
Developers guidelines

February 2007

Java™ Platform, Micro
Edition, CLDC – MIDP 2.0
for Sony Ericsson feature and entry level phones

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Preface

Purpose of this document

This document describes the Java™ ME platform support for Sony Ericsson Java platforms JP-2, JP-3,
JP-4, JP-5, JP-6, and JP-7. Corresponding Developers guidelines for the Sony Ericsson Symbian Java
platforms SJP-1 – SJP-3 (P900/ P910 series and P990/M600/W950 series of phones) can be found on
Sony Ericsson Developer World.

Readers who will benefit from this document include:

• Software developers
• Corporate buyers
• IT professionals.

• Support engineers
√ _ìëáåÉëë=ÇÉÅáëáçå=ã~âÉêë

It is assumed that the reader is familiar with Java.
2 February 2007

This document is published by Sony Ericsson
Mobile Communications AB, without any
warranty*. Improvements and changes to this text
necessitated by typographical errors, inaccuracies
of current information or improvements to
programs and/or equipment, may be made by
Sony Ericsson Mobile Communications AB at any
time and without notice. Such changes will,
however, be incorporated into new editions of this
document. Printed versions are to be regarded as
temporary reference copies only.

*All implied warranties, including without limitation
the implied warranties of merchantability or fitness
for a particular purpose, are excluded. In no event
shall Sony Ericsson or its licensors be liable for
incidental or consequential damages of any
nature, including but not limited to lost profits or
commercial loss, arising out of the use of the
information in this document.

These Developers guidelines are published by:

Sony Ericsson Mobile Communications AB,
SE-221 88 Lund, Sweden

Phone: +46 46 19 40 00
Fax: +46 46 19 41 00
www.sonyericsson.com/

© Sony Ericsson Mobile Communications AB,
2006. All rights reserved. You are hereby granted
a license to download and/or print a copy of this
document.
Any rights not expressly granted herein are
reserved.

18th edition (February 2007)
Publication number: EN/LZT 108 7584, R18A

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Sony Ericsson Developer World

On www.sonyericsson.com/developer, developers will find documentation and tools such as phone White
papers, Developers guidelines for different technologies, SDKs (Software Development Kits) and relevant
APIs (Application Programming Interfaces). The Web site also contains discussion forums monitored by
the Sony Ericsson Developer Support team, an extensive Knowledge base, Tips and tricks, example code
and news.

Sony Ericsson also offers technical support services to professional developers. For more information
about these professional services, visit the Sony Ericsson Developer World Web site.

Document conventions

Products

Sony Ericsson phones are referred to in this document by generic names (for information about Sony Eric-
sson Java platforms, JP-2, JP-3, and so on, see “Sony Ericsson Java platforms” on page 14):

Generic names
Series

Sony Ericsson phones

JP-2 phone:

Z1010 Z1010

JP-3 phones:

F500 F500i

J300 J300i, J300c, J300a

K300 K300i, K300c, K300a

K500 K500i, K506c, K508i, K508c

K700 K700i, K700c

S700 S700i, S700c, S710a

Z500 Z500a

JP-4 phones:

V800 V800, Vodafone 802SE

Z800 Z800i
3 February 2007

www.sonyericsson.com/developer

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
JP-5 phones:

K600 K600i, K608i

K750 K750i, K750c, D750i

V600 V600i

W700 W700i, W700c

W800 W800i, W800c

Z520 Z520i, Z520c, Z520a

Z525 Z525a

JP-6 phones:

K310 K310i, K310c, K310a

K320 K320i, K320c

K510 K510i, K510c

W200 W200i, W200c

W300 W300i, W300c

W550 W550i, W550c

W600 W600i

W810 W810i, W810c, W810a

W900 W900i

Z530 Z530i, Z530c

Z550 Z550i, Z550c, Z550a

Z558 Z558i, Z558c

Generic names
Series

Sony Ericsson phones
4 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
JP-7 phones:

K550 K550i, K550c

K610 K610i, K610c, K618i

K790 K790i, K790c, K790a

K800 K800i, K800c

K810 K810i, K818c

W610 W610i, W610c

W710 W710i, W710c

W830 W830i, W830c

W850 W850i, W850c

W880 W880i, W888c

Z310 Z310i, Z310a

Z610 Z610i

Z710 Z710i, Z710c

Generic names
Series

Sony Ericsson phones
5 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Terminology and abbreviations

API
Application Programming Interface

CLDC
Connected Limited Device Configuration. A Java
ME platform configuration for mobile phones

DRM
Digital Rights Management

GSM
Global System for Mobile Communications. GSM
is the world’s most widely used digital mobile
phone system, operating in over 100 countries
around the world, particularly in Europe and Asia-
Pacific

HTTP
HyperText Transfer Protocol

IDE
Integrated Development Environment

Java SE
Java platform, Standard Edition

JSR
Java Specification Request

Mascot Capsule®

Mascot Capsule Micro 3D Engine is software that
renders 3D objects in real-time on a display screen
of an embedded device, portable game unit or
mobile phone

MIDP
Mobile Information Device Profile. A Java ME plat-
form profile connected to the CLDC for mobile
phones

MMAPI
Mobile Media Application Programming Interface

OMA
Open Mobile Alliance

SDK
Software Development Kit. A collection of tools
used to develop application

SMS
Short Message Service. Allows messages of up to
160 characters to be sent and received in a phone
via the network operator’s message centre

URI
Uniform Resource Identifier.
URIs are short strings that identify online
resources: documents, images, downloadable
files, services, and electronic mailboxes, for exam-
ple. URIs use a variety of naming schemes and
access methods, such as http, ftp, mailto and tel-
net, to make resources available

URL
Uniform Resource Locator. See URI

WAP
Wireless Application Protocol

WMA
Wireless Messaging API

WTK
Wireless Toolkit
6 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Trademarks and acknowledgements

Java and all Java-based marks and logos are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

End-user license agreement for Sun Java platform, Micro Edition.

1 Restrictions: Software is confidential copyrighted information of Sun and title to all copies is retained
by Sun and/or its licensors. Customer shall not modify, decompile, disassemble, decrypt, extract, or
otherwise reverse engineer Software. Software may not be leased, assigned, or sublicensed, in whole
or in part.
2 Export Regulations: Software including technical data, is subject to U.S. export control laws, includ-
ing the U.S. Export Administration Act and its associated regulations, and may be subject to export or
import regulations in other countries. Customer agrees to comply strictly with all such regulations and
acknowledges that it has the responsibility to obtain licenses to export, re-export, or import Software.
Software may not be downloaded, or otherwise exported or re-exported (i) into, or to a national or res-
ident of, Cuba, Iraq, Iran, North Korea, Libya, Sudan, Syria (as such listing may be revised from time to
time) or any country to which the U.S. has embargoed goods; or (ii) to anyone on the U.S. Treasury
Department's list of Specially Designated Nations or the U.S. Commerce Department's Table of Denial
Orders.
3 Restricted Rights: Use, duplication or disclosure by the United States government is subject to the
restrictions as set forth in the Rights in Technical Data and Computer Software Clauses in DFARS
252.227-7013(c) (1) and FAR 52.227-19(c) (2) as applicable.

Borland, the Borland Logo and JBuilder are trademarks or registered trademarks of Borland Software
Corporation in the United States and other countries.

NetBeans is a trademark or registered trademark of Sun Microsystems, Inc. in the U.S. and other coun-
tries.

Bluetooth is a trademark or registered trademark of Bluetooth SIG Inc.

Nokia is a registered trademark of Nokia Corporation.

Mascot Capsule is a registered trademark of HI Corporation.

ARM and Jazelle are registered trademarks of ARM Limited.

RealAudio and RealVideo are trademarks or registered trademarks of RealNetworks, Inc.

Other product and company names mentioned herein may be the trademarks of their respective owners.
7 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Java Verified™ program for Java ME platform

The Java Verified™ Program uses the results of the Unified Testing Initiative launched by the leading
mobile phone manufacturers and Sun Microsystems.

The Java Verified program gives developers a direct way to application testing and to the market. Testing
Providers all over the world, covering different regions, languages and price structures, are authorized by
the Java Verified program to undertake testing on behalf of the program. A developer selects one of these
providers to complete the testing of their application.

An application that successfully meets both the program guidelines and passes the testing proc-
ess is permitted to use the Java Powered logo. The logo is provided by Sun Microsystems, at its
own discretion, on a non-exclusive license basis. An application that passes the Java Verified pro-
gram testing is digitally signed so that potential distributors can be assured of its integrity and
authenticity.

Once the the developer has successfully passed the testing process, their application has the opportunity
to be promoted and showcased in the on-line catalogs of all Java Verified Member Companies, as well as
the commercial catalogs of participating operators.

More information on the Java Verified Program is available at the Java Verified Web site
(www.javaverified.com).
8 February 2007

http://www.javaverified.com

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Document history

Change history

2003-12-05 Version R1A First edition

2003-12-11 Version R1B Minor updates in technical specifications

2004-03-30 Version R2A Document updated to comply with the latest
software version of the Z1010 phone.
Information about the K700 series and Z500
series added. 3D API information added

2004-07-05 Version R3A Document updated and supplied with com-
plementary information. Information about the
S700 series and F500 added

2004-07-19 Version R4A Information about the K500 series added

2004-11-23 Version R5A Information about the V800 series added

2005-03-09 Version R6A Revised edition. Information about the K300,
J300, K750, W800, Z800 and K600 series
added

2005-04-15 Version R6B Revised edition. Updated specifications.
Added programming tips. Sony Ericsson Java
platform concept implemented in documenta-
tion

2005-04-25 Version R6C Revised edition. Minor editorial changes

2005-08-01 Version R7A Revised edition. Information about the V600,
S600, W600 and Z520 series added

2005-08-08 Version R7B Revised edition. S600 changed to W550

2005-09-30 Version R8A Revised edition, adapted to the
Sony Ericsson SDK for the Java™ ME Plat-
form, ver 2.2.3

2005-10-21 Version R9A Revised edition. Information about the W900
series added

2005-11-07 Version R9B Revised edition. Minor editorial changes

2005-12-12 Version R9C Revised edition. Minor changes

2006-01-04 Version R10A Revised edition. Information about the W810
series added

2006-02-13 Version R11A Revised edition. Information about the K610
series added

2006-02-28 Version R12A Revised edition. Information about the K800,
K790, Z530, W300, K510 and K310 series
added
9 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
2006-04-12 Version R13A 13th edition. Information about the W700 and
Z525 series added

2006-05-19 Version R14A 14th edition. Information about the Z550,
W850, Z710 and W710 series added

2006-06-26 Version R14B Revised edition

2006-07-07 Version R14D Revised edition. Information about Mobile
JUnit added

2006-08-22 Version R15A 15th edition. Information about the K618i and
Z610 series added

2006-09-28 Version R16A 16th edition. Information about W830, K320
and Z558 series and the Z550a model added

2006-11-15 Version R16B 16th revised edition. Minor changes

2007-01-08 Version R17A 17th edition. Information about Z310 and
W200 series added

2007-02-06 Version R18A 18th edition. Information about W880, K550,
W610 and K810 series added
10 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Contents

The Java ME platform ...13
Sony Ericsson Java platforms ...14
MIDP 2.0 support ..15
WMA (JSR 120) ...15
WMA 2.0 (JSR 205) ...16
MMAPI (JSR 135) ..17

Audio support ..17
Video support ..18

Advanced Multimedia Supplements
(JSR 234) ...18

3D APIs ..19
PDA optional packages (JSR 75) ..19

PIM optional package ..19
File Connection optional package ...20

Bluetooth API (JSR 82) ..20
Java ME Web Services 1.0 (JSR 172) ...21
Memory ...21
The navigation key ..21
Simultaneous key presses ..22
Command types ..22
Error messages ...23
Sony Ericsson SDK for the Java™ ME Platform ...23
Security policy for Sony Ericsson phones ...24

Permission settings ...24
Security Configuration ...25

Download and installation ...27

Appendix A
Phone specifications ..29

Screen and memory specifications ...30
Java specifications ..32
Camera specifications ...35
Font sizes ..37

Key mapping ..38

Appendix B
Java programming issues ..41

Hints for developing MIDlets ...42
Writing efficient applications ...42
Low-level MIDP user interface ...42

Memory usage ...43
Java heap ..43
Video RAM areas ...44

Retrieving the IMEI number ...44
Minimizing and maximizing MIDlets ..45

Multitasking MIDlets ..45
Standby MIDlets ..46
Autostarting MIDlets ..46
Network APIs ...47

Secure sockets and HTTPS connections ..48
11 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
JAD/manifest attributes ...48
Vodafone JAD attributes ..49

Serial Port Communications (JP-7 only) ...49
JSR 75 implementation ...51

PIM API ..51
File Connection API ...53

Video overlay ...56
Video rotation/mirroring ..56
Tips for using the JSR 82 ..57

Local device ...57
Device discovery ...57
Games ...58
Managing connections between Bluetooth SDP records and a game server58

Querying system properties ..58
Supported classes ...58
System.getProperty(String Key) calls ..59
Bluetooth Local device properties (JSR 82) ..62
Implementation specific properties in JSR 184 ...62

Knowledge base ..63

Appendix C
Sony Ericsson SDK for the Java™ ME Platform ..66

Features ..67
Installing and updating the SDK ..67

Integrating the Sony Ericsson SDK for the Java™ ME Platform in JBuilder 2005 ..68
Limitations in the JBuilder 2005 ..69

Integrating the Sony Ericsson SDK for the Java™ ME Platform in NetBeans 469
Integrating the Sony Ericsson SDK for the Java™ ME Platform in Eclipse70

Appendix D
Sony Ericsson Mobile JUnit ...74

Mobile JUnit features ..75
Installing Mobile JUnit ...75
The sample project test ...76

Running the test ..76
Test suites ...78
On-device testing on a Sony Ericsson phone ...79
Configuring and running mobile tests ...80

Default values ..83
Using ANT to run mobile tests ..84
Compiling a standalone test MIDlet ..85
Configuring Eclipse and EclipseME for mobile test development85
Using JUnit to run mobile tests ...86
Links and references ..87
Index ...88
12 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
The Java ME platform

The phones covered in this document support the MIDP 2.0 and CLDC 1.1 specifications. They also have
Java support for sending and receiving SMS (via WMA 1.1), playing audio and video, as well as taking
snapshots from built-in cameras (via MMAPI 1.1). The basic MIDP 2.0 features, such as life cycle, memory
handling etc, are the same as for the MIDP 1.0 environment. More information about MIDP 1.0 in Sony
Ericsson phones is available at Sony Ericsson Developer World, (www.sonyericsson.com/developer/java).
MIDP 1.0 applications developed for the T61x, T628/T630, and Z60x phones should also execute on Sony
Ericsson MIDP 2.0 supported phones.
13 February 2007

www.sonyericsson.com/developer/java

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Sony Ericsson Java platforms

Sony Ericsson uses a platform approach to Java implementation allowing developers to focus on a plat-
form rather than on a variety of different product names. Two platform branches exist, supporting Sym-
bian (SJP) and non-Symbian (JP) based phones respectively. The platforms are implemented through an
evolutionary approach in order to ensure forwards compatibility between platform versions. Normally each
platform version is used in several phone models.

A list of Sony Ericsson Java platform versions for the phones in this document can be found below. Some
platform features are optional, that is, configurable. For example, the Bluetooth™ APIs (JSR 82) are only
enabled for phones who actually support Bluetooth wireless technology.

JP = Sony Ericsson Java platform

Features Phones

JP-2 CLDC 1.1, MIDP 2.0, JTWI (JSR 185), JSR 120, JSR
135, Nokia UI API 1.1

Z1010

JP-3 CLDC 1.1, MIDP 2.0, JTWI (JSR 185), JSR 120, JSR
135, Nokia UI API 1.1, JSR 184, Mascot Capsule Ver.
3

F500, J300, K300, K500, K700, S700
and Z500 series

JP-4 CLDC 1.1, MIDP 2.0, JTWI (JSR 185), JSR 120, JSR
135, Nokia UI API 1.1, JSR 184, Mascot Capsule Ver.
3

V800 and Z800 series

Optional: VSCL 2.0 V800 series

JP-5 CLDC 1.1, MIDP 2.0, JTWI (JSR 185), JSR 120, JSR
135, Nokia UI API 1.1, JSR 184, Mascot Capsule Ver.
3, JSR 75

K600, K750, V600, W700, W800,
Z520 and Z525 series

Optional: JSR 82 K600, K750, V600, W700, W800,
Z520 and Z525 series

Optional: VSCL 2.0 V600 series

JP-6 CLDC 1.1, MIDP 2.0, JTWI (JSR 185), JSR 120, JSR
135, Nokia UI API 1.1, JSR 184, Mascot Capsule Ver.
3, JSR 75, JSR 172, JSR 205

K310, K320, K510, W200, W300,
W550, W600, W810, W900, Z530,
Z550 and Z558 series

Optional: JSR 82 K320, K510, W300, W550, W600,
W810, W900, Z530, Z550 and Z558
series

JP-7 CLDC 1.1, MIDP 2.0, JTWI (JSR 185), JSR 120, JSR
135, Nokia UI API 1.1, JSR 184, Mascot Capsule Ver.
3, JSR 75, JSR 172, JSR 205, JSR 234 (camera capa-
bilities)

K550, K610, K790, K800, K810,
W610, W710, W830, W850, W880,
Z310, Z610 and Z710 series.
Note: JSR 184, Mascot Capsule Ver.
3 and JSR 234 are not enabled in
Z310 series

Optional: JSR 82 K550, K610, K790, K800, K810,
W610, W710, W830, W850, W880,
Z610 and Z710 series
14 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
MIDP 2.0 support

The phones covered in this document are MIDP 2.0 and JTWI 1.0 compliant.
For a list of protocols, formats, memory size, display size etc. supported by the MIDP 2.0 implementation
in the phones, see “Appendix A Phone specifications” on page 29, which contains technical specifications
for each phone.

The MIDP 2.0 specification contains a number of optional features of which the following are supported:

• PushRegistry Alarm and PushRegistry SMS. In JP-4, JP-5, JP-6, and JP-7 PushRegistry CBS is also
supported.

• Signed MIDlets as specified in JTWI 1.0.
• TCP and UDP server sockets as specified in MIDP 2.0.
• PlatformRequest supports the tel, http and https schemes.

When the method is invoked with the tel scheme, the native phone application is accessed and the
user can initiate a voice or video call, or send a message to the given phone number.
A PlatformRequest invocation for http/https initiates downloading of the given URI, for example, a
Java application, image etc. For http/https URIs referencing WAP pages, the Web browser is invoked.
The Java application is then left in the background until the phone call/download/Web session is com-
pleted, after which it is resumed.

• GameCanvas.getKeyStatus() supports the detection of several simultaneous keys. See also
“Simultaneous key presses” on page 22.

• TextBox and TextField with input constraints ANY, EMAILADDR and URL support the character set
specified in JTWI 1.0.

• PNG images with colour depth of 1, 2, 4, 8, 16, 24 and 32 bits per pixel are supported.
• The maximum number of application-created threads is limited only by the amount of available mem-

ory.
• A TextBox or TextField object with input constraint TextField.PHONENUMBER allows the user to

select a phone number from the phonebook, as specified in JTWI.
• In JP-7 CommConnection is implemented, but requires an AT command, AT*SEJCOMM, to open a

port before CommConnection can be used by a MIDlet.
• The Z558 series features a touchscreen, with support for writing recognition (in Chinese and English).

The standard pointer control methods of the MIDP Canvas class are supported for this series of
phones.

WMA (JSR 120)

The Wireless Messaging API v 1.1 (JSR 120) is supported. GSM SMS is supported in all phones covered
in this document, while GSM Cell Broadcast (CBS) is only supported in JP-4, JP-5, JP-6 and JP-7.
MIDP 2.0 security has been added to the Open connection, Send and Receive functions, as specified in
WMA 1.1, http://www.jcp.org/en/jsr/detail?id=120.

The Sony Ericsson SDK for the Java™ ME platform provides support for developing WMA MIDlets. This
includes API documentation, support for compiling WMA MIDlets and debugging these MIDlets using any
of the phones covered in this document.
15 February 2007

http://www.jcp.org/en/jsr/detail?id=120

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Per Appendix A, “GSM SMS Adapter”, of the WMA specification, implementations of the GSM SMS
adapter must support at least three concatenated short message segments. The phones covered in this
document exceed this minimum requirement, allowing MIDlets to send and receive SMS messages of up
to ten segments in length.

The 3GPP specification for SMS specifies the port numbers 16000-16999 as available for applications. It
is recommended that Java developers use non-reserved port numbers within this range. WMA has a sys-
tem list of restricted port numbers which may not be used by Java applications. In addition to the port
numbers restricted in the WMA specification, the phones covered in this document also reserve the ports
listed in the table below. If a Java application attempts to use any of the restricted and/or reserved ports,
an exception will be thrown.

WMA 2.0 (JSR 205)

Note: The JSR 205 API is only supported on the JP-6 and JP-7 platforms.

The Wireless Messaging API 2.0 is an extension and enhancement of WMA (JSR 120). GSM SMS, GSM
Cell Broadcast (CBS), and MMS are supported.

WMA 2.0 is based on the Generic Connection Framework (GCF), which is defined in the Connected Lim-
ited Device Configuration (CLDC) 1.0 specification. The package javax.microedition.io defines the
framework and supports input/output and networking functionality in Java ME profiles.

The JSR 205 specification can be downloaded from http://www.jcp.org/en/jsr/detail?id=205.

Port number Description

0 Internal system use

650 General obex

2948-2949 WAP

5505 PM ringtone (Nokia Smart Messaging)

5506 PM Logo (Nokia Smart Messaging)

5507 PM Icon (Nokia Smart Messaging)

5514 Picture message (Nokia Smart Messaging)

9200-9207 WAP

16733 Calendar

16987 Email notification

16988 Email account setting

49996-49997 WAP provisioning

49999 WAP provisioning
16 February 2007

http://www.jcp.org/en/jsr/detail?id=205

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Note: Sending DRM protected files as message parts is not supported in the Sony Ericsson implementa-
tion of the JSR 205 API.

MMAPI (JSR 135)

The MMAPI support in the phones in this document provides access to audio and video playback, as well
as image capture with the phone camera. For a list of supported data formats for each phone, see “Java
specifications” on page 32. The JSR 135 specification can be downloaded from http://www.jcp.org/en/
jsr/detail?id=135.

Players can be created from:

• Java streams
• DataSources
• URIs with “http://”, “https://” or “capture://video”

Audio support

See also “Java specifications” on page 32.

In JP-2 and JP-3, a maximum of 16 audio players can exist at the same time in Started state at the Java
level. The number of players that can produce audio in parallel is limited by the phone hardware. Simple
tones can be generated in parallel to any of the supported audio formats, but no other parallel audio play-
back is supported.

In JP-4, JP-5, JP-6 and JP-7 the number of simultaneously started players is limited only by available
memory. These phones also support more advanced mixing. In JP-4 and JP-5, one player can play a
waveform audio file (.WAV or ADPCM) with a sample rate of 8 or 16 kHz in parallel to another player play-
ing a MIDI file. In JP-7 up to 4 parallel players are supported, either 4 waveform players (AMR, .WAV or
ADPCM) or 3 waveform players and 1 player playing a MIDI file.

The MidiControl, supported in JP-5, JP-6 and JP-7, allows control of a maximum of 16 MIDI channels
when playing MIDI.

The following controls are implemented:

• VolumeControl
• ToneControl
• StopControl
• MetaDataControl (from JP-6)
• MIDIControl (from JP-5)
• PitchControl (from JP-6)
• TempoControl (JP-7)
• RateControl (JP-7).

JP-6 and JP-7 phones (except Z310) support audio capture in the MMAPI.
17 February 2007

http://www.jcp.org/en/jsr/detail?id=135
http://www.jcp.org/en/jsr/detail?id=135

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Video support

See also “Java specifications” on page 32.

Note: Video playback is not supported in JP-2 phones and in Z310 series.

Only one video player can exist at a particular time. The video player can display its contents in a Canvas
or in an Item on a Form.

The snapshot functionality is only supported for taking a picture with the built-in camera of the phone.
Access to the camera snapshot functionality follows the security policy specified in JTWI.

Video recordings from the built-in camera is supported in JP-7 phones except Z310.

When a phone call is received while running a Java application that uses the native camera, the Java ref-
erence to the native camera is released. Once the phone call is terminated, the application will regain
focus and an END_OF_MEDIA_EVENT is sent to the application. It is then up to the application whether to
restart the camera or not.

The following controls are implemented:

• VideoControl
• FramePositionControl (JP-7 only) allows precise positioning of a video frame for the player.

Advanced Multimedia Supplements
(JSR 234)

Note: Only JP-7 phones, except Z310, support the JSR 234 API.

Advanced Multimedia Supplements (AMMS) builds on the framework already established in the Mobile
Media API (MMAPI) (JSR 135). AMMS adds many new controls and extensions to the MMAPI framework.

The full JSR 234 specification can be downloaded from http://www.jcp.org/en/jsr/detail?id=234

In Sony Ericsson JP-7 phones, the following classes/interfaces for extended camera and image handling
functionality have been implemented:

• javax.microedition.amms.control.FormatControl

• javax.microedition.amms.control.ImageFormatControl

• javax.microedition.amms.control.camera.CameraControl
All methods supported, except getCameraRotation()

• javax.microedition.amms.control.camera.ExposureControl
Not supported: setExposureTime(), getExposureTime(), getExposureValue(), getFStop
and setFStop()
18 February 2007

http://www.jcp.org/en/jsr/detail?id=234

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• javax.microedition.amms.control.camera.FocusControl.
Only supported in K800 and K790.
No support for “servo focus”, that is, focus does not change automatically when the motive changes.
Macro focusing is supported.
Manual focusing is not supported.
To utilize auto focusing:
To focus, call FocusControl.setFocus(FocusControl.AUTO), and the camera focuses on the
object currently in the viewfinder. An ongoing focusing procedure can be interrupted by calling
FocusControl.setFocus(FocusControl.AUTO_LOCK), however this call has no effect if the cam-
era has already locked focus on the motive

• javax.microedition.amms.control.camera.SnapshotControl

• javax.microedition.amms.control.camera.ZoomControl
Only supported in K800 and K790

• No support for optical zoom features. All digital zoom features are supported. getMinFocal-
Length() is not supported

• javax.microedition.amms.GlobalManager

3D APIs

Note: JP-2 phones and Z310 series do not support the 3D APIs.

JP-3, JP-4, JP-5, JP-6 and JP-7 (except Z310) support real-time 3D graphics rendering. These platforms
support two different 3D graphics APIs, Mascot Capsule Micro3D version 3 and Mobile 3D Graphics API
for J2ME (JSR 184). For more information on the implementation of the 3D APIs, see the Developers
guidelines “3D graphics with Java ME”, available at www.sonyericsson.com/developer/java.

PDA optional packages (JSR 75)

Note: Only JP-5, JP-6 and JP-7 support the JSR 75 API.

The PDA optional packages for Java ME (JSR 75) consist of two separate APIs, one for accessing PIM
data and one for file system access.

PIM optional package

The PIM (Personal Information Management) API is standardized in the JSR 75 specification, which can
be downloaded from http://www.jcp.org/en/jsr/detail?id=75. The following describes shortly the imple-
mentation in the Sony Ericsson phones where the API is supported.
19 February 2007

www.sonyericsson.com/developer/java
http://www.jcp.org/en/jsr/detail?id=75

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
In Sony Ericsson phones the PIM API handles:

• Contacts (ContactList)
• Calendar (EventList)
• Tasks (ToDoList).

For more details on the Sony Ericsson implementation of the PIM package, see “Appendix B Java pro-
gramming issues” on page 41.

File Connection optional package

The File Connection API is standardized in the JSR 75 specification, which can be downloaded from
http://www.jcp.org/en/jsr/detail?id=75. The following describes shortly the implementation in the
Sony Ericsson phones where the API is supported.

In general, Java applications can access the same folders, subfolders and files as the built-in File manager
application, both in phone internal memory and on an inserted memory card. The following folders and all
contained subfolders and files are accessible via the API:

• <file:///c:/> (internal memory file root)
• <file:///c:/other/>
• <file:///c:/pictures/>
• <file:///c:/sounds/>
• <file:///c:/videos/>
• <file:///e:/> (memory card file root)
• <file:///e:/dcim/> (camera pictures folder on memory card).

Note: The folders Games, Themes, Applications and Webpage are not available via the File Connection
API.

Note: Which folders are accessible via the File Connection API differ between phone models. For exam-
ple, in JP-7 phones, there is a Camera folder in phone internal memory, <file:///c:/camera>, and the
Themes and Webpage folders on memory card are accessible.
The PDAPDemo application supplied with the Sony Ericsson SDK for the Java ME platform is recom-
mended to find out exactly which folders are accessible in internal memory and installed memory card of
a specific phone.

For more details on the Sony Ericsson implementation of the package, see Appendix B, “JSR 75 imple-
mentation” on page 51.

Bluetooth API (JSR 82)

See also “Java specifications” on page 32.

JP-5, JP-6 and JP-7 phones, support JSR 82, the standard Java API for Bluetooth, as an optional feature.
It provides the means for developers to create Bluetooth games and other applications as well as imple-
ment new Bluetooth profiles.
20 February 2007

http://www.jcp.org/en/jsr/detail?id=75

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
For example, the Bluetooth API offers developers the ability to:

• Create multiplayer games
• Connect to PCs from Java applications.

The complete JSR 82 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=82

Note: JSR 82 v1.1 is supported from JP-7.4 and onwards, except for the Push Registry features. JP-5,
JP-6 and JP-7.0 – JP-7.3 phones support JSR 82 v1.0a.

Java ME Web Services 1.0 (JSR 172)

Note: The JSR 172 APIs are only supported on the JP-6 and JP-7 platforms.

The JSR 172 contains two independent, optional packages, both supported on the JP-6 and JP-7 plat-
forms:

• Java ME XML Parser
• Java ME RPC, which facilitates access to XML based Web services from CDC and CLDC based pro-

files.

The complete JSR 172 specification can be downloaded from the Java Community Pages,
http://www.jcp.org/en/jsr/detail?id=172

Memory

The phones covered in this document utilize a number of different memory areas for user interface fea-
tures, and for images in particular. The total amount of memory available varies depending on how much
of this memory other native phone applications have currently allocated. If needed, and if memory is avail-
able, the Java heap grows dynamically up to about 1.5 MB. In general, a Java application with around 500
kB of image data is executable.

For more information about memory in different phones, see “Java specifications” on page 32. More infor-
mation about memory allocation can be found in Appendix B, “Memory usage” on page 43.

The navigation key

The phones covered in this document detect navigation key actions in the following manner:
21 February 2007

http://www.jcp.org/en/jsr/detail?id=82
http://www.jcp.org/en/jsr/detail?id=172

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• Two adjacent directions are simultaneously detected. If the navigation key is pressed in one of the four
main directions, up, down, left or right, one event is delivered to the application. If the navigation key is
pressed in a diagonal direction, two events are delivered to the application, for example, one for “up”
and one for “right”

• Navigational changes are detected directly without having to go back to neutral position.

Simultaneous key presses

Support for simultaneous key presses enhances gaming experience. For example, a user playing a game
can move around on the screen and shoot at the same time.

Most Sony Ericsson phones support simultaneous key presses. However, a MIDP developer can not take
for granted that a certain phone model supports simultaneous key presses in all possible combinations.
Games and other applications should always be tested with the actual targeted hardware. Hardware emu-
lators does not necessarily emulate simultaneous key presses properly.

In general, when two keys are pressed at the same time, the proper events are delivered to the applica-
tion. When three or more keys are pressed in some combinations, extra key presses may be detected. In
other combinations, a third key is not detected at all. The general approach when more than two keys
need to be detected at the same time, is to map the game keys (Fire, game A, game B, and so on) to
actions that might occur at the same time as two or more other key presses.

More specific information for the simultaneous key press functions can be found in Appendix A, “Key
mapping” on page 38.

Command types

The MIDP commands defined by an application are displayed on either the left selection key, the right
selection key or they are placed in the “More” menu which is associated with the right selection key. Com-
mand type BACK is always mapped to the back button of the phone. Command type OK is generally
mapped to the left selection key. It is recommended to always include BACK and OK commands. The
command types are prioritized in the following order (from higher to lower):

• OK
• ITEM
• SCREEN
• BACK
• CANCEL
• EXIT
• STOP
• HELP
22 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
If a command of type BACK exists it will be mapped to the back key of the phone. It is also recommended
to use the BACK command instead of the EXIT command for exiting the application, allowing the user to
press the back key of the phone to exit. This conforms to the normal behaviour of Sony Ericsson phone
applications.

Of all the remaining commands (excluding the one mapped to BACK) the one with the highest priority is
mapped to the left selection key. All other commands are mapped to the right selection key. If more than
one command is to be mapped to the right selection key, a “More” option is displayed and a list of the
commands appears when the user presses the right selection key.

Error messages

Java exceptions that are not handled by the active MIDlet are dealt with by the Java environment. The fol-
lowing error messages are displayed to the user:

Sony Ericsson SDK for the Java™ ME
Platform

Development of Java applications for the phones covered in this document is supported by the Sony Eric-
sson SDK for the Java™ ME Platform. This includes PC emulation based on a customized version of the
Wireless Toolkit from Sun. For example, screen size, colour depth and key inputs of the phone are emu-
lated.

The latest version of the Sony Ericsson SDK is available for download at
www.sonyericsson.com/developer/java.

Java exception Error message displayed to user

java.io.IOException Network failure

javax.microedition.io.ConnectionNotFoundException Network failure

java.lang.ClassNotFoundException Invalid application

java.lang.OutOfMemoryError The application consumes too much memory

java.io.EOFException,
java.io.UnsupportedEncodingException,
java.io.UTFDataFormatException

Network data error

javax.microedition.rms.RecordStoreFullException Application memory full

All other Exceptions or Errors Application error
23 February 2007

www.sonyericsson.com/developer/java

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
For more information about the SDK, see “Appendix C Sony Ericsson SDK for the Java™ ME Platform” on
page 66.

Security policy for Sony Ericsson phones

All of the phones described in this document comply with the JSR185 Java Technology for the Wireless
Industry (JTWI) specification and MIDP 2.0 recommended security policy. For a detailed description of the
installation and security rules, see Chapter 7, Security Policy for GSM/UMTS Compliant Devices of the
JSR 185 specification (http://www.jcp.org/en/jsr/detail?id=185). A number of APIs are categorized as
“restricted”. Usage can result in costs for the user (traffic charges), inappropriate use may potentially
affect the user data integrity or cause disturbance to other parties. The following tables describe the spe-
cific security configuration implementation on Java platforms JP-2, JP-3, JP-4, JP-5, JP-6 and JP-7.

Permission settings

The following table lists definitions of permission settings:

Permission
setting

Screen description Definition Standard
description

1 Yes, Ask Once per Session Ask the first time an application requests
this function, then retain this setting for
the remainder of the session

Session (Yes)

2 Yes, Always Ask Ask every time the application requests
access to this function

One-shot (Yes)

3 No, Ask Later
(Runtime only)

Do not accept the request to the function
at this time, however next time this func-
tion is needed during this session please
ask again

One-shot (No)

4 No Access
No, Never Grant
(Runtime Only)

Do not grant permission to this function
during this session and do not ask again

Session (No)

5 Not Allowed This function is not granted access by
the operator. The Application is not
allowed access to this function and the
user is unable to modify this setting

No

6 Allowed This function is always granted access
by the operator

Blanket

7 Yes, Never Ask Again
Blanket Permission

User Defined - never ask again for per-
mission, permission always granted

Blanket (Yes)
24 February 2007

http://www.jcp.org/en/jsr/detail?id=185

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Security Configuration

This table lists permission settings per functionality and security domain:

Functionality/Domain Untrusted Trusted
3rd party

Data Network

javax.microedition.io.HttpConnection 1, 2, 4 1, 7, 4

javax.microedition.io.HttpsConnection 1, 2, 4 1, 7, 4

javax.microedition.io.Connector.datagram 1, 2, 4 1, 7, 4

javax.microedition.io.Connector.datagramreceiver
datagram server (w/o host)

1, 2, 4 1, 7, 4

javax.microedition.io.Connector.socket 1, 2, 4 1, 7, 4

javax.microedition.io.Connector.serversocket server
socket (w/o host)

1, 2, 4 1, 7, 4

javax.microedition.io.Connector.ssl ssl 1, 2, 4 1, 7, 4

All App Auto-Start

javax.microedition.io.PushRegistry 1, 2, 4 2, 7, 4

Messaging- Wireless Messaging API - JSR 120

javax.wireless.messaging.sms.send 2, 4 2, 4

javax.wireless.messaging.sms.receive 2, 4 2, 4

javax.microedition.io.Connector.sms 2, 4 2, 4

javax.wireless.messaging.cbs.receive (JP-4, JP-5,
JP-6 and JP-7 only)

2, 4 2, 4

javax.microedition.io.Connector.cbs (JP-4, JP-5, JP-
6 and JP-7 only)

2, 4 2, 4

PIM and File Connection APIs (JSR 75, JP-5, JP-6 and JP-7 only)

javax.microedition.pim.ContactList.read 1, 2, 4 2, 7, 4

javax.microedition.pim.ContactList.write 1, 2, 4 2, 7, 4

javax.microedition.pim.EventList.read 1, 2, 4 2, 7, 4

javax.microedition.pim.EventList.write 1, 2, 4 2, 7, 4

javax.microedition.pim.ToDoList.read 1, 2, 4 2, 7, 4

javax.microedition.pim.ToDoList.write 1, 2, 4 2, 7, 4

javax.microedition.io.Connector.file.read 2, 4
(from JP-7.4: 1, 4)

2, 7, 4
(from JP-7.4: 1, 7, 4)

javax.microedition.io.Connector.file.write 2, 4
(from JP-7.4: 1, 4)

2, 7, 4
(from JP-7.4: 1, 7, 4)
25 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Note: Cingular have their own Java signing and permission process, which should be considered before
purchasing a signing certificate for applications to be installed on Sony Ericsson phones customized for
Cingular. For more information, see the Cingular developer site, http://developer.cingular.com/developer/
technologies/java/signing.jhtml (registration required).

Note: Unsigned MIDlets are not allowed to:

• open datagram connections on ports 9200, 9201 or 9203
• open socket connections on ports 80, 443 or 8080
• open SSL connections on port 443.

The security domain is determined at installation as follows:

• If the midlet suite is unsigned, then it will be installed in the “Untrusted” domain

• If the midlet suite was signed using a certificate granted by a trusted third party such as Verisign or
Thawte, then it will be installed in the "Trusted 3rd party" domain. Operators maintain control of their
certification process

• A signed midlet suite is not installed if certificate verification fails, for example, when a midlet suite,
signed by one operator, is attempted to install on a phone issued by another operator. In other words,
operator signatures are not generic, but are specific to phones provided by each individual operator

The digital certificate embedded in the JAD and the signed JAR file are verified for authenticity and date
validity at install time according to chapter 4 of the JSR 118 specification
(http://www.jcp.org/en/jsr/detail?id=118). This assures data integrity and vendor identity.

Certificates in Sony Ericsson phones
The table below lists “factory installed” root certificates in Sony Ericsson phone models/series. The table
is valid for the first released version of the different phones, later releases may in some cases contain
more certificates.

Vodafone Specific Class Library (VSCL 2.0 in Vodafone customized phones. Parts of VSCL 2.1 in
JP-5, JP-6 and JP-7 phones customized for Vodafone)

com.vodafone.midlet 4 2

Phone model/series Certificates

UTI from GeoTrust
(Java Verified)

Verisign Thawte

Z1010

F500

J300, K300 • •

K500

K700

S700i, S700c

Functionality/Domain Untrusted Trusted
3rd party
26 February 2007

http://www.jcp.org/en/jsr/detail?id=118
http://developer.cingular.com/developer/technologies/java/signing.jhtml
http://developer.cingular.com/developer/technologies/java/signing.jhtml

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Download and installation

The typical distribution mechanism for MIDP applications is over the air (OTA) via WAP or HTTP. The JAD
and or JAR file(s) are accessible via the Internet and users may access either file. After downloading via
the phones Browser application, installation is automatic.

Note: When JAR files are downloaded OTA via a WAP gateway, the file size may be limited by the network
operator.

In the case of a signed midlet, the user must access the JAD file, because the signature is in it. The JAD
file is read and the URL property in the file is used to access the JAR file. Transferring the JAR file via
Bluetooth, IR or serial/USB cable do not work, since these methods only work with unsigned midlets.

Signed midlets may also be installed using the correct JAD file with the Sony Ericsson SDK for the Java™
ME via the DeviceExplorer, ejava.exe command line tool or by right-clicking the file and selecting the
“Install on Device” option.

A signed midlet can be installed on a phone with no UTI root certificate, by removing the following JAD/
Manifest attributes and the corresponding values before installation:

• MIDlet-Certificate-1-1:
• MIDlet-Jar-RSA-SHA1:

A list of JAD attributes supported in MIDP2 compliant Sony Ericsson phones can be found in Appendix B,
see “JAD/manifest attributes” on page 48.

Java applications can be installed on the memory card as well as in internal memory in JP-4, JP-5, JP-6
and JP-7 phones with memory cards. Note: This is not possible in the S700 series.

To install a MIDlet on the memory card:

S710a • •

Z500 • •

V800 • •

K310, K320, K510, K550, K600,
K610, K750, K790, K800, K810, V600,
W200, W300, W550, W600, W610,
W700, W710, W800, W810, W830,
W850, W880, W900, Z310, Z520,
Z525, Z530, Z550, Z558, Z610, Z710,
Z800

• • •

Phone model/series Certificates

UTI from GeoTrust
(Java Verified)

Verisign Thawte
27 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• Transfer the application files (JAR/JAD) to the directory \mssemc\media files\other in the phone file
system.

• From the phone main menu, select File manager (Data folder) and browse to the application in the
other directory. Select Install.
28 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Appendix A
Phone specifications

In this appendix the technical specifications are listed for the phones covered in this Developers guideline.

Note: market/customer variations in the specifications may exist.
29 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Screen and memory specifications

Screen sizes are specified as Width x Height (pixels).

a) In Java only 65,536 colours (16-bit colour depth) can be used.

b) Java applications can be installed on the memory card as well as in internal memory.
To install a MIDlet on the memory card:

• Copy the application files (JAD/JAR) to the directory \mssemc\media files\other in the phone file sys-
tem.

• From the phone main menu, select Data folder and browse to the application in the other directory.
Select Install.

Specification/Phone Z1010 K700 S700 F500, K500,
Z500, Z520,
Z525

V800, Z800

Screen

Screen size 176x220 176x220 240x320 128x160 176x220

Fullscreen canvas size 176x220 176x220 240x320 128x160 176x220

Non fullscreen canvas
size

176x182 176x176 240x266 128x128 176x182

Pixel ratio (H:W) 1:1 1:1 1:1 1:1 1:1

Colour depth 65,536 (16-
bit)

65,536 (16-
bit)

262,144 (18-
bit) a

65,536 (16-
bit)

262,144 (18-
bit) a

Transparency Full (8-bit) alpha blending

Memory

Max. RMS size Limited only by the amount of available free storage.

Memory, storage 8 MB 40 MB 32 MB F500 10 MB
K500 10 MB
Z500 6 MB
Z520 16 MB
Z525 16 MB

V800 8 MB b

Z800 5 MB b

Note: The amount of memory available for Java applications depends on
the free amount of internal memory in the phone. Other contents, such as
pictures, video clips and themes, use the same memory pool

Java heap size 512 kB - 1.5 MB (dynamic, depending on available memory)

Max. JAR size Unlimited, but depending on available storage.

Native video RAM availa-
ble to Java

Approx. max 500 kB
30 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Screen and memory specifications - continued

Specification/Phone J300, K300 K550, K600,
K610, K750,
V600, W550,
W600, W610,
W700, W710,
W800, W810,
Z550, Z558,
Z610, Z710

K790, K800,
K810, W830,
W850, W880,
W900

K310, K320,
W200, Z310,
Z530

K510, W300

Screen

Screen size 128x128 176x220 240x320 128x160 128x160

Fullscreen canvas size 128x128 176x220 240x320 128x160 128x160

Non fullscreen canvas
size

128x110 176x176 240x266 128x128 128x128

Pixel ratio (H:W) 1:1 1:1 1:1 1:1 1:1

Colour depth 65,536 (16-
bit)

262,144 (18-
bit) a

262,144 (18-
bit) a

65,536 (16-
bit)

262,144 (18-
bit) a

Transparency Full (8-bit) alpha blending

Memory

Max. RMS size Limited only by the amount of available free storage.

Memory, storage 8 MB K550 64 MBb

K600 37 MB
K610 64 MBb

K750 34 MBb

V600 32 MB
W550 256 MB
W600 256 MB
W610 64 MBb

W700 34 MBb

W710 10 MBb

W800 32 MBb

W810 21 MBb

Z550 20 MBb

Z558 18 MBb

Z610 64 MBb

Z710 10 MBb

K790 64 MBb

K800 64 MBb

K810 64 MBb

W830 64 MBb

W850 64 MBb

W880 16 MBb

W900 470
MBb

K310 15 MB
K320 15 MB
W200 20 MB
Z310 14 MB
Z530 28 MBb

K510 28 MBb

W300 20 MBb

Note: The amount of memory available for Java applications depends on
the free amount of internal memory in the phone. Other contents, such as
pictures, video clips and themes, use the same memory pool

Java heap size JP-3, JP-5: 512 kB - 1.5 MB (dynamic, depending on available memory)
JP-6: 1.0 - 1.5 MB (dynamic, depending on available memory)
JP-7: dynamic, depending on available memory
31 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
a) In Java only 65,536 colours (16-bit) can be used.

b) Java applications can be installed on the memory card as well as in internal memory.
To install a MIDlet on the memory card:

• Copy the application files (JAD/JAR) to the directory \mssemc\media files\other in the phone file sys-
tem.

• From the phone main menu, select the Data folder and browse to the application in the other directory.
Select Install.

Java specifications

The table lists the Java characteristics of the phones covered in this document.

Max. JAR size Unlimited, but depending on available storage.

Native video RAM availa-
ble to Java

Approx. max 500 kB

Characteristic Support Comments

CLDC version 1.1

MIDP version 2.0

Supported image formats:
GIF87a, GIF89a, PNG v 1.0 (colour depth 1, 2, 4,
8, 16 bits per pixel), BMP v 3.x, WBMP level 0

Networking:
secure sockets, http 1.1, https. TLS 1.0 is also
supported

See also “MIDP 2.0 support”
on page 15

Serial communication:
JP-7 phones implement the CommConnection
interface via the AT command port. The AT com-
mand port must be set to transparent mode with
the AT*SEJCOMM AT command before serial
communication can proceed.

See also “Serial Port Commu-
nications (JP-7 only)” on
page 49

Specification/Phone J300, K300 K550, K600,
K610, K750,
V600, W550,
W600, W610,
W700, W710,
W800, W810,
Z550, Z558,
Z610, Z710

K790, K800,
K810, W830,
W850, W880,
W900

K310, K320,
W200, Z310,
Z530

K510, W300
32 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
JTWI (JSR 185)
compliant

Yes, Release 1

MMAPI (JSR 135) 1.1

Supported Audio Content types:
• audio/midi - MIDI (GM, GML and SP-MIDI)
• audio/x-wav - WAV (PCM)
• audio/x-tone-seq - JSR 135 tone sequence
• audio/mpeg - MP3 (MPEG-1 layer 3, MPEG-2

layer 3, MPEG 2.5 layer 3)
• audio/imelody - iMelody
• audio/emelody - eMelody
• audio/amr - AMR
• audio/mp4a-latm - 3GP (MPEG-4 AAC LC)
• audio/x-pn-realaudio (.ra) - RealAudio®, ver. 8
• audio/x-ms-wma – Windows media audio.

See also “MMAPI (JSR 135)”
on page 17.

Note: Not all content types are
supported in all phones

Supported Video Content types:
• video/mp4v-es - 3GP (MPEG-4 Visual Simple

Profile Level 0)
• video/h263-2000 - 3GP (H.263 Baseline Profile

0 Level 10)
• video/x-pn-realvideo (.rm) - RealVideo®, ver. 8
• GIF89a animations are supported from JP-6
• video/x-ms-wmv – Windows media video.

Note:
Video playback is not sup-
ported in JP-2 and Z310 series

Note: Not all content types are
supported in all phones

Supported Image (Camera) Content types:
• image/jpeg - JPEG

See also “Camera specifica-
tions” on page 35

Note: The camera in Z310
series is not accessible from
Java.

AMMS (JSR 234) Extended camera and image handling functional-
ity.

Note:
Only supported in JP-7 except
Z310.
See also “Advanced Multime-
dia Supplements (JSR 234)”
on page 18

WMA (JSR 120) 1.1 - GSM SMS See also “WMA (JSR 120)” on
page 15

WMA 2.0 (JSR 205) GSM SMS
GSM CBS
MMS

Note:
Only supported in JP-6 and
JP-7

Characteristic Support Comments
33 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
PDA optional pack-
ages for Java ME
(JSR 75)

Version 1.0

PIM API, supported package:
• Javax.microedition.pim
PIM API, supported classes/interfaces:
• Contact
• Event
• ToDo
• Serialization methods on PIM items
• Serialization of PIM items according to

vCard 2.1/vCalendar 1.0.

File connection API, supported package:
• javax.microedition.io.file.

Note:
Only supported in JP-5, JP-6
and JP-7

See also “PDA optional pack-
ages (JSR 75)” on page 19 and
“JSR 75 implementation” on
page 51

Java Bluetooth API
(JSR 82)

Version 1.0a, from JP-7.4 version 1.1

Supported packages:
• javax.bluetooth
• javax.obex.

Supported connections:
• L2Cap (btl2cap://)
• Serial Port Profile (btspp://)
• Generic Object Exchange Profile (btgoep://)
• irdaobex (irdaobex://).

Not supported: Push Registry

Note:
Only supported in JP-5, JP-6
and JP-7

See also “Bluetooth API (JSR
82)” on page 20

Java ME Web Serv-
ices
(JSR 172)

Version 1.0

Supported packages:
• XML parsing
• XML Web services

Note:
Only supported in JP-6 and
JP-7

Java IR APIs No

Java Serial APIs No See also “Serial Port Commu-
nications (JP-7 only)” on
page 49

OTA Recommended
Practice

Yes, MIDP 2.0 compliant

Debug interface KDWP

Numeric keys Yes (0-9, *, #)

8-way directional key
with select

Yes (navigation key)

Signed MIDlets Yes

TCP Sockets Yes

UDP Sockets Yes

Characteristic Support Comments
34 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Camera specifications

Note: In Z310, the camera is not available to Java APIs.

In the K550, K600, K610, K750, K790, K800, K810, S700, W610, W700, W800, W810, W830, W850, W880
and W900 the native camera application is designed for taking pictures with the phone in horizontal posi-
tion. When a snapshot is taken in a Java application, the image is automatically rotated to match the
image seen in the Java viewfinder.

Note: In the K600 and V600 series, only the video call camera is available for Java applications via
Manager.createPlayer("capture://video")

Supported image types for a phone are obtained by calling
System.getProperty("video.snapshot.encodings")

The supported image types can be used in conjunction with the image sizes defined in the table below by
specifying a snapshot parameter string. For example:
videoControl.getSnapshot("encoding=jpeg&width=640&height=480");

Java applications are restricted to use the values listed in the table below, even if the camera itself sup-
ports other image sizes.

Java 3D Mascot Capsule Micro3D version 3
Mobile 3D Graphics API for J2ME (JSR 184)

See also “3D APIs” on page 19

Note: Not supported in JP-2
and Z310

NokiaUI API Version 1.1

ARM® Jazelle®
technology support

Yes JP-2: No

Multitasking VM JP-7: Yes

Image size (pixels)

Phone/series 60
x
100

120
x
160

240
x
320

352
x
288

480
x
640

960
x
1280

1024
x
1280

1224
x
1632

1200
x
1600

1500
x
2000

1536
x
2048

Z1010, K700, K500, Z500,
F500, K300

•

S700 •

V800, Z800 • • • • a

K750, W800, W700 • • • a • a

Characteristic Support Comments
35 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
a High resolution snapshots may not be possible to view in the Java application that took the picture,
because of limited memory. However, it is possible to take a snapshot in the application and then process
the created image object, for example, save it as a file in the file system of the phone.

b Resolution reported by System.getProperty("video.snapshot.encoding") in JP-7 phones.
This is the only resolution that can be used in VideoControl.getSnapshot(). The other resolutions
supported in these phones are available only through the JSR 234 interface javax.microedi-
tion.amms.control.camera.CameraControl.

K600 •

V600 •

Z520, Z525 • • •

W600 • • • a

W550 • • • a

W900 • • • a

W810 • • • • a

K790, K800, K810 •b • a • a • a • a

Z530 • • •

W300 • • •

K510 • • • •a

K310, K320, W200 • • •

Z550, Z558 • • •a

K610, W830, W850, W880 •b •a •a

W710, Z710 •b •a •a

K550, W610, Z610 •b •a •a

Image size (pixels)

Phone/series 60
x
100

120
x
160

240
x
320

352
x
288

480
x
640

960
x
1280

1024
x
1280

1224
x
1632

1200
x
1600

1500
x
2000

1536
x
2048
36 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Font sizes

A font is specified by requesting a style, size and face. In Sony Ericsson phones, the style and size
attributes are supported, while the face attribute is ignored.

Note: Font attributes are only available for Java in the low-level UI (Canvas or GameCanvas objects).

Due to space restrictions, all styles are not supported for Chinese characters. Also, the SIZE_LARGE
attribute gives the same size as SIZE_MEDIUM.

Font heights in pixels (including line space) are listed below:

Note: In the SDK emulator, only Western font sizes are rendered correctly. Due to variations in phone soft-
ware, for example, different language packs installed, texts may be displayed differently in the emulator
than in the phone.

MIDP values Z1010 K700 S700 F500
K310
K320
K500
K510
W200
W300
Z310
Z500
Z520
Z525
Z530

J300
K300

K550
K600
K610
K750
V600
V800
W550
W600
W610
W700
W710
W800
W810
Z550
Z558
Z610
Z710
Z800

W900 K790
K800
K810
W830
W850
W880

Western characters

SIZE_LARGE 22 px 22 px 26 px 20 px 15 px 22 px 26 px 26 px

SIZE_MEDIUM 18 px 18 px 22 px 15 px 13 px 18 px 22 px 22 px

SIZE_SMALL 15 px 15 px 18 px 13 px 9 px 15 px 18 px 18 px

Chinese characters

SIZE_LARGE 18 px 22px 26 px 15 px 15 px 22 px 26 px 26 px

SIZE_MEDIUM 18 px 22 px 26 px 15 px 15 px 22 px 26 px 22 px

SIZE_SMALL 15 px 18 px 22 px 13 px 13 px 18 px 22 px 18 px
37 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Key mapping

Sony Ericsson phones support the keyPressed(), keyReleased(), and keyRepeated() event
delivery methods in class Canvas.

Key Constant value MIDP key code Game action

4-way select up -1 UP

4-way select down -2 DOWN

4-way select left -3 LEFT

4-way select right -4 RIGHT

4-way select press -5 FIRE

* 42 KEY_STAR GAME_C

35 KEY_POUND GAME_D

0 48 KEY_NUM0

1 49 KEY_NUM1

2 50 KEY_NUM2 UP

3 51 KEY_NUM3

4 52 KEY_NUM4 LEFT

5 53 KEY_NUM5 FIRE

6 54 KEY_NUM6 RIGHT

7 55 KEY_NUM7 GAME_A

8 56 KEY_NUM8 DOWN

9 57 KEY_NUM9 GAME_B

Left Selection key (Soft key).
Only available in Fullscreen Can-
vas mode

-6

Right Selection key (Soft key).
Only available in Fullscreen Can-
vas mode

-7

C key (Clear) -8

Back key -11

Special keys
The following keys are special keys. For some of them only keyPressed is called, not keyReleased
and keyRepeated. Note that some of these special keys might not be possible to use, since they may
have some native functionality, for example, starting another application.

Power On/Off key
(JP-6 and higher only)

-12
38 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
a This key is not present in all phone models and may be referred to with different names, depending on
what function it is used for in the UI of the phone. The name and function of the key may also be custom-
ized for different operators.

Swivel position detection
On JP-6 and JP-7 jack knife phones the Canvas.keyPressed() event delivery method can also be
used to detect changes of the swivel position:

Special gaming key A
(W600, W550, K800, K790, W850,
W830 and K810 series only)

-13

Special gaming key B
(W600, W550, K800, K790, W850,
W830 and K810 series only)

-14

Operator key a JP-2 – JP-5: -10
JP-6 – JP-7: -20

Video call key a

(JP-6 and higher only)
-21

Media player (WALKMAN™) key a

(JP-6 and higher only)
-22

Play (media) buttona

(JP-6 and higher only)
-23

Camera key a

(JP-6 and higher only)
-24

Camera focus key a

(JP-6 and higher only)
-25

Camera, capture key a

(JP-6 and higher only)
-26

Lamp key a

(JP-6 and higher only)
-27

PTT (Push-To-Talk) key a

(JP-6 and higher only)
-28

Camera lense cover open a

(JP-6 and higher only)
-34

Camera lense cover close a

(JP-6 and higher only)
-35

Volume+ (Zoom+) key a

(JP-6 and higher only)
-36

Volume– (Zoom–)key a

(JP-6 and higher only)
-37

Key Constant value MIDP key code Game action
39 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• keyCode -32 is returned when the swivel is opened
• keyCode -33 is returned when the swivel is closed

Keycodes generated when opening or closing a clam-shell phone
On JP-6 and JP-7 clam-shell phones the Canvas.keyPressed() event delivery method can also be
used to detect when the phone flip is opened or closed:

• keyCode -30 is returned when the phone flip is opened
• keyCode -31 is returned when the phone flip is closed

Simultaneous keypress support (S700, Z500, Z1010)
Two keys pressed at the same time are properly detected. More than two simultaneous key presses can in
some combinations generate extra key press events. In some three key sequences, the third key is not
detected.

Simultaneous keypress support (F500, J300, K300, K500, K700)
Two keys pressed at the same time are properly detected. More than two simultaneous key presses can in
some combinations generate extra key press events. Pressing the navigation key in different directions
and pressing other keys at the same time works with key 5 (Fire), key 7 (Game A) and key 9 (Game B).
Using other keys together with the navigation key can generate false detections.

Simultaneous keypress support (JP-4, JP-5, JP-6 and JP-7 except Z310)
Two keys pressed at the same time are properly detected. More than two keys pressed simultaneously
works in most cases but some combinations of keys may generate extra key press events. Pressing the
navigation key and other keys at the same time works with key 0, key 1, key 3, key 7 (GAME A), key 9
(GAME B), key *(GAME C) and key # (GAME D).

Simultaneous keypress support (Z310)
Combinations of the 4-way select keys “up”, “down”, “left”, “right” and the “5” key (FIRE) are prioritized in
the key detection mechanisms of the Z310. Pressing one or two of the 4-way select keys, alone or
together with the “5” key, will always be properly detected, and return proper key codes with the triggered
key events.

All other key combinations with two or more simultaneously pressed keys can not be properly detected by
Java in the Z310.
40 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Appendix B
Java programming issues

This appendix contains some programming issues of interest for developers of Java MIDlets/applications
for Sony Ericsson phones.
41 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Hints for developing MIDlets

Information specific for developing Java MIDlets for wireless devices may be found in Applications for
Mobile Information Devices, a Sun white paper with helpful hints for application developers and user inter-
face designers using the MIDP (http://java.sun.com/j2me/docs/pdf/midpwp.pdf). The book MIDP 2.0 Style
Guide (Wagner, Bloch - Addison Wesley, 2003) contains practical guidelines for utilizing the features of
MIDP2.0. In addition, see the FAQ section of the Sony Ericsson SDK for the Java™ ME Platform release
notes for more information about application development.

Writing efficient applications

Java MIDlets run on phones with limited screen sizes, memory and processing power. Reducing the
number of created and destroyed objects will reduce memory usage and at the same time improve per-
formance by reducing the time spent by the JVM for intitialization and garbage collection of these objects.

Some recommendations for writing efficient applications:

• Make good use of static variables and avoid operations on String objects.

• Use the StringBuffer class for efficient manipulation of strings.

• Limit the use of inner classes and use an obfuscator to reduce class file size.

• Set object references to null as soon as they are no longer needed.

• Avoid unnecessary re-initialization of variables that are automatically set to 0 or null by the VM.

• Use synchronization sparingly. It is costly and is only needed in multi-threaded applications.

• Avoid loading the same image into memory more than once, since memory is consumed for each
duplicate.

• Close network streams when finished with, in order to preserve resources.

Low-level MIDP user interface

An application using the low-level MIDP user interface will always have a Canvas object. The Canvas is
implemented with double buffering to eliminate display flicker. The buffer is flushed when the paint()
method returns.

Some recommendations for writing low-level UI applications:

• Only repaint the part of the Canvas to be changed, but always remember to paint what is requested of
you to paint.
42 February 2007

http://java.sun.com/j2me/docs/pdf/midpwp.pdf

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• In JP-2 – JP-5, the method startApp() is not only called when the midlet starts, but also when
resuming after calling pauseApp(), for example, after the user has answered an incoming phone call.
This behaviour has been changed from JP-6 and onwards, where pauseApp()/startApp() are no
longer called in this situation. However, when the application uses a Canvas, hideNotify/showNo-
tify are triggered on these occasions.

Memory usage

Java MIDlets/applications allocates memory in several different memory areas. Memory problems most
often occur with allocation of memory for images. In this section some issues concerning memory usage
are covered.

Java heap

Java applications use two kinds of heap memory, plain Java heap and LAM (Large Array Memory). The
LAM is shared with other processes on the phone. Standard Java objects and vectors of Java objects are
always located on the Java heap. Arrays of primitive types (byte[] int[], float[]) however may be
put in the LAM if the plain Java heap is low on memory. Small arrays have a greater chance of ending up
in the plain Java heap, while large arrays more often are stored in the LAM. Images are also sometimes
placed in LAM.

The size and configuration of the Plain heap size and the LAM size varies between phone models.

The size of LAM is not included in the values reported by Runtime.freeMemory and
Runtime.totalMemory.

Some simple rules to make the most of phone memory:

1. Always release memory before reallocating it:
char [] v = new char[100];
... do stuff ...
v = null; // by setting v to null the allocation below can re-use the memory.
v = new char[200];

The same schema goes for pictures, resources, and so on. For the phone to be able to re-use an image
vector the image must first be released:
Object o = allocateMyResource(size);
... do stuff ...
o = null; // Remove the reference to the resource so that it can be resued in
the allocation below
o = allocateMyResource(someOtherSize);

2. Allocate objects first, then primitive arrays and images.

Note: The Java VM in JP-7 phones supports multitasking. Even MIDlets running “in the background” may
have some heap memory allocated, which in turn may influence the available amount of heap memory for
MIDlets starting and running in other threads.
43 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Video RAM areas

To assure that Java MIDlets will not run out of memory due to use of graphics, the Sony Ericsson phones
covered in this document implement several memory areas for graphics. Graphics memory areas are used
in the following order. If one area is full or an image to large to fit in the free space of one area, the next
one is used instead.

1. One area of fast video RAM dedicated for graphics storage.

2. Another video RAM area, with somewhat slower access.

3. The general heap area of the phone is used for images when it is not possible to use the two video
RAM areas.

4. Swapping of images to the phone flash memory is supported.

Hints for using video memory
The developer should always try to fit commonly used images into the fastest RAM area and use the
slower areas for more seldomly used images. This is done by making the MIDlet fetch the commonly used
images first and make sure that they fit into the 80 kb of fast video RAM.

To increase the chances that an image is actually loaded into fast memory, another image in that area,
with at least the same size should be freed. Before allocating the new image into memory, garbage collec-
tion (System.gc()) should be called.

Another issue to take into consideration when designing applications to use the fastest possible video
memory is fragmentation of memory. When an image, allocated between two other images in memory, is
freed, only images smaller than the free area can be allocated in that area. Thus, even if the system
reports enough free memory for allocation of an image, this may fail, because the free memory consists of
several areas, each to small for the image.

When using very large images, another problem can arise. If an image is to large to fit into the memory
dedicated for images, the Image.createImage() method may still succeed, because the image is
stored in flash memory. However when the image is to be displayed, it does not fit in the available video
memory, and can not be shown on the screen. The solution is to always estimate the image size in mem-
ory before trying to use it in a midlet. All images are stored in phone memory in a 16-bit per pixel RGB for-
mat, possibly with a 1-bit or 8-bit per pixel alpha-channel. Make sure to save all opaque images with 1-bit
alpha, as they are drawn much faster on the screen.

Retrieving the IMEI number

The following command retrieves the IMEI (International Mobile Equipment Identity) number from Sony
Ericsson phones:

 System.getProperty("com.sonyericsson.imei")
44 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
This returns a string which uniquely identifies a phone, for example: “IMEI 004601-01-501762-8-01” (the
exact format of the returned string may differ from the example). Each GSM phone is assigned a unique
IMEI code when it is produced. See the following link for further information about IMEI:
http://www.numberingplans.com/index.php?goto=guide&topic=imei.

Note: "imei" in the attribute must be written with lowercase letters when the command is used for Sony
Ericsson phones, except for the P910 series where uppercase letters must be used instead ("IMEI").

Minimizing and maximizing MIDlets

A MIDlet can request to get minimized by calling setCurrent(null). A MIDlet can request to get maxi-
mized by calling setCurrent(x) with x != null.

A request to get maximized will only be granted if the previous setCurrent() call was a request to get
minimized. Therefore a MIDlet that was minimized via the “long back” dialog can only get maximized by
first calling setCurrent(null) and then setCurrent(x) with x != null.

When the MIDlet is minimized, a Canvas.hideNotify() event is raised, and when it is maximized,
Canvas.showNotify() is raised. The Canvas.isShown() function can be used to query if the MIDlet
is currently in maximized or minimized state.

Multitasking MIDlets

Multitasking Java™ ME was introduced with Sony Ericsson Java Platform 7 (JP-7) and allows multiple
Java™ applications (MIDlets) to run concurrently within the same Virtual Machine. The implementation is
backwards compatible with previous Java platforms so that all existing MIDlets work on the new platform
without adjustments. The implementation is fully compliant with MIDP2/JTWI specifications and does not
require any additional JAD properties or proprietary APIs. On earlier Java Platforms, only one Java appli-
cation was allowed running together with other phone applications.

The resource contention strategy for the multitasking environment is simple. Prioritization in most cases
follows the pattern of "first come - first served". For example, Bluetooth connections, sockets, memory
resources, and so on, are taken by the application/thread doing the first allocation. Exceptions to this pat-
tern are sounds, screen and user input through keyboard. The rules applied are basically the same as
when MIDlets compete with native phone applications for resources in a traditional single tasking Java
platform, or when threads within the same MIDlet compete for resources.

To programmatically control MIDlets running in the multitasking environment, the setCurrent(), hide-
Notify(), showNotify() and isShown() methods may be used as outlined above.

The phone user can also select which application to run in the foreground and which to run in the back-
ground via the phone MMI:

• Pressing the back button for ~1 second (referred to as "long back") and then selecting "Minimize" in
the popup window, puts the foreground application into background
45 February 2007

http://www.numberingplans.com/index.php?goto=guide&topic=imei

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• Pressing the "Activity Menu" button (if available) and then selecting an application running in the back-
round, or starting a new application through the menu system, puts the foreground application into
background, and the selected application into foreground.

Standby MIDlets

JP-7 phones have a feature allowing developers to enable a MIDlet as a standby application. Just as the
end user can assign a picture as wallpaper, it is also possible to select a Java application for this purpose.
A standby MIDlet is handled by the application manager, and is started when the phone enters standby
mode. It is stopped when the user selects another wallpaper, theme or picture. A MIDlet is designated as
a standby application via a JAD attribute setting.

Note: Standby MIDlets are not supported in early K610, K790 and K800 phones.

For details about creating standby MIDlets and some practical advice on how to design them, see http://
developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/
p_standby_midlet_jp7phones.jsp.

Autostarting MIDlets

JP-7 phones, except early K610, K790 and K800 phones, support autostarting MIDlets.

The autostart feature uses the MIDP push registry as its driver. To register an application for autostart,
simply do a push registration, either static or dynamic, using the push URI "autostart://:". The application
will then start automatically the next time the phone boots.

For more information about how to create autostarting MIDlets and some code samples, see the article on
the subject in the Tips, Tricks & Code section on Sony Ericsson Developer World.
46 February 2007

http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_standby_midlet_jp7phones.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_standby_midlet_jp7phones.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_standby_midlet_jp7phones.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_java.jsp?cc=gb&lc=en&ver=4000&template=pe3&zone=pe&lm=pe3

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Network APIs

Sony Ericsson phones support several network connections:

• HTTP connection
• HTTPS connection (TLS 1.0 is also supported)

Note: HTTPS connections via Proxy are only supported in JP-5, JP-6 and JP-7
• Push Registry
• TLS 1.0/SSL 3.0 connections
• Socket connections
• UDP connections (datagram).

The following table lists the Network API features and classes of the javax.microedition.io pack-
age, and their MIDP 2.0 support in Sony Ericsson phones.

Feature/Class Supported

Connector class Yes

All Fields, methods, and inherited methods for the
Connector class

Yes

Mode parameter for the Connector.open()
method

No

The timeouts parameter for the
Connector.open() method

No

HttpConnection interface Yes

HttpsConnection interface Yes

SecureConnection interface Yes

SecurityInfo interface Yes

ServerSocketConnection interface Yes

UDPDatagramConnection interface Yes

PushRegistry class Yes

CommConnection interface JP-2 – JP-6: No
JP-7: Yes.
See also “Serial Port Communica-
tions (JP-7 only)” on page 49

Dynamic DNS allocation through DHCP Yes
47 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Secure sockets and HTTPS connections

HTTPS is supported only for certificates installed on the phone. The following X.509 root certificates for
TSL/SSL server authentication are provided by default. However, operators can change which of them are
installed and also add other certificates. Local market variations may also exist.

When initiating a connection and the certificate can not be validated in JP-2 to JP-5 phones, the connec-
tion fails and an exception is thrown. From JP-6, the user is prompted whether to accept the connection
or not. However, the behaviour in JP-2 to JP-5 phones can be avoided by installing a certificate granting
secure connections on the phone (a self-signed certificate can be used).

JAD/manifest attributes

The application descriptor must contain the following attributes:

• MIDlet-Name
• MIDlet-Version
• MIDlet-Vendor
• MIDlet-Jar-URL
• MIDlet-Jar-Size.

The application descriptor may contain:

• MIDlet-<n> for each MIDlet
• MIDlet-icon (for the ideal look and feel icon size 16x16 pixels is recommended) This attribute is only

supported in JP-4, JP-5, JP-6 and JP-7
• MicroEdition-Profile (recommended)
• MicroEdition-Configuration (recommended)
• MIDlet-Description
• MIDlet-Data-Size
• MIDlet-Permissions (recommended)
• MIDlet-Permissions-Opt
• MIDlet-Push-<n>
• MIDlet-Install-Notify
• MIDlet-Delete-Notify
• MIDlet-Delete-Confirm

Certificate issuer Label

Verisign Verisign Class 3 CA

Baltimore GTE Cyber Trust Root

Entrust Entrust.net Root Certificate

GlobalSign GlobalSign Root CA

Thawte Thawte Server CA

RSA data Security -
48 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• MIDlet-Certificate-<X>-<Y>
• MIDlet-Jar-RSA-SHA1
• Any application-specific attributes that do not begin with MIDlet- or MicroEdition-.

Vodafone JAD attributes

Sony Ericsson phones manufactured for Vodafone, support the following additional attributes in the JAD/
manifest:

Serial Port Communications (JP-7 only)

Java Platform 7 (JP-7) introduces support for serial port communication, defined as optional within the
MIDP 2.0 specification.

The interface CommConnection extends StreamConnection to provide a means to access a serial
port.

The port is accessed using a Generic Connection Framework string:

comm:<port identifier>[<optional parameters>]

The port identifier is one of the exposed serial ports which can be queried through the microedi-
tion.commport system property. A comma separated list of ports is returned.

String port1;
String ports = System.getProperty("microedition.commports");
int comma = ports.indexOf(',');
if (comma > 0) {

// Parse the first port from the available ports list.
port1 = ports.substring(0, comma);

} else {
// Only one serial port available.
port1 =ports;

}

Attribute Comments

MIDxlet-Resident Supported values: Y = Resident MIDlet, N = Not resident MIDlet.
The attribute value S = Stay resident is not supported

MIDxlet-ScreenSize/
MIDxlet-Application-Range

Values: W,H or Wmin-Wmax,Hmin-Hmax. Screen size or minimum/maximum
width and height expected by the application.
Both attributes are supported, but MIDxlet-ScreenSize is recommended. If
both attributes are present in a JAD file, MIDxlet-ScreenSize attribute has
precedence
49 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
To use serial communications, the relevant AT command must first be issued from the host. Both Blue-
tooth and USB connection mechanisms are supported.

Once the phone is connected to the host, a COM port is assigned on the host side. Characters sent via
this connection are, by default, interpreted as AT commands by the phone.

The AT*SEJCOMM command can be used to create a virtual port accessible from the Java platform.

The AT*SEJCOMM command puts the port into a so called “transparent mode” where the AT channel
stops intercepting input, and subsequent characters appear as input on the serial port. The command
expects <port> and optional <persistent> parameters.

The <port> parameter is used to specify a virtual port number which creates a binding to the physically
connected port. For example, if the phone has been connected to the host and is using COM 4, the com-
mand AT*SEJCOMM=1 will instruct the phone to create a virtual port called “AT1” and connect it to COM
4. If the command is successful, "CONNECT" is returned and the AT channel enters transparent mode.

Depending on the <persistent> parameter, once the MIDlet closes or is terminated, the AT channel leaves
transparent mode and the virtual port is destroyed. If the persistent flag is set with the value 1, the port
remains until the bearer (for example, a USB cable) is disconnected.

The virtual ports are accessible to the Java platform in the form of “AT<port>”.

CommConnection cc = (CommConnection)
Connector.open("comm:AT1");

int baudrate = cc.getBaudRate();
InputStream is = cc.openInputStream();
OutputStream os = cc.openOutputStream();
int ch = 0;
while(ch != 'Z') {

os.write(ch);
ch = is.read();
ch++;

}
is.close();
os.close();
cc.close();

Command Responses

AT*SEJCOMM=<port>[,<persistent>] CONNECT
OK

ERROR
+CME ERROR <err>
50 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
JSR 75 implementation

JSR 75 is only implemented in JP-5, JP-6 and JP-7. This section specifies which features are supported in
these phones.

PIM API

The PIM API supports the following PIM lists:

• Contacts (ContactList)
• Calendar (EventList)
• Tasks (ToDoList).

Actual names of lists and other labels depend on locale.

Contacts
Supported Java PIM fields (native/GUI field names in parenthesis):

• UID (LUID)
• NAME (LastName/Name). Supported array elements:

• NAME_FAMILY
• NAME_GIVEN

• ADDR (HomeAddress). Only one address, always ATTR_HOME. Supported array elements:
• ADDR_STREET (Street)
• ADDR_LOCALITY (City)
• ADDR_REGION (State)
• ADDR_POSTALCODE (Zip code)
• ADDR_COUNTRY (Country)

• TITLE
• ORG (Company)
• EMAIL
• URL
• NOTE (Freetext)
• TEL, supported attributes (max one + ATTR_PREFERRED):

• ATTR_HOME (HomeNumber)
• ATTR_WORK (WorkNumber)
• ATTR_MOBILE (CellNumber/Mobile number)
• ATTR_FAX (FaxNumber)
• ATTR_OTHER (OtherNumber)
• ATTR_PREFERRED (DefaultNbr), on one number only
• Numbers are sent to different database containers based on attributes. If two numbers have the

same attribute only one is stored. One number with multiple attributes creates copies in different
containers (not combined on retrieval). No attribute is treated like ATTR_OTHER. As a consequence
of all this, field value indexes are not preserved on retrieval

• Supported char-set: '0'-'9','*','#','?','+' and 'p'
• PHOTO_URL

• Files that have no Java mapping are not returned on read, for example, predefined images that link
to system directories

• Only local URLs ('file:///') that refer to existing files can be persisted
51 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• FORMATTED_NAME (LastName/Name)
• Avoid using this field, since it competes with NAME for the same DB container
• To commit, first delete NAME.

Unsupported Java standard fields
• BIRTHDAY
• CLASS
• FORMATTED_ADDR
• NICKNAME (Requires vCard 3.0)
• PHOTO
• PUBLIC_KEY
• PUBLIC_KEY_STRING
• REVISION.

Unsupported native fields
• Birthday
• ChangeCounter
• ContactPosition
• WVID (Presence ID)
• NameVoiceTag (Voice Commands)
• PersonalRing (Ringtone)
• JapaneseReading (Furigana).

Restrictions
• All fields except TEL can have one value only
• Categories are not supported
• A maximum of 1000 contacts (2500 phone numbers) can be saved in the phone.

Calendar
Supported Java PIM fields (native/GUI field names in parenthesis):

• UID (LUID)
• SUMMARY (Summary/Description)
• LOCATION (Location)
• NOTE (Description)
• END (EndDateAndTime)

Default: current time + 1 second
• START (StartDateAndTime)

Default: current time
• ALARM (ReminderDateAndTime)

Must be positive, that is, before start
• CLASS (Class)
• REVISION (LastModified).

Unsupported native fields
• TimeZone
• DaylightSaving
• AllDayEvent.

Restrictions
• Database must have: ALARM <= START <= END (defaults set on commit)
• RepeatRules are not supported (Recurrence). Only the first item in a recurrence series is retrieved
• Categories are not supported
52 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• A maximum of 300 calendar events can be saved in the phone.

Tasks
Supported Java PIM fields (native/GUI field names in parenthesis):

• UID (LUID)
• SUMMARY (Summary/Description)
• NOTE (Description)
• DUE (RemainderDateAndTime/Reminder)
• COMPLETION_DATE (CompletedDateAndTime)
• COMPLETED (Status). Native system currently uses:

• CAL_STATUS_NOT_STARTED_VALUE (0), mapped to false
• CAL_STATUS_IN_PROGRESS_VALUE (1), equated to not started
• CAL_STATUS_COMPLETED_VALUE (2), mapped to true

• PRIORITY (Priority). Native system currently uses:
• CAL_PRIORITY_HIGH_VALUE (1)
• CAL_PRIORITY_NORMAL_VALUE (2)
• CAL_PRIORITY_LOW_VALUE (3)
• Only 8 bits are persisted (not sign extended on retrieval)

• CLASS (Class)
• REVISION (LastModified).

Unsupported native fields
• TimeZone
• DaylightSaving
• DueDateAndTime.

Restrictions
• Categories are not supported
• A maximum of 80 tasks can be saved in the phone.

Serialization
Serialization includes converting vCards and vCalendar events/todos in serial (text) form into PIM items
(FromSerial), and back again (ToSerial).

There are two parsers, one for vCards and one for vCalendar Events/ToDos. As required by the standard,
the parsers support vCard 2.1 and vCalendar 1.0, with Quoted-Printable and BASE64 encoding formats.
The character encoding must be UTF-8, which means that normal 7-bit ASCII is also allowed (since it is a
subset of UTF-8).

Only values/properties supported by the databases are copied to the PIM item.

If there are too many values for a particular field, the implementation will favour those with attributes that
the field supports.

File Connection API

This section specifies the File Connection API support in JP-5, JP-6 and JP-7.
53 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
The folders listed below and their content (including sub-folders), which are available via the File Manager
application in the phone, are available via the FileConnection API as directories (folders) and files. This
includes also access to the whole file system on an external memory (removable media), if present.

• <file:///c:/>
• <file:///c:/other>
• <file:///c:/pictures/>
• <file:///c:/sounds/>
• <file:///c:/videos/>
• <file:///e:/> (memory card)
• <file:///e:/dcim/> (camera pictures folder on memory card).

Note: The folders Games, Themes, Applications and Webpage are not available via the Java File Connec-
tion API.

Note: Which folders are accessible via the File Connection API may differ between different phone mod-
els. For example, in JP-7 phones, there is a Camera folder in phone internal memory, <file:///c:/camera>,
and the Themes and Webpage folders on memory card are accessible.
The PDAPDemo application supplied with the Sony Ericsson SDK for the Java ME platform is recom-
mended to find out exactly which folders are accessible in internal memory and installed memory card of
a specific phone.

To query the location of, for example, the default camera folder, the recommended approach is to use the
system property “fileconn.dir.photos”. See “JSR 75 system properties” on page 60 for details on
how to query default locations of folders in the file system.

Attempts to access other file areas than the ones specified above, result in a java.lang.SecurityEx-
ception being thrown to the Java application.

The File Connection API supports the same file/dir attributes as are supported by the built-in File manager
application. File and directory names accessed via the File Connection API are case-insensitive.

The length of a file path is limited by the native file system (including the memory card file structure).

Note: The Java path is mapped to a native path. The maximum native path is 120 characters.

Restricted file/directory operations
The following operations fail if they are performed on any of the built-in roots:

• Create new file in the root directory
• Create new directory in the root directory
• Change attributes
• Delete root or built in directory
• Rename root or built in directory
• Request of last modification date returns 0.

Rules for operations on DRM protected files
The following operations are supported on DRM protected files:

• Open connection
• List (DRM protected files appear in directory lists)
• Request file size
• Request attributes and last modification date
• Delete
• Exists
54 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• Is directory.

The following operations are not supported on DRM protected files:

• Create file
• Change attributes
• Rename file
• Truncate file
• Open input stream
• Open output stream.

Rules for operations on Sony Ericsson encrypted files
Sony Ericsson encrypted files are files that are encrypted and stored in phone memory or on the memory
card. These files are not accessible for the user.

The following operations are supported on encrypted files:

• Open connection
• list (encrypted files will appear in directory lists)
• exist
• file size
• can read
• can write
• is hidden
• lastModified
• dirSize (encrypted files are counted).

The following operations are not supported on encrypted files:

• create
• setReadable
• setWritable
• setHidden
• delete
• rename
• truncate
• openInputStream
• openOutputstream
• read / write.

Playing media files with MMAPI using progressive download
The File Connection API implementation on Java platforms JP-6 and JP-7 allows progressive download of
media files to be played via the MMAPI. This allows the player to start playing the media file before the
whole file actually has been loaded into memory.

To make use of progressive download in a player application, the createPlayer method must be
invoked with a file scheme locator string as parameter, for example:

Manager.createPlayer(file:///c:/sounds/song.mp3);

Note: This functionality is not implemented on Java platform JP-5, where the MMAPI implementation
does not support the file scheme in the createPlayer method. In JP-5 phones, playing of media is
invoked via createPlayer(InputStream stream, String type) which does not take advantage
of progressive download. The consequence is that the whole media file must be loaded into memory
before the player starts playing. This can in some cases take quite long time with large media files.
55 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Note: In JP-7 phones, progressive download according to 3GPP TS 26.234 45.3.0 is supported both for
http download and InputStream via JSR 135.

Video overlay

On Java Platform JP-7 it is easy to create an overlay over a video clip shown in a MMAPI video player
instance. All pixels drawn with Canvas.paint are overlayed over the video, canvas areas where nothing
has been drawn remain transparent. Note that if a filled shape is drawn, for example, a rectangle with a
background color, the video will be completely hidden behind the shape.

Before using the overlay technique, a javax.microedition.media.control.VideoControl has to
be initiated on the current javax.microedition.media.Player, for example:

VideoControl videoControl = (VideoControl)player.getControl("VideoControl");
videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO | (overlay << 8),
canvas);

where overlay is set to 1 for overlay mode, 0 for no overlay.

Video rotation/mirroring

Note: The rotation/mirroring mode described here is not applicable for GIF animations.

A VideoControl can be used to mirror and/or rotate the video on the display. A javax.microedi-
tion.media.control.VideoControl is initiated on the current javax.microedi-
tion.media.Player, for example:

VideoControl videoControl = (VideoControl)player.getControl("VideoControl");
videoControl.initDisplayMode(VideoControl.USE_DIRECT_VIDEO | (orientation <<
4), canvas);

Orientation is set to one of the following integer constants in the javax.microedi-
tion.lcdui.Sprite class:

Orientation constant Effect

TRANS_MIRROR Causes the sprite to appear reflected about its vertical center

TRANS_MIRROR_ROT180 Causes the Sprite to appear reflected about its vertical center and then
rotated clockwise by 180 degrees

TRANS_MIRROR_ROT270 Causes the Sprite to appear reflected about its vertical center and then
rotated clockwise by 270 degrees
56 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Rotation can only be used in VideoControl.USE_DIRECT_VIDEO mode, using VideoCon-
trol.USE_GUI_PRIMITIVE throws an exception.

Note that VideoControl.getSourceWidth() returns the width of the non-rotated object, it is up to
the MIDlet to keep track on what is height and what is width of the rotated video. Furthermore, the coordi-
nates (0,0) always refers to the top left corner of the video, regardless of rotation.

Note: The rotation/mirroring modes described here are not applicable for GIF animations.

Tips for using the JSR 82

Local device

To find out what is supported by the phone, use LocalDevice.getProperty(). See JavaDoc for valid
properties.

Device discovery

Tip 1
Filter found RemoteDevices immediately by using DeviceClass. By doing this unnessecary actions can
be avoided, for example, doing a service search on a discovered PC when running a Java ME game.

Tip 2
If retrieving cached remote devices via JSR-82 API, then the information about remote device class is not
available. It might be better to implement cache with filtered devices from the initial device discovery.

Tip 3
Only ask for friendly names for the devices displayed in GUI, and save time.

remoteDevice.getFriendlyName(true) is supported in JP-5, JP-6 and JP-7.

TRANS_MIRROR_ROT90 Causes the Sprite to appear reflected about its vertical center and then
rotated clockwise by 90 degrees

TRANS_NONE No transform is applied to the Sprite

TRANS_ROT180 Causes the Sprite to appear rotated clockwise by 180 degrees

TRANS_ROT270 Causes the Sprite to appear rotated clockwise by 270 degrees

TRANS_ROT90 Causes the Sprite to appear rotated clockwise by 90 degrees

Orientation constant Effect
57 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Tip 4
To gain better user experience, present discovered remote devices directly when found. Do not wait until
the inquiry is completed.

More device discovery tips
On Sony Ericsson Developer world, an article named “Bluetooth probe for mobile phones supporting JSR
82” gives some useful tips and code examples for device discovery: http://developer.sonyericsson.com/
site/global/techsupport/tipstrickscode/java/p_bluetooth_probe_jsr82.jsp

Games

Use ByteArrayOutputStream/ByteArrayInputStream buffer for RFCOMM.

The transfer rate may be increased by using fixed size byte array, that is, by not having to send the buffer
length before sending the actual byte buffer.

Managing connections between Bluetooth SDP records
and a game server

On Sony Ericsson Developer world, an article can be found, giving tips and code samples on how to han-
dle SDP records correctly, avoiding problems with rejected Bluetooth connections, for example, when cli-
ents in one or more phones tries to connect to a game server in another phone. For details, see http://
developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/
p_advice_bluetooth_sdp_game+server.jsp

Querying system properties

Calls to the Java platform to find out which system properties are supported in a phone can be made on
different levels, for example, what classes are supported in the phone or what properties are supported by
a specific class.

Supported classes

To check if a phone supports a specific class, the Class.forName()function can be used.

try{
Class.forName("...");

}
catch(Exception ex){
58 February 2007

http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_bluetooth_probe_jsr82.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_bluetooth_probe_jsr82.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_advice_bluetooth_sdp_game+server.jsp
http://developer.sonyericsson.com/site/global/techsupport/tipstrickscode/java/p_advice_bluetooth_sdp_game+server.jsp

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
System.out.println("No support for")
}

Examples:

Class.forName("javax.microedition.media.Manager"); //JSR135
Class.forName("com.nokia.mid.ui.DeviceControl"); // Nokia UI extension
Class.forName("javax.bluetooth.LocalDevice"); //JSR82
Class.forName("javax.wireless.messaging.MessageConnection");//JSR120
Class.forName("javax.microedition.pim.PIM"); //JSR75
Class.forName("javax.microedition.m3g.Graphics3D"); //JSR184
Class.forName("com.mascotcapsule.micro3d.v3.Graphics3D"); //Mascotcapsule

System.getProperty(String Key) calls

Java.lang.System.getProperty(String Key) calls are used to find out what is supported in the
phone.

Example:

import java.lang.*;

String value;
String key = "microedition.pim.version";

value = System.getProperty(key);
...

Standard system properties
The following are examples of standard properties that can be retrieved with the System.getProp-
erty() call:

microedition.configuration
microedition.profiles
microedition.encoding
microedition.locale
microedition.platform
microedition.jtwi.version //JSR 185

Sony Ericsson specific system properties
com.sonyericsson.imei
com.sonyericsson.jackknifeopen
com.sonyericsson.flipopen
com.sonyericsson.java.platform

System.getProperty("com.sonyericsson.jackknifeopen") is only supported for phones on
JP-6 and JP-7, and returns one of the following values:
0 = swivel closed
59 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
1 = swivel open
-1 = the phone does not have jack knife form factor.
Null is returned for phones on platforms JP-2 - JP-5.

System.getProperty("com.sonyericsson.flipopen") is only supported for clam-shell phones
on JP-6 and JP-7, and returns one of the following values:
0 = flip closed
1 = flip open
-1 = the phone does not have clam-shell form factor.
Null is returned for phones on platforms JP-2 - JP-5.

System.getProperty("com.sonyericsson.java.platform") is supported on JP-7 and returns
the java platform for the phone, for example, “JP-7.1” is returned for a W850 phone.

JSR 120 system properties
To find out if the API is implemented:

System.getProperty("wireless.messaging.sms.smsc")

JSR 75 system properties
To find out what versions of the JSR 75 APIs are implemented in the phone:

System.getProperty("microedition.io.file.FileConnection.version")
System.getProperty("microedition.pim.version")

The following file connection API properties are URLs of default storage directories in the phone, retrieved
with the System.getProperty() call:

fileconn.dir.photos
fileconn.dir.videos
fileconn.dir.graphics
fileconn.dir.tones
fileconn.dir.music
fileconn.dir.recordings
fileconn.dir.private

Localized names of directories corresponding to the default URLs above are found in the following prop-
erties:

fileconn.dir.photos.name
fileconn.dir.videos.name
fileconn.dir.graphics.name
fileconn.dir.tones.name
fileconn.dir.music.name
fileconn.dir.recordings.name
fileconn.dir.private.name

The following call returns localized names to the roots returned by the FileSystemRegistry.list-
Roots() method. The returned names are listed in the same order as returned by this method and are
separated by semicolon (;):

System.getProperty("fileconn.dir.roots.names")
60 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Note: Property retrieval behaviour differs slightly between some early JP-6 phone models and other
phones, due to changes in the fileconn property syntax. Null may be returned when using the above syn-
tax with some early JP-6 phones. The following code could be used to provide a generic means to
address this behaviour difference:

public String getProperty(String param)
{

int index = param.indexOf(".");
String extension = param.substring(index,param.length());
String value = System.getProperty("fileconn" + extension);
return value != null ? value : System.getProperty("filconn" + extension);

}

MMAPI system properties
The following properties can be retrieved from the MMAPI using the System.getProperty() call:

microedition.media.version
supports.mixing
supports.audio.capture
supports.video.capture
supports.recording
audio.encodings
video.encodings
video.snapshot.encodings
streamable.contents

To find out which protocols and content types are supported, the following calls can be made from a
Manager class object:

static java.lang.String[] getSupportedContentTypes(java.lang.string protocol)
//lists supported content types for a given protocol
static java.lang.String[] getSupportedProtocols(java.lang.string content_type)
//lists supported protocols for a given content type

From a Player class object, a specific Control or the Controls collection supported by the player can
be retrieved:

Control getControl(java.lang.String ControlType)
Control[] getControls()
61 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Bluetooth Local device properties (JSR 82)

To find out what Bluetooth API properties are supported in the local device, the
LocalDevice.getProperty("...") can be called with the following parameters:

bluetooth.api.version
bluetooth.master.switch
bluetooth.sd.attr.retrievable.max
bluetooth.connected.devices.max
bluetooth.l2cap.receiveMTU.max
bluetooth.sd.trans.max
bluetooth.connected.inquiry.scan
bluetooth.connected.page.scan
bluetooth.connected.inquiry
bluetooth.connected.page

Implementation specific properties in JSR 184

The version of the JSR 184 API is retrieved with:

System.getProperty("microedition.m3g.version")

Other JSR 184 properties can be retrieved through the Graphics3D.getProperties("...") with the
following keys:

supportAntialiasing
supportTrueColor
supportDithering
supportMipmapping
supportPerspectiveCorrection
supportLocalCameraLighting
maxLights
maxViewportDimension
maxTextureDimension
maxSpriteCropDimension
maxTransformsPerVertex
maxTextureUnits
62 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Knowledge base

Q: How can I detect the swivel position on jack knife phones?

A: For JP-6 and JP-7 phones the current swivel position is detected by calling
System.getProperty("com.sonyericsson.jackknifeopen")
Return values:
0 = swivel closed
1 = swivel open
-1 = the phone doesn't have jack knife form factor.
Null is returned for phones on platforms JP-2 - JP-5.

Changes of the swivel position generates keyCodes and are detected by the Canvas.Keypressed()
event method.

• keyCode -32 is returned when the swivel is opened
• keyCode -33 is returned when the swivel is closed

Q: How can I detect if a clam-shell phone is open or closed

A: For JP-6 and JP-7 phones the current “flip” position is detected by calling
System.getProperty("com.sonyericsson.flipopen")
Return values:
0 = flip closed
1 = flip open
-1 = the phone does not have clam-shell form factor.
Null is returned for phones on platforms JP-2 - JP-5.

When the phone is opened or closed, keyCodes are generated and can be detected by the Canvas.Key-
pressed() event method.

• keyCode -30 is returned when the phone is opened
• keyCode -31 is returned when the phone is closed

Q: Is it possible to tell if the user is currently using landscape or portrait playing style?

A: There is no programmatic way to detect if a phone is used in portrait or landscape playing style. Since
the JVM is not aware of any screen configuration changes, the following should be considered:

• The canvas getWidth() and getHeight() methods return the same values regardless what
screen configuration is being used.

• The canvas sizeChanged() is not invoked when the playing style changes.
• Key codes remain constant and are not automatically inverted.
• Soft key menus remain unchanged, there is no way to programmatically change their orientation.

It is the responsibility of the MIDlet to supply a means to allow a user to set their screen configuration pref-
erence. The user can change between playing styles, either landscape or portrait, while the MIDlet is
active. Therefore the ability to change between playing styles after initalization should be a design consid-
eration.

Q: Are existing portrait mode MIDlets compatible with phones offering landscape playing style?
63 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
A: In keeping the Sony Ericsson Java platform strategy, phones supporting landscape playing style
remain backward compatible with phones offering the same Java platform but supporting only portrait
screen configuration.

Q: How can I develop for a screen in landscape playing style?

A: There are a number of different approaches to consider when working towards landscape playing style:

• Design for square
This is the simplest approach and is concerned with targeting the shortest width offered by a given
screen size. By assuming a common screen size of 176 x 220 pixels but designing towards176x176, a
virtual square can be created that will cater for both landscape and portrait playing style and be highly
portable. A drawback to this approach is the inherent "dead space". A popular solution is to mask the
dead space with suitable user interface additions.

• Generic Layout.
By not deciding a layout strategy and instead using the MIDP high level APIs, the application can be
allowed to decide how best to cater for the screen dimensions and layout. This is generally only prac-
tical for business applications since much of fine grained control required for game oriented content is
lost and high level cannot be concurrently mixed with low level.

• Fit to window
By using Canvas to query the screen dimensions appropriately, MIDlets can scale effectively regard-
less of what screen dimensions are available.

// assumes a fixed size
g.fillRect(4,8, 248, 220);
g.drawString("this isn't generic",10,20,0);

// makes a decision depending on dimensisions
g.fillRect(0, 0, getWidth() / 2, getHeight() / 2);
g.drawString("this is generic",getWidth() / 2, 0,g.TOP | g.HCENTER);

This is considered "best practice" but relies heavily on other artifacts positioning to work effectively,
and can lead to increased development time. It can also inherently lead to a stretched appearance
though this can have relatively little impact depending on application type and genre. A popular com-
promise is to combine the design for square approach with "fit to window" by centering the virtual
square in a generic way.

• Fit Content
This approach requires reimplementation to take advantage of the extra screen width and usually also
involves changing the dynamics of the application substantially, such as:

• Increased number of artifacts.
The new space needs to be filled in a natural way – a common answer to this is to increase the
number of on screen artifacts.

• Increased horizontal clipping distance.
The clipping area should also be adjusted to cater for the different screen configurations.

Fitting the content to the new dimensions provides the most optimal use of the screen space. How-
ever, it requires a significant amount of additional development.

Q: How do I use the extra A and B gaming buttons?
64 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
A: Regardless of which design strategy is used, the K790, K800, K810, W550, W600, W830 and W850
series are equipped with two additional A and B buttons for improvement of the landscape gaming expe-
rience.

You can use the extra buttons via the MIDP 2 GameCanvas GAME_A and GAME_B constants or by key-
codes. The key codes for the extra A and B gaming buttons are defined as:

• ButtonA: key code = -13
• ButtonB: key code = -14

They are used in the usual form:

protected void keyPressed(int keyCode) {
switch (keyCode) {
case ButtonA:
…
case ButtonB:
…
}
}

Q: How can I rotate my graphics to match changing playing styles?

A: The MIDP 2.0 Sprite class provides a convenient setTransform method to allow images to be eas-
ily rotated using predefined constants.

sprite.setTransform(Sprite.TRANS_MIRROR_ROT90);

Alternatively you can simply use the Graphics drawRegion method with the same constants, often in
place of drawImage:

// the original image
g.drawImage(image, x, y, Graphics.TOP | Graphics.LEFT);
// identical to drawImage but with the image rotated.
g.drawRegion(this.image, 0, 0, image.getWidth(), image.getHeight(),
Sprite.TRANS_ROT90, x, y, g.LEFT|g.TOP);

When moving back and forth between landscape and portrait playing styles you will commonly use the
Sprite.TRANS_ROT90 and Sprite.TRANS_NONE constants.
65 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Appendix C
Sony Ericsson SDK for the
Java™ ME Platform

This appendix contains information about the Sony Ericsson SDK for the Java™ ME platforn and its inte-
gration in different developer tools.
66 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Features

The Sony Ericsson SDK for the Java™ ME Platform supports full 3D emulation, Mascot Capsule Ver. 3
and Ver. 4 (JSR 184) are supported. The developer can also take advantage of many WTK features. The
SDK includes detailed documentation (JavaDoc) of supported Java APIs (CLDC, MIDP, MMAPI, WMAPI
JSRs).

The SDK also supports On-Device source-level Debugging (ODD). The Sony Ericsson SDK for Java™ ME
can be integrated with any UEI compliant Java IDE.

Additionally, the SDK includes useful utilities such as the Device Explorer and the ejava.exe command line
tool. These provide an interface for manipulating the phone application manager. The developer can
install, remove, start, stop, pause, and resume Java applications. The Device Explorer also provides an
interface for displaying heap and file system statistics, requesting garbage collection to run, enabling KVM
trace messages, and enabling serial network emulation.

Installing and updating the SDK

Installing
Before installing the Sony Ericsson SDK for the Java™ ME Platform, the SDK Java SE Development Kit
(version 1.4 is recommended) need to be installed. If you wish to install an IDE, you may do so either
before or after installing the Sony Ericsson SDK for the Java™ ME Platform. Note that an IDE is not
required but is highly recommended.

Updating
The latest version of the Sony Ericsson SDK for the Java™ ME Platform is available for download at
www.sonyericsson.com/developer/java. The Sony Ericsson SDK for the Java™ ME platform is required
for ODD.

After updating the SDK to a newer version, it is recommended to clear all platforms in the IDE and then
reselect all profiles from the latest SDK version. It has been noted that, if for example, emulator profiles are
selected from version 2.2.2 and device debug profiles are selected from version 2.2.3, the following error
occurs when starting device debugging:
org.xml.sax.g: Unexpected end of Tag

Selecting devices for ODD
Regardless of which IDE is used, the On Device Debugging functionality requires settings adapted to the
actual phone or platform to test on. When connecting to a phone via the Connection Proxy interface, the
identification for the phone is displayed in the Connection proxy window.

Phones on Java platforms up to and including JP-6 are identified by phone model, for example,
“Sony Ericsson K750”.

From Java platform JP-7, phones are identified by platform, for example, “Sony Ericsson_JP-7.1”.
67 February 2007

www.sonyericsson.com/developer/java

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Integrating the Sony Ericsson SDK for the
Java™ ME Platform in JBuilder 2005

In the instructions below, <SDK_Path> stands for the path where the Sony Ericsson SDK for the Java™
ME Platform is installed.

To add Sony Ericsson Emulators:
1. In the Jbuilder window, select the menu Tools/Configure/JDKs…

2. Choose New.

3. Click Existing JDK home path and browse to <SDK_Path>/PC_Emulation/WTK1.

4. Click OK to add the Sony Ericsson WTK1 emulators.

5. Repeat steps 2 to 4 and add the WTK2 and the On-Device Debug emulators. The paths to use in step
3 are:

• <SDK_Path>/PC_Emulation/WTK2
• <SDK_Path>/PC_Emulation/OnDeviceDebug.

To set which phone will be used for a Specific JDK:
1. In the Jbuilder window, select the menu Tools/Configure/JDKs…

2. Chose one of the JDK:s added above.

3. Click the Micro tab.

4. Choose the preferred phone in the Target Device drop-down list.
Note: From Java Platform JP-7, phones are named by Java platform, for example,
“SonyEricsson_JP-7.1”, instead of by phone model.

To use Sony Ericsson emulators in a project:
1. Right-click the project icon and chose Properties... or choose the menu item Project/Project Proper-

ties.

2. Select Paths in the upper left panel.

3. Click the “…” button at JDK: and select the emulator you want to use.

To use Sony Ericsson On Device Debug in a project:
1. Make sure the project has been built so that there is a valid JAD file

2. Follow the steps in To use Sony Ericsson Emulators in a Project above and choose the On Device
Debug emulators.

3. Choose Run/Configurations…

4. Chose Edit on the selected configuration.

5. Select the option button JAD file, browse and select the project JAD file.
68 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
6. Select a specific phone name (JP-2 to JP-6) or a Java platform (from JP-7) for “Emulator device”.

7. Click OK.

Limitations in the JBuilder 2005

The Project Properties dialog box in JBuilder 2005 behaves in an inconvenient way when switching
between different UEI compliant toolkits or between different emulated phones in the same UEI compliant
toolkit.

Switching between different UEI compliant toolkits
Description: The list of emulated phones is not updated when JDK for a project is changed.
Example: When switching between “Sony Ericsson SDK 2.2.3 Java ME (Emulation)” and “Sony Ericsson
SDK 2.2.3 Java ME (On-Device-Debug)” or vice versa, the Emulated device drop-down list is not updated.

Workaround: Close the Project Properties dialog, and open it again. The list of emulated phones now cor-
responds to the selected JDK.

Switching between different emulated phones in the same toolkit
Description: After switching, the list of emulated phones is not correct. Only phones using exactly the
same set of “jar” libraries for compilation are listed.
Example: If “SonyEricsson_W550” is chosen in Target device, Project Properties shows only
“SonyEricsson_W550” and “SonyEricsson_W600”.

Workaround (partial): Close the Project Properties dialog, open Configure JDKs and select the desired
emulated phone in Target Device. Save settings and open the Project Properties dialog. Now the chosen
phone is in the list of emulated phones.

The workaround is only partial, since it is still impossible to have two projects for phones using different
sets of “jar” libraries open at the same time. For example, projects for “SonyEricsson_W550” and
“SonyEricsson_K750” can not be open at the same time.

Integrating the Sony Ericsson SDK for the
Java™ ME Platform in NetBeans 4

The Sony Ericsson SDK version 2.2.4 (and later versions) has been tested and found working also with
NetBeans 5.0.

In the instructions below, <SDK_Path> stands for the path where the Sony Ericsson SDK for the Java™
ME Platform is installed.

Note: Integration of the Sony Ericsson SDK for the Java™ ME Platform in Netbeans requires NetBeans
Mobility Pack add-on.
69 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
To add Sony Ericsson emulators:
1. In the Netbeans window, select the menu Tools/Java Platform Manager (or File/<project name> proper-

ties... and click Manage Emulators...).

2. Select J2ME and click Add Platform...

3. Browse to <SDK_Path>/PC_Emulation/WTK1.

4. Click Finish to add the Sony Ericsson WTK1 emulators.

5. Repeat steps 2 to 4 and add the WTK2 and the On Device Debug emulators. The paths to use in step 3
are:

• <SDK_Path>/PC_Emulation/WTK2
• <SDK_Path>/PC_Emulation/OnDeviceDebug.

To set the platform and phone that will be used for emulation:
1. In the Netbeans window, select the menu File/<project name> properties... and select Platform in the

table to the left.

2. Use the drop-down list Project Configuration to choose one of the platforms added above.

3. Use the drop-down list Device to choose one of the emulators available on the chosen platform.

4. Click OK.

Note: From Java Platform JP-7, the phone names for ODD refer to Java Platforms rather than to phone
models, for example, “SonyEricsson_JP-7.1”.

Note: If NetBeans complains about the missing file "zayit.dll" when trying to run your project with a
Sony Ericsson emulator, you should reboot the computer and try again.

To use Sony Ericsson On Device Debug in a project:
In the Netbeans window, select the menu Run/Debug Main Project, or press F5. Note that you must
choose Debug Main Project, not Run Main Project.

Integrating the Sony Ericsson SDK for the
Java™ ME Platform in Eclipse

The Device Explorer plugin elaborates upon the existing Device Explorer tool by allowing it to be inte-
grated with any Eclipse derived IDE. All features found in the standalone Device Explorer tool are encap-
sulated in a new view plane.

The Device Explorer concept provides the means to interact with the application manager found on all
Java enabled phones.

The current list of features offered by Device Explorer plugin include:
70 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• Listing of all installed MIDlets
• Starting, stopping, pausing and resuming execution of a MIDlet
• Deleting installed MIDlets
• Manually invoking garbage collection
• Previewing MIDlet information
• Manually deleting RMS entries
• File system browsing and MIDlet installation.

The Device Explorer is entirely connection independent, allowing you to use Bluetooth, infrared or any
other means of phone to PC connection.

By using the Device Explorer plugin in conjunction with the EclipseME plugin suite, a powerful and con-
venient platform for Java ME based development can be built. EclipseME v1.1.0 is recommended for use
with the Sony Ericsson toolkits. EclipseME 1.5.0 has been tested and works properly with the
Sony Ericsson SDK version 2.2.4 (and later) toolkits.

More information about EclipseME can be found at http://eclipseme.org/

An extensive guide for installation and tuning of EclipseME can be found at
http://eclipseme.org/docs/configuring.html.

Prerequisites
The Device Explorer plugin is tested and offered for use with Eclipse 3.0.x and Eclipse 3.1.x. Also the
release candidate version 3.2RC7 has been tested and works with the Device Explorer.

You can obtain Eclipse from http://www.eclipse.org/downloads/index.php.

Acquiring the software
The Device Explorer plugin is offered in two packaged formats - it is currently not offered via the Eclipse
automated package manager service.

The latest version of the plugin can be downloaded from Sony Ericsson Developer World. The plugin also
comes prebundled in the Sony Ericsson SDK for the Java™ ME Platform and can be found within your
installation directory, for example, <drive>/J2ME_SDK/OnDeviceDebug/lib/devexp/plugins/com.sonyeric-
sson.sdkme.deviceexplorer_<your SDK version>. However, the prebundled version may be outdated, why
it is highly recommended to look for updates on Developer World.

Installation
Before installing the Device Explorer you must stop any running instances of your Eclipse derived IDE. If
you have acquired the plugin from the Sony Ericsson Developer World site you should proceed to extract
the Zip file into your Eclipse plugin directory (<drive>/eclipse/plugins). If you wish to use the version sup-
plied with the Sony Ericsson SDK you can proceed to simply copy the com.SonyErics-
son.sdkme.deviceexplorer_<your SDK version> directory into your Eclipse plugin folder.

Using the Device Explorer plugin
Having installed the plugin, the new Device Explorer view should be available for immediate usage.
Launch the Device Explorer via menu selection Window – Show View – Other… – Sony Ericsson Device
Explorer.
71 February 2007

http://eclipseme.org/
http://www.eclipse.org/downloads/index.php
http://developer.sonyericsson.com/
http://eclipseme.org/docs/configuring.html

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
When the Device Explorer launches you will see a new "Connection Proxy" window. This is a key compo-
nent of the Device Explorer plugin that facilitates the connection to the Sony Ericsson phone. As with the
Device Explorer tool, it is offered in a standalone form as part of the SDK. You only require one instance of
the Connection Proxy to be active and it is included with the Device Explorer plugin as a convenience.

You should leave the Connection Proxy open at all times when using the Device Explorer.

Upon a successful connection, the Connection Proxy will display an image of the relevant phone and a
new Device Explorer panel will be presented in Eclipse. Java applications present in the phone are listed
in the panel. The relevant Device Explorer functions (Play, Stop, Pause, and so on) are available both via
the toolbar buttons and by right-clicking a MIDlet in the list.

The Favorites Folder Explorer
In addition to the Device Explorer, the Favorites Folder Explorer allows you to browse the local file system
and install MIDlets to the phone.

Launch the Favorites Folder Explorer via menu selection Window – Show View – Other… – Sony Ericsson
Favorites Explorer.

When the Favorites Folder Explorer launches you will see a new "Sony Ericsson MIDlet favorites" tab, list-
ing all local root drives.

You can browse the file system for MIDlets to install to the phone. When a JAD or JAR file is selected, the
phone transfer icon is enabled allowing you to transfer the content.

Adding the PC emulator and On Device Debugger to the Eclipse
workspace
Select the menu Window->Preferences. The “Preferences” dialog opens.

Select in the left tree: J2ME/Device Management

In the right panel, click the Import button and add the following two Wireless Toolkits:

• C:\SonyEricsson\JavaME_SDK_CLDC\OnDeviceDebug
• C:\SonyEricsson\JavaME_SDK_CLDC\PC_Emulation\WTK2.

Note: After updating the Sony Ericsson SDK for the Java™ ME Platform, the two directories
eclipseme.core and eclipseme.ui residing in <drive>/Program Files/eclipse/workspace/.metadata/.plugins
have to be deleted before adding the Wireless Toolkits that came with the new SDK version.

Note: When listing available platforms, EclipseME does not include the name of the wireless toolkit. To
distinguish between the K700 from OnDeviceDebug and K700 from WTK2 may be difficult. In earlier ver-
sions of the SDK, the platform names are only slightly different as shown in the following example:

• In OnDeviceDebug: “Sony Ericsson K700 Platform"
• In WTK2: "SonyEricsson_K700 Platform".

From SDK 2.2.3, the EclipseME platform names are, for example:

• In OnDeviceDebug: "Sony Ericsson K700 Platform"
• In WTK2: "Sony Ericsson K700 (emulator) Platform".
72 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Note: From Java Platform JP-7, the platform names for ODD refer to Java Platforms rather than to phone
models, for example, “SonyEricsson_JP-7.1”.
73 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Appendix D
Sony Ericsson Mobile JUnit

This appendix contains information about the Sony Ericsson Mobile JUnit test tool, and how it can be
used for MIDlet testing in the emulator or on physical phones.
74 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Mobile JUnit features

Mobile JUnit is a unit testing framework from Sony Ericsson, intended for Java ME CLDC phones, where
the results of the test run is communicated to a PC. This enables simple, automated regression testing of
JavaME applications. No manual uploading of MIDlets or manually inspecting test results is needed.

Mobile JUnit primarily supports Sony Ericsson phones, but most Wireless Toolkit emulated devices will
also be able to run Mobile JUnit.

Prerequisites:
• A wireless toolkit, supporting UEI 1.0.1, that outputs the MIDlet System.out to the console. All

Sony Ericsson wireless toolkits and SDK versions have this capability.
• JUnit 3.8.1 installed on the computer. The binary is included with the Mobile JUnit installation, and is

automatically installed, by default in the top directory of the tool (for example:
C:\SonyEricsson\JavaME_SDK_CLDC\Mobile-JUnit\junit.jar).

• Sony Ericsson SDK for the Java ME platform is recommended for running tests on physical devices.

Installing Mobile JUnit

Mobile JUnit can be downloaded from Sony Ericsson Developer World.

To install Mobile JUnit, the downloaded mobile-ju-setup-1.0.exe is run. A dialog asking for where
to install Mobile JUnit appears. The default location is the same as the default location for installation of
the Sony Ericsson SDK. If the SDK is installed elsewhere, that location should be entered instead.

It is recommended to install the sample project by marking the “Sample Project” and “Generate Scripts”
checkboxes during the installation.

If “Generate Scripts” was selected, a dialog will pop up, asking for the path to a java compiler
(javac.exe). Browse and select a javac.exe. Mobile JUnit requires a java compiler to run, and “Gener-
ate Scripts” will generate a script with this particular compiler selected.

Note: The sample project is installed into the selected application directory of the specified WTK derived
SDK. For example, C:\SonyEricsson\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-
ju-sampleproject

The default directory was selected during installation, and the following directories have been added:

Mobile JUnit Runtime <SDK Installation Path>\JavaME_SDK_CLDC\Mobile_JUnit

Sample Project <SDK Installation Path>\JavaME_SDK_CLDC\
PC_Emulation\WTK2\apps\mobile-ju-sampleproject
75 February 2007

www.sonyericsson.com/developer

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
The sample project test

Testing with Mobile JUnit works very much the same way as with JUnit. The source code to be tested is in
the project src directory, and the project binary in the bin directory. The file defining the tests to perform
is found in a separate test directory.

For example, when “Sample Project” was selected during the Mobile JUnit installation, the sample project
mobile-ju-sampleproject was installed in a folder with subfolders src, bin, build and test. In the
test/src folder, a file named SampleTest.java contains the test code. The code is very similar to a
“regular” JUnit test:

import com.sonyericsson.junit.framework.TestCase;

public class SampleTest extends TestCase {

 public void testCountCharacter() {
CharacterCounter counter = new CharacterCounter();
assertEquals(0, counter.count('a', "Hello");
assertEquals(1, counter.count('a', "a");
assertEquals(0, counter.count('a', "A");
assertEquals(2, counter.count('a', "Attackaz!");

}
}

Note: All void methods with zero arguments starting with “test” are considered tests by the Mobile
JUnit framework.

Running the test

To run the tests of the sample project, use one of the command lines below. Normally, Mobile JUnit
expects the MIDlet to test to be compiled and present in the bin directory. Note the
--compile-midlet switch, which instructs Mobile JUnit to compile and create a new MIDlet. Without
this switch Mobile JUnit will assume that a MIDlet is precompiled and accessible in the bin directory.

Alternative 1 (assuming you selected “Generate Scripts” during the installation):

run-mobile-junit --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800_Emu --compile-midlet:yes

Alternative 2 (replace the --javac parameter with the compiler that Mobile JUnit should use):

java -classpath mobile-ju-1.0.jar;junit.jar com.sonyericsson.sdkme.junit.OnDe-
viceTest --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800_Emu --compile-midlet:yes --javac:<my-installation-of-
jdk>\bin\javac.exe
76 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Note: This example assumes a WTK project structure. The tool does however support various configura-
tions. See “Configuring and running mobile tests” on page 80 for more information.

Note: The command lines above should be run from the Mobile JUnit installation directory. For more infor-
mation regarding the --javac parameter see “Configuring and running mobile tests” on page 80.

The tool finds, compiles, and runs tests according to the SampleTest.java file. The emulator starts and
the tests are run:

The emulator terminates automatically, and the test results are output to the console:

Building midlet... 312ms
Building test midlet... 765ms
Uploading and running test midlet... 2s 937ms
..Running with storage root SonyEricsson_W800_Emu
Execution completed.
0 bytecodes executed
0 thread switches
822 classes in the system (including system classes)
0 dynamic objects allocated (0 bytes)
0 garbage collections (0 bytes collected)Done. 6s 109ms

Time: 4,101

OK (2 tests)
77 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Test suites

Another concept found in JUnit, and inherited by Mobile JUnit, is test suites. In the sample project direc-
tory Mobile-ju-sampleproject/test/src, the MyTestSuite.java source file can be found:

import com.sonyericsson.junit.framework.TestSuite;

public class MyTestSuite extends TestSuite {
 public MyTestSuite() {
 addTestSuite(SampleTest.class);
 }
}

Note the following:

• The test suite should inherit from the TestSuite class, available in the framework.

• The test suite must have a constructor without any arguments, otherwise the test framework will not be
able to create it.

• In this constructor, tests are added using the addTestSuite method. In this instance, the Sam-
pleTest from the previous chapter is added, and provides its class as the argument to addTest-
Suite. Other TestSuites may be added using this method.

To select a specific test suite or individual test, the --suite: parameter is used. If no such parameter is
provided, the tool will try to find all test cases in the test directory and run them.

Alternative 1 (assuming you selected “Generate Scripts” during installation):

run-mobile-junit --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800_Emu --suite:MyTestSuite --compile-midlet:yes

Alternative 2 (replace the --javac parameter with the compiler that Mobile JUnit should use):

java -classpath mobile-ju-1.0.jar;junit.jar com.sonyericsson.sdkme.junit.OnDe-
viceTest --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800_Emu --suite:MyTestSuite --compile-midlet:yes --
javac:<my-installation-of-jdk>\bin\javac.exe

The output should be the same as in the previous example.
78 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
On-device testing on a Sony Ericsson
phone

To run tests on a physical phone, the Wireless Toolkit for testing needs to be changed. If the
Sony Ericsson SDK is installed at the default location C:\SonyEricsson\JavaME_SDK_CLDC\, the on-
device Wireless Toolkit is located at C:\SonyEricsson\JavaME_SDK_CLDC\OnDeviceDebug. The
--wtk: switch is set to this location. The command line is as follows (the --device parameter must
match the connected phone):

Alternative 1 (assuming you selected “Generate Scripts” during installation):

-mobile-junit --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800 --suite:MyTestSuite --compile-midlet:yes --wtk:<SDK
Installation Path>\JavaME_SDK_CLDC\OnDeviceDebug

Alternative 2 (replace the --javac parameter with the compiler that Mobile JUnit should use):

java -classpath mobile-ju-1.0.jar;junit.jar com.sonyericsson.sdkme.junit.OnDe-
viceTest --project-dir:<SDK Installation
Path>\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\mobile-ju-sampleproject --
device:SonyEricsson_W800 --suite:MyTestSuite --compile-midlet:yes --wtk:<SDK
Installation Path>\JavaME_SDK_CLDC\OnDeviceDebug --javac:<my-installation-of-
jdk>\bin\javac.exe

Before executing, the Serial Proxy application must be launched with the command:

<SDK Installation Path>\JavaME_SDK_CLDC\OnDeviceDebug\bin\serialproxy.exe

The Serial Proxy connects to the phone, and a dialog as below appears. If it fails to connect, click the Set-
tings button (red circle) and select the serial port to which the phone is connected.
79 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Once connected, the tests can be run by executing the above command line. The test results are output
to the phone display.

Configuring and running mobile tests

There are various ways to configure Mobile JUnit. For most situations the default configuration should
work. Since there are so many ways to structure a project, the tool will allow configuring most of its tasks
and where to put things.

--project-dir
This is used if the project follows the Wireless Toolkit project structure. Source directories, the name of
the MIDlet under test, and so on, are set automatically. However, each of these configuration settings may
be changed individually.

The --project-dir should point at a subdirectory of the apps directory in the Wireless Toolkit.

Example:

--project-dir:C:\SonyEricsson\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\Mobile-
ju-sampleproject

--device
Note: mandatory property.

This is the name of the phone to emulate. Most Java ME enabled IDEs can provide a list of all available
phone names. Examples of device names are SonyEricsson_JP-7 and SonyEricsson_K750.
80 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
--wtk
The location of the Wireless Toolkit to use for emulation or on-device execution of the tests. The
Sony Ericsson SDK provides an on-device Wireless Toolkit.

If no --wtk is set, the tool will use the --project-dir setting to “guess” it.

Example:

--wtk:C:\SonyEricsson\JavaME_SDK_CLDC\OnDeviceDebug

--runmode
In some instances it may be useful to only perform the compilation of the test MIDlet, or to only run the
test MIDlet without compiling it. The --runmode switch enables this.

• --runmode:COMPILE-ONLY – the test is only compiled into a test MIDlet
• --runmode:RUN-ONLY – the compiled test MIDlet is run (if the other configuration settings are kept

from the compilation step)
• --runmode:COMPILE-AND-RUN – both steps are performed.

The default value is COMPILE-AND-RUN.

--suite
The class name of the test to run, usually a test suite, but it may also be an individual test case.

If no suite is provided, the --test-source directory is scanned, and any class that "extends
com.sonyericsson.junit.framework.TestCase" is executed.

Example:

--suite:com.mycompany.myproduct.AllTests

--javac
The location of the java compiler executable, javac.exe. (Mobile JUnit tries to set this to a default value,
but this may not be correct.)

Example:

--javac:C:\java\j2sdk1.4.2_08\bin\javac.exe

--compile-midlet
If set to true, on or yes, this setting instructs Mobile JUnit to build the MIDlet under test. A particularly
nice feature for library development, where no MIDlet is present (this may cause problems with Wireless
Toolkit). It also compiles the MIDlet with line number information, which allows for using the line coverage
feature.

--name
The name of the test run. This name shows up in the xml report.
81 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
--add-line-numbers
This is a special feature for devices that do not provide a stack trace with line number information. If set to
true, on or yes, the --add-line-number setting adds the line number to every assert in the set of
tests.

Note: In the current implementation, the line number will not appear in the stack trace, but in the assert
message.

--test-source, --test-resources, --midlet-source, --midlet-resources, --
midlet-under-test, --midlet-manifest
These are directories and files the tool uses for compiling the test MIDlet. They can be configured to fit the
project structure.

--test-report
This is a file where the XML used internally by the tool is stored. This may be used for reporting. However,
it is recommended to wrap the test run in a regular JUnit test run and use tools that are available for JUnit
to do this.

--coverage, --coverage-map, --coverage-report, --coverage-xsl
Mobile JUnit provides a simple coverage facility for line (statement) and method coverage.

If set to L, Mobile JUnit prepares the test MIDlet for line (statement) coverage.

If set to M, Mobile JUnit prepares the test MIDlet for method coverage.

Examples:

--coverage:L

--coverage:M

--coverage:off

There is also an example how to use the coverage functionality in the build.xml file of the sample
project, target run-with-coverage.

--coverage-map points to a file that contains an internal representation of the source code.

--coverage-report is where the report is output.

--coverage-xsl is an XSL file used to produce the HTML report.

Use the --name parameter to set the HTML report title.

--progress
Before actually running the tests, Mobile JUnit compiles them and upload them to the (emulated) device.
Progress is reported to the user. There are three levels of progress: TEXT, GUI and NONE. The TEXT
progress reports progress to the console, GUI launches a small window to the same effect and NONE does
not report progress at all.

Examples:
82 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
--progress:TEXT

--progress:GUI

--progress:NONE

Note: The GUI option launches an AWT window. Due to AWT threading issues, only a call to Sys-
tem.exit actually kills the VM. So, if the on-device tests are wrapped in a JUnit test run (see “Using
JUnit to run mobile tests” on page 86), the client code must ensure that the call to System.exit is made.

--print-config
Setting this switch to true will output all configuration settings to the console. This may be useful when
problems running Mobile JUnit arise.

Example:

--print-config:true

--config-file
Instructs Mobile JUnit to load a file containing configuration settings. If a particular setting is defined on
the command line and in the file, the command line value will take precedence. The file is has the format of
a Java properties file.

Example:

--config-file:C:/projects/my-project/test.properties

Example:

wtk = C:\\SonyEricsson\\JavaME_SDK_CLDC\\OnDeviceDebug\\bin

Note that parameters have no leading --, and that \ must be escaped in Java properties files.

Default values

Below are default values for each of the above settings and a few more, auxiliary settings. Any one of
these settings may be overidden, but it must be made sure that this does not cause some other setting to
be undefined or invalid.

The midlet-name property is somewhat special, since its default value is set by Mobile JUnit. This is due
to the fact that the Wireless Toolkit uses a special naming convention for MIDlet jars.

add-line-numbers=Off
clean=Off
compile=yes
compile-midlet=no
generated-tests = ${test-bin}/generated-tests
javac=${java.home}/../bin/javac
jar=${test-bin}/${midlet-name}-test.jar
jad=${test-bin}/${midlet-name}-test.jad
midlet-source=${project-dir}/src
83 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
midlet-resources=${project-dir}/res
midlet-classes=${output-classes}/../midlet-classes
midlet-manifest=${project-dir}/bin/MANIFEST.MF
midlet-under-test=${project-dir}/bin/${midlet-name}.jar
output-classes = ${test-bin}/classes
progress=TEXT
test=${project-dir}/test
test-bin=${test}/bin
test-classes = ${test-bin}/test-classes
test-report=${test}/testreport.xml
test-resources=${test}/res
test-source=${test}/src
coverage=off
coverage-map-file=${test-bin}/coverage.map
coverage-report=${test}/coverage.html
coverage-result=${test-bin}/coverage.xml
wtk=${project-dir}/../..

Using ANT to run mobile tests

The following is an example on how to use the ANT Java task to run a test:

<path id = "test-classpath" >
 <pathelement location="${junit}" />
 <pathelement location="${mobile-junit-jar}" />
</path>

<target name="run-javame-tests" >
 <java
 classname="com.sonyericsson.sdkme.junit.OnDeviceTest"
 fork="true" failonerror="true" >
 <classpath refid="test-classpath" />
 <arg value = "--device:SonyEricsson_K750_Emu"/>
 <arg value = "--compile:true" />
 <arg value = "--compile-midlet:true" />
 </java>
</target>

Note the class name "com.sonyericsson.sdkme.junit.OnDeviceTest", and the failonerror
instruction, which tells ANT to fail unless all tests pass.

In the mobile-ju-sampleproject/build directory, an entire ANT build.xml is included. It runs the
above snippet. If the ANT installation is properly configured, and if “Generate Scripts” was selected at
installation, the following command line should be sufficient to run it:

ant

If “Generate Scripts” was not selected at installation, the build.properties file located in the build
directory may need to be modified.
84 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
Compiling a standalone test MIDlet

Normally, the MIDlet terminates after running all tests. In some instances, it might be useful to manually
start, stop and restart tests. The command line parameters below will instruct Mobile JUnit to create a
standalone MIDlet.

--test-runner-class:com.sonyericsson.junit.midletrunner.StandaloneMIDlet --
runmode:COMPILE-ONLY

An example can be found in the build.xml file (target name compile-standalone).

Configuring Eclipse and EclipseME for
mobile test development

This section describes how to configure Eclipse version 3.2 and EclipseME version 1.5.0.

The recommended procedure to use Mobile JUnit with EclipseME is as follows:

1. Add the Mobile JUnit framework to the project classpath.

• In project settings, open the Java Build Path properties page

• Click Add External JARs
85 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0
• Select the Mobile JUnit framework jar. If installed with default settings, this will be located at
C:\SonyEricsson\JavaME_SDK_CLDC\mobile-ju\mobile-ju-framework-1.0.jar.

2. Use an ANT script to run the tests. See “Using ANT to run mobile tests” on page 84.

Using JUnit to run mobile tests

On-device tests can be run as “regular”JUnit tests. The class com.sonyerics-
son.sdkme.junit.OnDeviceTest also implements a JUnit test. The below code snippet illustrates
how to run a on-device test as a JUnit test:

import junit.framework.Test;
import junit.framework.TestCase;
import junit.textui.TestRunner;

public class WrappedOnDeviceTest extends TestCase {

public static Test suite() {
 OnDeviceTest test = new OnDeviceTest();
 return test;
 }
}

The VM argument mechanism is used to configure Mobile JUnit:

java -Dproject-dir=C:\SonyErics-
son\JavaME_SDK_CLDC\PC_Emulation\WTK2\apps\Mobile-ju-sampleproject -Dde-
vice=SonyEricsson_W800_Emu [... more parameters ...] WrappedOnDeviceTest

ANT or any IDE can also be used to configure the VM arguments.

For the above command line to work properly, a main method is required in WrappedOnDeviceTest:

public static void main(String[] args) {
 TestResult result = TestRunner.run(suite());
 int errorsPlusFailures = result.failureCount() + result.errorCount();

 int exitCode = errorsPlusFailures > 0 ? 1 : 0;

 System.exit(exitCode);
 }

An OnDeviceTest can also be created from a set of command line arguments. main is here used in
exactly the way as we used the Mobile JUnit tool in the very first example above.

public static void main(String[] args) {
 OnDeviceTest test = new OnDeviceTest(args);
 [...]
 }
86 February 2007

Developers guidelines | Java™ ME, CLDC – MIDP 2.0

87 February 2007

Links and references

Specifications

The Java ME platform

3D developer tools/plugins

CLDC 1.0 (JSR 30) http://www.jcp.org/en/jsr/detail?id=30

CLDC 1.1 (JSR 139) http://www.jcp.org/en/jsr/detail?id=139

JTWI R1 (JSR 185) http://www.jcp.org/en/jsr/detail?id=185

MIDP 1.0 (JSR 37) http://www.jcp.org/en/jsr/detail?id=37

MIDP 2.0 (JSR 118) http://www.jcp.org/en/jsr/detail?id=118

MMAPI (JSR 135) http://www.jcp.org/en/jsr/detail?id=135

AMMS (JSR 234) http://www.jcp.org/en/jsr/detail?id=234

WMA (JSR 120) http://www.jcp.org/en/jsr/detail?id=120

WMA 2.0 (JSR 205) http://www.jcp.org/en/jsr/detail?id=205

3D (JSR 184) http://www.jcp.org/en/jsr/detail?id=184

Bluetooth (JSR 82) http://www.jcp.org/en/jsr/detail?id=82

Optional Package (JSR 75) http://www.jcp.org/en/jsr/detail?id=75

Java ME Web services 1.0 (JSR 172) http://www.jcp.org/en/jsr/detail?id=172

Mascot Capsule http://www.mascotcapsule.com

Sony Ericsson Developer World http://www.sonyericsson.com/developer/

J2ME white paper http://java.sun.com/products/cldc/wp/KVMwp.pdf

OTA Provisioning http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf

Helpful hints (white paper) http://java.sun.com/j2me/docs/pdf/midpwp.pdf

Java Developer Connection Web site
with Java Technical documentation

http://developer.java.sun.com/developer/infodocs/

Java Consumer Software Documentation
Web site

http://java.sun.com/j2me/docs/

Mascot Capsule Micro3D Version 3 plug-
ins

http://www.mascotcapsule.com/toolkit/sony_ericsson/

Mascot Capsule Micro3D version 4
(JSR 184) plugins

http://www.mascotcapsule.com/M3G/download/e_index.html

http://www.jcp.org/en/jsr/detail?id=30
http://www.jcp.org/en/jsr/detail?id=185
http://www.jcp.org/en/jsr/detail?id=37
http://www.jcp.org/en/jsr/detail?id=118
http://www.jcp.org/en/jsr/detail?id=135
http://www.jcp.org/en/jsr/detail?id=120
http://www.jcp.org/en/jsr/detail?id=205
http://www.mascotcapsule.com
http://www.sonyericsson.com/developer/
http://java.sun.com/products/cldc/wp/KVMwp.pdf
http://java.sun.com/products/midp/OTAProvisioning-1.0.pdf
http://java.sun.com/j2me/docs/pdf/midpwp.pdf
http://developer.java.sun.com/developer/infodocs/
http://java.sun.com/j2me/docs/
http://www.jcp.org/en/jsr/detail?id=139
http://www.jcp.org/en/jsr/detail?id=139
http://www.jcp.org/en/jsr/detail?id=139
http://www.mascotcapsule.com/toolkit/sony_ericsson/
http://www.mascotcapsule.com/M3G/download/e_index.html
http://www.jcp.org/en/jsr/detail?id=82
http://www.jcp.org/en/jsr/detail?id=75
http://www.jcp.org/en/jsr/detail?id=120
http://www.jcp.org/en/jsr/detail?id=172
http://www.jcp.org/en/jsr/detail?id=234

Developers guidelines | Java™ ME, CLDC – MIDP 2.0

88 February 2007

Index

Numerics
3D APIs ... 19

A
abbreviations .. 6
Advanced Multimedia Supplements 18
audio support .. 17

B
Bluetooth API .. 20

C
camera specifications ... 35
CLDC .. 32
command types .. 22

D
debug interface ... 34

E
Eclipse .. 70
error messages ... 23

F
File connection API20, 53
font sizes ... 37

I
IMEI ... 44

J
Java heap ... 43
Java platforms .. 14
JBuilder integration ... 68
JSR 120 .. 15
JSR 135 .. 17
JSR 172 .. 21
JSR 205 .. 16
JSR 75 ..18, 19, 51
JSR 82 ..20, 57
JTWI .. 33

K
key mappings ... 38
Knowledge base ... 63

L
links and references .. 87

M
memory ... 21
memory usage .. 43
MIDP ... 15
MMAPI .. 17, 33
Mobile JUnit ... 74

N
navigation key ... 21
NetBeans 4 ... 69
networking .. 47

P
PDA optional packages API 19
PIM API ... 19, 51
port numbers .. 16

S
screen specification .. 30
system properties ... 58

V
video support .. 18

W
web services API .. 21
WMA ... 15, 33

	Preface
	Purpose of this document
	Sony Ericsson Developer World
	Document conventions
	Products
	Terminology and abbreviations

	Trademarks and acknowledgements
	Java Verified™ program for Java ME platform

	Document history

	Contents
	The Java ME platform
	Sony Ericsson Java platforms
	MIDP 2.0 support
	WMA (JSR 120)
	WMA 2.0 (JSR 205)
	MMAPI (JSR 135)
	Audio support
	Video support

	Advanced Multimedia Supplements (JSR 234)
	3D APIs
	PDA optional packages (JSR 75)
	PIM optional package
	File Connection optional package

	Bluetooth API (JSR 82)
	Java ME Web Services 1.0 (JSR 172)
	Memory
	The navigation key
	Simultaneous key presses
	Command types
	Error messages
	Sony Ericsson SDK for the Java™ ME Platform
	Security policy for Sony Ericsson phones
	Permission settings
	Security Configuration

	Download and installation

	Appendix A Phone specifications
	Screen and memory specifications
	Java specifications
	Camera specifications
	Font sizes
	Key mapping

	Appendix B Java programming issues
	Hints for developing MIDlets
	Writing efficient applications
	Low-level MIDP user interface

	Memory usage
	Java heap
	Video RAM areas

	Retrieving the IMEI number
	Minimizing and maximizing MIDlets
	Multitasking MIDlets

	Standby MIDlets
	Autostarting MIDlets
	Network APIs
	Secure sockets and HTTPS connections

	JAD/manifest attributes
	Vodafone JAD attributes

	Serial Port Communications (JP-7 only)
	JSR 75 implementation
	PIM API
	File Connection API

	Video overlay
	Video rotation/mirroring
	Tips for using the JSR 82
	Local device
	Device discovery
	Games
	Managing connections between Bluetooth SDP records and a game server

	Querying system properties
	Supported classes
	System.getProperty(String Key) calls
	Bluetooth Local device properties (JSR 82)
	Implementation specific properties in JSR 184

	Knowledge base

	Appendix C Sony Ericsson SDK for the Java™ ME Platform
	Features
	Installing and updating the SDK

	Integrating the Sony Ericsson SDK for the Java™ ME Platform in JBuilder 2005
	Limitations in the JBuilder 2005

	Integrating the Sony Ericsson SDK for the Java™ ME Platform in NetBeans 4
	Integrating the Sony Ericsson SDK for the Java™ ME Platform in Eclipse

	Appendix D Sony Ericsson Mobile JUnit
	Mobile JUnit features
	Installing Mobile JUnit
	The sample project test
	Running the test

	Test suites
	On-device testing on a Sony Ericsson phone
	Configuring and running mobile tests
	Default values

	Using ANT to run mobile tests
	Compiling a standalone test MIDlet
	Configuring Eclipse and EclipseME for mobile test development
	Using JUnit to run mobile tests

	Links and references
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	I
	J
	K
	L
	M
	N
	P
	S
	V
	W

