0 MOTOROLA

Using the WMA Test Server

for MMS Messaging

October 1, 2006

Technical Article

Using the WMA Test Server for MMS Messaging

By
MOTODEV Staff

The Motorola J2ME SDK for Linux Products supports JSR 205 for sending and receiving Short Message Service

messages (SMS), Cell Broadcast Service messages (CBS) as well as Multimedia Messaging Service messages
(MMS). This SDK includes a complete messaging simulation test environment for sending and receiving these
messages between programs running in an emulator and a messaging server as well as simulating the GSM
network that carries these messages. In this article we will examine the usage of the WMA Test Server for sending
and receiving MMS messages and will refer to sections of the sample MIDlet source code provided to further explain
the WMA Test Server resources. We will avoid focusing on the WMA 2.0 MMS APIs themselves in this article and
will be instead taking a look at the WMA Test Server and its usage. The sample code that accompanies this article
has been tested using the JSR 205 supported emulated handsets in the J2ME SDK for Linux Products. The sample

can be downloaded from http://developer.motorola.com/?path=1.2.888/. Let’s begin.

WMA Test Server Overview

The WMA Test Server is a program that you run on your PC to simulate a messaging server and the network that
carries the messages to and from handsets. As the developer, you have control over uploading messages to the test
server to simulate sending and also downloading messages from the test server to simulate receiving on your
MiDlets. You can simulate the messaging process between your MIDlet and the server, but not between MIDlets
running in separate emulators on your development PC. The server is an executable and is located in the
<SDK_Home>/ AplixTestWMAServer directory of your SDK. It can be correctly started from a DOS window by

navigating to the directory and issuing the following command:

TestWmaServer -server port 20001 -client port 20000

This will start the server running in its own DOS window as shown in Figure 1.

http://developer.motorola.com/?path=1.2.6.25
http://developer.motorola.com/?path=1.2.888/

¢ C¥WINDOWS¥System32¥cmd.exe

Figure 1: Starting the Test WMA Server
Receiving Messages from the WMA Server

Sending from the WMA Test Server to your MIDlet running in an emulator on your development PC requires some
additional preparation. The MMS message sent by the server needs to be saved in text file format as shown by the
template below. You can prepare your MMS in one of two ways. Either by copying the sample below and editing as
necessary or you can use email software that allows you to save a message in .EML format. Microsoft's Outlook
Express is one such program. The sample template below is a simple example using ASCII text for the message
body and includes one JPEG image attachment. The Application-ID, which can’t be more than 32 characters, needs

to specify the complete package and class name of your MMS receiving MIDlet.

Message-1d:<4.2.0.58.J.20040107143934.021a19a0>

Date:Wed, 07 Jan 2004 15:29:30 +0900

From:+1234567890

To:+12345678

Cc:addressee1@email.com,addressee2@email.com
Bcc:addressee3@email.com

Reply-To:+1234567890

Subject:2006.09.20 meeting

Mime-Version:1.0
Content-Type:multipart/related;boundary="=====================_6011093==_";start=<1>;Application-ID=<Full.class.name.of. MMS..receivi
ng.MIDlet>;Reply-To-Application-ID=<Full.class.name.of. MMS.receiving.MIDlet>

This is a multi-part message in MIME format.

--=====================_§011093==_
Content-ID:<1>
Content-Type:text/plain;charset=us-ascii

Shall we meet in room #9327

--=====================_6011093==_
Content-ID:<2>
Content-Type:image/jpg;name="myimage.JPG"
Content-Transfer-Encoding:base64
Content-Disposition:attachment;filename=" myimage.JPG"
Content-Location: myimage.JPG

19j/AAAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwWcJCQgKDBQNDAsLDBkSEw8UHRofHhOa
HBwgJC4nIClsixwcKDcpLDAXNDQOHyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjlyMijly

Mijly MjlyMjlyMjly MjlyMjlyMjly Mjly Mjly Mjly Mjly MjlyMjlyMjlyMjL/wAARCAA4AHQDASIA
AhEBAXEB/8QAHWAAAQUBAQEBAQEAAAAAAAAAAAECAWQFBgcICQoL/8QAtRAAAgGEDAWIEAWUFBAQA
AAF9AQIDAAQRBRINMUEGE1FhByJxFDKBkaEII0OKxwRVS0fAkM2JyggkKFhcYGRolJicoKSoONTY 3
ODk6QORFRkdISUpTVFVWV1hZWmNkZWZnaGlgc3R 1dnd4eXgDhIWGh4iJipKTIJWWI5iZmgKjpKWm

p6ipgrkztLW2t7i5usLDxMXGx8jJytLT 1INXW19jZ2uHi4+TI5ufo6erx8vP09fb3+Pn6/8QAHWEA
AWEBAQEBAQEBAQAAAAAAAAECAWQFBgcICQoL/8QAtIREAAgGECBAQDBACFBAQAAQJ3AAECAXEEBSEX
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYKNOEI8RcYGRomJygpKjU2Nzg50OkNERUZHSEIK
U1RVVIdYWVpjZGVmZ2hpanN0dXZ3eHI6goOEhYaHilmKkpOUIZaXmJmaogOkpaangKmgsrOOtba3
uLm6wsPExcbHyMnKOtPU1dbX2Nna4uPk5ebn60nq8vP09fb3+Pn6/90ADAMBAAIRAXEAPWDs6KKz
tW1mOOWK2IvCVjnuEtw/ACIs/MxJGFGDk19JKSSuz8TpUp1ZqEFds0aKzV1mO0fxBJoyEtdR2/wBo
crgqo3AbTzkNyDjHQg1pURknsVUo 1KTXMrXV/kwooqtOutv7R/s/zf8 AS/K8/wAvafuZ25zjHXjG
c020tylU5Tvyq9izRRRTMgooooAKKKKACIiiigAooooAK4T4rwy3HhW1hgjaSV76 MKiDLMSrgAAdT
Xd1VvLC2vvI+0xb/ACJIni+Yja652twecZPB4rKtDng4rgehluKjhs TGINXSZ5N4 Yv8AW/EPiXWN
Ut9tlqV 1ppeBki+RijouF DkjDbCuScA59K7bRPEZz+KNXtX0yUJY21t518uzOZX4WLLAH5cM25eDj
Falr4a03TgjabG9OILHCbeOWNtxSMyeY VAfcpyxPJBPNXNNO0230uOF vbA4LF 3kdtzyufvOx/iY9z/
AEAFcIKjUhZN+v8AX5ntY/NMJiluUlapWjdbK1nfe+IrdngXawv7Ruv+E6/szzP9E/sz7RswPv8A
m7c5xnpxjOK3aq/YLb+0v7Q8r/S/K8jzNx+5u3bcZx 15zjNdM03ax4WFqUBfN7RXuml69zze+8S+
IV1i7WPVilv5+oRxxLbx5QQReYnzFTkHIB74HXnjZvNfv5dNlura9uGuV0yO7eCygi8u2YpuzKOm
SdxOQg4baOh6noJPC+jSzNK9nmRnmcnzX6zLskP3v4IGPbtim3HhTRbmFoZLI+U8SROITSIsipwg
cKw3FexOTwOa5FQrK/vfiz6F 5nlsIH91a2/ux1/H+vvMbVVEI1FaeGpTdLargEZIuBCEEh/dBvka
X5FUMwzuOemM81BHrOtw6boNk959sv8AVHkeW5tfJfYseCUTO1CccFiTg7sbuMdD/wAI1awTW81j
cXVILBb/AGVXicOTFnlU+YG4B6YxgcdAAHReHNPjsZLWRJJxJcm7eWRtrmYnO8Mu3aeAPIxx9Tmv
Z1m9/wWAFT +jL6718acUoJ2b+yrabX8ldddbWODQ5dXf7VFqdvIgl4NtPIYw8iHJw6xkqCv TIXkE
cAb5rYqlZaZaae0zW8ZEk7BpZJJGkdyBgZdyWIA6DOBz61drgppgNmedi6tOpVcoKyfZW6drv8woo
0qzhCiiigA0000AKKKKACiiigAooooAKKKKACIiiigAooooAKKKKACIiigAooooAKKKKACiiigAoo
00AKKKKACiiigAooooA//9k=

__:::::::::::::::::::::_60’] 1 093::_

If you do elect to create the text file to send from the WMA Test Server with email software, the steps are as follows
for Outlook Express.

1. Start Outlook Express or a similar mail client.

2. Select “Create Mail”

3. Enter your addressees, subject and message body and any media attachments as necessary.

4. Select File -> Save As and save the message as .eml format on your PC.

5. Perform any necessary editing of the .eml file so that it conforms to our template example above and save as

text.

To receive MMS on our MIDlet from the WMA Test Server, we need to connect in server mode since only server
mode allows receiving messages. For MMS messaging, the URL connection parameter takes this format:

(MessageConnection)Connector.open("mms://:<Application-ID>");

The <Application-ID> is the full class path of the MMS receiving MIDlet running in your emulator. In our example we
use the MIDlet.getAppProperty method to retrieve application properties from the JAD file. In our JAD file we
have specified the MMS-ApplicationID as the full package and class name of our MMS receiving MIDlet as shown

here.

MMSTester JAD file

MIDlet-1: MMSTester, ,com.mot.mmstester. MMS Tester
MIDlet-Jar-Size: 6800

MiDlet-dar-URL: mmstester.jar

MIDlet-Name: MMSTester

MIDlet-Vendor: MotoDev

MIDlet-Version: 1.0
MMS-ApplicationID: com.mot.mmstester.MMSTester

The source code that creates this connection is included here.
Note: The connection URLs used in this MIDlet are for connecting to the WMA Test Server for testing purposes and
will not allow sending of MMS message to other handsets. For URL connections for messaging other handsets

please follow the recommendation in “Introduction of MMS in J2ME” from September's MOTODEYV Newsletter.

Code sample 1

* % %

private String appID; // declare variable to hold Application-ID
* k%
appID = getAppProperty("MMS-ApplicationID"); // Retrieve Application-ID

from JAD file
* % %

String mmsConnection = "mms://:" + applD;
if (mmsconn == null) {
try {
mmsconn = (MessageConnection) Connector.open(mmsConnection);

} catch (IOException ioe) {
dbg("Connector.open: " + ioe.toString());
mainScreen.append(ioe.toString());
} // end catch
} // end if

Once this connection is established we can wait to receive messages from the WMA Test Server. This is best done

is a separate thread so our MIDlet’s user interface will remain responsive while we are waiting for messages.

Code sample 2

public void run() {
(1) while(!done) {
try {

msg = mmsconn.receive();

if (msg != null) {
mainScreen.deleteAll();
senderAddress = msg.getAddress();

if(senderAddress != null) {
mainScreen.append("Message from: " + senderAddress);
}
(2)if (msg instanceof MultipartMessage) {
MultipartMessage mpm = (MultipartMessage)msg;
// Subject
mainScreen.append("Subject: " + (3) mpm.getSubject());
// Date

mainScreen.append("Date: " + (4) mpm.getTimestamp().toString());

// Display something for each part

http://developer.motorola.com/?path=1.2.7.42.876

(5) MessagePart[] parts = mpm.getMessageParts();
if (parts != null) {
for (int i = 0; i < parts.length; i++) {
MessagePart mp = parts[i];
mainScreen.append("Content-Type: " + mp.getMIMEType());
byte[] ba = mp.getContent();
String contentLocation = mp.getContentLocation();
// Depending on the mime type do something
if((6) mp.getMIMEType () .trim().substring(0,
5).equals("image")) {
try {
Image image = Image.createImage(ba, 0, ba.length);
Imageltem imageItem = new ImageItem(contentLocation, image,
Item.LAYOUT NEWLINE AFTER, contentLocation);
mainScreen.append(imageItem);

} catch (IllegalArgumentException iae)
{ dbg("IllegalArgumentException createImage"); }
} else if(mp.getMIMEType().trim().substring(0,
5).equals("audio")) {

// Do something with audio file, play etc..
mainScreen.append("Audio file is attached");
} else {
// We'll assume this is a String then. If not whatever it is will
be printed to screen as text.
mainScreen.append(new String(ba));
}
}// end for
} // end if
// Set the boolean flag to true here
(7) done = true;

} // end if
display.setCurrent(mainScreen);
}

} catch (IOException e) {
e.printStackTrace();
}
} // end while loop
Timer timer = new Timer();
TimerTask task = new ThreadTask();
// Restart in thread in 3 seconds
timer.schedule(task, 3000);
}// end run method

The Boolean value done is declared as false and is only set to true after message reception. So we are continuously
looping through our while loop waiting for messages from the connection we established earlier (1). When a
Message object is received, we check to see that it is a Multipart message (2) and if so, we proceed to retrieve the
message subject with the (3) Message.getSubject method, the date of the message with the (4)

Message.getTimestamp method. The body and any media attached to our message can be retrieved with the (5)

Message.getMessageParts method. Depending on the MIME type returned by the (6) Message.getMIMEType
method, we can choose to display or discard the MessagePart as we wish. Finally, our Boolean value is set to

true since we have received our message (7).

Now that the MIDlet has established the server connection to the appropriate port and our MIDlet is waiting to
receive messages, let’s take a look at how we can send the MMS message from the WMA Test Server command
window. From our WMA Test Server command window, the following command where textfilename.ixt is the name
of the MMS message text file you prepared will send the MMS message to our waiting MIDlet.

>tx MMS textfilename.txt

cv C¥WINDOWS¥System32¥cmd.exe

Figure 2: Sending the MMS message from he command line

Sending messages to the WMA Server

Sending an MMS message from your MIDlet running in an emulator on your PC to the WMA Test Server running on
the same PC is relatively straightforward. The MMS message can be constructed by the MIDlet and simply sent to
the WMA Test Server listening on the correct Port.

From our command issued to start the server and as Figure 1 demonstrates, our server is listening on Port 20001 for
incoming messages. So, if our MMS sending MIDlet wishes to send to the server we first need to open a connection
to this port. We can use the Connector.open factory method with our connection URL to return a
MessageConnection object. The connection and sending of the message is processor heavy and should be

carried out in a separate thread as shown in our sample’s run method here.

Code sample 3

String addr = "mms://:" + 20001;

*kkk*k

public void run() {

try {
MessageConnection conn = (MessageConnection) Connector.open(addr);
MultipartMessage mmmessage =

(MultipartMessage)conn.newMessage(MessageConnection.MULTIPART MESSAGE);
(1)mmmessage.setAddress(addr);
MessagePart part = getBody();
(2)mmmessage. addMessagePart(part);
(3)mmmessage.setSubject(subjectTextField.getString());
conn.send(mmmessage);

} catch(Exception e) { out(e.toString()); }
} // end run
*kk*k*

Our MIDlet uses the MultipartMessage API to build the MMS message before calling the
MessageConnection.send method to send our MMS message to the WMA Test Server. The (1)
MultipartMessage.setAddress method, (2) MultipartMessage. addMessagePart and (3)
MultipartMessage.setSubject are used to set the sections of our message. The message body of our MMS

message is constructed in our MIDlet’'s getBody method as shown below.

Code sample 4

public MessagePart getBody() {
String mimeType = "text/plain";
String encoding = "UTF-8";
String text = bodyTextBox.getString();
byte[] contents = null;

try {
contents = text.getBytes(encoding);

} catch (java.io.UnsupportedEncodingException ex)

{ dbg(ex.toString()); }

// Create the MessagePart

try {
mBody = new MessagePart(contents, 0, contents.length, mimeType, "idl",

null, encoding);
} catch(javax.wireless.messaging.SizeExceededException ex)

{ dbg(ex.toString()); }

return mBody;

}

cv C¥WINDOWS¥System32¥cmd.exe

-

Figure 3: The WMA Test Server command window acknowledges receipt of the MMS message.

Summary

The WMA Test Server is a tool to help developers test messaging applications. It simulates the transmission of SMS,
CBS and MMS messages to and from handsets to the messaging server. For troubleshooting the WMA Test Server,
please refer to FAQ #932 on MOTODEV.

References

The Wireless Messaging AP1 2.0 By C. Enrique Ortiz, October 2005
http://developers.sun.com/techtopics/mobility/midp/articles/wma2/
Introduction of MMS in J2ME By MOTODEYV staff, August 2006

http://developer.motorola.com/?path=1.2.7.42.876

http://developer.motorola.com/?path=1.2.8.48
http://developer.motorola.com
http://developers.sun.com/techtopics/mobility/midp/articles/wma2/

