

0

MIDLET LIFECYCLE ON MOTOROLA LINUX OS DEVICES

TECHNICAL ARTICLE

V 1.1

MIDlet Lifecycle on Motorola Linux OS Devices

Copyright © 2007, Motorola, Inc. All rights reserved. This documentation may be printed and copied solely for use in developing

products for Motorola products. In addition, two (2) copies of this documentation may be made for archival and backup purposes.
Except for the foregoing, no part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation, or adaptation) without express written consent from Motorola, Inc.

Motorola reserves the right to make changes without notice to any products or services described herein. "Typical" parameters,
which may be provided in Motorola Data sheets and/or specifications, can and do vary in different applications and actual
performance may vary. Customer's technical experts will validate all "Typicals" for each customer application.

Motorola makes no warranty in regard to the products or services contained herein. Implied warranties, including without limitation,
the implied warranties of merchantability and fitness for a particular purpose, are given only if specifically required by applicable law.
Otherwise, they are specifically excluded.

No warranty is made as to coverage, availability, or grade of service provided by the products or services, whether through a service
provider or otherwise. No warranty is made that the software will meet your requirements or will work in combination with any
hardware or application software products provided by third parties, that the operation of the software products will be uninterrupted

or error free, or that all defects in the software products will be corrected.

In no event shall Motorola be liable, whether in contract or tort (including negligence), for any damages resulting from use of a
product or service described herein, or for any indirect, incidental, special or consequential damages of any kind, or loss of revenue

or profits, loss of business, loss of information or data, or other financial loss arising out of or in connection with the ability or inability
to use the Products, to the full extent these damages may be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, or limitation on

the length of an implied warranty, therefore the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights, which vary from jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as components in systems intended for surgical
implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the

Motorola product or service could create a situation where personal injury or death may occur.

Should the buyer purchase or use Motorola products or services for any such unintended or unauthorized application, the buyer
shall release, indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all

claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
designing or manufacturing of the product or service.

Motorola recommends that if you are not the author or creator of the graphics, video, or sound, you obtain sufficient license rights,
including the rights under all patents, trademarks, trade names, copyrights, and other third party proprietary rights.

If this documentation is provided on compact disc, the other software and documentation on the compact disc are subject to the

license agreement accompanying the compact disc.

MIDlet Lifecycle on Motorola Linux OS Devices

Version 1.1

June 2007

For the latest version of this document, visit http://developer.motorola.com

Motorola, Inc.

http://www.motorola.com

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 2

Contents
Introduction ...4

MIDlet Lifecycle Behavior and Background Execution Support..4

Started ..4

Suspended ...4

Destroyed ...5

New Motorola Linux OS MIDlet Lifecycle Behavior and Background Execution Support...6

Started ..6

Suspended ...6

Run in Background ..6

Destroyed ...7

Entering and Exiting Background Mode ...8

Flip Behaviors ...9

MIDlet Development Recommendations ..9

Pausing a MIDlet ...9

Resuming a MIDlet ..10

Utilizing Background Mode ...10

Potential Conflicts...11

Conclusion ..11

References..12

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 3

Figures
Figure 1: Motorola OS device MIDlet lifecycle state machine..5

Figure 2: Motorola Linux OS device MIDlet lifecycle state machine..8

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 4

Introduction
The Mobile Device Information Profile (MIDP) version 2.0 for Java Micro Edition (JavaME) specification
defines the architecture and associated APIs required to enable development of JavaME applications
(MIDlets) that can be run on Motorola Mobile Devices. The MIDP profile was developed with the flexibility
to allow device manufacturers and carriers the ability to customize their application environment based on
the needs and capabilities of their devices.

In continuing our efforts to improve the experience on Motorola mobile devices, the Linux-Java platform
utilizes the flexibility allowed by the MIDP specification to provide new Java capabilities that are not
available on devices running the Motorola Proprietary Operating System. One of the key, functional
differences is the support for background execution of MIDlets. This new capability does, however,
require MIDlet developers to understand the implementation of the feature and thus MIDlet developers
must take the steps necessary to ensure the MIDlet produces the desired experience.

This document outlines the changes in the Java KVM architecture which allows background running
capabilities of MIDlets on the Linux-Java platform and provides information to help developers create
MIDlets for the platform.

MIDlet Lifecycle Behavior and Background Execution Support
The latest Motorola Operating System (OS) device range does not support “Background” execution.

On this family of devices, a MIDlet can only have 4 states:

1 Not running

2 Active

3 Suspended (run state saved with MIDlet dormant)

4 Destroyed

A running MIDlet can have the following three states: started, suspended, or destroyed.

Started
Started from the “Games” menu in the device UI.

Suspended
 Suspended from a running state by the user pressing the red end key followed by selecting the

“Suspend” option from the AMS (Application Management Software) menu.

 Suspended from a running state by the user closing the handset flip (clamshell style devices
only).

 Suspended from a running state by an interruption event such as an incoming phone call.

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 5

Destroyed
 Destroyed from a running state via pressing the red end key followed by selecting “End” from the

AMS menu.

 Destroyed from a running state via a user directive from the MIDlet menu.

 Destroyed from a running state via abnormal MIDlet termination.

 Destroyed form a suspended state due to device power off.

NOTE: A running MIDlet CAN NOT be set to run in the background without focus and allow application
multi-tasking.

The MIDlet lifecycle state machine on the Motorola OS devices is shown below.

 Figure 1: Motorola OS device MIDlet lifecycle state machine

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 6

New Motorola Linux OS MIDlet Lifecycle Behavior and Background
Execution Support
Following the paradigm of Linux-Java to provide a multi-tasking environment, devices developed on the
Linux-Java Platform will allow MIDlets to continue running in the background while the device is being
used for other activities. This will permit an application such as an Email client, a music player, or an
Instant Messaging application to continue running in the background, keep necessary network resources,
and even play sounds or music while it is not in the foreground with focus.

On this family of devices, a MIDlet can have five states:

1 Not running

2 Active

3 Suspended (run state saved with MIDlet dormant) controlled programmatically in MIDlet using
Lifecycle methods

4 Background execution (running without focus)

5 Destroyed

A running MIDlet can be started, suspended, run in background, and destroyed.

Started
• From the “Games” menu in the device UI.

Suspended
• From a running state via the user pressing the red end key followed by selecting the “Go to idle

…” option from the AMS (Application Management Software) menu. However, the MIDlet must be

built to specifically handle a suspend/pause MIDlet state by way of the pauseApp() and

startApp() MIDlet lifecycle methods.

• From a running state via the user closing the handset flip (clamshell form factor devices only).
However, the MIDlet must be built to specifically handle a suspend/pause MIDlet state by way of

the pauseApp() and startApp() MIDlet lifecycle methods.

• From a running state by an interruption event such as an incoming phone call. However, the
MIDlet must be built to specifically handle a suspend/pause MIDlet state by way of the
pauseApp() and startApp() MIDlet lifecycle methods.

Run in Background
• Execution mode from a running state by the user pressing the red end key followed by selecting

the “Go to idle …” option from the AMS (Application Management Software) menu. No special

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 7

action needs to be handled programmatically but be advised any code in the pauseApp() or

startApp() methods will be executed.

 Execution mode from a running state by the user closing the handset flip (clamshell form factor
devices only). No special action needs to be handled programmatically but be advised any code

in the pauseApp() or startApp() methods will be executed.

Destroyed
• From a running state via the pressing the red end key followed by selecting “Close Application”

from the AMS menu.

• From a running state via a user directive from the MIDlet menu.

• From a running state via abnormal MIDlet termination.

• From a suspended state due to device power off.

NOTE: A running MIDlet CAN be set to run in background without focus and allow application multi-

tasking.

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 8

Figure 2: Motorola Linux OS device MIDlet lifecycle state machine

Entering and Exiting Background Mode
Beginning with the first device released on the Linux-Java platform (MOTOROKR Z6), MIDlets are able to

run in the background. A MIDlet is informed that it is being placed in the background via the pauseApp()

method. If the MIDlet does not pause itself or release any resources, the MIDlet will continue running in
the background. If any resources (such as audio) are needed by a higher priority system function (such

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 9

as a voice call), the needed resources will be taken away from the MIDlet to service the system
requirement.

It is advisable for the MIDlet developer to keep in mind and code a MIDlet to accommodate possible
scenarios such as an incoming voice call which results in multi media player resources being taken from
a running MIDlet and given to the system. Failing to do this correctly will result in poor user experience or
incorrect MIDlet behavior.

By definition, once the pauseApp() method is called, the MIDlet is in the Paused state. Per the MIDP

2.0 specification, a MIDlet “SHOULD not be holding or using any shared resources”. It is the responsibility
of the MIDlet to release unneeded resources when it is “paused”. However, since this is a recommended
practice and not a mandatory requirement of the specification, a MIDlet may retain resources necessary
to allow it to function.

Since the MIDP specification was created to support a minimum set of functionality that may or may not
support background execution of MIDlets, special care must be taken when implementing a background
executing MIDlet. The recommendations below must be followed closely when developing MIDlets for a
Motorola Linux-Java device to ensure a good, reliable, user-friendly experience.

Flip Behaviors
On Motorola OS devices it is possible to instruct the AMS to ignore a flip closure/open event and allow a
MIDlet to continue to run unaffected by the flip operation. To do this in a Motorola OS device the JAD
attribute “FlipInsensitive” can be used and set to “True”. The following line can be added to the JAD file:

FlipInsensitive: True

However, on the Motorola Linux OS devices this behavior is currently not available. It is planned and will
be available in the very near future. Please reference the MOTODEV website at
http://developer.motorola.com for news on when this feature is available in the Motorola Linux OS
devices.

This means that on Motorola Linux OS devices when the flip is used the MIDlet will lose focus (it can still
be running in the background) and the user will have to go to the Games menu to bring the focus back to
the MIDlet when the flip is reopened. There will be visual indication to the user that the MIDlet is running
in the background by way of a coffee cup in the status bar at the top of the device screen.

MIDlet Development Recommendations

Pausing a MIDlet
For developers of games or other applications that do not have a need or use for background mode
execution, it is strongly recommended that the guidelines defined in the MIDP 2 specification be followed.

Therefore, when the pauseApp() method is called by the system, the MIDlet MUST pause the game or

application, release resources (for example, audio) that are not needed while the game is paused, and
take any necessary steps to preserve system or user data. Unlike the Java environment provided by
devices running Motorola’s proprietary operating system, the Motorola Linux-Java platform will not

automatically pause the execution of Java MIDlets based on calling pauseApp(). It is the responsibility

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 10

of the 3rd party Java developer to stop the execution of the application once the device informs the
MIDlet to pause.

Resuming a MIDlet
For developers of games or other applications that do not have a need or use for background mode

execution, following a suspend/pause and call to the pauseApp() method, the resources (for example,

audio) that are not needed may have been released (recommended). On resuming the MIDlet it will
therefore be necessary to re-instate these resources and system or user data to the exact same state at

the point of suspension in order to give a good user experience. This is done by utilizing the startApp()

MIDlet lifecycle method. The MIDlet can then continue its execution cycle.

Utilizing Background Mode
For developers that wish to make use of background mode on the Motorola Linux OS platform, the MIDlet
must be designed with the understanding that a pauseApp() request will be passed to the MIDlet when

the MIDlet is placed in the background. This call can be made due to a number of reasons such as
incoming voice calls or flip/slider closure. The user can also manually put the application in the
background by pressing the red END key and selecting the option from the AMS pop-up menu to return to

IDLE with the MIDlet running. The pauseApp() method will be called once the background execution

(Idle) option is selected from the AMS pop-up menu.

A MIDlet that wishes to run in the background must respond to the pauseApp() method call as required

in the MIDP 2.0 specification, but can continue to utilize the resources it needs to perform necessary
functions in the background. Since the MIDlet is in the Paused state once it responds to the pauseApp()

method, it is highly recommended that any unnecessary processing, such as display updates, be
stopped. This will also help provide a better overall user experience on the mobile device.

The MIDlet’s startApp() method will be called to bring the MIDlet back to the Active state. When this

method call is received, the MIDlet should request any necessary resources, resume updates to the
display, and continue executing in the foreground of the device.

1 Audio Resource Handling

Executing in background mode does not guarantee audio resources will always be available. If a
higher priority task occurs on the phone, such as a phone call is placed or received, the audio
resources will be taken away. The system will inform the MIDlet that the audio is unavailable via a

DEVICE_UNAVAILABLE event. The MIDlet will be informed when audio resources are made available

again via a DEVICE_AVAILABLE event. The MIDlet should be able to process the event and take

necessary actions to provide an optimal user experience. This could include pausing and restarting
audio, stopping streaming audio, or replaying notifications once the audio resources are available
again.

If the MIDlet is not concerned with the loss of audio resources while in background mode, it is highly
recommended that the MIDlet re-request audio resources once the MIDlet is placed back into the

Active state (startApp() is called). This should be done even if the audio resources were available

at the time when pauseApp() was called.

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 11

If audio resources are not available when the MIDlet starts, it would be the MIDlet’s responsibility to
provide any error messages to the user and/or terminate itself.

2 Network Resource Handling

Executing in background mode does not guarantee network resources will always be available. If
network resources are lost for any reason, while the MIDlet is executing in the background, an
exception will be thrown when the MIDlet attempts to read or write over the lost connection.

3 Threads

Many MIDlet developers create multi-threaded MIDlets. These threads can be used to control a
network connection, a media player, a canvas, etc. When entering the paused state any threads
additional to the main MIDlet thread should be stopped, when leaving the paused state to a normal
running state any stopped threads should be restarted again.

4 Record Management Store

MIDlets often store “persistent” data in the Record Management Store (RMS), this data is game
information that the MIDlet must not lose between invocations such as a high score table or game
state. In the event of an abnormal MIDlet termination when in background running mode, it is
recommended that the RMS is closed and resources are released when a MIDlet enters a paused
state. These resources should then be reallocated when they are needed by the MIDlet or when the
MIDlet leaves the paused state and returns to a normal running state.

Potential Conflicts
Many MIDlet developers use methods that could cause potential conflicts.

 The showNotify() and hideNotify() methods to control pause/suspend behavior of

MIDlets utilizing a Canvas or GameCanvas.

 The Displayable.isShown() method to determine if a Form or TextBox object is visible to

the user.

These methods can be used by the developer to control the MIDlet with respect to lifecycle states but

care must be taken to ensure that there are no resource conflicts introduced between the pauseApp()

and hideNotify() methods and the startApp() and showNotify() methods.

 Often pauseApp() is used to deallocate resources and objects as is hideNotify().

 Subsequently startApp() is used to reallocate resources and objects as is showNotify()

Conclusion
Motorola has implemented a slightly different lifecycle architecture in the latest Motorola Linux OS device.
The behavior is subtly different from the Motorola OS device range KVM architecture in the following
ways.

• There is no suspend function built into the AMS.

MIDlet Lifecycle on Motorola Linux OS Devices

 Page 12

• A MIDlet must programmatically accommodate any necessary MIDlet pause state (especially needed
for game MIDlets).

• A MIDlet can be sent to background execution mode by user instruction or flip action.

• Shared resources should be released before a MIDlet is placed into background mode wherever
possible.

• Where audio resources are required to run in background execution mode the MIDlet should listen for
media player events which prevent the MIDlet from having exclusive access to the Media Player.

• Care should be taken when releasing and reallocating resources and objects in the lifecycle methods
(pauseApp() and startApp()) and the showNotify() and hideNotify() methods to avoid

conflicts and unwanted object creations/initializations.

• Flip behavior cannot currently be ignored – the pauseApp() and startApp() methods will be

called when the flip is closed/opened and the MIDlet will lose focus.

References
JSR 118: Mobile Information Device Profile 2.0
Version 2.1
http://www.jcp.org/en/jsr/detail?id=118

