

3D Programming – Loading M3G files and Playing Animations Page 2

 Copyr ight

Copyright © 2006, Motorola, Inc. All rights reserved. This documentation may be printed and copied solely for use in developing
products for Motorola products. In addition, two (2) copies of this documentation may be made for archival and backup purposes.

Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation, or adaptation) without express written consent from Motorola, Inc.

Motorola reserves the right to make changes without notice to any products or services described herein. "Typical" parameters,
which may be provided in Motorola Data sheets and/or specifications, can and do vary in different applications and actual

performance may vary. Customer's technical experts will validate all "Typicals" for each customer application.

Motorola makes no warranty in regard to the products or services contained herein. Implied warranties, including without limitation,

the implied warranties of merchantability and fitness for a particular purpose, are given only if specifically required by applicable law.
Otherwise, they are specifically excluded.

No warranty is made as to coverage, availability, or grade of service provided by the products or services, whether through a service

provider or otherwise. No warranty is made that the software will meet your requirements or will work in combination with any
hardware or application software products provided by third parties, that the operation of the software products will be uninterrupted
or error free, or that all defects in the software products will be corrected.

In no event shall Motorola be liable, whether in contract or tort (including negligence), for any damages resulting from use of a

product or service described herein, or for any indirect, incidental, special or consequential damages of any kind, or loss of revenue
or profits, loss of business, loss of information or data, or other financial loss arising out of or in connection with the ability or inability
to use the Products, to the full extent these damages may be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, or limitation on

the length of an implied warranty, therefore the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights, which vary from jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as components in systems intended for surgical

implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product or service could create a situation where personal injury or death may occur.

Should the buyer purchase or use Motorola products or services for any such unintended or unauthorized application, the buyer

shall release, indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the

designing or manufacturing of the product or service.

Motorola recommends that if you are not the author or creator of the graphics, video, or sound, you obtain sufficient license rights,

including the rights under all patents, trademarks, trade names, copyrights, and other third party proprietary rights.

If this documentation is provided on compact disc, the other software and documentation on the compact disc are subject to the
license agreement accompanying the compact disc.3D Programming - Load M3G and Animation

January, 2007

For the latest version of this document, visit http://developer.motorola.com

3d Programming – Loading M3g Files and Playing Animations

Motorola, Inc.

http://www.motorola.com

3D Programming – Loading M3G files and Playing Animations Page 3

Contents
About this Document 4

Document Overview 4

Definitions, Abbreviations, Acronyms 4

Loading 3D content from an M3G file 5

Loader class 5

Loading an M3G file 5

Display World Scene 6

Playing an Animation 8

The animate() function 8

Updating an Animation 8

Conclusion 11

References 11

List of Figures
Figure 1: Loading the M3G File 7

Figure 2: Playing the animation 11

3D Programming – Loading M3G files and Playing Animations Page 4

About this Document

Document Overview
 Introduction: In a previous 3D programming article, we introduced some basic 3D programming

concepts. This document describes the further 3D object operation, including loading 3D content from
M3G files and playing animations. For more on the basic concepts in mobile 3D programming or to
brush up on some basic terminology, please refer to the Technical Article titled Mobile 3D Graphics
Programming.

 Loading 3D contents from M3G files: introduces how to load 3D content from an M3G file.

 Playing Animations: describes how to play pre-defined animations in M3G files.

Definitions, Abbreviat ions , Acronyms
M3G Mobile 3D Graphics

GIF Graphics Interchange Format

URI Uniform Resource Identifier

WYSWYG What You See is What You Get

http://developer.motorola.com/docstools/technicalarticles/Developing_3D_Apps.pdf/
http://developer.motorola.com/docstools/technicalarticles/Developing_3D_Apps.pdf/
http://developer.motorola.com/docstools/technicalarticles/Developing_3D_Apps.pdf/

3D Programming – Loading M3G files and Playing Animations Page 5

Loading 3D content from an M3G file
Loading ready-made pieces of 3D content from an M3G file is generally the most convenient way for an
application to create and populate a 3D scene. The M3G file can be created easily by some graphic
design tools such as 3DMax, so as a developer, you only need to focus on how to use those 3D objects.
Specific instruction on generating an M3G file is beyond the scope of this article, so please refer to your
specific graphics design tool’s manual or the MOTODEV Technical Article Developing 3D Applications
for Mobile Devices. for further information on this subject. This article assumes you may be working with
a person who is a graphics designer who is providing the M3G file.

Loader class
The Loader class can read out and deserialize any 3D objects derived from the Ojbect3D class in an
M3G file. The Loader class cannot be instantiated, and its only members are the two static load methods
as shown below.

public static Object3D[] load(java.lang.String name)

 throws java.io.IOException

public static Object3D[] load(byte[] data,

 int offset)

 throws java.io.IOException

The parameter name is the name of the resource to be loaded, and is usually a M3G file URI. The load
method returns all 3D objects in an M3G file as an Object3D array. Then you may operate on each 3D
object individually or display the whole graph scene.

Loading an M3G file
Now, we will load the skaterboy.m3g file and display it via a canvas object. This .m3g (skaterboy.m3g)
file can be found In the Sun WTK.

class MyCanvas extends Canvas {

 private World myWorld = null;

 public MyCanvas() {

 try {

 //Load M3Gfile

 Object3D[] roots = Loader.load("/skaterboy.m3g");

 //Assuming World is the first root node

 myWorld = (World)roots[0];

 //render canvas

 repaint();

http://developer.motorola.com/docstools/developerguides/Developing_3D_Applications.pdf/
http://developer.motorola.com/docstools/developerguides/Developing_3D_Applications.pdf/
http://java.sun.com/products/sjwtoolkit/

3D Programming – Loading M3G files and Playing Animations Page 6

 } catch(Exception e) {

 e.printStackTrace();

 }

 }

 …

}

Here, we assume the World object is the first node of the Object3D array. If not, please consult your
graphics designer.

Another way to locate World object is to use the User ID. You can also get the World object’s User ID
value from your graphics designer.

// The USER_ID_WORLD constant value should be the same with

// World’s User ID value in M3G file

if (roots[0].getUserID() == USER_ID_WORLD) {

 myWorld = (World) roots[0];

 } else {

 …

}

Display World Scene
The typical way to display an entire scene, is shown in the code segment below. The skating boy is
illustrated in Figure 1.

 protected void paint(Graphics g) {

 //Draw 3D Scene

 Graphics3D myGraphics3D = Graphics3D.getInstance();

 try {

 myGraphics3D.bindTarget(g);

 myGraphics3D.render(myWorld);

 } finally {

 myGraphics3D.releaseTarget();

 }

 }

3D Programming – Loading M3G files and Playing Animations Page 7

Figure 1: Loading the M3G File

3D Programming – Loading M3G files and Playing Animations Page 8

Playing an Animation
For M3G files created via graphic design software applications animations can be created to be played
in the in the MIDlet application. This method gives developers a flexible and powerful way todevelop 3D
MIDlet applications.

The animate() function
The public final int animate(int time) function is an Object3D’s member function which is used to
update all animation properties in an Object3D and all Object3Ds that are reachable from this Object3D.

The parameter time is the world object’s time which updates the animation. The animate() function

returns the number of time units until this method needs to be called again for this or any reachable
Object3D. Typically, the MIDlet application would call this method once per frame as shown in the code
below. Please also be aware that the time in each frame may be different. The next animation frame time

should be calculated according to the return value of the animate() function.

int vol = myWorld.animate((int)(System.currentTimeMillis()-

 startTime));

If this function is continously called, the animation will be played as expected. This can be implemented
via a Timer and a TimerTask. The class RefreshTask is derived from the TimerTask and it is used to

invoke the paint() method upon each timer event. In the paint() method, the animate() function

will be called to play the animation and next timer event is also scheduled.

/**

 * TimerTask

 */

class RefreshTask extends TimerTask {

 public void run() {

 //invoke paint() method of Canvas

 repaint();

 }

}

Updating an Animation
Now, modify the above MyCanvas class to add a Timer and TimerTask, then add a variable to record the

animatiton start time.

class MyCanvas extends Canvas {

 private World myWorld = null;

 //Keep the start time of animation

3D Programming – Loading M3G files and Playing Animations Page 9

 long startTime = 0;

 Timer timer = new Timer();

 RefreshTask myRefreshTask = null;

 public MyCanvas() {

 try {

 // Load M3G file.

 Object3D[] roots = Loader.load("/skaterboy.m3g");

 // Assuming World is the first root node

 myWorld = (World) roots[0];

 //The animation start time

 startTime = System.currentTimeMillis();

 repaint();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 ...

}

In the paint() method, a new timer task is created and the timer is calculated by the return value of the

animate() function. As in the above code, in the timer task, the paint() method will be invoked in

such a manner as to simulate a continous loop.

 protected void paint(Graphics g) {

 if (g == null) {

 return;

 }

 // delete current timer task

 if(myRefreshTask != null)

 {

 myRefreshTask.cancel();

 myRefreshTask = null;

 }

 // play animation

3D Programming – Loading M3G files and Playing Animations Page 10

 int vol = myWorld.animate(

 (int)(System.currentTimeMillis()-

 startTime));

 // render scene

 Graphics3D myGraphics3D = Graphics3D.getInstance();

 try {

 myGraphics3D.bindTarget(g);

 myGraphics3D.render(myWorld);

 } finally {

 myGraphics3D.releaseTarget();

 }

 //create a new timer task

 myRefreshTask = new RefreshTask();

 // calculate next animatiton time

 if(vol < 1)

 {

 vol = 1; //if vol is too less, then use 1

 }

 //if vol is too big, then use 1 second.

 if(vol == 0x7fffffff)

 {

 timer.schedule(myRefreshTask, 1000);

 } else {

 timer.schedule(myRefreshTask, vol);

 }

 }

The animation is shown in Figure 2.

3D Programming – Loading M3G files and Playing Animations Page 11

Figure 2: Playing the animation

Conclusion
To play an animation pre-defined in an M3G file, developers should work closely with a 3D graphics
designer. The graphics designer should create the key frame and animation track according to application
requirements using a WYSWYG 3D designing tool. This approach will leave the designer free to focus on
the 3D content, and on the other side, leave the programmer free to focus on how to control the 3D object
and play the animation.

References
1 JSR 184, Mobile 3D Graphics, http://jcp.org/en/jsr/detail?id=184

2 Mobile 3D Graphics Programming,
http://developer.motorola.com/docstools/technicalarticles/Developing_3D_Apps.pdf/

3 Developing 3D Applications for Mobile Devices,
http://developer.motorola.com/docstools/developerguides/Developing_3D_Applications.pdf/

http://jcp.org/en/jsr/detail?id=184

