

Optimizing a Java ME Application Part 3 Page 2

Copyright © 2006, Motorola, Inc. All rights reserved. This documentation may be printed and copied solely for use in developing
products for Motorola products. In addition, two (2) copies of this documentation may be made for archival and backup purposes.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or by any means or used to

make any derivative work (such as translation, transformation, or adaptation) without express written consent from Motorola, Inc.

Motorola reserves the right to make changes without notice to any products or services described herein. "Typical" parameters,

which may be provided in Motorola Data sheets and/or specifications, can and do vary in different applications and actual
performance may vary. Customer's technical experts will validate all "Typicals" for each customer application.

Motorola makes no warranty in regard to the products or services contained herein. Implied warranties, including without limitation,

the implied warranties of merchantability and fitness for a particular purpose, are given only if specifically required by applicable law.
Otherwise, they are specifically excluded.

No warranty is made as to coverage, availability, or grade of service provided by the products or services, whether through a service
provider or otherwise. No warranty is made that the software will meet your requirements or will work in combination with any

hardware or application software products provided by third parties, that the operation of the software products will be uninterrupted
or error free, or that all defects in the software products will be corrected.

In no event shall Motorola be liable, whether in contract or tort (including negligence), for any damages resulting from use of a
product or service described herein, or for any indirect, incidental, special or consequential damages of any kind, or loss of revenue

or profits, loss of business, loss of information or data, or other financial loss arising out of or in connection with the ability or inability
to use the Products, to the full extent these damages may be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, or limitation on
the length of an implied warranty, therefore the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights, which vary from jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as components in systems intended for surgical

implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product or service could create a situation where personal injury or death may occur.

Should the buyer purchase or use Motorola products or services for any such unintended or unauthorized application, the buyer
shall release, indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
designing or manufacturing of the product or service.

Motorola recommends that if you are not the author or creator of the graphics, video, or sound, you obtain sufficient license rights,

including the rights under all patents, trademarks, trade names, copyrights, and other third party proprietary rights.

If this documentation is provided on compact disc, the other software and documentation on the compact disc are subject to the

license agreement accompanying the compact disc.

Optimizing a Java ME Application Part 3: Canvas Performance Improvement

2/1/2007

For the latest version of this document, visit http://developer.motorola.com

Motorola, Inc.

http://www.motorola.com

Optimizing a Java ME Application Part 3 Page 3

Contents
About this Document 4

Document Overview 4

Definitions, Abbreviations, Acronyms 4

An Introduction to the Motorola SDK’s profiler 5

Profiling function in Motorola Linux OS SDK 5

Performance improvement tips and example 7

CLDC Hotspot mechanism overview 7

Performance improvement tips 7

Performance improvement example 8

Appendix A: Additional Resources 11

List of Figures
Figure 1: Motorola Linux OS product SDK profiling menu 5

Figure 2, Motorola Linux OS product SDK memory monitor 6

Figure 3: CLDC HotSpot Implementation Architecture 7

Figure 4: performance improvement step 1 9

Figure 5: performance improvement step 2 10

List of Tables
Table 1. Example performance improvement step 1 8

Table 2. Example performance improvement step 2 10

Optimizing a Java ME Application Part 3 Page 4

About this Document

Document Overview
Introduction: In Java ME devices, processing speed and memory space are limited; performance
improvement will make the application run in a fluid and robust way. This document includes two parts,

 Introduction to Motorola SDK’s profiler: Introduction about how to use the profiler
in the Motorola SDK. The profiler makes possible the monitoring of the running state
of a Java ME application. It is a vital tool in helping to optimize a Java ME
application.

 Performance improvement tips: Overview of the CLDC Hotspot mechanism and

some technical tips for performance improvement. An example is provided to show
how to optimize a Java ME application with the profiler.

Definitions, Abbreviat ions , Acronyms
SDK Software Development Kit

Optimizing a Java ME Application Part 3 Page 5

An Introduction to the Motorola SDK’s profiler

Profiling function in Motorola L inux OS SDK
The profiler in Motorola SDK for Linux OS Products can be invoked with the menu Profiling->Active Mode.
It has a memory monitor, which shows the total memory and free memory in KVM.

Figure 1: Motorola Linux OS product SDK profiling menu

Optimizing a Java ME Application Part 3 Page 6

Figure 2, Motorola Linux OS product SDK memory monitor

Code to get total and free memory in real device,

Runtime.getRuntime().totalMemory();

Runtime.getRuntime().freeMemory();

Optimizing a Java ME Application Part 3 Page 7

Performance improvement tips and example

CLDC Hotspot mechanism overview
In the Motorola A1200 and ROKR E2, the Java virtual machine is Sun’s CLDC Hotspot 1.1.2. The
Hotspot Java virtual machine has a dynamic compiler, an interpreter. With a profiler, the CLDC Hotspot
implementation finds the most frequently used code pieces and compiles those byte codes into machine
instructions; the remaining parts of byte code are executed by the interpreter at runtime. The compiled
code is about an order of magnitude faster than byte code and occupies 4~8 times the space. Normally,
the boundary of hot code pieces is identified by function.

Figure 3: CLDC HotSpot Implementation Architecture (graphic courtesy of Sun)

Performance improvement tips
Technical tips:

1. Reuse code and objects if possible, avoid similar code in different places.

2. For unused objects, set their values to null. The memory management system will collect the
garbage memory in a proper way and time. Calling System.gc() is likely add overhead without any
benefit. For example, press the “Run GC” button in the SUN WTK’s memory monitor will impair the
application performance.

3. Use arrays instead of vectors where possible.

4. Abstract most frequently used code pieces and put them into independent functions, this will make it
easy to be compiled and optimized by the CLDC Hotspot implementation.

5. Using large classes instead of small classes. Class header will increase the memory consumption
and management complexity.

6. Using final/static methods.

7. Avoid using too many exceptions, because exceptions are much slower than method invocation.

8. Obfuscator like proguard can be used to compress the jar file size and thus reduce the midlet loading
time.

Optimizing a Java ME Application Part 3 Page 8

Performance improvement example

The example used in performance improvement is a multi thread demo application in Motorola Java ME
SDK v6.1 for Linux OS Products, <SDK path>\demo\com\mot\j2me\midlets\Bounce. The demo bounces
rectangles on the screen, and the purpose is to demonstrate the application framework and animation
using multiple threads.

FRAME_DELAY is the thread sleeping time in every cycle of the program, first set as

FRAME_DELAY = 100

in the source code, thus the application will make the emulator and real device keep running in the full
loading state. This will make the performance improvement obvious.

Then test the time interval for 1000 cycles in one thread. This time interval is used as the time interval
before optimization.

long initTime = System.currentTimeMillis();

System.out.println("Time Interval:"+ (System.currentTimeMillis()-

initTime));

For application optimization, the point is to focus on the methods and objects, which consume most

system resources. The serviceRepaints() function forces any repaint requests in the queue to be

serviced immediately. This method blocks until the pending requests have been serviced.

ServiceRepaints() will make the animation look very fluid, but it has very big impact on performance.

Because too many serviceRepaint() methods in synchronized part blocks every thread. In the

modified code, serviceRepaints() is running in only one thread. (Note: This works well in real device,

but some frames were missing when the application running with emulator in some slower PC.)

Original code,

myCanvas.serviceRepaints();

Modified code, serviceRepaints() is being called in only one thread, the rectangle size is used like

the thread id.

if(this.size==10){

myCanvas.serviceRepaints();

}

Table 1. Example performance improvement step 1

 Time Interval in
Emulator (ms)

%Improvement in
Emulator

Time Interval in
real device(ms)

%Improvement in
real device

Before optimization 12578 6848

Modify
serviceRepaints

11438 9.06% 6486 5.28%

Optimizing a Java ME Application Part 3 Page 9

Figure 4: performance improvement step 1

It seems that the fillRect function is being called too many times in BounceCanvas.

In the original code, every thread calls paint(g) of all the four threads. Paint(g) is being called

4x4x1000=16000 times in 1000 cycles;

for (int i = 0; i < rectThreads.length; i++) {

 rectThreads[i].paint(g);

}

In the modified code, every thread only calls paint(g) for its own thread. Paint(g) is being called

4x1000=4000 times in 1000 cycles;

switch(activeSize){

 case 8: rectThreads[0].paint(g);break;

 case 4: rectThreads[1].paint(g);break;

 case 10: rectThreads[2].paint(g);break;

 case 2: rectThreads[3].paint(g);break;

}

Optimizing a Java ME Application Part 3 Page 10

Table 2. Example performance improvement step 2

 Time Interval in
Emulator (ms)

%Improvement in
Emulator

Time Interval in
real device(ms)

%Improvement in
real device

Before optimization 11438 6486

Modify
BounceCanvas.paint(g)

7906 30.8% 5769 11.05%

Figure 5: performance improvement step 2

Because the emulator cannot simulate the real hardware environment, the result in emulator’s profiler can
only be used as a reference to find the performance improvement direction. The last performance
improvement result still depends on testing on the real device.

Optimizing a Java ME Application Part 3 Page 11

Appendix A: Additional Resources
 Motorola J2ME SDK Users Guide

 Sun CLDC Hotspot 1.1.2 Implementation Virtual Machine white paper

