

<item>Latvian (lv)</item>

<item>Lithuanian (lt)</item>

<item>Norwegian (no)</item>

6. In early versions of the SDK, the user could also cycle (spin) through all the values

using the arrows or D-pad buttons. However, as of 0.9_beta, Google decided to take that

out, leaving the class a bit awkwardly named.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Translate/res/values/arrays.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=149

USING WEB SERVICES 150

<item>Polish (pl)</item>

<item>Portuguese (pt-PT)</item>

<item>Romanian (ro)</item>

<item>Russian (ru)</item>

<item>Spanish (es)</item>

<item>Serbian (sr)</item>

<item>Slovak (sk)</item>

<item>Slovenian (sl)</item>

<item>Swedish (sv)</item>

<item>Ukrainian (uk)</item>

</array>

</resources>

This defines a list called languages that contains most of the languages

recognized by the Google Translation API. Note that each value has a

long name (for example, Spanish) and a short name (for example, es).

We’ll use the short name when passing the language to the translator.

Now let’s start modifying the Translate class. Here’s the basic outline:

Download Translate/src/org/example/translate/Translate.java

Line 1 package org.example.translate;
-

- import java.util.concurrent.ExecutorService;
- import java.util.concurrent.Executors;
5 import java.util.concurrent.Future;
- import java.util.concurrent.RejectedExecutionException;
-

- import android.app.Activity;
- import android.os.Bundle;

10 import android.os.Handler;
- import android.text.Editable;
- import android.text.TextWatcher;
- import android.view.View;
- import android.widget.AdapterView;

15 import android.widget.ArrayAdapter;
- import android.widget.EditText;
- import android.widget.Spinner;
- import android.widget.TextView;
- import android.widget.AdapterView.OnItemSelectedListener;

20

- public class Translate extends Activity {
- private Spinner fromSpinner;
- private Spinner toSpinner;
- private EditText origText;

25 private TextView transText;
- private TextView retransText;
-

- private TextWatcher textWatcher;
- private OnItemSelectedListener itemListener;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Translate/src/org/example/translate/Translate.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=150

USING WEB SERVICES 151

30

- private Handler guiThread;
- private ExecutorService transThread;
- private Runnable updateTask;
- private Future transPending;

35

- @Override
- public void onCreate(Bundle savedInstanceState) {
- super.onCreate(savedInstanceState);
-

40 setContentView(R.layout.main);
- initThreading();
- findViews();
- setAdapters();
- setListeners();

45 }
- }

After declaring a few variables, we define the onCreate() method starting

at line 37 to initialize the threading and user interface. Don’t worry,

we’ll fill out all those other methods it calls as we go.

The findViews() method, called from line 42, just gets a handle to all the

user interface elements defined in the layout file:

Download Translate/src/org/example/translate/Translate.java

/** Get a handle to all user interface elements */

private void findViews() {

fromSpinner = (Spinner) findViewById(R.id.from_language);

toSpinner = (Spinner) findViewById(R.id.to_language);

origText = (EditText) findViewById(R.id.original_text);

transText = (TextView) findViewById(R.id.translated_text);

retransText = (TextView) findViewById(R.id.retranslated_text);

}

The setAdapters() method, called from onCreate() on line 43, defines a

data source for the spinners:

Download Translate/src/org/example/translate/Translate.java

/** Define data source for the spinners */

private void setAdapters() {

// Spinner list comes from a resource,

// Spinner user interface uses standard layouts

ArrayAdapter<CharSequence> adapter = ArrayAdapter.createFromResource(

this, R.array.languages,

android.R.layout.simple_spinner_item);

adapter.setDropDownViewResource(

android.R.layout.simple_spinner_dropdown_item);

fromSpinner.setAdapter(adapter);

toSpinner.setAdapter(adapter);

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Translate/src/org/example/translate/Translate.java
http://media.pragprog.com/titles/eband/code/Translate/src/org/example/translate/Translate.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=151

USING WEB SERVICES 152

Joe Asks. . .

Is All This Delay and Threading Stuff Really Necessary?

One reason you need to do it this way is to avoid making too
many calls to the external web service. Imagine what happens
as the user enters the word scissors. The program sees the word
typed in a character at a time, first s, then c, then i, and so
on, possibly with backspaces because nobody can remem-
ber how to spell scissors. Do you really want to make a web
service request for every character? Not really. Besides putting
unnecessary load on the server, it would be wasteful in terms
of power. Each request requires the device’s radio to transmit
and receive several data packets, which uses up a bit of bat-
tery power. You want to wait until the user finishes typing before
sending the request, but how do you tell they are done?

The algorithm used here is that as soon as the user types a let-
ter, a delayed request is started. If they don’t type another let-
ter before the one-second delay is up, then the request goes
through. Otherwise, the first request is removed from the request
queue before it goes out. If the request is already in progress,
we try to interrupt it. The same goes for language changes,
except we use a smaller delay. The good news is that now that
I’ve done it once for you, you can use the same pattern in your
own asynchronous programs.

// Automatically select two spinner items

fromSpinner.setSelection(8); // English (en)

toSpinner.setSelection(11); // French (fr)

}

In Android, an Adapter is a class that binds a data source (in this case,

the languages array defined in arrays.xml) to a user interface control (in

this case, a spinner). We use the standard layouts provided by Android

for individual items in the list and for the drop-down box you see when

you select the spinner.

Next we set up the user interface handlers in the setListeners() routine

(called from line 44 of onCreate()):

Download Translate/src/org/example/translate/Translate.java

/** Setup user interface event handlers */

private void setListeners() {

// Define event listeners

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Translate/src/org/example/translate/Translate.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=152

USING WEB SERVICES 153

textWatcher = new TextWatcher() {

public void beforeTextChanged(CharSequence s, int start,

int count, int after) {

/* Do nothing */

}

public void onTextChanged(CharSequence s, int start,

int before, int count) {

queueUpdate(1000 /* milliseconds */);

}

public void afterTextChanged(Editable s) {

/* Do nothing */

}

};

itemListener = new OnItemSelectedListener() {

public void onItemSelected(AdapterView parent, View v,

int position, long id) {

queueUpdate(200 /* milliseconds */);

}

public void onNothingSelected(AdapterView parent) {

/* Do nothing */

}

};

// Set listeners on graphical user interface widgets

origText.addTextChangedListener(textWatcher);

fromSpinner.setOnItemSelectedListener(itemListener);

toSpinner.setOnItemSelectedListener(itemListener);

}

We define two listeners: one that is called when the text to translate is

changed and one that is called when the language is changed. queue-

Update() puts a delayed update request on the main thread’s to-do list

using a Handler. We arbitrarily use a 1,000-millisecond delay for text

changes and a 200-millisecond delay for language changes.

The update request is defined inside the initThreading() method:

Download Translate/src/org/example/translate/Translate.java

Line 1 /**
- * Initialize multi-threading. There are two threads: 1) The main
- * graphical user interface thread already started by Android,
- * and 2) The translate thread, which we start using an executor.
5 */
- private void initThreading() {
- guiThread = new Handler();
- transThread = Executors.newSingleThreadExecutor();
-

10 // This task does a translation and updates the screen
- updateTask = new Runnable() {
- public void run() {

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Translate/src/org/example/translate/Translate.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=153

USING WEB SERVICES 154

- // Get text to translate
- String original = origText.getText().toString().trim();

15

- // Cancel previous translation if there was one
- if (transPending != null)
- transPending.cancel(true);
-

20 // Take care of the easy case
- if (original.length() == 0) {
- transText.setText(R.string.empty);
- retransText.setText(R.string.empty);
- } else {

25 // Let user know we're doing something
- transText.setText(R.string.translating);
- retransText.setText(R.string.translating);
-

- // Begin translation now but don't wait for it
30 try {

- TranslateTask translateTask = new TranslateTask(
- Translate.this, // reference to activity
- original, // original text
- getLang(fromSpinner), // from language

35 getLang(toSpinner) // to language
-);
- transPending = transThread.submit(translateTask);
- } catch (RejectedExecutionException e) {
- // Unable to start new task

40 transText.setText(R.string.translation_error);
- retransText.setText(R.string.translation_error);
- }
- }
- }

45 };
- }

We have two threads: the main Android thread used for the user inter-

face and a translate thread that we’ll create for running the actual

translation job. We represent the first one with an Android Handler and

the second with Java’s ExecutorService.

Line 11 defines the update task, which will be scheduled by the queue-

Update() method. When it gets to run, it first fetches the current text to

translate and then prepares to send a translation job to the translate

thread. It cancels any translation that is already in progress (on line

18), takes care of the case where there is no text to translate (line 22),

and fills in the two text controls where translated text will appear with

the string “Translating...” (line 26). That text will be replaced later by

the actual translated text.

Finally, on line 31, we create an instance of TranslateTask, giving it a

reference to the Translate activity so it can call back to change the text,
Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=154

USING WEB SERVICES 155

a string containing the original text, and the short names of the two

languages selected in the spinners. Line 37 submits the new task to the

translation thread, returning a reference to the Future return value. In

this case, we don’t really have a return value since TranslateTask changes

the GUI directly, but we use the Future reference back on line 18 to

cancel the translation if necessary.

To finish up the Translate class, here are a few utility functions used in

other places:

Download Translate/src/org/example/translate/Translate.java

/** Extract the language code from the current spinner item */

private String getLang(Spinner spinner) {

String result = spinner.getSelectedItem().toString();

int lparen = result.indexOf('(');

int rparen = result.indexOf(')');

result = result.substring(lparen + 1, rparen);

return result;

}

/** Request an update to start after a short delay */

private void queueUpdate(long delayMillis) {

// Cancel previous update if it hasn't started yet

guiThread.removeCallbacks(updateTask);

// Start an update if nothing happens after a few milliseconds

guiThread.postDelayed(updateTask, delayMillis);

}

/** Modify text on the screen (called from another thread) */

public void setTranslated(String text) {

guiSetText(transText, text);

}

/** Modify text on the screen (called from another thread) */

public void setRetranslated(String text) {

guiSetText(retransText, text);

}

/** All changes to the GUI must be done in the GUI thread */

private void guiSetText(final TextView view, final String text) {

guiThread.post(new Runnable() {

public void run() {

view.setText(text);

}

});

}

The getLang() method figures out which item is currently selected in a

spinner, gets the string for that item, and parses out the short language

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Translate/src/org/example/translate/Translate.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=155

FAST -FORWARD >> 156

code needed by the Translation API.

queueUpdate() puts an update request on the main thread’s request

queue but tells it to wait a little while before actually running it. If there

was already a request on the queue, it’s removed.

The setTranslated() and setRetranslated() methods will be used by Trans-

lateTask to update the user interface when translated results come back

from the web service. They both call a private function called guiSet-

Text().

guiSetText() uses the Handler.post() method to ask the main GUI thread

to update the text on a TextView control. This extra step is necessary

because you can’t call user interface functions from non-user-interface

threads, and guiSetText() will be called by the translate thread.

Here is the res/values/strings.xml file for the Translate example:

Download Translate/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Translate</string>

<string name="from_text">From:</string>

<string name="to_text">To:</string>

<string name="back_text">And back again:</string>

<string name="original_hint">Enter text to translate</string>

<string name="empty"></string>

<string name="translating">Translating...</string>

<string name="translation_error">(Translation error)</string>

<string name="translation_interrupted">(Translation

interrupted)</string>

</resources>

I’m not going to include the source to the TranslateTask class here because

it’s rather long and contains nothing Android specific except for a few

debugging messages. If you’d like to see a nice example of calling a

RESTful web service using HttpURLConnection, parsing results in Java-

Script Object Notation (JSON) format, and handling all sorts of net-

work errors and requests for interruptions, then you can download the

source from the book’s website.

7.5 Fast-Forward >>

In this chapter, we covered a lot of ground, from opening a simple web

page to using an asynchronous web service. HTML/JavaScript pro-

gramming is beyond the scope of this book, but there are several good

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Translate/res/values/strings.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=156

FAST -FORWARD >> 157

references available. If you’re going to do much concurrent program-

ming with classes such as ExecutorService, I recommend Java Concur-

rency in Practice [Goe06] by Brian Goetz.

The next chapter will explore a new level of interactivity through loca-

tion and sensor services. If you’re anxious to learn more about data

sources and data binding, you can skip ahead to Chapter 9, Putting

SQL to Work, on page 175.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=157

Chapter 8

Locating and Sensing
The Android platform uses many different technologies. Some of them

are new, and some have been seen before in other settings. What’s

unique about Android is how these technologies work together. In this

chapter, we’ll consider the following:

• Location awareness, through inexpensive GPS devices

• Handheld accelerometers, such as those found on the Nintendo

Wii remote

• Mashups, often combining maps with other information

Several popular Android programs use these concepts to create a more

compelling and relevant experience for the user. For example, the Locale

application1 can adapt the settings on your phone based on where you

are. Are you always forgetting to set your ringer to vibrate when you’re

at work or the movies? Locale can take care of that using the Android

Location API described here.

8.1 Location, Location, Location

Right now there are 31 satellites zipping around the world with noth-

ing better to do than help you find your way to the grocery store. The

Global Positioning System (GPS), originally developed by the military

but then converted to civilian use, beams highly precise time signals

to Earth-based receivers such as the one in your Android phone. With

1. http://www.androidlocale.com

Prepared exclusively for Trieu Nguyen

http://www.androidlocale.com

LOCATION, LOCATION, LOCATION 159

Joe Asks. . .

Does GPS Let Anyone Snoop on My Location?

No. GPS receivers are just that—receivers. The GPS chip, and
thus any program running in your Android device, knows where
it is. But unless one of those programs deliberately transmits that
information, nobody can use it to find you.

good reception and a little math, the GPS chip can figure out your posi-

tion to within 50 feet.2

In addition to GPS, Android also supports calculating your position

using information from nearby cell phone towers, and if you’re con-

nected to a wifi hotspot, it can use that too. Keep in mind that all these

location providers are unreliable to some extent. When you walk inside

a building, for example, GPS signals can’t reach you.

To demonstrate Android’s location services, let’s write a test program

that simply displays your current position and keeps updating it on the

screen as you move around. You can see the program in Figure 8.1, on

the next page.

Where Am I?

Start by creating a “Hello, Android” application using these parameters

in the New Project wizard:

Project name: LocationTest

Build Target: Android 1.5

Application name: LocationTest

Package name: org.example.locationtest

Create Activity: LocationTest

Access to location information is protected by Android permissions. To

gain access, you’ll need to add these lines in the AndroidManifest.xml file

before the <application> tag:

Download LocationTest/AndroidManifest.xml

<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

2. You don’t have to know how GPS works to use it, but if you’re curious, see

http://adventure.howstuffworks.com/gps.htm.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocationTest/AndroidManifest.xml
http://adventure.howstuffworks.com/gps.htm
http://books.pragprog.com/titles/eband/errata/add?pdf_page=159

LOCATION, LOCATION, LOCATION 160

Figure 8.1: Testing the LocationManager

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

In this example, both fine-grained location providers such as GPS and

course-grained location providers such as cell tower triangulation will

be supported.

For the user interface, we’re going to print all the location data into a

big scrolling TextView, which is defined in res/layout/main.xml:

Download LocationTest/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:id="@+id/output"

android:layout_width="fill_parent"

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocationTest/res/layout/main.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=160

LOCATION, LOCATION, LOCATION 161

android:layout_height="wrap_content" />

</ScrollView>

With the preliminaries out of the way, we can start coding. Here’s the

outline of the LocationTest class and the onCreate() method. (Ignore the

reference to LocationListener on line 15 for now; we’ll come back to it

later.)

Download LocationTest/src/org/example/locationtest/LocationTest.java

Line 1 package org.example.locationtest;
-

- import java.util.List;
-

5 import android.app.Activity;
- import android.location.Criteria;
- import android.location.Location;
- import android.location.LocationListener;
- import android.location.LocationManager;

10 import android.location.LocationProvider;
- import android.os.Bundle;
- import android.widget.TextView;
-

- public class LocationTest extends Activity implements

15 LocationListener {
- private LocationManager mgr;
- private TextView output;
- private String best;
-

20 @Override
- public void onCreate(Bundle savedInstanceState) {
- super.onCreate(savedInstanceState);
- setContentView(R.layout.main);
-

25 mgr = (LocationManager) getSystemService(LOCATION_SERVICE);
- output = (TextView) findViewById(R.id.output);
-

- log("Location providers:");
- dumpProviders();

30

- Criteria criteria = new Criteria();
- best = mgr.getBestProvider(criteria, true);
- log("\nBest provider is: " + best);
-

35 log("\nLocations (starting with last known):");
- Location location = mgr.getLastKnownLocation(best);
- dumpLocation(location);
- }
- }

The starting point for Android location services is the getSystemService()

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocationTest/src/org/example/locationtest/LocationTest.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=161

LOCATION, LOCATION, LOCATION 162

call on line 25. It returns a LocationManager class that we save into a

field for later use.

On line 29, we call our dumpProviders() method to print a list of all the

location providers in the system.

Next we need to pick one of the possible providers to use. I’ve seen

some examples that simply pick the first available one, but I recom-

mend using the getBestProvider() method, as shown here. Android will

pick the best provider according to a Criteria that you provide (see line

31). If you have any restrictions on cost, power, accuracy, and so on,

this is where you put them. In this example, there are no restrictions.

Depending on the provider, it may take some time for the device to

figure out your current location. This could be a few seconds, a minute,

or more. However, Android remembers the last position it returned, so

we can query and print that immediately on line 36. This location could

be out of date—for example, if the device was turned off and moved—

but it’s usually better than nothing.

Knowing where we were is only half the fun. Where are we going next?

Updating the Location

To have Android notify you about location changes, call the requestLo-

cationUpdates() method on the LocationManager object. To save battery

power, we want updates only when the program is in the foreground.

Therefore, we need to hook into the Android activity life-cycle methods

by overriding onResume() and onPause():

Download LocationTest/src/org/example/locationtest/LocationTest.java

@Override

protected void onResume() {

super.onResume();

// Start updates (doc recommends delay >= 60000 ms)

mgr.requestLocationUpdates(best, 15000, 1, this);

}

@Override

protected void onPause() {

super.onPause();

// Stop updates to save power while app paused

mgr.removeUpdates(this);

}

When the application resumes, we call requestLocationUpdates() to start

the update process. It takes four parameters: the provider name, a

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocationTest/src/org/example/locationtest/LocationTest.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=162

LOCATION, LOCATION, LOCATION 163

delay (so you don’t get updates too often), a minimum distance (changes

less than this are ignored), and a LocationListener object.

When the application pauses, we call removeUpdates() to stop getting

updates. The location provider will be powered down if it’s not needed

for a while.

Now you know why LocationTest implements LocationListener, so we could

just pass a reference to the activity instead of making a new listener

object. That will save us about 1KB of memory at runtime.

Here’s the definition of the four methods required by that interface:

Download LocationTest/src/org/example/locationtest/LocationTest.java

public void onLocationChanged(Location location) {

dumpLocation(location);

}

public void onProviderDisabled(String provider) {

log("\nProvider disabled: " + provider);

}

public void onProviderEnabled(String provider) {

log("\nProvider enabled: " + provider);

}

public void onStatusChanged(String provider, int status,

Bundle extras) {

log("\nProvider status changed: " + provider + ", status="

+ S[status] + ", extras=" + extras);

}

The most important method in the bunch is onLocationChanged().

As the name suggests, it’s called every time the provider notices that

the device’s location has changed. The onProviderDisabled(), onProviderEn-

abled(), and onStatusChanged() methods can be used to switch to other

providers in case your first choice becomes unavailable.

The code for the remaining methods of LocationTest—log(), dumpProvi-

ders(), and dumpLocation()—is not very interesting, so I won’t bore you

with it here. You can find it all in the downloadable samples on the

book’s website.

Emulation Notes

If you run the LocationTest example on a real device, it will show your

current position as you walk around. On the emulator, it uses a fake

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/LocationTest/src/org/example/locationtest/LocationTest.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=163

SET SENSORS TO MAXIMUM 164

GPS provider that always returns the same position unless you change

it. Let’s do that now.

In Eclipse you can change your simulated location using the Emulator

Control view (Window > Show View > Other... > Android > Emulator

Control). Scroll down to the bottom, and you’ll find a place to enter

the longitude and latitude manually. When you click the Send button,

Eclipse will send the new position to the emulated device, and you’ll see

it displayed in any programs that are watching for it.

You can also run the DDMS program outside of Eclipse and send fake

position changes in that way. In addition to manual, position-at-a-time

updates, you can use a recorded path read from an external file. See

the DDMS documentation for more information.3

With Android location providers, you can find out where you are in a

broad, global sense. If you want more local information such as tilt and

temperature, you have to use a different API. That’s the subject of the

next section.

8.2 Set Sensors to Maximum

Let’s say you’re writing a racing game so you need to give the player a

way to steer their car on the screen. One way would be to use buttons,

like driving games on a Sony Playstation or the Nintendo DS. Press right

to steer right, press left to steer left, and hold down another button for

the gas. It works, but it’s not very natural.

Have you ever watched somebody play one of those games? Uncon-

sciously, they sway from side to side when making a hairpin curve,

jerk the controller when bumping into another car, lean forward when

speeding up, and pull back when putting on the breaks. Wouldn’t it be

cool if those motions actually had some effect on the game play? Now

they can.

Engaging Sensors

The Android SDK supports many different types of sensor devices:

• TYPE_ACCELEROMETER: Measures acceleration in the x, y, and z axes

• TYPE_LIGHT: Tells you how bright your surrounding area is

3. http://d.android.com/guide/developing/tools/ddms.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/developing/tools/ddms.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=164

SET SENSORS TO MAXIMUM 165

• TYPE_MAGNETIC_FIELD: Returns magnetic attraction in the x, y, and

z axes

• TYPE_ORIENTATION: Measures the yaw, pitch, and roll of the

device

• TYPE_PRESSURE: Senses the current atmospheric pressure

• TYPE_PROXIMITY: Provides the distance between the sensor and some

object

• TYPE_TEMPERATURE: Measures the temperature of the surrounding

area

Not all devices will offer all this functionality, of course.4

The SensorTest example, available on the book’s web site, demonstrates

using the Sensor API. Android’s SensorManager class is similar to Loca-

tionManager, except the updates will come much more quickly, perhaps

hundreds per second. To get access to the sensors, you first call the

getSystemService() method like this:

Download SensorTest/src/org/example/sensortest/SensorTest.java

private SensorManager mgr;

// ...

mgr = (SensorManager) getSystemService(SENSOR_SERVICE);

Then you call the registerListener() in your onResume() method to start

getting updates and unregisterListener() in your onPause() method to stop

getting them.

Interpreting Sensor Readings

The sensor service will call your onSensorChanged() method every time

a value changes. It should look something like this:

Download SensorTest/src/org/example/sensortest/SensorTest.java

public void onSensorChanged(SensorEvent event) {

for (int i = 0; i < event.values.length; i++) {

// ...

}

}

All the sensors return an array of floating-point values. The size of the

array depends on the particular sensor; for example, TYPE_

4. Unfortunately, Android 1.5 removed support for the TRICORDER sensor that turned

your device into a fully functional Star Trek Tricorder. Darn it, Jim—I’m a programmer,

not an ovum paschalis.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/SensorTest/src/org/example/sensortest/SensorTest.java
http://media.pragprog.com/titles/eband/code/SensorTest/src/org/example/sensortest/SensorTest.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=165

SET SENSORS TO MAXIMUM 166

TEMPERATURE returns only one value, the temperature in degrees Cel-

sius. You may not even need to use all the numbers returned. For

instance, if you just need a compass heading, you can use the first

number returned from the TYPE_ORIENTATION sensor.

Turning the sensor readings (especially from the accelerometer) into

meaningful information is something of a black art. Here are a few tips

to keep in mind:

• Accelerometer readings are extremely jittery. You’ll need to smooth

out the data using some kind of weighted averaging, but you have

to be careful not to smooth it too much, or your interface will feel

laggy and soft.

• Sensor numbers will come in at random times. You may get several

in a row, then have a short pause, and then receive a bunch more.

Don’t assume a nice even rate.

• Try to get ahead of the user by predicting what they’re going to do

next. Let’s say the last three readings show the start of a roll to

the right, with each one a little faster than the last. You can guess

with some degree of accuracy what the next reading is going to be

and start reacting based on your prediction.

The most challenging use of sensors is an action game that requires

a one-to-one connection between how the player moves the device and

what happens on the screen. Unfortunately, the emulator isn’t going to

be much use for this kind of thing.

Emulation Notes

According to Google, it is not possible to test the sensors using the

emulator at all. Most computers don’t have a light sensor, a GPS chip,

or a compass built into them. Sure enough, if you run the SensorTest

program in the emulator, it will display no results at all. However, a

project called OpenIntents5 provides an alternate sensor’s API that you

can call just for testing purposes.

The way it works is that you connect the emulator to another applica-

tion running on your desktop computer called the Sensor Simulator.

The simulator shows a picture of a virtual phone and lets you move it

around on the screen with the mouse (see Figure 8.2, on the follow-

ing page), and then it feeds those movements to your Android program

5. http://www.openintents.org

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://www.openintents.org
http://books.pragprog.com/titles/eband/errata/add?pdf_page=166

SET SENSORS TO MAXIMUM 167

Figure 8.2: Faking out the sensors with the Sensor Simulator

running on the emulator. If your development computer actually does

have sensors of its own (like the Apple MacBook) or you can connect to

a Wii remote with Bluetooth, the Sensor Simulator can use that as a

data source.

The downside is that you have to modify your source code to make it

work. See the OpenIntents website for more information if you want

to try it. My recommendation is to forget about sensor emulation and

get your hands on a real device. Keep tweaking your algorithms until it

feels right.

Now that you know the low-level calls to get your location and query

the sensors for numbers such as your compass heading, for certain

applications you can forget all that and just use the Google Maps API.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=167

BIRD’S-EYE VIEW 168

8.3 Bird’s-Eye View

One of the first “killer apps” for Ajax was Google Maps.6 Using Java-

Script and the XmlHttpRequest object, Google engineers created a drag-

gable, zoomable, silky-smooth map viewer that ran in any modern web

browser without a plug-in. The idea was quickly copied by other ven-

dors such as Microsoft and Yahoo, but the Google version is arguably

still the best.

You can use these web-based maps in Android, perhaps with an embed-

ded WebView control as discussed in Section 7.2, Web with a View, on

page 134. But the architecture of your application would be overly con-

voluted. That’s why Google created the MapView control.

Embedding a MapView

A MapView can be embedded directly in your Android application with

just a few lines of code. Most of the functionality of Google Maps, plus

hooks for adding your own touches, is provided (see Figure 8.3, on the

following page).

The MapView class can also tie into your location and sensor providers.

It can show your current location on the map and even display a com-

pass showing what direction you’re heading. Let’s create a sample pro-

gram to demonstrate a few of its capabilities.

First create a “Hello, Android” application using these values in the

wizard:

Project name: MyMap

Build Target: Google APIs

Application name: MyMap

Package name: org.example.mymap

Create Activity: MyMap

Note that we’re using the “Google APIs” build target instead of the

“Android 1.5” target. That’s because the Google Map APIs are not part

of the normal Android distribution.

Edit the layout file, and replace it with a MapView that takes over the

whole screen:

Download MyMap/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

6. http://maps.google.com

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/MyMap/res/layout/main.xml
http://maps.google.com
http://books.pragprog.com/titles/eband/errata/add?pdf_page=168

BIRD’S-EYE VIEW 169

Figure 8.3: Embedded map showing your current location

xmlns:android="http://schemas.android.com/apk/res/android"

android:id="@+id/frame"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<com.google.android.maps.MapView

android:id="@+id/map"

android:apiKey="MapAPIKey"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:clickable="true" />

</LinearLayout>

Substitute MapAPIKey with a Google Maps API key that you get from

Google.7

Note that we have to use the fully qualified name (com.google.android.

7. http://code.google.com/android/maps-api-signup.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://code.google.com/android/maps-api-signup.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=169

BIRD’S-EYE VIEW 170

maps.MapView) because MapView is not a standard Android class. We

also need to stick a <uses-library> tag in the <application> element of

AndroidManifest.xml:

Download MyMap/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="org.example.mymap"

android:versionCode="1"

android:versionName="1.0">

<uses-permission

android:name="android.permission.ACCESS_COARSE_LOCATION" />

<uses-permission

android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-permission

android:name="android.permission.INTERNET" />

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<uses-library android:name="com.google.android.maps" />

<activity android:name=".MyMap"

android:label="@string/app_name">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

</application>

<uses-sdk android:minSdkVersion="3" />

</manifest>

If you leave out the <uses-library> tag, you will get a ClassNotFoundEx-

ception at runtime.

In addition to the fine- and coarse-grained location providers, the Map-

View class needs Internet access so that it can call Google’s servers

to get the map image tiles. These will be cached in your application

directory automatically.

Here’s the outline of the MyMap class:

Download MyMap/src/org/example/mymap/MyMap.java

package org.example.mymap;

import android.os.Bundle;

import com.google.android.maps.MapActivity;

import com.google.android.maps.MapController;

import com.google.android.maps.MapView;

import com.google.android.maps.MyLocationOverlay;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/MyMap/AndroidManifest.xml
http://media.pragprog.com/titles/eband/code/MyMap/src/org/example/mymap/MyMap.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=170

BIRD’S-EYE VIEW 171

public class MyMap extends MapActivity {

private MapView map;

private MapController controller;

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

initMapView();

initMyLocation();

}

@Override

protected boolean isRouteDisplayed() {

// Required by MapActivity

return false;

}

}

The most important part is that your activity has to extend MapActivity.

The MapActivity class spins up the background threads, connects to the

Internet for tile data, handles caching, does animations, takes care of

the life cycle, and much more. All you need to do is properly set it up

and let it go.

Getting Ready

The first thing we need to do is call findViewById() to get access to the

MapView and its container. We can do that in the initMapView() method:

Download MyMap/src/org/example/mymap/MyMap.java

/** Find and initialize the map view. */

private void initMapView() {

map = (MapView) findViewById(R.id.map);

controller = map.getController();

map.setSatellite(true);

map.setBuiltInZoomControls(true);

}

The getController() method returns a MapController that we’ll use to posi-

tion and zoom the map. setSatellite() switches the map into satellite

mode, and setBuiltInZoomControls()8 turns on the standard zoom controls.

The MapView class will take care of making the controls visible when the

user pans the map and fading them out slowly when panning stops.

The last step is to tell the MapView to follow your position in the initMy-

Location() method:

8. Introduced in Android 1.5.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/MyMap/src/org/example/mymap/MyMap.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=171

BIRD’S-EYE VIEW 172

Joe Asks. . .

Why Is MapView in the com.google.android.maps Pack-
age and Not android.maps?

Any code in the android.* packages is part of the Android core.
It’s open source and available on every Android device. By
contrast, maps are proprietary to Google and to the data
providers that Google paid for the geological information and
imagery. Google provides the API free of charge as long as
you agree to certain conditions.∗ If you’re not happy with the
restrictions, you can roll your own views and find your own data
sources, but it’s not going to be easy or cheap.

∗. http://code.google.com/apis/maps/terms.html

Download MyMap/src/org/example/mymap/MyMap.java

/** Start tracking the position on the map. */

private void initMyLocation() {

final MyLocationOverlay overlay = new MyLocationOverlay(this, map);

overlay.enableMyLocation();

//overlay.enableCompass(); // does not work in emulator

overlay.runOnFirstFix(new Runnable() {

public void run() {

// Zoom in to current location

controller.setZoom(8);

controller.animateTo(overlay.getMyLocation());

}

});

map.getOverlays().add(overlay);

}

Android provides a MyLocationOverlay class that does most of the heavy

lifting. An overlay is just something that is drawn on top of the map,

which in this case is a pulsing dot showing your current location. You

call enableMyLocation() to tell the overlay to start listening to location

updates and enableCompass() to tell it to start listening to updates from

the compass.

The runOnFirstFix() method tells the overlay what to do the first time it

gets a position reading from the location provider. In this case, we set

the zoom level and then start an animation that moves the map from

wherever it’s pointing now to where you are located.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://code.google.com/apis/maps/terms.html
http://media.pragprog.com/titles/eband/code/MyMap/src/org/example/mymap/MyMap.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=172

FAST -FORWARD >> 173

If you run the program now, you should see something like Figure 8.3,

on page 169. Touch and drag the screen to move around the map,

and use the zoom buttons to get a closer look. When you walk around

carrying the phone, the dot on the map should follow you.

Emulation Notes

The first time you run the MyMap program on the emulator you may get

an Android AVD Error. Follow the directions in Section 1.3, Creating an

AVD, on page 24 to create a new AVD for the “Google APIs” build target

called “em15google.”

On the emulator, you’ll initially see a zoomed-out map of the world and

no dot for your current location. As before, use the Emulator Control

view in Eclipse (or in the stand-alone DDMS program) to feed fake GPS

data to the sample application.

When running in the emulator, the compass inset will not be shown

because the compass sensor is not emulated.

8.4 Fast-Forward >>

This chapter introduced you to the exciting new world of location- and

environmental-aware mobile computing. These technologies, in combi-

nation with trends such as the adoption of broadband mobile Inter-

net and the exponential growth of computing power and storage, are

going to revolutionize the way we interact with computers and with

each other.

Another way to perceive the world is by looking and listening. Android

provides the Camera class9 for taking photographs using the built-in

camera (if there is one), but you can also use it to do other things like

make a bar-code reader. The MediaRecorder class10 allows you to record

and store audio clips. These are beyond the scope of this book, but if

you need them for your program, consult the online documentation.

Speaking of storage, the next chapter will show you how to use SQL

to store structured information (for example, a travel log of locations,

photographs, and notes) locally on your mobile phone. If that’s not your

area of interest, you can skip ahead to Chapter 10, 3D Graphics in

9. http://d.android.com/reference/android/hardware/Camera.html

10. http://d.android.com/reference/android/media/MediaRecorder.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/reference/android/hardware/Camera.html
http://d.android.com/reference/android/media/MediaRecorder.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=173

FAST -FORWARD >> 174

OpenGL, on page 195 and learn how to unlock Android’s hidden 3D

graphics potential.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=174

Chapter 9

Putting SQL to Work
In Chapter 6, Storing Local Data, on page 119, we explored keeping

data around in Preferences and in plain files. That works fine when the

amount of data is small or when the data is all one type (such as a

picture or an audio file). However, there is a better way to store large

amounts of structured data: a relational database.

For the past 30 years, databases have been a staple of enterprise appli-

cation development, but until recently they were too expensive and

unwieldy for smaller-scale use. That is changing with small embedded

engines such as the one included with the Android platform.

This chapter will show you how to use Android’s embedded database

engine, SQLite. You’ll also learn how to use Android’s data binding to

connect your data sources to your user interface. Finally, you’ll look

at the ContentProvider class, which allows two applications to share the

same data.

9.1 Introducing SQLite

SQLite1 is a tiny yet powerful database engine created by Dr. Richard

Hipp in 2000. It is arguably the most widely deployed SQL database

engine in the world. Besides Android, SQLite can be found in the Apple

iPhone, Symbian phones, Mozilla Firefox, Skype, PHP, Adobe AIR, Mac

OS X, Solaris, and many other places.

There are three reasons why it is so popular:

1. http://www.sqlite.org

Prepared exclusively for Trieu Nguyen

http://www.sqlite.org

SQL 101 176

SQLite License

The SQLite source code contains no license because it is in the
public domain. Instead of a license, the source offers you this
blessing:

May you do good and not evil.

May you find forgiveness for yourself and forgive others.

May you share freely, never taking more than you give.

• It’s free. The authors have placed it in the public domain and don’t

charge for its use.

• It’s small. The current version is about 150KB, well within the

memory budget of an Android phone.

• It requires no setup or administration. There is no server, no config

file, and no need for a database administrator.

A SQLite database is just a file. You can take that file, move it around,

and even copy it to another system (for example, from your phone

to your workstation), and it will work fine. Android stores the file in

the /data/data/packagename/databases directory (see Figure 9.1, on the

next page). You can use the adb command or the File Explorer view in

Eclipse (Window > Show View > Other... > Android > File Explorer) to

view, move, or delete it.

Instead of calling Java I/O routines to access this file from your pro-

gram, you run Structured Query Language (SQL) statements. Through

its helper classes and convenience methods, Android hides some of the

syntax from you, but you still need to know a bit of SQL to use it.

9.2 SQL 101

If you’ve used Oracle, SQL Server, MySQL, DB2, or other database

engines, then SQL should be old hat to you. You can skip this sec-

tion and go to Section 9.3, Hello, Database, on page 178. For the rest

of you, here’s a quick refresher.

To use a SQL database, you submit SQL statements and get back

results. There are three main types of SQL statements: DDL, Modifi-

cation, and Query.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=176

SQL 101 177

Figure 9.1: SQLite stores an entire database in one file.

DDL Statements

A database file can have any number of tables. A table consists of rows,

and each row has a certain number of columns. Each column of the

table has a name and a data type (text string, number, and so forth).

You define these tables and column names by first running Data Def-

inition Language (DDL) statements. Here’s a statement that creates a

table with three columns:

Download SQLite/create.sql

create table mytable (

_id integer primary key autoincrement,

name text,

phone text);

One of the columns is designated as the PRIMARY KEY, a number that

uniquely identifies the row. AUTOINCREMENT means that the database

will add 1 to the key for every record to make sure it’s unique. By

convention, the first column is always called _id. The _id column isn’t

strictly required for SQLite, but later when we want to use an Android

ContentProvider, we’ll need it.

Note that, unlike most databases, in SQLite the column types are just

hints. If you try to store a string in an integer column, or vice versa, it

will just work with no complaints. The SQLite authors consider this to

be a feature, not a bug.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/SQLite/create.sql
http://books.pragprog.com/titles/eband/errata/add?pdf_page=177

HELLO, DATABASE 178

Modification Statements

SQL provides a number of statements that let you insert, delete, and

update records in the database. For example, to add a few phone num-

bers, you could use this:

Download SQLite/insert.sql

insert into mytable values(null, 'Steven King', '555-1212');

insert into mytable values(null, 'John Smith', '555-2345');

insert into mytable values(null, 'Fred Smitheizen', '555-4321');

The values are specified in the same order you used in the CREATE TABLE

statement. We specify NULL for _id because SQLite will figure that value

out for us.

Query Statements

Once data has been loaded into a table, you run queries against the

table using a SELECT statement. For example, if you wanted to get the

third entry, you could do this:

Download SQLite/selectid.sql

select * from mytable where(_id=3);

It’s more likely you’d want to do a look up a person’s phone number by

name. Here’s how you’d find all the records containing “Smith” in the

name:

Download SQLite/selectwhere.sql

select name, phone from mytable where(name like "%smith%");

Keep in mind that SQL is case insensitive. Keywords, column names,

and even search strings can be specified in either uppercase or lower-

case.

Now you know just enough about SQL to be dangerous. Let’s see how

to put that knowledge to work in a simple program.

9.3 Hello, Database

To demonstrate SQLite, let’s create a little application called Events

that stores records in a database and displays them later. We’re going

to start simple and build up from there. Open a new “Hello, Android”

program using these values in the project wizard:

Project name: Events

Build Target: Android 1.5

Application name: Events

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/SQLite/insert.sql
http://media.pragprog.com/titles/eband/code/SQLite/selectid.sql
http://media.pragprog.com/titles/eband/code/SQLite/selectwhere.sql
http://books.pragprog.com/titles/eband/errata/add?pdf_page=178

HELLO, DATABASE 179

Package name: org.example.events

Create Activity: Events

As always, you can download the complete source code from the book’s

website.

We need somewhere to hold a few constants describing the database,

so let’s create a Constants interface:

Download Eventsv1/src/org/example/events/Constants.java

package org.example.events;

import android.provider.BaseColumns;

public interface Constants extends BaseColumns {

public static final String TABLE_NAME = "events";

// Columns in the Events database

public static final String TIME = "time";

public static final String TITLE = "title";

}

Each event will be stored as a row in the events table. Each row will

have an _id, time, and title column. _id is the primary key, declared in

the BaseColumns interface that we extend. time and title will be used for

a time stamp and event title, respectively.

Using SQLiteOpenHelper

Next we create a helper class called EventsData to represent the database

itself. This class extends the Android SQLiteOpenHelper class, which

manages database creation and versions. All you need to do is provide

a constructor and override two methods.

Download Eventsv1/src/org/example/events/EventsData.java

Line 1 package org.example.events;
-

- import static android.provider.BaseColumns._ID;
- import static org.example.events.Constants.TABLE_NAME;
5 import static org.example.events.Constants.TIME;
- import static org.example.events.Constants.TITLE;
- import android.content.Context;
- import android.database.sqlite.SQLiteDatabase;
- import android.database.sqlite.SQLiteOpenHelper;

10

- public class EventsData extends SQLiteOpenHelper {
- private static final String DATABASE_NAME = "events.db";
- private static final int DATABASE_VERSION = 1;
-

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv1/src/org/example/events/Constants.java
http://media.pragprog.com/titles/eband/code/Eventsv1/src/org/example/events/EventsData.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=179

HELLO, DATABASE 180

Joe Asks. . .

Why Is Constants an Interface?

It’s a Java thing. I don’t know about you, but I dislike having to
repeat the class name every time I use a constant. For exam-
ple, I want to just type TIME and not Constants.TIME. Traditionally,
the way to do that in Java is use interfaces. Classes can inherit
from the Constants interface and then leave out the interface
name when referencing any fields. If you look at the BaseC-

olumns interface, you’ll see the Android programmers used the
same trick.

Starting with Java 5, however, there’s a better way: static
imports. That’s the method I’ll use in EventsData and other
classes in this chapter. Since Constants is an interface, you can
use it the old way or the new way as you prefer.

Unfortunately, as of this writing, Eclipse’s support for static
imports is a little spotty, so if you use static imports in your own
programs, Eclipse may not insert the import statements for you
automatically. Here’s a little trick for Eclipse users: type a wild-
card static import after the package statement (for example,
import static org.example.events.Constants.*;) to make things com-
pile. Later, you can use Source > Organize Imports to expand
the wildcard and sort the import statements. Let’s hope this will
be more intuitive in future versions of Eclipse.

15 /** Create a helper object for the Events database */
- public EventsData(Context ctx) {
- super(ctx, DATABASE_NAME, null, DATABASE_VERSION);
- }
-

20 @Override
- public void onCreate(SQLiteDatabase db) {
- db.execSQL("CREATE TABLE " + TABLE_NAME + " (" + _ID
- + " INTEGER PRIMARY KEY AUTOINCREMENT, " + TIME
- + " INTEGER," + TITLE + " TEXT NOT NULL);");

25 }
-

- @Override
- public void onUpgrade(SQLiteDatabase db, int oldVersion,
- int newVersion) {

30 db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);
- onCreate(db);

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=180

HELLO, DATABASE 181

- }
- }

The constructor starts on line 16. DATABASE_NAME is the actual filename

of the database we’ll be using (events.db), and DATABASE_VERSION is just

a number we make up. If this were a real program, you would increase

the version number whenever you had to make significant changes to

the database design (for example, to add a new column).

The first time you try to access a database, SQLiteOpenHelper will notice

it doesn’t exist and call the onCreate() method to create it. On line 21,

we override that and run a CREATE TABLE SQL statement. This will create

the events table and the events.db database file that contains it.

When Android detects you’re referencing an old database (based on

the version number), it will call the onUpgrade() method (line 28). In

this example, we just delete the old table, but you could do something

smarter here if you like. For example, you could run an ALTER TABLE SQL

command to add a column to an existing database.

Defining the Main Program

Our first attempt at the Events program will use a local SQLite database

to store the events, and it will show them as a string inside a TextView.

Define the layout file (layout/main.xml) as follows:

Download Eventsv1/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<ScrollView

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<TextView

android:id="@+id/text"

android:layout_width="fill_parent"

android:layout_height="wrap_content" />

</ScrollView>

This declares the TextView with an imaginative ID of text (R.id.text in code)

and wraps it with a ScrollView in case there are too many events to fit on

the screen. You can see how it looks in Figure 9.2, on the next page.

The main program is the onCreate() method in the Events activity.

Here’s the outline:

Download Eventsv1/src/org/example/events/Events.java

Line 1 package org.example.events;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv1/res/layout/main.xml
http://media.pragprog.com/titles/eband/code/Eventsv1/src/org/example/events/Events.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=181

HELLO, DATABASE 182

Figure 9.2: The first version displays database records in a TextView.

-

- import static android.provider.BaseColumns._ID;
- import static org.example.events.Constants.TABLE_NAME;
5 import static org.example.events.Constants.TIME;
- import static org.example.events.Constants.TITLE;
- import android.app.Activity;
- import android.content.ContentValues;
- import android.database.Cursor;

10 import android.database.sqlite.SQLiteDatabase;
- import android.os.Bundle;
- import android.widget.TextView;
-

- public class Events extends Activity {
15 private EventsData events;

-

- @Override
- public void onCreate(Bundle savedInstanceState) {
- super.onCreate(savedInstanceState);

20 setContentView(R.layout.main);
- events = new EventsData(this);
- try {
- addEvent("Hello, Android!");
- Cursor cursor = getEvents();

25 showEvents(cursor);
- } finally {
- events.close();
- }
- }

30 }

On line 20 of onCreate(), we set the layout for this view. Then we create

an instance of the EventsData class on line 21 and start a try block. If

you look ahead to line 27, you can see we close the database inside the

finally block. So even if an error occurs in the middle, the database will

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=182

HELLO, DATABASE 183

still be closed.

The events table wouldn’t be very interesting if there weren’t any events,

so on line 23 we call the addEvent() method to add an event to it. Every

time you run this program, you’ll get a new event. You could add menus

or gestures or keystrokes to generate other events if you like, but I’ll

leave that as an exercise to the reader.

On line 24, we call the getEvents() method to get the list of events, and

finally on line 25, we call the showEvents() method to display the list to

the user.

Pretty easy, eh? Now let’s define those new methods we just used.

Adding a Row

The addEvent() method cuts a new record in the database using the

string provided as the event title.

Download Eventsv1/src/org/example/events/Events.java

private void addEvent(String string) {

// Insert a new record into the Events data source.

// You would do something similar for delete and update.

SQLiteDatabase db = events.getWritableDatabase();

ContentValues values = new ContentValues();

values.put(TIME, System.currentTimeMillis());

values.put(TITLE, string);

db.insertOrThrow(TABLE_NAME, null, values);

}

Since we need to modify the data, we call getWritableDatabase() to get

a read/write handle to the events database. The database handle is

cached, so you can call this method as many times as you like.

Next we fill in a ContentValues object with the current time and the event

title and pass that to the insertOrThrow() method to do the actual INSERT

SQL statement. You don’t need to pass in the record ID because SQLite

will make one up and return it from the method call.

As the name implies, insertOrThrow() can throw an exception (of type

SQLException) if it fails. It doesn’t have to be declared with a throws key-

word because it’s a RuntimeException and not a checked exception. How-

ever, if you want to, you can still handle it in a try/catch block like any

other exception. If you don’t handle it and there is an error, the program

will terminate, and a traceback will be dumped to the Android log.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv1/src/org/example/events/Events.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=183

HELLO, DATABASE 184

By default, as soon as you do the insert, the database is updated. If you

need to batch up or delay modifications for some reason, consult the

SQLite website for more details.

Running a Query

The getEvents() method does the database query to get a list of events:

Download Eventsv1/src/org/example/events/Events.java

private static String[] FROM = { _ID, TIME, TITLE, };

private static String ORDER_BY = TIME + " DESC";

private Cursor getEvents() {

// Perform a managed query. The Activity will handle closing

// and re-querying the cursor when needed.

SQLiteDatabase db = events.getReadableDatabase();

Cursor cursor = db.query(TABLE_NAME, FROM, null, null, null,

null, ORDER_BY);

startManagingCursor(cursor);

return cursor;

}

We don’t need to modify the database for a query, so we call getRead-

ableDatabase() to get a read-only handle. Then we call query() to per-

form the actual SELECT SQL statement. FROM is an array of the columns

we want, and ORDER_BY tells SQLite to return the results in order from

newest to oldest.

Although we don’t use them in this example, the query() method has

parameters to specify a WHERE clause, a GROUP BY clause, and a HAVING

clause. Actually, query() is just a convenience for the programmer. If

you prefer, you could build up the SELECT statement yourself in a string

and use the rawQuery() method to execute it. Either way, the return

value is a Cursor object that represents the result set.

A Cursor is similar to a Java Iterator or a JDBC ResultSet. You call meth-

ods on it to get information about the current row, and then you call

another method to move to the next row. We’ll see how to use it when

we display the results in a moment.

The final step is to call startManagingCursor(), which tells the activity to

take care of managing the cursor’s life cycle based on the activity’s life

cycle. For example, when the activity is paused, it will automatically

deactivate the cursor and then requery it when the activity is restarted.

When the activity terminates, all managed cursors will be closed.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv1/src/org/example/events/Events.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=184

HELLO, DATABASE 185

Displaying the Query Results

The last method we need to define is showEvents(). This function takes a

Cursor as input and formats the output so the user can read it.

Download Eventsv1/src/org/example/events/Events.java

Line 1 private void showEvents(Cursor cursor) {
- // Stuff them all into a big string
- StringBuilder builder = new StringBuilder(
- "Saved events:\n");
5 while (cursor.moveToNext()) {
- // Could use getColumnIndexOrThrow() to get indexes
- long id = cursor.getLong(0);
- long time = cursor.getLong(1);
- String title = cursor.getString(2);

10 builder.append(id).append(": ");
- builder.append(time).append(": ");
- builder.append(title).append("\n");
- }
- // Display on the screen

15 TextView text = (TextView) findViewById(R.id.text);
- text.setText(builder);
- }

In this version of Events, we’re just going to create a big string (see line

3) to hold all the events items, separated by newlines. This is not the

recommended way to do things, but it’ll work for now.

Line 5 calls the Cursor.moveToNext() method to advance to the next row

in the data set. When you first get a Cursor, it is positioned before the

first record, so calling moveToNext() gets you to the first record. We keep

looping until moveToNext() returns false, which indicates there are no

more rows.

Inside the loop (line 7), we call getLong() and getString() to fetch data

from the columns of interest, and then we append the values to the

string (line 10). There is another method on Cursor, getColumnIndex-

OrThrow(), that we could have used to get the column index numbers

(the values 0, 1, and 2 passed to getLong() and getString()). However, it’s

a little slow, so if you need it, you should call it outside the loop and

remember the indexes yourself.

Once all the rows have been processed, we look up the TextView from

layout/main.xml and stuff the big string into it (line 15).

If you run the example now, you should see something like Figure 9.2,

on page 182. Congratulations on your first Android database program!

There is plenty of room for improvement, though.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv1/src/org/example/events/Events.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=185

DATA BINDING 186

What would happen if there were thousands or millions of events in

the list? The program would be very slow and might run out of memory

trying to build a string to hold them all. What if you wanted to let the

user select one event and do something with it? If everything is in a

string, you can’t do that. Luckily, Android provides a better way: data

binding.

9.4 Data Binding

Data binding allows you to connect your model (data) to your view with

just a few lines of code. To demonstrate data binding, we’ll modify the

Events example to use a ListView that is bound to the result of a database

query. First, we need to make the Events class extend ListActivity instead

of Activity:

Download Eventsv2/src/org/example/events/Events.java

import android.app.ListActivity;

// ...

public class Events extends ListActivity {

// ...

}

Next, we need to change how the events are displayed in the Events.

showEvents() method:

Download Eventsv2/src/org/example/events/Events.java

import android.widget.SimpleCursorAdapter;

// ...

private static int[] TO = { R.id.rowid, R.id.time, R.id.title, };

private void showEvents(Cursor cursor) {

// Set up data binding

SimpleCursorAdapter adapter = new SimpleCursorAdapter(this,

R.layout.item, cursor, FROM, TO);

setListAdapter(adapter);

}

Notice this code is much smaller than before (two lines vs. ten). The

first line creates a SimpleCursorAdapter for the Cursor, and the second

line tells the ListActivity to use the new adapter. The adapter acts as a

go-between, connecting the view with its data source.

If you recall, we first used an adapter in the Translate sample pro-

gram (see Translate.setAdapters() in Section 7.4, Using Web Services, on

page 146). In that example, we used an ArrayAdapter because the data

source was an array defined in XML. For this one, we use a SimpleCur-

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv2/src/org/example/events/Events.java
http://media.pragprog.com/titles/eband/code/Eventsv2/src/org/example/events/Events.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=186

DATA BINDING 187

sorAdapter because the data source is a Cursor object that came from a

database query.

The constructor for SimpleCursorAdapter takes five parameters:

• context: A reference to the current Activity

• layout: A resource that defines the views for a single list item

• cursor: The data set cursor

• from: The list of column names where the data is coming from

• to: The list of views where the data is going to

The layout for a list item is defined in layout/item.xml. Note the definitions

for the row ID, time, and title views that are referenced in the TO array.

Download Eventsv2/res/layout/item.xml

<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:orientation="horizontal"

android:padding="10sp">

<TextView

android:id="@+id/rowid"

android:layout_width="wrap_content"

android:layout_height="wrap_content" />

<TextView

android:id="@+id/rowidcolon"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text=": "

android:layout_toRightOf="@id/rowid" />

<TextView

android:id="@+id/time"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_toRightOf="@id/rowidcolon" />

<TextView

android:id="@+id/timecolon"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text=": "

android:layout_toRightOf="@id/time" />

<TextView

android:id="@+id/title"

android:layout_width="fill_parent"

android:layout_height="wrap_content"

android:ellipsize="end"

android:singleLine="true"

android:textStyle="italic"

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv2/res/layout/item.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=187

DATA BINDING 188

android:layout_toRightOf="@id/timecolon" />

</RelativeLayout>

This looks more complicated than it is. All we’re doing is putting the ID,

time, and title on one line with colons in between the fields. I added a

little padding and formatting to make it look nice.

Finally, we need to change the layout for the activity itself in layout/

main.xml. Here’s the new version:

Download Eventsv2/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:layout_width="fill_parent"

android:layout_height="fill_parent">

<!-- Note built-in ids for 'list' and 'empty' -->

<ListView

android:id="@android:id/list"

android:layout_width="wrap_content"

android:layout_height="wrap_content"/>

<TextView

android:id="@android:id/empty"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/empty" />

</LinearLayout>

Because the activity extends ListActivity, Android looks for two special

IDs in the layout file. If the list has items in it, the android:id/list view

will be displayed; otherwise, the android:id/empty view will be displayed.

So if there are no items, instead of a blank screen the user will see the

message “No events!”

Here are the string resources we need:

Download Eventsv2/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="app_name">Events</string>

<string name="empty">No events!</string>

</resources>

For the final result, see Figure 9.3, on the following page. As an exercise

for the reader, think about how you could enhance this application now

that you have a real list to play with. For example, when the user selects

an event, you could open a detail viewer, mail the event to technical

support, or perhaps delete the selected event and all the ones below it

from the database.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv2/res/layout/main.xml
http://media.pragprog.com/titles/eband/code/Eventsv2/res/values/strings.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=188

USING A CONTENTPROVIDER 189

Figure 9.3: This version uses a ListActivity and data binding.

There’s still one little problem with this example. No other application

can add things to the events database or even look at them! For that,

we’ll need to use an Android ContentProvider.

9.5 Using a ContentProvider

In the Android security model (see the discussion above in Section 2.5,

Safe and Secure, on page 41), files written by one application cannot be

read from or written to by any other application. Each program has its

own Linux user ID and data directory (/data/data/packagename) and

its own protected memory space. Android programs can communicate

with each other in two ways:

• Inter-Process Communication (IPC): One process declares an arbi-

trary API using the Android Interface Definition Language (AIDL)

and the IBinder interface. Parameters are marshaled safely and effi-

ciently between processes when the API is called. This advanced

technique is used for remote procedure calls to a background Ser-

vice thread.2

2. IPC, services, and binders are beyond the scope of this book.

For more information, see http://d.android.com/guide/developing/tools/aidl.html,

http://d.android.com/reference/android/app/Service.html, and http://d.android.com/reference/android/os/IBinder.html.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/developing/tools/aidl.html
http://d.android.com/reference/android/app/Service.html
http://d.android.com/reference/android/os/IBinder.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=189

USING A CONTENTPROVIDER 190

• ContentProvider: Processes register themselves to the system as

providers of certain kinds of data. When that information is re-

quested, they are called by Android through a fixed API to query

or modify the content in whatever way they see fit. This is the

technique we’re going to use for the Events sample.

Any piece of information managed by a ContentProvider is addressed

through a URI that looks like this:

content://authority/path/id

where:

• content:// is the standard required prefix.

• authority is the name of the provider. Using your fully qualified

package name is recommended to prevent name collisions.

• path is a virtual directory within the provider that identifies the

kind of data being requested.

• id is the primary key of a specific record being requested. To

request all records of a particular type, omit this and the trailing

slash.

Android comes with several providers already built in, including the

following:3

• content://browser

• content://contacts

• content://media

• content://settings

To demonstrate using a ContentProvider, let’s convert the Events exam-

ple to use one. For our Events provider, these will be valid URIs:

content://org.example.events/events/3 -- single event with _id=3

content://org.example.events/events -- all events

First we need to add a two more constants to Constants.java:

Download Eventsv3/src/org/example/events/Constants.java

import android.net.Uri;

// ...

public static final String AUTHORITY = "org.example.events";

3. For an up-to-date list, see http://d.android.com/reference/android/provider/package-summary.html.

Instead of using the strings here, use the documented constants such as

Browser.BOOKMARKS_URI. Note that access to some providers requires additional per-

missions to be requested in your manifest file.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv3/src/org/example/events/Constants.java
http://d.android.com/reference/android/provider/package-summary.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=190

USING A CONTENTPROVIDER 191

public static final Uri CONTENT_URI = Uri.parse("content://"

+ AUTHORITY + "/" + TABLE_NAME);

The layout files (main.xml and item.xml) don’t need to be changed, so the

next step is to make a few minor changes to the Events class.

Changing the Main Program

The main program (the Events.onCreate() method) actually gets a little

simpler because there is no database object to keep track of:

Download Eventsv3/src/org/example/events/Events.java

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(R.layout.main);

addEvent("Hello, Android!");

Cursor cursor = getEvents();

showEvents(cursor);

}

We don’t need the try/finally block, and we can remove references to

EventData.

Adding a Row

Two lines change in addEvent(). Here’s the new version:

Download Eventsv3/src/org/example/events/Events.java

import static org.example.events.Constants.CONTENT_URI;

private void addEvent(String string) {

// Insert a new record into the Events data source.

// You would do something similar for delete and update.

ContentValues values = new ContentValues();

values.put(TIME, System.currentTimeMillis());

values.put(TITLE, string);

getContentResolver().insert(CONTENT_URI, values);

}

The call to getWritableDatabase() is gone, and the call to insertOrThrow()

is replaced by getContentResolver().insert(). Instead of a database handle,

we use a content URI.

Running a Query

The getEvents() method is also simplified when using a ContentProvider:

Download Eventsv3/src/org/example/events/Events.java

private Cursor getEvents() {

// Perform a managed query. The Activity will handle closing

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv3/src/org/example/events/Events.java
http://media.pragprog.com/titles/eband/code/Eventsv3/src/org/example/events/Events.java
http://media.pragprog.com/titles/eband/code/Eventsv3/src/org/example/events/Events.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=191

IMPLEMENTING A CONTENTPROVIDER 192

// and re-querying the cursor when needed.

return managedQuery(CONTENT_URI, FROM, null, null, ORDER_BY);

}

Here we use the Activity.managedQuery() method, passing it the content

URI, the list of columns we’re interested in, and the order they should

be sorted in.

By removing all references to the database, we’ve decoupled the Events

client from the Events data provider. The client is simpler, but now we

have to implement a new piece we didn’t have before.

9.6 Implementing a ContentProvider

A ContentProvider is a high-level object like an Activity that needs to be

declared to the system. So, the first step when making one is to add

it to your AndroidManifest.xml file before the <activity> tag (as a child of

<application>):

Download Eventsv3/AndroidManifest.xml

<provider android:name="EventsProvider"

android:authorities="org.example.events" />

android:name is the class name, and android:authorities is the string used

in the content URI.

Next we create the EventsProvider class, which must extend Content-

Provider. Here’s the basic outline:

Download Eventsv3/src/org/example/events/EventsProvider.java

package org.example.events;

import static android.provider.BaseColumns._ID;

import static org.example.events.Constants.AUTHORITY;

import static org.example.events.Constants.CONTENT_URI;

import static org.example.events.Constants.TABLE_NAME;

import android.content.ContentProvider;

import android.content.ContentUris;

import android.content.ContentValues;

import android.content.UriMatcher;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;

import android.net.Uri;

import android.text.TextUtils;

public class EventsProvider extends ContentProvider {

private static final int EVENTS = 1;

private static final int EVENTS_ID = 2;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Eventsv3/AndroidManifest.xml
http://media.pragprog.com/titles/eband/code/Eventsv3/src/org/example/events/EventsProvider.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=192

FAST -FORWARD >> 193

/** The MIME type of a directory of events */

private static final String CONTENT_TYPE

= "vnd.android.cursor.dir/vnd.example.event";

/** The MIME type of a single event */

private static final String CONTENT_ITEM_TYPE

= "vnd.android.cursor.item/vnd.example.event";

private EventsData events;

private UriMatcher uriMatcher;

// ...

}

By convention we use vnd.example instead of org.example in the MIME

type.4 EventsProvider handles two types of data:

• EVENTS (MIME type CONTENT_TYPE): A directory or list of events

• EVENTS_ID (MIME type CONTENT_ITEM_TYPE): A single event

In terms of the URI, the difference is that the first type does not spec-

ify an ID, but the second type does. We use Android’s UriMatcher class

to parse the URI and tell us which one the client specified. And we

reuse the EventsData class from earlier in the chapter to manage the

real database inside the provider.

In the interest of space, I’m not going to show the rest of the class here,

but you can download the whole thing from the book website. All three

versions of the Events example can be found in the source code .zip file.

The final version of the Events sample looks exactly like the previous

version on the outside (see Figure 9.3, on page 189). On the inside,

however, you now have the framework for a event store that can be

used by other applications in the system, even ones written by other

developers.

9.7 Fast-Forward >>

In this chapter, we learned how to store data in an Android SQL data-

base. If you want to do more with SQL, you’ll need to learn about more

statements and expressions than the ones we covered here. A book

4. Multipurpose Internet Mail Extensions (MIME) is an Internet standard for describing

the type of any kind of content.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=193

FAST -FORWARD >> 194

such as SQL Pocket Guide [Gen06] by Jonathan Gennick or The Defini-

tive Guide to SQLite [Owe06] by Mike Owens would be a good invest-

ment, but keep in mind that the SQL syntax and functions vary slightly

from database to database.

Another option for data storage on Android is db4o.5 This library is

larger than SQLite and uses a different license (GNU Public License),

but it’s free and may be easier for you to use, especially if you don’t

know SQL.

The SimpleCursorAdapter introduced in this chapter can be customized to

show more than just text. For example, you could display rating stars or

sparklines or other views based on data in the Cursor. Look for ViewBinder

in the SimpleCursorAdapter documentation for more information.6

And now for something completely different...the next chapter will cover

3D graphics with OpenGL.

5. http://www.db4o.com/android

6. http://d.android.com/reference/android/widget/SimpleCursorAdapter.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://www.db4o.com/android
http://d.android.com/reference/android/widget/SimpleCursorAdapter.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=194

Chapter 10

3D Graphics in OpenGL
Two-dimensional graphics are great for most programs, but sometimes

you need an extra level of depth, interactivity, or realism that isn’t

possible in 2D. For these times, Android provides a three-dimensional

graphics library based on the OpenGL ES standard. In this chapter,

we’ll explore 3D concepts and build up a sample program that uses

OpenGL.

10.1 Understanding 3D Graphics

The world is three-dimensional, yet we routinely view it in two dimen-

sions. When you watch television or look at a picture in a book, the 3D

images are flattened out, or projected, onto a 2D surface (the TV panel

or book page).

Try this simple experiment: cover one eye and look out the window.

What do you see? Light from the sun bounces off objects outside,

passes through the window, and travels to your eye so you can per-

ceive it. In graphics terms, the scene outside is projected onto the win-

dow (or viewport). If someone replaced your window with a high-quality

photograph, it would look the same until you moved.

Based on how close your eye is to the window and how big the window

is, you can see a limited amount of the world outside. This is called

your field of view. If you draw a line from your eye to the four corners

of the window and beyond, you would get the pyramid in Figure 10.1,

on the next page. This is called the view frustum (Latin for a “piece

broken off”). For performance reasons, the frustum is usually bounded

by near and far clipping planes as well. You can see everything inside

the frustum but nothing outside of it.

Prepared exclusively for Trieu Nguyen

INTRODUCING OPENGL 196

Figure 10.1: Viewing a three-dimensional scene

In 3D computer graphics, your computer screen acts as the viewport.

Your job is to fool the user into thinking it’s a window into another

world just on the other side of the glass. The OpenGL graphics library

is the API you use to accomplish that.

10.2 Introducing OpenGL

OpenGL1 was developed by Silicon Graphics in 1992. It provides a uni-

fied interface for programmers to take advantage of hardware from any

manufacturer. At its core, OpenGL implements familiar concepts such

as viewports and lighting and tries to hide most of the hardware layer

from the developer.

Because it was designed for workstations, OpenGL is too large to fit

on a mobile device. So, Android implements a subset of OpenGL called

1. http://www.opengl.org

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://www.opengl.org
http://books.pragprog.com/titles/eband/errata/add?pdf_page=196

BUILDING AN OPENGL PROGRAM 197

Thank You, John Carmack

OpenGL has proven to be very successful, but it almost wasn’t.
In 1995, Microsoft introduced a competitor called Direct3D.
Owing to Microsoft’s dominant market position and significant
R&D investments, for a while it looked like Direct3D was going to
take over as a de facto industry standard for gaming. However,
one man, John Carmack, cofounder of id Software, refused
to comply. His wildly popular Doom and Quake games almost
single-handedly forced hardware manufacturers to keep their
OpenGL device drivers up-to-date on the PC. Today’s Linux,
Mac OS X, and mobile device users can thank John and id
Software for helping to keep the OpenGL standard relevant.

OpenGL for Embedded Systems (OpenGL ES).2 This standard was cre-

ated by the Khronos Group, an industry consortium of companies such

as Intel, AMD, Nvidia, Nokia, Samsung, and Sony. The same library

(with minor differences) is now available on major mobile platforms

including Android, Symbian, and iPhone.

Every language has its own language bindings for OpenGL ES, and

Java is no exception. Java’s language binding was defined by a Java

Specification Request (JSR) 239.3 Android implements this standard

as closely as possible, so you can refer to a variety of books and doc-

umentation on JSR 239 and OpenGL ES for a full description of all its

classes and methods.

Now let’s take a look at how to create a simple OpenGL program in

Android.

10.3 Building an OpenGL Program

Begin by creating a new “Hello, Android” project as in Section 1.2, Cre-

ating Your First Program, on page 24, but this time supply the following

parameters in the New Android Project dialog box:

Project name: OpenGL

Build Target: Android 1.5

Application name: OpenGL

Package name: org.example.opengl

2. http://www.khronos.org/opengles

3. http://jcp.org/en/jsr/detail?id=239

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://www.khronos.org/opengles
http://jcp.org/en/jsr/detail?id=239
http://books.pragprog.com/titles/eband/errata/add?pdf_page=197

BUILDING AN OPENGL PROGRAM 198

Joe Asks. . .

Will Every Phone Have 3D?

Yes and no. Some low-end devices running Android may not
actually have 3D hardware. However, the OpenGL program-
ming interface will still be there. All the 3D functions will be emu-
lated in software. Your program will still run, but it will be much
slower than a hardware-accelerated device. For this reason,
it’s a good idea to provide options for users to turn off certain
details and special effects that take time to draw but aren’t
absolutely necessary for the program. That way, if the user is run-
ning your program on a slower device, they can disable some
of your eye candy to get better performance.

Create Activity: OpenGL

This will create OpenGL.java to contain your main activity. Edit this,

and change it to refer to a custom view named GLView, as shown next.

(Remember, you can find the latest version of all this code at http://

pragprog.com/titles/eband, or just click the filename before the code if

you’re reading the PDF.)

Download OpenGL/src/org/example/opengl/OpenGL.java

package org.example.opengl;

import android.app.Activity;

import android.os.Bundle;

public class OpenGL extends Activity {

@Override

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

setContentView(new GLView(this));

}

}

We won’t need the layout resource (res/layout/main.xml), so you can delete

it. Now let’s define our custom view class:

Download OpenGL/src/org/example/opengl/GLView.java

package org.example.opengl;

import android.content.Context;

import android.view.SurfaceHolder;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://pragprog.com/titles/eband
http://pragprog.com/titles/eband
http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/OpenGL.java
http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLView.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=198

MANAGING THREADS 199

import android.view.SurfaceView;

class GLView extends SurfaceView implements SurfaceHolder.Callback {

GLView(Context context) {

super(context);

// Install a SurfaceHolder.Callback so we get notified when

// the underlying surface is created and destroyed

getHolder().addCallback(this);

// Use hardware acceleration if available

getHolder().setType(SurfaceHolder.SURFACE_TYPE_GPU);

}

public void surfaceCreated(SurfaceHolder holder) {

}

public void surfaceDestroyed(SurfaceHolder holder) {

}

public void surfaceChanged(SurfaceHolder holder, int format,

int w, int h) {

// TODO: handle window size changes

}

}

This example introduces several new classes you need to know:

• SurfaceView: A special kind of view that is used for 3D graphics.

Extend this for any view that uses OpenGL.

• Surface: A place for drawing, like a Canvas (see Section 4.1, Canvas,

on page 75), except it is implemented by the 3D hardware (if any).

The Surface will be created when your OpenGL activity is running

in the foreground and destroyed when the activity exits or some

other activity comes to the foreground.

• SurfaceHolder: An instance of this class is always there even if the

Surface that it holds goes away.

• SurfaceHolder.Callback: A SurfaceView implements this interface so

OpenGL will notify it when the view’s Surface is created, destroyed,

or resized.

In the next section, we’ll fill the screen with a solid color.

10.4 Managing Threads

As we saw in Section 4.2, Drawing the Board, on page 82, the Android

2D library calls the onDraw() method of your view whenever it needs to

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=199

MANAGING THREADS 200

redraw a section of the screen. OpenGL doesn’t work that way.

In OpenGL, you create your own thread that is dedicated to drawing

the display. Let’s do that now:

Download OpenGL/src/org/example/opengl/GLView.java

private GLThread glThread;

public void surfaceCreated(SurfaceHolder holder) {

// The Surface has been created so start our drawing thread

glThread = new GLThread(this);

glThread.start();

}

public void surfaceDestroyed(SurfaceHolder holder) {

// Stop our drawing thread. The Surface will be destroyed

// when we return

glThread.requestExitAndWait();

glThread = null;

}

In the GLView class, we declare a variable for the thread called glThread

with a type of our custom GLThread class. When the OpenGL surface is

created, we’ll start a new thread to handle its drawing, and when the

surface is about to be destroyed, we’ll terminate the thread.

Now let’s see how the GLThread class is defined. We’ll start with this

outline:

Download OpenGL/src/org/example/opengl/GLThread.java

package org.example.opengl;

import javax.microedition.khronos.egl.EGL10;

import javax.microedition.khronos.egl.EGL11;

import javax.microedition.khronos.egl.EGLConfig;

import javax.microedition.khronos.egl.EGLContext;

import javax.microedition.khronos.egl.EGLDisplay;

import javax.microedition.khronos.egl.EGLSurface;

import javax.microedition.khronos.opengles.GL10;

import android.app.Activity;

import android.content.Context;

import android.opengl.GLU;

class GLThread extends Thread {

private final GLView view;

private boolean done = false;

GLThread(GLView view) {

this.view = view;

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLView.java
http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=200

MANAGING THREADS 201

}

@Override

public void run() {

// Initialize OpenGL...

// Loop until asked to quit

while (!done) {

// Draw a single frame here...

}

}

public void requestExitAndWait() {

// Tell the thread to quit

done = true;

try {

join();

} catch (InterruptedException ex) {

// Ignore

}

}

}

This is regular Java thread coding—nothing special here. The requestEx-

itAndWait() method is called when the surface is destroyed. Instead of

trying to destroy the thread itself (which is not safe in Java), it simply

sets a flag and waits for the thread to notice and shut itself down. That

shouldn’t take more than a fraction of a second.

Now let’s fill out the run() method:

Download OpenGL/src/org/example/opengl/GLThread.java

Line 1 @Override
- public void run() {
- // Initialize OpenGL...
- EGL10 egl = (EGL10) EGLContext.getEGL();
5 EGLDisplay display = egl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY);
-

- int[] version = new int[2];
- egl.eglInitialize(display, version);
-

10 int[] configSpec = { EGL10.EGL_RED_SIZE, 5,
- EGL10.EGL_GREEN_SIZE, 6, EGL10.EGL_BLUE_SIZE, 5,
- EGL10.EGL_DEPTH_SIZE, 16, EGL10.EGL_NONE };
-

- EGLConfig[] configs = new EGLConfig[1];
15 int[] numConfig = new int[1];

- egl.eglChooseConfig(display, configSpec, configs, 1,
- numConfig);
- EGLConfig config = configs[0];
-

20 EGLContext glc = egl.eglCreateContext(display, config,

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=201

MANAGING THREADS 202

- EGL10.EGL_NO_CONTEXT, null);
-

- EGLSurface surface = egl.eglCreateWindowSurface(display,
- config, view.getHolder(), null);

25 egl.eglMakeCurrent(display, surface, surface, glc);
-

- GL10 gl = (GL10) (glc.getGL());
- init(gl);
-

30 // Loop until asked to quit
- while (!done) {
- // Draw a single frame here...
- drawFrame(gl);
- egl.eglSwapBuffers(display, surface);

35

- // Error handling
- if (egl.eglGetError() == EGL11.EGL_CONTEXT_LOST) {
- Context c = view.getContext();
- if (c instanceof Activity) {

40 ((Activity) c).finish();
- }
- }
- }
-

45 // Free OpenGL resources
- egl.eglMakeCurrent(display, EGL10.EGL_NO_SURFACE,
- EGL10.EGL_NO_SURFACE, EGL10.EGL_NO_CONTEXT);
- egl.eglDestroySurface(display, surface);
- egl.eglDestroyContext(display, glc);

50 egl.eglTerminate(display);
- }

The first thing it needs to do is get a handle to the EGL10 object on line 4.

Then we get a Display handle (line 5) and initialize it (line 8), and then we

ask OpenGL to find a configuration that matches our particular color

depth needs (line 10). I arbitrarily asked for 16-bit color with 5 bits of

red, 6 of green, and 5 of blue, but your own application may have other

requirements.4

With the configuration in hand, we can create the OpenGL context on

line 20, create a surface on line 23, and set the current values for

display, surface, and context on line 25.

On line 27, we use the getGL() function to return the actual OpenGL

interface. We cast it to GL10 so we can call the OpenGL ES 1.0 methods.

4. The Android calls to initialize OpenGL got a lot more complicated in version 0.9_beta.

Let’s hope in a future version Google will provide some helper functions to simplify it

again, but for now just hold your nose and copy the code.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=202

MANAGING THREADS 203

Version 1.what?

OpenGL ES 1.0 is based on full OpenGL version 1.3, and ES 1.1 is
based on OpenGL 1.5. JSR 239 has two versions: the original 1.0
and a maintenance release version 1.0.1. There are also some
OpenGL ES extensions that I won’t get into. Android implements
JSR 239 1.0.1, and OpenGL ES implements 1.0. In the future, it’s
expected that Android will support OpenGL ES 1.1 and beyond.

Don’t let all the 1.x versions worry you. These standards have
evolved over a period of several years. By now, they are fairly
stable and well thought out.

Although you may notice that Android has a few methods from 1.1

and OpenGL extensions, they are not fully implemented, so you should

avoid them for the time being. Besides, everything you’re likely to need

is already covered by GL10.

After calling the init() method on line 28 to initialize OpenGL options,

we start the main loop. The thread will spin here drawing frames con-

tinuously until the done flag is true.

OpenGL objects consume a significant amount of resources, so at the

end of the run() method starting on line 46, we explicitly destroy them

so those resources can be freed.

Now let’s take a look at the init() method:

Download OpenGL/src/org/example/opengl/GLThread.java

Line 1 private void init(GL10 gl) {
- // Define the view frustrum
- gl.glViewport(0, 0, view.getWidth(), view.getHeight());
- gl.glMatrixMode(GL10.GL_PROJECTION);
5 gl.glLoadIdentity();
- float ratio = (float) view.getWidth() / view.getHeight();
- GLU.gluPerspective(gl, 45.0f, ratio, 1, 100f);
-

- // Set up any other options we need
10 gl.glEnable(GL10.GL_DEPTH_TEST);

- gl.glDepthFunc(GL10.GL_LEQUAL);
- gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
- // Optional: disable dither to boost performance
- // gl.glDisable(GL10.GL_DITHER);

15 }

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=203

MANAGING THREADS 204

The init() method takes care of setting up our view frustum and a few

OpenGL options. Note the call to the GLU.gluPerspective() helper function

on line 7. The last two arguments are the distance from the eye to the

near and far clipping planes (see Figure 10.1, on page 196).

On line 10, we set a couple of OpenGL options. OpenGL has dozens of

options that can be enabled or disabled with glEnable() and glDisable().

The most commonly used ones include the following:

Option Description

GL_BLEND Blend the incoming color values with the values

already in the color buffer.

GL_CULL_FACE Ignore polygons based on their winding (clockwise

or counterclockwise) in window coordinates. This is

a cheap way to eliminate back faces.

GL_DEPTH_TEST Do depth comparisons, and update the depth

buffer. Pixels farther away than those already

drawn will be ignored.

GL_LIGHTi Include light number i when figuring out an object’s

brightness and color.

GL_LIGHTING Turn on lighting and material calculations.

GL_LINE_SMOOTH Draw antialiased lines (lines without jaggies).

GL_MULTISAMPLE Perform multisampling for antialiasing and other

effects.

GL_POINT_SMOOTH Draw antialiased points.

GL_TEXTURE_2D Use textures to draw surfaces.

All options are off by default except for GL_DITHER and GL_MULTISAMPLE.

Note that everything you enable has some cost in performance.

It’s time to draw something. The drawFrame() method is called every

time around in the main loop.

Download OpenGL/src/org/example/opengl/GLThread.java

private void drawFrame(GL10 gl) {

// Clear the screen to black

gl.glClear(GL10.GL_COLOR_BUFFER_BIT

| GL10.GL_DEPTH_BUFFER_BIT);

// Position model so we can see it

gl.glMatrixMode(GL10.GL_MODELVIEW);

gl.glLoadIdentity();

gl.glTranslatef(0, 0, -3.0f);

// Other drawing commands go here...

}

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=204

BUILDING A MODEL 205

Figure 10.2: That was a lot of trouble to get a black screen.

All we do for now is set the screen to black. We clear both the color and

depth buffers. Always remember to clear both, or you’ll get some very

strange results left over from the depth information for the previous

frame.

If you run the program now, you get Figure 10.2. If you’re thinking

that it’s silly to draw the same black screen over and over again in a

loop, you’re right. However, we’ll need the loop later when we talk about

animation, so just bear with me for now.

Let’s move on and draw something a little more interesting. But first we

need to define exactly what we’re drawing (the model).

10.5 Building a Model

Depending on the complexity of the objects you want to draw, you will

typically create them using a graphical design tool and import them

into your program. For the purposes of this example, we’ll just define a

simple model in code: a cube.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=205

BUILDING A MODEL 206

Download OpenGL/src/org/example/opengl/GLCube.java

Line 1 package org.example.opengl;
-

- import java.nio.ByteBuffer;
- import java.nio.ByteOrder;
5 import java.nio.IntBuffer;
-

- import javax.microedition.khronos.opengles.GL10;
-

- import android.content.Context;
10 import android.graphics.Bitmap;

- import android.graphics.BitmapFactory;
-

- class GLCube {
- private final IntBuffer mVertexBuffer;

15 public GLCube() {
- int one = 65536;
- int half = one / 2;
- int vertices[] = {
- // FRONT

20 -half, -half, half, half, -half, half,
- -half, half, half, half, half, half,
- // BACK
- -half, -half, -half, -half, half, -half,
- half, -half, -half, half, half, -half,

25 // LEFT
- -half, -half, half, -half, half, half,
- -half, -half, -half, -half, half, -half,
- // RIGHT
- half, -half, -half, half, half, -half,

30 half, -half, half, half, half, half,
- // TOP
- -half, half, half, half, half, half,
- -half, half, -half, half, half, -half,
- // BOTTOM

35 -half, -half, half, -half, -half, -half,
- half, -half, half, half, -half, -half, };
- // Buffers to be passed to gl*Pointer() functions must be
- // direct, i.e., they must be placed on the native heap
- // where the garbage collector cannot move them.

40 //
- // Buffers with multi-byte data types (e.g., short, int,
- // float) must have their byte order set to native order
- ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4);
- vbb.order(ByteOrder.nativeOrder());

45 mVertexBuffer = vbb.asIntBuffer();
- mVertexBuffer.put(vertices);
- mVertexBuffer.position(0);
- }
-

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLCube.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=206

BUILDING A MODEL 207

Fixed vs. Floating Point

OpenGL ES provides fixed-point (integer) and floating-point
interfaces for all its methods. The fixed-point methods end with
the letter x, and the floating-point ones end with the letter f. For
example, you can use either glColor4x() and glColor4f() to set
the four components of a color.

A fixed-point number is scaled by 2∧32, or 65,536. So, 32,768
in fixed point is equivalent to 0.5f. Put another way, the inte-
gral part uses the most significant two bytes of a four-byte int,
while the fractional part uses the least significant two bytes. This
is quite different from the way the native Android 2D library uses
integers, so be careful.

In a simple example like this one, it doesn’t matter whether you
use fixed-point or floating-point arithmetic, so I use them inter-
changeably as convenient. Keep in mind, though, that some
Android devices will not have floating-point hardware, so fixed
point may be significantly faster. My advice is to code it first
using floating point, because it’s easier to program, and then
optimize the slow parts using fixed point later if necessary.

50 public void draw(GL10 gl) {
- gl.glVertexPointer(3, GL10.GL_FIXED, 0, mVertexBuffer);
-

- gl.glColor4f(1, 1, 1, 1);
- gl.glNormal3f(0, 0, 1);

55 gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 0, 4);
- gl.glNormal3f(0, 0, -1);
- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 4, 4);
-

- gl.glColor4f(1, 1, 1, 1);
60 gl.glNormal3f(-1, 0, 0);

- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 8, 4);
- gl.glNormal3f(1, 0, 0);
- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 12, 4);
-

65 gl.glColor4f(1, 1, 1, 1);
- gl.glNormal3f(0, 1, 0);
- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 16, 4);
- gl.glNormal3f(0, -1, 0);
- gl.glDrawArrays(GL10.GL_TRIANGLE_STRIP, 20, 4);

70 }
- }

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=207

LIGHTS, CAMERA, ... 208

The vertices array on line 18 defines the corners of the cube in fixed-

point model coordinates (see the “Fixed vs. Floating Point” sidebar).

Each face of a cube is a square, which consists of two triangles. We use

a common OpenGL drawing mode called triangle strips. In this mode,

we specify two starting points, and then after that every subsequent

point defines a triangle with the previous two points. It’s a quick way to

get a lot of geometry pumped out to the graphics hardware in a hurry.

Note that each point has three coordinates (x, y, and z). The x and y

axes point to the right and up, respectively, and the z axis points out of

the screen toward the eye point.

In the draw method (line 50), we use the vertex buffer created in the

constructor and draw six different runs of triangles (for the six sides

of the cube). In a real program, you would want to combine the calls

into one or two strips, because the fewer number of OpenGL calls you

make, the faster your program will go.

Now let’s use our new class in GLThread:

Download OpenGL/src/org/example/opengl/GLThread.java

private final GLCube cube = new GLCube();

private void drawFrame(GL10 gl) {

// ... Draw the model

cube.draw(gl);

}

Now if you run the program, you’ll see the exciting image in Figure 10.3,

on the next page. Well, it’s more exciting than black.

10.6 Lights, Camera, ...

In real life you have light sources such as the sun, headlights, torches,

or glowing lava pools. OpenGL lets you define up to eight light sources

in your scene. There are two parts to lighting—a light and something to

shine it on. Let’s start with the light.

All 3D graphics libraries support three types of lighting:

• Ambient: A general glow that the light contributes to the entire

scene, even to objects facing away from the light. It’s important to

have a little ambient light so you can pick out details even in the

shadows.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=208

LIGHTS, CAMERA, ... 209

Figure 10.3: Drawing an unshaded cube

• Diffuse: Soft directional lighting, as you might get from a fluores-

cent panel. Most of the light contributed to your scene will typi-

cally come from diffuse sources.

• Specular: Shiny light, usually from bright point sources. Com-

bined with shiny materials, this gives you highlights (glints) that

add realism.

A single light source can contribute all three types of light. These values

go into a lighting equation that determines the color and brightness of

each pixel on the screen.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=209

ACTION! 210

The lighting is defined in the GLThread.init() method:

Download OpenGL/src/org/example/opengl/GLThread.java

// Define the lighting

float lightAmbient[] = new float[] { 0.2f, 0.2f, 0.2f, 1 };

float lightDiffuse[] = new float[] { 1, 1, 1, 1 };

float[] lightPos = new float[] { 1, 1, 1, 1 };

gl.glEnable(GL10.GL_LIGHTING);

gl.glEnable(GL10.GL_LIGHT0);

gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_AMBIENT, lightAmbient, 0);

gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_DIFFUSE, lightDiffuse, 0);

gl.glLightfv(GL10.GL_LIGHT0, GL10.GL_POSITION, lightPos, 0);

In our code we define one light source at position (1, 1, 1). It’s a white

omnidirectional light that has a bright diffuse component and a dim

ambient component. In this example, we’re not using specular lighting.

Next, we need to tell OpenGL about the materials our cube is made of.

Light reflects differently off different materials, such as metal, plastic,

or paper. To simulate this in OpenGL, add this code in init() to define

how the material reacts with the three types of light: ambient, diffuse,

and specular:

Download OpenGL/src/org/example/opengl/GLThread.java

// What is the cube made of?

float matAmbient[] = new float[] { 1, 1, 1, 1 };

float matDiffuse[] = new float[] { 1, 1, 1, 1 };

gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_AMBIENT,

matAmbient, 0);

gl.glMaterialfv(GL10.GL_FRONT_AND_BACK, GL10.GL_DIFFUSE,

matDiffuse, 0);

The object will appear to have a dull finish, as if it were made out of

paper (see Figure 10.4, on the following page). The top-right corner of

the cube is closer to the light, so it appears brighter.

10.7 Action!

Up to now the cube has just been sitting there without moving. That’s

pretty boring, so let’s make it move. To do that, we need to make a

couple of changes to our init() and drawFrame() methods in GLThread.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=210

ACTION! 211

Figure 10.4: Lighting the scene

Download OpenGL/src/org/example/opengl/GLThread.java

private long startTime;

private void init(GL10 gl) {

startTime = System.currentTimeMillis();

}

private void drawFrame(GL10 gl) {

// ... Set rotation angle based on the time

long elapsed = System.currentTimeMillis() - startTime;

gl.glRotatef(elapsed * (30f / 1000f), 0, 1, 0);

gl.glRotatef(elapsed * (15f / 1000f), 1, 0, 0);

}

This code rotates the cube a little bit every time through the main loop.

Specifically, every second it rotates 30 degrees around the x axis and 15

degrees around the y axis. The result will be a nice, smooth, spinning

cube (see Figure 10.5, on the next page).

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=211

ACTION! 212

Figure 10.5: Rotating the cube

Time-Based Animation

The first version of this example kept track of the current rotation
angle and simply incremented it each time through the loop.
Can you think of a reason why that was a bad idea?

Since Android can run on a variety of different devices, you
can’t predict how long it will take to draw a single frame. It
might take half a second or 1/100th of a second. If you moved
an object a fixed amount every frame, then on slow devices
the object would move too slowly, and on fast devices it would
move too fast. By tying the amount of movement to how much
time has elapsed, you can achieve predictable movement
on any device. Faster hardware will draw the animation more
smoothly, but objects will get from A to B in the same amount
of time.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=212

APPLYING TEXTURE 213

10.8 Applying Texture

Although the scene is starting to look more interesting, nobody would

mistake it for real life. Everyday objects have textures, like the rough

surface of a brick wall or the gravel on a garden path. Do you own a

laminated table? A wood laminate is just a photograph of wood grain

that is glued on the surface of a less expensive material like plastic or

particle board.

We’re going to do the same thing to our cube using a picture. Unfor-

tunately, the code to do this is fairly long. Don’t worry if you don’t

understand it all right away.

Download OpenGL/src/org/example/opengl/GLCube.java

Line 1 private final IntBuffer mTextureBuffer;
-

- public GLCube() {
- int texCoords[] = {
5 // FRONT
- 0, one, one, one, 0, 0, one, 0,
- // BACK
- one, one, one, 0, 0, one, 0, 0,
- // LEFT

10 one, one, one, 0, 0, one, 0, 0,
- // RIGHT
- one, one, one, 0, 0, one, 0, 0,
- // TOP
- one, 0, 0, 0, one, one, 0, one,

15 // BOTTOM
- 0, 0, 0, one, one, 0, one, one, };
- // ...
- ByteBuffer tbb = ByteBuffer.allocateDirect(texCoords.length * 4);
- tbb.order(ByteOrder.nativeOrder());

20 mTextureBuffer = tbb.asIntBuffer();
- mTextureBuffer.put(texCoords);
- mTextureBuffer.position(0);
- }
-

25 static void loadTexture(GL10 gl, Context context, int resource) {
- Bitmap bmp = BitmapFactory.decodeResource(
- context.getResources(), resource);
-

- ByteBuffer bb = extract(bmp);
30

- load(gl, bb, bmp.getWidth(), bmp.getHeight());
- }
-

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLCube.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=213

APPLYING TEXTURE 214

- private static ByteBuffer extract(Bitmap bmp) {
35 ByteBuffer bb = ByteBuffer.allocateDirect(bmp.getHeight()

- * bmp.getWidth() * 4);
- bb.order(ByteOrder.BIG_ENDIAN);
- IntBuffer ib = bb.asIntBuffer();
-

40 // Convert ARGB -> RGBA
- for (int y = bmp.getHeight() - 1; y > -1; y--)
- for (int x = 0; x < bmp.getWidth(); x++) {
- int pix = bmp.getPixel(x, bmp.getHeight() - y - 1);
- // int alpha = ((pix >> 24) & 0xFF);

45 int red = ((pix >> 16) & 0xFF);
- int green = ((pix >> 8) & 0xFF);
- int blue = ((pix) & 0xFF);
-

- // Make up alpha for interesting effect
50 ib.put(red << 24 | green << 16 | blue << 8

- | ((red + blue + green) / 3));
- }
- bb.position(0);
- return bb;

55 }
-

- private static void load(GL10 gl, ByteBuffer bb,
- int width, int height) {
- // Get a new texture name

60 int[] tmp_tex = new int[1];
- gl.glGenTextures(1, tmp_tex, 0);
- int tex = tmp_tex[0];
-

- // Load it up
65 gl.glBindTexture(GL10.GL_TEXTURE_2D, tex);

- gl.glTexImage2D(GL10.GL_TEXTURE_2D, 0, GL10.GL_RGBA,
- width, height, 0, GL10.GL_RGBA,
- GL10.GL_UNSIGNED_BYTE, bb);
- gl.glTexParameterx(GL10.GL_TEXTURE_2D,

70 GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_LINEAR);
- gl.glTexParameterx(GL10.GL_TEXTURE_2D,
- GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR);
- }
- }

Most of the complexity comes from the need to convert a texture from

an Android format (a Portable Network Graphics file) to a format that

OpenGL can understand (packed integers with red, green, blue, and

alpha values in that order). The extract() method (line 34) takes an

Android Bitmap that we decoded using BitmapFactor.decodeResource()

and copies it into a Java NIO ByteBuffer, doing the color conversion as it

goes. The load() method (line 57) passes the buffer to OpenGL, which

loads it onto a texture and prepares it for drawing.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=214

APPLYING TEXTURE 215

Figure 10.6: Applying a texture

Next we need to tell OpenGL to use the texture coordinates. Add this

line to the draw() method:

Download OpenGL/src/org/example/opengl/GLCube.java

gl.glTexCoordPointer(2, GL10.GL_FIXED, 0, mTextureBuffer);

And finally we need to call the loadTexture() method in GLThread.init():

Download OpenGL/src/org/example/opengl/GLThread.java

gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY);

gl.glEnable(GL10.GL_TEXTURE_2D);

GLCube.loadTexture(gl, view.getContext(), R.drawable.android);

This code enables textures and texture coordinates and then calls our

loadTexture() method, passing it the Activity context and resource ID so

it can load the texture image.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLCube.java
http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=215

PEEKABOO 216

R.drawable.android is a PNG file scaled down to 128 pixels square that I

copied to res/drawable/android.png. You can find it in the downloadable

code package that accompanies this book. Note the number 128 doesn’t

appear anywhere in the code, so you substitute a larger or smaller

image easily. You want to keep it small, however, because the extract()

method is painfully slow. Let’s hope in a future release of Android that

Google will provide an easier and faster way to do this.

You can see our progress so far in Figure 10.6, on the preceding page.

10.9 Peekaboo

Just for fun, let’s make the cube partially transparent. Add this to

GLThread.init():

Download OpenGL/src/org/example/opengl/GLThread.java

boolean SEE_THRU = true;

// ...

if (SEE_THRU) {

gl.glDisable(GL10.GL_DEPTH_TEST);

gl.glEnable(GL10.GL_BLEND);

gl.glBlendFunc(GL10.GL_SRC_ALPHA, GL10.GL_ONE);

}

This turns off depth testing, because we want to see obscured objects

as well as foreground ones. It also turns on a blending mode that lets

the opacity of objects be based on their alpha channel. In GLCube, we

defined the alpha channel as the average of the red, green, and blue

values in the texture, which is a very rough way to calculate how bright

the color is.5 The net effect is that the back faces of the cube will appear

through the darker parts of the front faces. For the final result, see

Figure 10.7, on the next page.

I’ll leave it to you to implement an option to turn that on and off. Try

playing around with different blend modes to get cool effects.

5. Purists cringe at the sight of math like this, but these kinds of tricks are par for the

course in 3D graphics. Most physical effects are too expensive to implement exactly, so

estimates and shortcuts are common. Anyway, why limit yourself to what is possible in

the physical world?

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/OpenGL/src/org/example/opengl/GLThread.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=216

FAST -FORWARD >> 217

Figure 10.7: The final version: a see-through cube

10.10 Fast-Forward >>

In this chapter, you learned how to use Android’s 3D graphics library.

Because Android uses the industry-standard OpenGL ES API, a wide

variety of additional information is available if you want to learn more.

In particular, I recommend the Javadoc for the JSR 239 API specifica-

tion.6

What’s next? Well, that’s entirely up to you. You have all the tools you

need, so go make something great!

6. http://java.sun.com/javame/reference/apis/jsr239

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://java.sun.com/javame/reference/apis/jsr239
http://books.pragprog.com/titles/eband/errata/add?pdf_page=217

Part IV

Appendixes

218
Prepared exclusively for Trieu Nguyen

Appendix A

Java vs. the Android
Language and APIs

For the most part, Android programs are written in the Java language,

and they use the Java 5 Standard Edition (SE) library APIs. I say “for the

most part” because there are a few differences. This appendix highlights

the differences between regular Java and what you’ll find in Android. If

you’re already proficient in Java development on other platforms, you

should take a close look to see what things you need to “unlearn.”

A.1 Language Subset

Android uses a standard Java compiler to compile your source code

into regular bytecodes and then translates those bytecodes into Dalvik

instructions. Therefore, the entire Java language is supported, not just

a subset. Compare this to the Google Web Toolkit (GWT), which has

its own Java to JavaScript translator. By using the stock compiler and

bytecodes, you don’t even need to have the source code for libraries

that you want to use in your applications.

Language Level

Android supports code compatible with Java Standard Edition 5 or ear-

lier. Java 6 and 7 class formats and features are not yet supported but

could be added in future releases.

Prepared exclusively for Trieu Nguyen

LANGUAGE SUBSET 220

Intrinsic Types

All Java intrinsic types including byte, char, short, int, long, float, dou-

ble, Object, String, and arrays are supported. However, on current hard-

ware commonly found in mobile devices, floating point is emulated.

That means it’s performed in software instead of hardware, making it

much slower than normal. Simple operations on real numbers could

take a millisecond to complete. Although occasional use is fine, do not

use float or double in performance-critical code.

Multithreading and Synchronization

Multiple threads are supported by time slicing: giving each thread a

few milliseconds to run and then performing a context switch to let

another thread have a turn. Although Android will support any num-

ber of threads, in general you should use only one or two. One thread

is dedicated for the main user interface (if you have one), and another

thread is used for long-running operations such as calculations or net-

work I/O.

The Dalvik VM implements the synchronized keyword and synchroni-

zation-related library methods such as Object.wait(), Object.notify(), and

Object.notifyAll(). It also supports the java.util.concurrent package for more

sophisticated algorithms. Use them as you would in any Java program

to keep multiple threads from interfering with each other.

Reflection

Although the Android platform supports Java reflection, as a general

rule you should not use it. The reason is simple performance: reflection

is slow. Consider alternatives such as compile-time tools and prepro-

cessors instead.

Finalization

The Dalvik VM supports object finalization during garbage collection

just like regular Java VMs. However, most Java experts advise you not

to rely on finalizers because you cannot predict when (or if) they will

run. Instead of finalizers, use explicit close() or terminate()

methods. Android is targeted toward resource-constrained hardware,

so it’s important that you release all resources as soon as you no longer

need them.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=220

STANDARD LIBRARY SUBSET 221

A.2 Standard Library Subset

Android supports a relatively large subset of the Java Standard Edition

5.0 library. Some things were left out because they simply didn’t make

sense (such as printing), and others were omitted because better APIs

are available that are specific to Android (such as user interfaces).

Supported

The following standard packages are supported in Android. Consult the

Java 2 Platform Standard Edition 5.0 API documentation1 for informa-

tion on how to use them:

• java.awt.font: A few constants for Unicode and fonts

• java.beans: A few classes and interfaces for JavaBeans property

changes

• java.io: File and stream I/O

• java.lang (except java.lang.management): Language and exception

support

• java.math: Big numbers, rounding, precision

• java.net: Network I/O, URLs, sockets

• java.nio: File and channel I/O

• java.security: Authorization, certificates, public keys

• java.sql: Database interfaces

• java.text: Formatting, natural language, collation

• java.util (including java.util.concurrent): Lists, maps, sets, arrays,

collections

• javax.crypto: Ciphers, public keys

• javax.microedition.khronos: OpenGL graphics (from Java Micro Edition)

• javax.net: Socket factories, SSL

• javax.security (except javax.security.auth.kerberos, javax.security.auth.spi,

and javax.security.sasl)

• javax.sql (except javax.sql.rowset): More database interfaces

• javax.xml.parsers: XML parsing

• org.w3c.dom (but not subpackages): DOM nodes and elements

• org.xml.sax: Simple API for XML

Note that although the regular Java SQL database APIs (JDBC) are

included, you don’t use them to access local SQLite databases. Use the

1. http://java.sun.com/j2se/1.5.0/docs/api

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://java.sun.com/j2se/1.5.0/docs/api
http://books.pragprog.com/titles/eband/errata/add?pdf_page=221

THIRD-PARTY LIBRARIES 222

android.database APIs instead (see Chapter 9, Putting SQL to Work, on

page 175).

Not Supported

These packages, normally part of the Java 2 Platform Standard Edition,

are not supported by Android:

• java.applet

• java.awt

• java.lang.management

• java.rmi

• javax.accessibility

• javax.activity

• javax.imageio

• javax.management

• javax.naming

• javax.print

• javax.rmi

• javax.security.auth.kerberos

• javax.security.auth.spi

• javax.security.sasl

• javax.sound

• javax.swing

• javax.transaction

• javax.xml (except javax.xml.parsers)

• org.ietf.*

• org.omg.*

• org.w3c.dom.* (subpackages)

A.3 Third-Party Libraries

In addition to the standard libraries listed earlier, the Android SDK

comes with a number of third-party libraries for your convenience:

• org.apache.http: HTTP authentication, cookies, methods, and

protocol

• org.json: JavaScript Object Notation

• org.xml.sax: XML parsing

• org.xmlpull.v1: XML parsing

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=222

Appendix B

Hello, Widget
Introduced in Android 1.5 (Cupcake), app widgets are miniature appli-

cation views that can be embedded in the Home screen. A few widgets

are provided with Android including an analog clock, a music controller,

and one that just shows a picture. Many developers have created inter-

esting widgets to display the weather, news headlines, horoscopes, and

more, and you can too. This appendix will show you how.

Note: This entire chapter is new for Cupcake but I’m too lazy to flag

every single paragraph. Just take my word for it.

B.1 Creating Your First Widget

Currently there is no special Eclipse wizard to create an Android Widget

so we’re going to create a regular “Hello, Android” application like we

did in Section 1.2, Creating Your First Program, on page 24, and then

tweak it a little. Select File > New > Project... to open the New Project

dialog box. Then select Android > Android Project, and click Next. Enter

the following information:

Project name: Widget

Build Target: Android 1.5

Application name: Widget

Package name: org.example.widget

Instead of entering a name for the Activity, leave that field blank and

turn off the check mark next to Create Activity. When you’re done, it

should look something like Figure B.1, on the following page.

Prepared exclusively for Trieu Nguyen

CREATING YOUR FIRST WIDGET 224

Figure B.1: New Android widget project

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=224

CALLING ALL WIDGETS! 225

Click Finish. The Android plug-in will create the project and fill it in

with some default files. The files will not be correct for a widget project

so let’s fix them up now.

B.2 Calling All Widgets!

Our first stop is the AndroidManifest.xml file. While it’s technically possi-

ble (and common) to put widgets and activities in the same application,

this example will only have a widget. We don’t need an <activity> tag

but we do need to add a <receiver> to define the widget. Here is the

revised manifest file:

Download Widget/AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="org.example.widget"

android:versionCode="1"

android:versionName="1.0">

<application android:icon="@drawable/icon"

android:label="@string/app_name">

<!-- Broadcast Receiver that will process AppWidget updates -->

<receiver android:name=".Widget"

android:label="@string/widget_name">

<intent-filter>

<action android:name=

"android.appwidget.action.APPWIDGET_UPDATE" />

</intent-filter>

<meta-data android:name="android.appwidget.provider"

android:resource="@xml/widget" />

</receiver>

</application>

<uses-sdk android:minSdkVersion="3" />

</manifest>

The <meta-data> tag tells Android it can find the widget definition in

res/xml/widget.xml. Here’s the definition:

Download Widget/res/xml/widget.xml

<?xml version="1.0" encoding="utf-8"?>

<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"

android:minWidth="146dip"

android:minHeight="72dip"

android:updatePeriodMillis="60000"

android:initialLayout="@layout/main"

/>

This specifies a minimum size for the widget, how often it should be

updated (more on that later), and a reference to its starting layout. The

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Widget/AndroidManifest.xml
http://media.pragprog.com/titles/eband/code/Widget/res/xml/widget.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=225

STRETCH TO FIT 226

layout is defined in res/layout/main.xml:

Download Widget/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:background="@drawable/widget_bg"

>

<TextView android:id="@+id/text"

android:layout_width="fill_parent"

android:layout_height="fill_parent"

android:text="@string/hello"

android:gravity="center"

android:textColor="@android:color/black"

/>

</LinearLayout>

You may have noticed that this layout is almost the same as the one we

used for the “Hello, Android” example except that this version specifies

centered black text and a background image.

B.3 Stretch to Fit

For the background we could have used any Android Drawable, such as

a solid color or a bitmap (see Section 4.1, Drawable, on page 76). We

could have even left it off to get a completely transparent background.

But for this example I wanted to show you how to use a NinePatch image.

A NinePatch image is a stretchable PNG image often used for the back-

ground of resizable buttons. You use the Draw 9-patch tool1 included

with the SDK to create one, as shown in Figure B.2, on the following

page.

A one-pixel border around the real image contains additional informa-

tion about how to stretch the image and insert padded content. Lines

on the bottom and right edge tell Android where content should go. If

the content doesn’t fit in that area (which is usually the case) then the

lines on the left and top edge tell Android which pixel rows and columns

should be duplicated in order to stretch the image.

The resulting file must use the extension .9.png and be placed in the

project’s res/drawable directory.

1. http://d.android.com/guide/developing/tools/draw9patch.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Widget/res/layout/main.xml
http://d.android.com/guide/developing/tools/draw9patch.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=226

THE REST OF THE STORY 227

Figure B.2: Defining a stretchable background with the Draw 9-patch

tool.

The next thing we need is the Widget class.

B.4 The Rest of the Story

The Widget needs to extend AppWidgetProvider. Okay, it doesn’t really

need to, but it sure makes things more convenient. Here’s the definition

of the Widget class:

Download Widget/src/org/example/widget/Widget.java

package org.example.widget;

import android.appwidget.AppWidgetProvider;

public class Widget extends AppWidgetProvider {

// ...

}

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Widget/src/org/example/widget/Widget.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=227

RUNNING THE WIDGET 228

We’ll come back to fill in this class in a moment but for now we can just

use the default behavior provided by AppWidgetProvider.

Finally, let’s get rid of a few pesky error message by defining a few string

values:

Download Widget/res/values/strings.xml

<?xml version="1.0" encoding="utf-8"?>

<resources>

<string name="hello">Hello World!</string>

<string name="app_name">Widget</string>

<string name="widget_name">Widget</string>

</resources>

All that’s left now is to run it.

B.5 Running the Widget

To run your new widget, go to the Package Explorer window, right-click

the Widget project, and select Run As > Android Application. Nothing

much will appear to happen as Eclipse builds and installs the widget

on your emulator or device.

To see the new widget, bring up the Home screen’s context menu (press

and hold your finger (or mouse) on the Home screen. A menu will

appear with options listing all the types of things you can add (see

Figure B.3, on the next page).

Select Widgets from the menu, and then select the widget named Widget

(clever, huh?). At last, your widget should appear (see Figure B.4, on

page 230).

Try moving it around by pressing and holding your finger on the widget.

Rotate the display to see how the widget automatically resizes itself. To

remove it, drag it to the trash can icon at the bottom of the screen.

As exciting as that was, let’s do it one better by displaying the current

date and time inside our widget.

B.6 Keeping Up to Date

In Android 1.5, widget hosts (programs like the Home screen that can

contain widgets) send a message to all their little widget kids whenever

the widgets should display something. The Android way to send a mes-

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Widget/res/values/strings.xml
http://books.pragprog.com/titles/eband/errata/add?pdf_page=228

KEEPING UP TO DATE 229

Figure B.3: Customizing your Home screen with widgets.

sage is to broadcast an intent. In this case, the intent is

android.appwidget.action.APPWIDGET_UPDATE.

Back when we set up the AndroidManifest.xml file, we told Android that

we could receive that intent and do something interesting with it. Now

it’s time to fill out the Widget class to do just that:

Download Widget/src/org/example/widget/Widget.java

Line 1 package org.example.widget;
-

- import java.text.SimpleDateFormat;
- import java.util.Date;
5

- import android.appwidget.AppWidgetManager;
- import android.appwidget.AppWidgetProvider;
- import android.content.Context;
- import android.widget.RemoteViews;

10

- public class Widget extends AppWidgetProvider {

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://media.pragprog.com/titles/eband/code/Widget/src/org/example/widget/Widget.java
http://books.pragprog.com/titles/eband/errata/add?pdf_page=229

KEEPING UP TO DATE 230

Figure B.4: Hello, Widget

- // ...
- // Define the format string for the date and time
- private SimpleDateFormat formatter = new SimpleDateFormat(

15 "EEE, d MMM yyyy\nHH:mm:ss.SSS");
-

- @Override
- public void onUpdate(Context context,
- AppWidgetManager appWidgetManager, int[] appWidgetIds) {

20 // Retrieve and format the current date and time
- String now = formatter.format(new Date());
-

- // Change the text in the widget
- RemoteViews updateViews = new RemoteViews(

25 context.getPackageName(), R.layout.main);
- updateViews.setTextViewText(R.id.text, now);
- appWidgetManager.updateAppWidget(appWidgetIds, updateViews);
-

- // Not really necessary, just a habit
30 super.onUpdate(context, appWidgetManager, appWidgetIds);

- }

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=230

GO WILD 231

- }

Whenever the APPWIDGET_UPDATE intent comes in, Android will call our

onUpdate() method. On line 21, we format the current date using a

SimpleDateFormat created on line 14. This will show the day of the

week, day of the month, month name, and year on the first row of the

widget, and then the hour, minute, second, and milliseconds on the

second row.

Next, on line 24 we create a RemoteViews instance for the new view

layout that the widget will display. It just so happens that this example

uses the same layout, R.layout.main, when updating as it did when it

was started. Line 26 replaces the original “Hello, World” text with the

current date and time.

Finally, on line 27 we send our updated view to replace the current

contents of the widget. The call to super.onUpdate() on line 30 is just

there for code hygiene.

Remove the widget from your Home screen and re-install it from Eclipse.

When you add it back to the Home screen, you should see something

like Figure B.5, on the next page.

The frequency of updates is controlled by the android:updatePeriodMillis=

parameter in res/xml/widget.xml. A value of 60000 represents 60 sec-

onds, so our widget will be updated once a minute. Note that this is

only an approximate number. The actual update event may be delayed

(possibly a long time) because of other things happening on the phone.

Google recommends you set widgets to update infrequently, for example

once a day or once an hour, in order to conserve battery power. But just

for fun, try setting the update period to a low number like 1000 or even

100ms to see what happens.

B.7 Go Wild

Now that you know the basics of widget building, there’s no end to the

interesting do-dads you can create. If you need more advanced features

such as responding to events, background processing, and specifying

an initial activity for configuration, consult the online documentation.2

Try to keep your widgets simple and useful, though. By cleverly using

2. http://d.android.com/guide/topics/appwidgets/index.html

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://d.android.com/guide/topics/appwidgets/index.html
http://books.pragprog.com/titles/eband/errata/add?pdf_page=231

GO WILD 232

Figure B.5: Displaying the date and time

app widgets you can make the Android experience more personal and

dynamic for your users.

Report erratum

this copy is (P1.5 printing, July 21, 2009)
Prepared exclusively for Trieu Nguyen

http://books.pragprog.com/titles/eband/errata/add?pdf_page=232

Appendix C

Publishing to the Android Market
This is a beta version. This chapter is not yet complete.

Prepared exclusively for Trieu Nguyen

Appendix D

Bibliography

[Bur05] Ed Burnette. Eclipse IDE Pocket Guide. O’Reilly & Asso-

ciates, Inc, Sebastopol, CA, 2005.

[Gen06] Jonathan Gennick. SQL Pocket Guide. O’Reilly Media, Inc.,

Sebastopol, CA, second edition, 2006.

[Goe06] Brian Goetz. Java Concurrency in Practice. Addison-Wesley,

Reading, MA, 2006.

[Owe06] Mike Owens. The Definitive Guide to SQLite. Apress, Berke-

ley, CA, 2006.

Prepared exclusively for Trieu Nguyen

Index
A
About box, 61f, 58–61, 62f

Accelerometer readings, 166

Activity, 36, 37f, 39

declaring, 61

defining, new, 58

Activity manager, 34

addEvent(), 183

addJavaScriptInterface(), 138–145

alert(), 142, 144

Alpha, 74

Ambient light, 208

Android

activity in, 36, 37f

architecture of, 31f, 30–35

audio formats supported by, 107

benefits of, 20, 129

content providers, 190

Emulator, 24

installation, 21, 22f

Java library support, 221

language, vs. Java, 219

libraries, 31–32

objects, 39–40

OpenGL and, 196

on a phone, 29

platforms, 20

project, basic, 24, 25f

resources, 40

screen rotations, 114

sensors, support for, 164

third-party libraries for, 222

threads in, 220

updates for, 22

user ID, 126

video formats supported by, 111

windows in, 36f, 35–39

Android Eclipse plug-in, 103

Android Location API, 160f, 158–164

sensors and, 167f, 164–167

Android Market, 35

Android runtime, 32

Android Virtual Device, 24

creating, 27f

undefined, 26f

AndroidManifest.xml, 61

Animation, OpenGL, 212f, 210–212

Application Framework, 33

Application stack, 35

Applications, 34

Applications and Widgets layer, 34

Architecture, 31f, 30–35

Application Framework, 33

Applications and Widgets layer, 34

Linux kernel, 30

native libraries, 31

ARGB, 73

Audio, 105f, 106f, 104–110

B
Background gradient, 78f

Background music, 115–118

Bitmap, 77

Bitmaps, 55

Bornstein, Dan, 33

BrowserIntent, 130f, 134f, 130–134

BrowserView, 130

C
calculateUsedTiles(), 99

callAndroid(), 142

callJS(), 142, 145

Canvas, 75

Carmack, John, 197

Color, 74

Connection error, 23

Constants, as interface, 180

Content provider, 34, 40

Prepared exclusively for Trieu Nguyen

CONTENTPROVIDER 236 GRAPHICS

ContentProvider, 189–193

createSnapshot(), 138

Cube model, 205–208, 209f, 212f, 216,

217f

D
Dalvik virtual machine (VM), 32

Data binding, 189f, 186–189

Data definition language (DDL)

statements, 177

Data storage, 119–127

current screen position, 123–125

internal files, accessing, 125

options, adding, 119–121

pausing game, 121–123

secure digital (SD), 126–127

SQLite, 175–194

about, 175–176, 177f

basic application, 182f, 178–186

ContentProvider, 189–193

data binding, 189f, 186–189

overview of, 176–178

DDL statements, 177

Debugging, 70f, 70, 71

Declarative design, 45

The Definitive Guide to SQLite (Owens),

194

Delayed requests, 152

Density-independent pixels, 55

Difficulty selection, 69f

Diffuse light, 209

Digital certificate, 126

Dips, 55

Drawable graphics, 76, 77

drawFrame(), 210

Drawing functions, 89

dumpProviders(), 162

E
Eclipse, 21, 71, 164

Eclipse IDE Pocket Guide (Burnette), 29

Eclipse plug-in, 22, 41, 46

Emulator, 24

GPS and, 164

landscape mode, 54

MapView and, 173

secure digital card, 126

sensors and, 166

sound formats and, 107

speed and, 28

Errors

activities, declaring, 61

connection, 23

MediaPlayer and, 110

release(), 117

Exit button, 71

extract(), 216

extraData, 79

F
Field of view, 195

Finalization, 220

findViews(), 96, 151

finish(), 72

Fixed-point interface, 207

Flash memory card, 126–127

Floating-point interface, 207

frompuzzleString(), 101

G
Game class, defining, 79

Game logic, 98

Games, sensors for, 164

Garns, Howard, 45, 79

Gennick, Jonathan, 194

getBestProviders(), 162

getColor(), 74

getEvents(), 184, 191

getGL(), 202

getHeight(), 81

getHints(), 121

getLang(), 156

getLastNonConfigurationInstance(), 114

getPuzzle(), 101, 123

getRect(), 88

getResources(), 74

getSettings(), 138

getSystemService(), 162, 165

getTile(), 102

getTileString(), 102

getUsedTiles(), 99

getWidth(), 81

Global Positioning System (GPS), 160f,

158–164

Goetz, Brian, 157

Google Maps, 169f, 168–173

Google Translation API, 146

Google Web Toolkit (GWT), 219

Gradient background, 78f

Graphics, 73–103, 195–216

animation, 212f, 210–212

canvas, 75

Prepared exclusively for Trieu Nguyen

GRID LINES 237 LOGCAT VIEW

color, 74

cube model, 205–208, 209f

drawable, 76, 77

gradient background, 78f

Hello, Android and, 197–199

input, 88f, 92f, 87–93

library, 86

lighting, 208–210, 211f

OpenGL and, 196–197

paint, 74

path, circular, 75, 76f

Sudoku example, 85f, 86f, 78–87

texture, 215f, 213–216

threads, 205f, 200–205

three-dimensional, 196f, 195–196

transparency, 216, 217f

Grid lines, Sudoku, 85f

guiSetText(), 156

H
Hello, Android

audio and, 105

browser view and, 135

browsing by intent, 130

Emulator, running in, 28f

first project, 24, 25f

JavaScript and, 140

location test, 159

MapView, 168

OpenGL and, 197–199

SQLite and, 178

translation program, 146

Hints, 91, 121

Hipp, Richard, 175

Home application, 35, 36f

HTML views, 64

I
init(), 203

initThreading(), 153

Inner class, 60

Input, 88f, 92f, 87–93

insertOrThrow(), 183

Installation

Android, 21, 22f

Eclipse, 21

Eclipse plug-in, 22

Java 5.0+, 20

Web Standard Tools, 23

Intents, 39, 60

Inter-Process Communication (IPC),

189

Internal files, accessing, 125

Internet

browsing by intent, 130f, 134f,

130–134

JavaScript and, 140f, 139–145

web services and, 147f, 146–156

web view, 137f, 134–138

invalidate(), 89

isValid(), 97

J
Java, 20

constants (as interface), 180

Dalvik and, 33

intrinsic language types, 220

JavaScript and, 139

language subset and, 219

libraries, support for, 221

reflection, support for, 220

time slicing, multiple threads, 220

web services, 147f, 146–156

Java Concurrency in Practice (Goetz),

157

JavaScript, 140f, 139–145

K
Keypads, 93, 95f

L
Landscape mode, 54, 56f

Layers, 77

Lea, Doug, 146

Levels, 77

Libraries, 31–32

Lighting, OpenGL, 208–210, 211f

Linux kernel, 30

loadData(), 138

loadDataWithBaseURL(), 138

loadTexture(), 215

loadUrl(), 138

LocalBrowser, 130

Locale, 160f, 158–164

sensors, 167f, 164–167

Location manager, 34

Location updates, 163

LocationManager, 160f

Log messages, 70

LogCat view, 70f

Prepared exclusively for Trieu Nguyen

MAPVIEW 238 QUEUEUPDATE()

M
MapView, 168–173

embedding, 168

Hello, Android, 168

location of, 172

Media codes, 32

MediaPlayer, 110, 116

Menus, adding, 65f, 64–66

Modification statements, 178

moveToNext(), 185

Movies, 112f, 110–113

Multimedia, 104–118

audio, 105f, 106f, 104–110

background music, Sudoku,

115–118

video, 112f, 110–113

Multithreading, 220

N
Native libraries, 31–32

New game button, 69f, 68–70

Nikoli, 79

NinePatch, 77

Notification manager, 34

O
Object finalization, 220

Objects, 39–40

onClick(), 68

onConfigurationChanged(), 114

onCreate(), 37, 77, 80, 112, 127, 161

onCreateOptionsMenu(), 119

onDestroy(), 38, 114

onDraw(), 75, 81, 82, 87, 89, 103, 200

onJsAlert(), 144

onKeyDown(), 87, 89

onLocationChanged(), 163

onPause(), 38, 115, 162

onProviderDisabled(), 163

onProviderEnabled(), 163

onRestart(), 38

onRestoreInstanceState(), 38

onResume(), 38, 115, 162

onRetainNonConfigurationInstance(), 114

onSaveInstanceState(), 38, 125

onSensorChanged(), 165

onSizeChanged(), 81, 82

onStart(), 38

onStatusChanged(), 163

onStop(), 38

onTouchEvent(), 90

onTrackballEvent(), 88

openBrowser(), 133, 136

OpenGL, 195–216

animation, 212f, 210–212

classes, 199

cube model, 205–208, 209f

fixed- vs. floating-point interface,

207

Hello, Android, 197–199

lighting, 208–210, 211f

options, disabling/enabling, 204

overview of, 196–197

texture, 215f, 213–216

threads in, 205f, 200–205

three-dimensional graphics and,

196f, 195–196

transparency, 216, 217f

versions, 203

OpenIntents, 166

Owens, Mike, 194

P
Package names, 47

Paint, 74

Path, 75, 76f

Performance, 28, 41, 111

Permissions, 41, 138, 159

Phone

3D hardware and, 198

installation, 29

keypads, 93, 95f

prepackaged systems, 34

uses for, 129

Pixels, 55

Platform, 20

Playback, 110

post(), 143

Private intents, 60

Procedural design, 45

Processes vs. activities, 36

Proxy, 23

Public intents, 60

PuzzleView class, 80

Q
Queries, running, 184

Query statements, 178

queueUpdate(), 153, 154, 156

Prepared exclusively for Trieu Nguyen

REFLECTION 239 SUDOKU PROGRAM

R
Reflection, 220

Refresh, 90

registerListener(), 165

release(), 117

removeUpdates(), 163

requestExitAndWait(), 201

requestLocationUpdates(), 162

Resolution, 86, 87

Resolution-independent

measurements, 55

Resource compiler, 40

Resource manager, 34

Resources, 40

returnResult(), 97

Rows, adding, 183, 191

run(), 201

Runtime, 32

S
Scale, 77

Scale-independent pixels, 55

Screen layouts, 56, 57f

Screen position, 123–125

Screen resolution, 55

Screen rotations, 114

Secure Digital (SD) card, 126–127

Security

JavaScript and, 139

permissions, 41

seekTo(), 109

select(), 88

Selecting tiles, 87

Sensors, 164–167

Emulator and, 166

readings, interpreting, 165

simulator, 167f

Service class, 116

Services, 40

setAdapters(), 151

setColor(), 74

setContentView(), 133

setDownloadListener(), 138

setId(), 124

setListeners(), 152

setOnClickListener(), 145

setOnCompletionListener(), 109

setText(), 143

Settings, adding, 67f, 67

setTranslated(), 156

setVideoPath(), 112

setWebChromeClient(), 138, 144

setWebViewClient(), 138

Shape, 77

showEvents(), 185

Silicon Graphics, 196

Size, 81, 86

Sound effects, 105f, 106f, 104–110

Spectacular light, 209

Speed, 28, 41

Sps, 55

SQL Pocket Guide (Gennick), 194

SQLite, 175–194

about, 175–176, 177f

application basics, 182f, 178–186

blessing (license), 176

ContentProvider, 189–193

data binding, 189f, 186–189

DDL statements, 177

modification statements, 178

overview of, 176–178

queries, running, 184

query statements, 178

rows, adding, 183, 191

SQLite database, 32

SQLiteOpenHelper, 179

start(), 109, 115

startGame(), 78, 123

State-saving code, 39

States, 77

stop(), 116, 117

stopLoading(), 138

String resource, 59

Sudoku history, 45, 79, 115, 120

Sudoku program, 46f, 44–72

About box, 61f, 58–61, 62f

debugging, 70f, 70, 71

defined, 44

exit button, 71

game board, 82

game class for, 79

game logic, 98

graphics for, 85f, 86f, 78–87

hints, 91, 121

input and graphics, 88f, 92f, 87–93

interface design, 45–46

menus, 65f, 64–66

multimedia, 104–118

audio, 105f, 106f, 104–110

background music for, 115–118

video, 112f, 110–113

new game button, 69f, 68–70

Prepared exclusively for Trieu Nguyen

SURFACE MANAGER 240 WINDOWS

opening screen, 48f, 52f, 54f, 46–55

pausing, 121

PuzzleView class, 80

screen layouts, 56f, 57f, 54–58

settings, 67f, 67

starting game (code), 78

themes, 63f, 62–63

Surface Manager, 32

Synchronization, 220

T
Testing, state-saving code, 39

Texture, OpenGL, 215f, 213–216

TextView, 64

Themes, 63f, 62–63

Threads

multiple, 220

OpenGL, 205f, 200–205

Tile selection, 87

Time slicing, 220

Time-based animation, 212

Torvalds, Linus, 30

Trackball, 88

Translate, 130

Translator, 146, 147f

Transparency, 216, 217f

Triangle strips, 208

2D and 3D graphics, 32

U
Uniform Resource Identifier (URI), 190

unregisterListener(), 165

User ID, 126

User interface design, 44–72

About box, 61f, 58–61, 62f

debugging, 70f, 70, 71

exit button, 71

menus, 65f, 64–66

new game button, 69f, 68–70

opening screen, 48f, 52f, 54f, 46–55

screen layouts, 56f, 57f, 54–58

settings, 67f, 67

Sudoku overview, 44, 46f

themes, 63f, 62–63

types of, 45–46

V
Vector graphics, 55

Video, 112f, 110–113

View frustrum, 195

View size, 81

W
Web services, 147f, 146–156

Web Standard Tools (WST), 23

WebKit library, 32

WebView, 137f, 134–138

WebView, 64

Widgets, 34

Windows, in Android, 36f, 35–39

Prepared exclusively for Trieu Nguyen

Web 2.0
Welcome to the Web, version 2.0. You need some help to tame the wild technologies out

there. Start with Prototype and script.aculo.us, a book about two libraries that will make

your JavaScript life much easier.

See how to reach the largest possible web audience with The Accessible Web.

Prototype and script.aculo.us
Tired of getting swamped in the nitty-gritty of

cross-browser, Web 2.0–grade JavaScript? Get back

in the game with Prototype and script.aculo.us, two

extremely popular JavaScript libraries that make it

a walk in the park. Be it Ajax, drag and drop,

autocompletion, advanced visual effects, or many

other great features, all you need is to write one or

two lines of script that look so good they could

almost pass for Ruby code!

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

Christophe Porteneuve

(330 pages) ISBN: 1-934356-01-8. $34.95

http://pragprog.com/titles/cppsu

Design Accessible Web Sites
The 2000 U.S. Census revealed that 12% of the

population is severely disabled. Sometime in the

next two decades, one in five Americans will be

older than 65. Section 508 of the Americans with

Disabilities Act requires your website to provide

equivalent access to all potential users. But beyond

the law, it is both good manners and good business

to make your site accessible to everyone. This book

shows you how to design sites that excel for all

audiences.

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

Jeremy Sydik

(304 pages) ISBN: 978-1-9343560-2-9. $34.95

http://pragprog.com/titles/jsaccess

Prepared exclusively for Trieu Nguyen

http://pragprog.com/titles/cppsu
http://pragprog.com/titles/jsaccess

Getting It Done
Start with the habits of an agile developer and use the team practices of successful agile

teams, and your project will fly over the finish line.

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragprog.com/titles/pad

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • you’re frustrated at lack of progress on

your project. • you want to make yourself and your

team more valuable. • you’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • you’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • you need to get software out the

door without excuses.

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragprog.com/titles/prj

Prepared exclusively for Trieu Nguyen

http://pragprog.com/titles/pad
http://pragprog.com/titles/prj

Get Groovy
Expand your horizons with Groovy, and tame the wild Java VM.

Programming Groovy
Programming Groovy will help you learn the

necessary fundamentals of programming in Groovy.

You’ll see how to use Groovy to do advanced

programming techniques, including meta

programming, builders, unit testing with mock

objects, processing XML, working with databases

and creating your own domain-specific languages

(DSLs).

Programming Groovy: Dynamic Productivity for

the Java Developer

Venkat Subramaniam

(320 pages) ISBN: 978-1-9343560-9-8. $34.95

http://pragprog.com/titles/vslg

Groovy Recipes
See how to speed up nearly every aspect of the

development process using Groovy Recipes. Groovy

makes mundane file management tasks like

copying and renaming files trivial. Reading and

writing XML has never been easier with XmlParsers

and XmlBuilders. Breathe new life into arrays,

maps, and lists with a number of convenience

methods. Learn all about Grails, and go beyond

HTML into the world of Web Services: REST, JSON,

Atom, Podcasting, and much, much more.

Groovy Recipes: Greasing the Wheels of Java

Scott Davis

(264 pages) ISBN: 978-0-9787392-9-4. $34.95

http://pragprog.com/titles/sdgrvr

Prepared exclusively for Trieu Nguyen

http://pragprog.com/titles/vslg
http://pragprog.com/titles/sdgrvr

The Pragmatic Bookshelf
Available in paperback and DRM-free PDF, our titles are here to help you stay on top of

your game. The following are in print as of July 2009; be sure to check our website at

pragprog.com for newer titles.

Title Year ISBN Pages

Advanced Rails Recipes: 84 New Ways to Build

Stunning Rails Apps

2008 9780978739225 464

Agile Retrospectives: Making Good Teams Great 2006 9780977616640 200

Agile Web Development with Rails, Third Edition 2009 9781934356166 784

Augmented Reality: A Practical Guide 2008 9781934356036 328

Behind Closed Doors: Secrets of Great

Management

2005 9780976694021 192

Best of Ruby Quiz 2006 9780976694076 304

Core Animation for Mac OS X and the iPhone:

Creating Compelling Dynamic User Interfaces

2008 9781934356104 200

Data Crunching: Solve Everyday Problems

using Java, Python, and More

2005 9780974514079 208

Deploying Rails Applications: A Step-by-Step

Guide

2008 9780978739201 280

Design Accessible Web Sites: 36 Keys to

Creating Content for All Audiences and

Platforms

2007 9781934356029 336

Desktop GIS: Mapping the Planet with Open

Source Tools

2008 9781934356067 368

Developing Facebook Platform Applications with

Rails

2008 9781934356128 200

Enterprise Integration with Ruby 2006 9780976694069 360

Enterprise Recipes with Ruby and Rails 2008 9781934356234 416

Everyday Scripting with Ruby: for Teams,

Testers, and You

2007 9780977616619 320

FXRuby: Create Lean and Mean GUIs with Ruby 2008 9781934356074 240

From Java To Ruby: Things Every Manager

Should Know

2006 9780976694090 160

GIS for Web Developers: Adding Where to Your

Web Applications

2007 9780974514093 275

Google Maps API, V2: Adding Where to Your

Applications

2006 PDF-Only 83

Groovy Recipes: Greasing the Wheels of Java 2008 9780978739294 264

Hello, Android: Introducing Google’s Mobile

Development Platform

2008 9781934356173 200

Interface Oriented Design 2006 9780976694052 240

Land the Tech Job You Love 2009 9781934356265 280

Learn to Program, 2nd Edition 2009 9781934356364 230

Continued on next page

Prepared exclusively for Trieu Nguyen

pragprog.com

Title Year ISBN Pages

Manage It! Your Guide to Modern Pragmatic

Project Management

2007 9780978739249 360

Mastering Dojo: JavaScript and Ajax Tools for

Great Web Experiences

2008 9781934356111 568

Modular Java: Creating Flexible Applications

with OSGi and Spring

2009 9781934356401 260

No Fluff Just Stuff 2006 Anthology 2006 9780977616664 240

No Fluff Just Stuff 2007 Anthology 2007 9780978739287 320

Practical Programming: An Introduction to

Computer Science Using Python

2009 9781934356272 350

Practices of an Agile Developer 2006 9780974514086 208

Pragmatic Project Automation: How to Build,

Deploy, and Monitor Java Applications

2004 9780974514031 176

Pragmatic Thinking and Learning: Refactor Your

Wetware

2008 9781934356050 288

Pragmatic Unit Testing in C# with NUnit 2007 9780977616671 176

Pragmatic Unit Testing in Java with JUnit 2003 9780974514017 160

Pragmatic Version Control Using Git 2008 9781934356159 200

Pragmatic Version Control using CVS 2003 9780974514000 176

Pragmatic Version Control using Subversion 2006 9780977616657 248

Programming Clojure 2009 9781934356333 304

Programming Erlang: Software for a Concurrent

World

2007 9781934356005 536

Programming Groovy: Dynamic Productivity for

the Java Developer

2008 9781934356098 320

Programming Ruby: The Pragmatic

Programmers’ Guide, Second Edition

2004 9780974514055 864

Programming Ruby 1.9: The Pragmatic

Programmers’ Guide

2009 9781934356081 960

Programming Scala: Tackle Multi-Core

Complexity on the Java Virtual Machine

2009 9781934356319 250

Prototype and script.aculo.us: You Never Knew

JavaScript Could Do This!

2007 9781934356012 448

Rails Recipes 2006 9780977616602 350

Rails for .NET Developers 2008 9781934356203 300

Rails for Java Developers 2007 9780977616695 336

Rails for PHP Developers 2008 9781934356043 432

Rapid GUI Development with QtRuby 2005 PDF-Only 83

Release It! Design and Deploy Production-Ready

Software

2007 9780978739218 368

Scripted GUI Testing with Ruby 2008 9781934356180 192

Ship it! A Practical Guide to Successful Software

Projects

2005 9780974514048 224

Continued on next page

Prepared exclusively for Trieu Nguyen

WINDOWS 246 WINDOWS

Title Year ISBN Pages

Stripes ...and Java Web Development Is Fun

Again

2008 9781934356210 375

TextMate: Power Editing for the Mac 2007 9780978739232 208

The Definitive ANTLR Reference: Building

Domain-Specific Languages

2007 9780978739256 384

The Passionate Programmer: Creating a

Remarkable Career in Software Development

2009 9781934356340 200

ThoughtWorks Anthology 2008 9781934356142 240

Ubuntu Kung Fu: Tips, Tricks, Hints, and Hacks 2008 9781934356227 400

Prepared exclusively for Trieu Nguyen

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Hello Android’s Home Page

http://pragprog.com/titles/eband

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/eband.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Prepared exclusively for Trieu Nguyen

http://pragprog.com/titles/eband
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/eband
www.pragprog.com/catalog

	Cover
	Contents
	Acknowledgments
	Changes (Cupcake Updates)
	P1.5---July 21
	P1.4---July 6
	P1.3---June 22
	P1.2---June 9
	P1.1---May 26
	TODO in future releases

	Preface
	What Makes Android Special?
	Who Should Read This Book?
	What's in This Book?
	FLAGCOLOR What's New for Cupcake?
	Online Resources
	Fast-Forward >>

	Introducing Android
	Quick Start
	Installing the Tools
	Creating Your First Program
	Running on the Emulator
	Running on a Real Phone
	Fast-Forward >>

	Key Concepts
	The Big Picture
	It's Alive!
	Building Blocks
	Using Resources
	Safe and Secure
	Fast-Forward >>

	Android Basics
	Designing the User Interface
	Introducing the Sudoku Example
	Designing by Declaration
	Creating the Opening Screen
	Using Alternate Resources
	Implementing an About Box
	Applying a Theme
	Adding a Menu
	Adding Settings
	Starting a New Game
	Debugging with Log Messages
	Debugging with the Debugger
	Exiting the Game
	Fast-Forward >>

	Exploring 2D Graphics
	Learning the Basics
	Adding Graphics to Sudoku
	Handling Input
	The Rest of the Story
	Making More Improvements
	Fast-Forward >>

	Multimedia
	Playing Audio
	Playing Video
	Adding Sounds to Sudoku
	Fast-Forward >>

	Storing Local Data
	Adding Options to Sudoku
	Continuing an Old Game
	Remembering the Current Position
	Accessing the Internal File System
	Accessing SD Cards
	Fast-Forward >>

	Beyond the Basics
	The Connected World
	Browsing by Intent
	Web with a View
	From JavaScript to Java and Back
	Using Web Services
	Fast-Forward >>

	Locating and Sensing
	Location, Location, Location
	Set Sensors to Maximum
	Bird's-Eye View
	Fast-Forward >>

	Putting SQL to Work
	Introducing SQLite
	SQL 101
	Hello, Database
	Data Binding
	Using a ContentProvider
	Implementing a ContentProvider
	Fast-Forward >>

	3D Graphics in OpenGL
	Understanding 3D Graphics
	Introducing OpenGL
	Building an OpenGL Program
	Managing Threads
	Building a Model
	Lights, Camera, ...
	Action!
	Applying Texture
	Peekaboo
	Fast-Forward >>

	Appendixes
	Java vs. the Android Language and APIs
	Language Subset
	Standard Library Subset
	Third-Party Libraries

	Hello, Widget
	Creating Your First Widget
	Calling All Widgets!
	Stretch to Fit
	The Rest of the Story
	Running the Widget
	Keeping Up to Date
	Go Wild

	Publishing to the Android Market
	Bibliography

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

