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About this Document 

Document  Overview 
Introduction: In Java ME devices, processing speed and memory space are limited; performance 
improvement will make the application run in a fluid and robust way. This document includes two parts, 

 Introduction to Motorola SDK’s profiler: Introduction about how to use the profiler 
in the Motorola SDK. The profiler makes possible the monitoring of the running state 
of a Java ME application. It is a vital tool in helping to optimize a Java ME 
application. 

 Performance improvement tips: Overview of the CLDC Hotspot mechanism and 

some technical tips for performance improvement. An example is provided to show 
how to optimize a Java ME application with the profiler. 

 

Definitions,  Abbreviat ions , Acronyms 
SDK  Software Development Kit 
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An Introduction to the Motorola SDK’s profiler 

Profiling function in Motorola L inux OS SDK  
The profiler in Motorola SDK for Linux OS Products can be invoked with the menu Profiling->Active Mode. 
It has a memory monitor, which shows the total memory and free memory in KVM. 

 

 

Figure 1: Motorola Linux OS product SDK profiling menu 
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Figure 2, Motorola Linux OS product SDK memory monitor 

Code to get total and free memory in real device,  

Runtime.getRuntime().totalMemory(); 

Runtime.getRuntime().freeMemory(); 
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Performance improvement tips and example 

CLDC Hotspot mechanism overview 
In the Motorola A1200 and ROKR E2, the Java virtual machine is Sun’s CLDC Hotspot 1.1.2. The 
Hotspot Java virtual machine has a dynamic compiler, an interpreter. With a profiler, the CLDC Hotspot 
implementation finds the most frequently used code pieces and compiles those byte codes into machine 
instructions; the remaining parts of byte code are executed by the interpreter at runtime. The compiled 
code is about an order of magnitude faster than byte code and occupies 4~8 times the space. Normally, 
the boundary of hot code pieces is identified by function.  

 

Figure 3: CLDC HotSpot Implementation Architecture (graphic courtesy of Sun) 

Performance improvement tips 
Technical tips: 

1. Reuse code and objects if possible, avoid similar code in different places. 

2. For unused objects, set their values to null. The memory management system will collect the 
garbage memory in a proper way and time. Calling System.gc() is likely add overhead without any 
benefit. For example, press the “Run GC” button in the SUN WTK’s memory monitor will impair the 
application performance. 

3. Use arrays instead of vectors where possible. 

4. Abstract most frequently used code pieces and put them into independent functions, this will make it 
easy to be compiled and optimized by the CLDC Hotspot implementation. 

5. Using large classes instead of small classes. Class header will increase the memory consumption 
and management complexity. 

6. Using final/static methods. 

7. Avoid using too many exceptions, because exceptions are much slower than method invocation. 

8. Obfuscator like proguard can be used to compress the jar file size and thus reduce the midlet loading 
time.  
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Performance improvement example 
 

The example used in performance improvement is a multi thread demo application in Motorola Java ME 
SDK v6.1 for Linux OS Products, <SDK path>\demo\com\mot\j2me\midlets\Bounce. The demo bounces 
rectangles on the screen, and the purpose is to demonstrate the application framework and animation 
using multiple threads.  

FRAME_DELAY is the thread sleeping time in every cycle of the program, first set as  

FRAME_DELAY = 100 

in the source code, thus the application will make the emulator and real device keep running in the full 
loading state. This will make the performance improvement obvious.  

Then test the time interval for 1000 cycles in one thread. This time interval is used as the time interval 
before optimization. 

long initTime = System.currentTimeMillis(); 

System.out.println("Time Interval:"+ (System.currentTimeMillis()-

initTime)); 

For application optimization, the point is to focus on the methods and objects, which consume most 

system resources. The serviceRepaints() function forces any repaint requests in the queue to be 

serviced immediately. This method blocks until the pending requests have been serviced. 

ServiceRepaints() will make the animation look very fluid, but it has very big impact on performance. 

Because too many serviceRepaint() methods in synchronized part blocks every thread. In the 

modified code, serviceRepaints() is running in only one thread. (Note: This works well in real device, 

but some frames were missing when the application running with emulator in some slower PC.) 

Original code, 

myCanvas.serviceRepaints();  

Modified code, serviceRepaints() is being called in only one thread, the rectangle size is used like 

the thread id. 

if(this.size==10){ 

myCanvas.serviceRepaints(); 

} 

 

Table 1.  Example performance improvement step 1 

 Time Interval in 
Emulator (ms) 

%Improvement in 
Emulator 

Time Interval in 
real device(ms) 

%Improvement in 
real device 

Before optimization 12578  6848  

Modify 
serviceRepaints 

11438 9.06% 6486 5.28% 
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Figure 4: performance improvement step 1 

 

 

It seems that the fillRect function is being called too many times in BounceCanvas. 

In the original code, every thread calls paint(g) of all the four threads. Paint(g) is being called 

4x4x1000=16000 times in 1000 cycles; 

for (int i = 0; i < rectThreads.length; i++) { 

     rectThreads[i].paint(g); 

} 

In the modified code, every thread only calls paint(g) for its own thread. Paint(g) is being called 

4x1000=4000 times in 1000 cycles; 

switch(activeSize){ 

    case 8: rectThreads[0].paint(g);break; 

    case 4: rectThreads[1].paint(g);break; 

    case 10: rectThreads[2].paint(g);break; 

    case 2: rectThreads[3].paint(g);break; 

} 
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Table 2.  Example performance improvement step 2 

 Time Interval in 
Emulator (ms) 

%Improvement in 
Emulator 

Time Interval in 
real device(ms) 

%Improvement in 
real device 

Before optimization 11438  6486  

Modify 
BounceCanvas.paint(g) 

7906 30.8% 5769 11.05% 

 

 

Figure 5: performance improvement step 2 

 

Because the emulator cannot simulate the real hardware environment, the result in emulator’s profiler can 
only be used as a reference to find the performance improvement direction. The last performance 
improvement result still depends on testing on the real device.  
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Appendix A: Additional Resources 
 Motorola J2ME SDK Users Guide 

 Sun CLDC Hotspot 1.1.2 Implementation Virtual Machine white paper 

 


