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About this Document 

Document  Overview 
 Introduction: In a previous 3D programming article, we introduced some basic 3D programming 

concepts. This document describes the further 3D object operation, including loading 3D content from 
M3G files and playing animations. For more on the basic concepts in mobile 3D programming or to 
brush up on some basic terminology, please refer to the Technical Article titled Mobile 3D Graphics 
Programming. 

 Loading 3D contents from M3G files: introduces how to load 3D content from an M3G file. 

 Playing Animations: describes how to play pre-defined animations in M3G files. 

 

Definitions,  Abbreviat ions , Acronyms 
M3G Mobile 3D Graphics 

GIF Graphics Interchange Format 

URI Uniform Resource Identifier 

WYSWYG  What You See is What You Get 

http://developer.motorola.com/docstools/technicalarticles/Developing_3D_Apps.pdf/
http://developer.motorola.com/docstools/technicalarticles/Developing_3D_Apps.pdf/
http://developer.motorola.com/docstools/technicalarticles/Developing_3D_Apps.pdf/
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Loading 3D content from an M3G file 
Loading ready-made pieces of 3D content from an M3G file is generally the most convenient way for an 
application to create and populate a 3D scene. The M3G file can be created easily by some graphic 
design tools such as 3DMax, so as a developer, you only need to focus on how to use those 3D objects. 
Specific instruction on generating an M3G file is beyond the scope of this article, so please refer to your 
specific graphics design tool’s manual or  the MOTODEV Technical Article Developing 3D Applications 
for Mobile Devices. for further information on this subject. This article assumes you may be working with 
a person who is a graphics designer who is providing the M3G file.

 

Loader class 
The Loader class can read out and deserialize any 3D objects derived from the Ojbect3D class in an 
M3G file. The Loader class cannot be instantiated, and its only members are the two static load methods 
as shown below. 

 

public static Object3D[] load(java.lang.String name) 

                       throws java.io.IOException 

 

public static Object3D[] load(byte[] data, 

                              int offset) 

                       throws java.io.IOException 

 

The parameter name  is the name of the resource to be loaded, and is usually a M3G file URI. The load 
method returns all 3D objects in an M3G file as an Object3D array. Then you may operate on each 3D 
object individually or display the whole graph scene. 

Loading an M3G file 
Now, we will load the skaterboy.m3g file and display it via a canvas object. This .m3g (skaterboy.m3g) 
file can be found In the Sun WTK. 

 

class MyCanvas extends Canvas { 

        private World myWorld = null;     

         

        public MyCanvas() { 

            try { 

                //Load M3Gfile 

                Object3D[] roots = Loader.load("/skaterboy.m3g"); 

                 

                //Assuming World is the first root node 

                myWorld = (World)roots[0]; 

                //render canvas 

                repaint(); 

http://developer.motorola.com/docstools/developerguides/Developing_3D_Applications.pdf/
http://developer.motorola.com/docstools/developerguides/Developing_3D_Applications.pdf/
http://java.sun.com/products/sjwtoolkit/
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            } catch(Exception e) { 

                e.printStackTrace(); 

            } 

        } 

 

 … 

} 

 

Here, we assume the World object is the first node of the Object3D array. If not, please consult your 
graphics designer.  

Another way to locate World object is to use the User ID. You can also get the World object’s User ID 
value from your graphics designer.  

 

// The USER_ID_WORLD constant value should be the same with 

// World’s User ID value in M3G file 

if (roots[0].getUserID() == USER_ID_WORLD) {     

    myWorld = (World) roots[0]; 

 } else { 

    … 

} 

Display  World Scene 
The typical way to display an entire scene, is shown in the code segment below. The skating boy is 
illustrated in Figure 1. 

 

        protected void paint(Graphics g) { 

            //Draw 3D Scene 

            Graphics3D myGraphics3D = Graphics3D.getInstance(); 

            try { 

                myGraphics3D.bindTarget(g); 

                myGraphics3D.render(myWorld); 

            } finally { 

                myGraphics3D.releaseTarget(); 

            } 

        } 
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Figure 1: Loading the M3G File 
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Playing an Animation 
For M3G files created via graphic design software applications animations can be created to be played 
in the in the MIDlet application. This method gives developers a flexible and powerful way todevelop 3D 
MIDlet applications. 

The animate()  function 
The public final int animate(int time) function is an Object3D’s member function which is used to 
update all animation  properties in an Object3D and all Object3Ds that are reachable from this Object3D. 

The parameter time is the world object’s time which updates the animation. The animate() function 

returns the number of time units until this method needs to be called again for this or any reachable 
Object3D. Typically, the MIDlet application would call this method once per frame as shown in the code 
below. Please also be aware that the time in each frame may be different. The next animation frame time 

should be calculated according to the return value of the animate() function. 

 

int vol = myWorld.animate((int)(System.currentTimeMillis()- 

 startTime)); 

 

If this function is continously called, the animation will be played as expected. This can be  implemented 
via a Timer and a TimerTask. The class RefreshTask is derived from the TimerTask and it is used to 

invoke the paint() method upon each timer event. In the paint() method, the animate() function 

will be called to play the animation and next timer event is also scheduled. 

 

/**  

 * TimerTask 

 */ 

class RefreshTask extends TimerTask { 

    public void run() { 

        //invoke paint() method of Canvas 

 repaint(); 

    } 

} 

 

Updating an Animation 
Now, modify the above MyCanvas class to add a Timer and TimerTask, then add a variable to record the 

animatiton start time. 

 

class MyCanvas extends Canvas { 

    private World myWorld = null; 

     

    //Keep the start time of animation  
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    long startTime = 0; 

     

    Timer timer = new Timer(); 

    RefreshTask myRefreshTask = null; 

    public MyCanvas() { 

     try { 

         // Load M3G file. 

         Object3D[] roots = Loader.load("/skaterboy.m3g"); 

        // Assuming World is the first root node 

         myWorld = (World) roots[0]; 

 

         //The animation start time 

         startTime = System.currentTimeMillis(); 

         repaint(); 

     } catch (Exception e) { 

     e.printStackTrace(); 

        } 

    } 

    ... 

} 

 

In the paint() method, a new timer task is created and the timer is calculated by the return value of the 

animate() function. As in the above code, in the timer task, the paint() method will be invoked in 

such a manner as to simulate a continous loop. 

 

        protected void paint(Graphics g) { 

            if (g == null) { 

                return; 

            } 

             

            // delete current timer task 

            if(myRefreshTask != null) 

            { 

                myRefreshTask.cancel(); 

                myRefreshTask = null; 

            } 

             

            // play animation 
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            int vol = myWorld.animate( 

                         (int)(System.currentTimeMillis()- 

                                              startTime)); 

             

            // render scene 

            Graphics3D myGraphics3D = Graphics3D.getInstance(); 

            try { 

                myGraphics3D.bindTarget(g); 

                myGraphics3D.render(myWorld); 

            } finally { 

                myGraphics3D.releaseTarget(); 

            } 

             

            //create a new timer task 

            myRefreshTask = new RefreshTask(); 

             

            // calculate next animatiton time 

            if(vol < 1) 

            {     

                vol = 1;    //if vol is too less, then use 1 

            } 

             

            //if vol is too big, then use 1 second. 

            if(vol == 0x7fffffff) 

            {     

                timer.schedule(myRefreshTask, 1000); 

            } else { 

                timer.schedule(myRefreshTask, vol); 

            } 

        } 

 

The animation is shown in Figure 2. 
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Figure 2: Playing the animation 

 

Conclusion 
To play an animation pre-defined in an M3G file, developers should work closely with a 3D graphics 
designer. The graphics designer should create the key frame and animation track according to application 
requirements using a WYSWYG 3D designing tool. This approach will leave the designer free to focus on 
the 3D content, and on the other side, leave the programmer free to focus on how to control the 3D object 
and play the animation. 
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