
MCORERM/D
REV 1

M
•C

O
R

E
M

•
C

O
R

E

M

•C
O

R
E

M
•C

O
R

E
M•CORE

Reference Manual
with M210/M210S
Specifications

HCMOS
Microcontroller Unit

blank

M•CORE with M210/M210S
Specifications
Reference Manual

Motorola reserves the right to make changes without further notice to any products
herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. "Typical" parameters which may be provided in Motorola data sheets and/or
specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including "Typicals" must be validated for
each customer application by customer's technical experts. Motorola does not convey
any license under its patent rights nor the rights of others. Motorola products are not
designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Motorola and are registered trademarks of Motorola, Inc.
DigitalDNA, M•CORE, and OnCE are a trademarks of Motorola, Inc. © Motorola, Inc., 2001
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Reference Manual 3

Reference Manual
To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:

http://www.motorola.com/semiconductors/

The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.

Revision History

Date Revision
Level Description Page

Number(s)

September, 2001 1.0
Complete reformat adding M210/M210S core
specifications

Throughout
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

4 Reference Manual MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

List of Sections

Section 1. Overview . 27

Section 2. Registers . 39

Section 3. Instructions . 53

Section 4. Exception Processing. 163

Section 5. Core Interface . 181

Section 6. Interface Operation . 195

Section 7. Hardware Accelerator Interface (HAI) 219

Section 8. JTAG Test Access Port and OnCE 247

Appendix A. Nomenclature . 299

Appendix B. M210 and M210S Core Instruction
Pipeline and Timing 303

Appendix C. M210/M210S Core Interface 309

Appendix D. M210/M210S Interface Operation. 329

Index . 371
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA List of Sections 5

List of Sections
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

6 List of Sections MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Table of Contents

Section 1. Overview

1.1 Contents .27

1.2 Introduction .27

1.3 Features .28

1.4 Microarchitecture Summary .29

1.5 Programming Model .30

1.6 Data Format Summary .33

1.7 Operand Addressing Capabilities .34

1.8 Instruction Set Overview. .34

Section 2. Registers

2.1 Contents .39

2.2 Introduction .39

2.3 User Programming Model .40
2.3.1 General-Purpose Registers .41
2.3.2 Program Counter .41
2.3.3 Condition Code/Carry Bit .41

2.4 Supervisor Programming Model .41
2.4.1 Alternate Register File .43
2.4.2 Processor Status Register .43
2.4.2.1 Updates to the PSR .48
2.4.2.2 Exception Recognition and Processing Updates48
2.4.2.3 RTE and RFI Instruction Updates 48
2.4.2.4 MTCR Instruction Updates. .49
2.4.3 Vector Base Register .49
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Table of Contents 7

Table of Contents
2.4.4 Supervisor Storage Registers .50
2.4.5 Exception Shadow Registers .50
2.4.6 Global Control Register .51
2.4.7 Global Status Register .51

Section 3. Instructions

3.1 Contents .53

3.2 Introduction .54

3.3 Instruction Types and Addressing Modes.54
3.3.1 Register-to-Register Instructions .54
3.3.1.1 Monadic Register Addressing Mode 55
3.3.1.2 Dyadic Register Addressing Mode.56
3.3.1.3 Register with 5-Bit Immediate Mode 57
3.3.1.4 Register with 5-Bit Offset Immediate Mode58
3.3.1.5 Register with 7-Bit Immediate Mode 58
3.3.1.6 Control Register Addressing Mode 59
3.3.2 Data Memory Access Instructions .59
3.3.2.1 Scaled 4-Bit Immediate Addressing Mode.59
3.3.2.2 Load/Store Register Quadrant Mode59
3.3.2.3 Load/Store Multiple Register Mode60
3.3.2.4 Load Relative Word Mode .60
3.3.3 Flow Control Instructions .61
3.3.3.1 Scaled 11-Bit Displacement Mode.61
3.3.3.2 Register Addressing Mode. .61
3.3.3.3 Indirect Mode .61
3.3.3.4 Register with 4-Bit Negative Displacement Mode62

3.4 Opcode Map .63

3.5 Instruction Set. .67

Section 4. Exception Processing

4.1 Contents .163

4.2 Introduction .164

4.3 Exception Processing Overview .164
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

8 Table of Contents MOTOROLA

Table of Contents

4.4 Stages of Exception Processing .165

4.5 Exception Vectors. .167

4.6 Exception Types .168
4.6.1 Reset Exception (Vector Offset 0x0) 169
4.6.2 Misaligned Access Exception (Vector Offset 0x4)169
4.6.3 Access Error Exception (Vector Offset 0x8).170
4.6.4 Divide-by-Zero Exception (Vector Offset 0x0C)170
4.6.5 Illegal Instruction Exception (Vector Offset 0x10) 170
4.6.6 Privilege Violation Exception (Vector Offset 0x14).171
4.6.7 Trace Exception (Vector Offset 0x18) 171
4.6.8 Breakpoint Exception (Vector Offset 0x1C)173
4.6.9 Unrecoverable Error Exception (Vector Offset 0x20)173
4.6.10 Soft Reset Exception (Vector Offset 0x24).173
4.6.11 Interrupt Exceptions .174
4.6.11.1 Normal Interrupt (INT) .175
4.6.11.2 Fast Interrupt (FINT) .175
4.6.12 Hardware Accelerator Exception (Vector Offset 0x30). . . .176
4.6.13 Instruction Trap Exception (Vector Offset 0x40-0x5C). . . .176

4.7 Exception Priorities .176

4.8 Returning from Exception Handlers .178

Section 5. Core Interface

5.1 Contents .181

5.2 Introduction .182

5.3 Signal Descriptions .182
5.3.1 Address Bus (ADDR[31:0]) .185
5.3.2 Data Bus (DATA[31:0]). .185
5.3.3 Transfer Request (TREQ) .185
5.3.4 Transfer Busy (TBUSY) .185
5.3.5 Transfer Abort (ABORT). .185

5.4 Transfer Attribute Signals .185
5.4.1 Transfer Code (TC[2:0]) .186
5.4.2 Read/Write (R/W) .186
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Table of Contents 9

Table of Contents
5.4.3 Transfer Size (TSIZ[1:0]) .186
5.4.4 Sequential Access (SEQ). .187
5.4.5 Data to Address (D2A) .187

5.5 Transfer Control Signals .187
5.5.1 Transfer Acknowledge (TA) .187
5.5.2 Transfer Error Acknowledge (TEA) 188
5.5.3 Breakpoint Request (BRKRQ) .188

5.6 Memory Management Control Signals188
5.6.1 Translate Control (TE) .188
5.6.2 Soft Reset (SRST) .188

5.7 Interrupt Control Signals .189
5.7.1 Normal Interrupt Request (INT) .189
5.7.2 Fast Interrupt Request (FINT) .189
5.7.3 Interrupt Pending Status (IPEND) 189
5.7.4 Interrupt Vector Number (VEC[6:0])189
5.7.5 Autovector (AVEC) .190

5.8 Power Management Control Signals 190

5.9 Status and Clock Signals .191
5.9.1 Processor Status (PSTAT[3:0]) .191
5.9.2 M•CORE Processor Clock (CLK) .192

5.10 Global Status and Control Interface .192

5.11 Hardware Accelerator Interface .192

5.12 Debug/Emulation Support Signals .193
5.12.1 Debug Request (DBGRQ) .193
5.12.2 Debug Acknowledge (DBUG). .193

5.13 Test Signals .193

5.14 Power Supply Connections. .193

5.15 Signal Summary .193
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

10 Table of Contents MOTOROLA

Table of Contents

Section 6. Interface Operation

6.1 Contents .195

6.2 Introduction .196

6.3 Bus Characteristics. .196

6.4 Data Transfer Mechanism .197

6.5 Processor Instruction/Data Transfers199
6.5.1 Instruction and Data Read Transfer Cycles200
6.5.2 Read Transfer Cycles with Wait State(s)202
6.5.3 Write Transfer Cycles. .202
6.5.4 Write Transfer Cycles with Wait State(s)205
6.5.5 Data Bus Hand-Off Between Read and Write Cycles 206

6.6 Exception Bus Control Cycles .207
6.6.1 Bus Errors .208
6.6.2 Breakpoint Requests .208

6.7 ABORT Signal Operation .209

6.8 D2A Signal Operation. .210

6.9 Reset Operation .211
6.9.1 Hard Reset (Power-On Reset) .211
6.9.2 Soft Reset. .211

6.10 Memory Management Interface Operation212

6.11 Interrupt Interface Operation. .212

6.12 Global Status and Control Interface Operation.214

6.13 Power Management Interface Operation215

6.14 Emulation/Debug Interface Operation 217

Section 7. Hardware Accelerator Interface (HAI)

7.1 Contents .219

7.2 Introduction .220

7.3 Overview. .220
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Table of Contents 11

Table of Contents
7.4 Register Snooping Mechanism. .221

7.5 Instruction Transfer Mechanism .222
7.5.1 Control Handshake. .222
7.5.2 Driving the H_BUSY and H_EXCP Signals229

7.6 Data Transfer Mechanism .230
7.6.1 Register Transfers .230
7.6.2 Memory Transfers .233
7.6.2.1 H_LD Transfer .233
7.6.2.2 H_ST Transfer .234

7.7 Instruction Primitives. .238
7.7.1 H_CALL Primitive .238
7.7.2 H_RET Primitive. .239
7.7.3 H_LD Primitive .239
7.7.4 H_ST Primitive .240
7.7.5 H_EXEC Primitive .241

7.8 Instruction Primitive Glossary .241

Section 8. JTAG Test Access Port and OnCE

8.1 Contents .247

8.2 Introduction .249

8.3 Top-Level Test Access Port (TAP) .251
8.3.1 Test Clock (TCLK) .252
8.3.2 Test Mode Select (TMS) .252
8.3.3 Test Data Input (TDI) .252
8.3.4 Test Data Output (TDO) .252
8.3.5 Test Reset (TRST) .252
8.3.6 Debug Event (DE) .252

8.4 Top-Level TAP Controller .254

8.5 Instruction Shift Register. .255
8.5.1 EXTEST Instruction .255
8.5.2 IDCODE Instruction .256
8.5.3 SAMPLE/PRELOAD Instruction .257
8.5.4 ENABLE_MCU_ONCE Instruction257
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

12 Table of Contents MOTOROLA

Table of Contents

8.5.5 HIGHZ Instruction. .258
8.5.6 CLAMP Instruction .258
8.5.7 BYPASS Instruction .258

8.6 IDCODE Register .259

8.7 Bypass Register .260

8.8 Boundary SCAN Register .260

8.9 Restrictions .260

8.10 Non-Scan Chain Operation. .261

8.11 Boundary Scan .261

8.12 Low-Level TAP (OnCE) Module .267

8.13 Signal Descriptions .269
8.13.1 Debug Serial Input (TDI) .269
8.13.2 Debug Serial Clock (TCLK) .269
8.13.3 Debug Serial Output (TDO) .269
8.13.4 Debug Mode Select (TMS). .270
8.13.5 Test Reset (TRST) .270
8.13.6 Debug Event (DE) .270

8.14 Functional Description .270
8.14.1 Operation .271
8.14.2 OnCE Controller and Serial Interface.272
8.14.3 OnCE Interface Signals .273
8.14.3.1 Internal Debug Request Input (IDR) 273
8.14.3.2 CPU Debug Request (DBGRQ).274
8.14.3.3 CPU Debug Acknowledge (DBGACK).274
8.14.3.4 CPU Breakpoint Request (BRKRQ).274
8.14.3.5 CPU Address, Attributes (ADDR, ATTR)274
8.14.3.6 CPU Status (PSTAT) .274
8.14.3.7 OnCE Debug Output (DEBUG)274
8.14.4 OnCE Controller Registers. .275
8.14.4.1 OnCE Command Register .275
8.14.4.2 OnCE Control Register .278
8.14.4.3 OnCE Status Register .282
8.14.5 OnCE Decoder (ODEC) .284
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Table of Contents 13

Table of Contents
8.14.6 Memory Breakpoint Logic. .284
8.14.6.1 Memory Address Latch (MAL) .285
8.14.6.2 Breakpoint Address Base Registers 285
8.14.7 Breakpoint Address Mask Registers 285
8.14.7.1 Breakpoint Address Comparators 286
8.14.7.2 Memory Breakpoint Counters .286
8.14.8 OnCE Trace Logic .286
8.14.8.1 OnCE Trace Counter .287
8.14.8.2 Trace Operation .288
8.14.9 Methods of Entering Debug Mode288
8.14.9.1 Debug Request During RESET288
8.14.9.2 Debug Request During Normal Activity289
8.14.9.3 Debug Request During Stop, Doze,

or Wait Mode. .289
8.14.9.4 Software Request During Normal Activity 289
8.14.10 Enabling OnCE Trace Mode .289
8.14.11 Enabling OnCE Memory Breakpoints.290
8.14.12 Pipeline Information and Write-Back Bus Register 290
8.14.12.1 Program Counter Register .291
8.14.12.2 Instruction Register .291
8.14.12.3 Control State Register .291
8.14.12.4 Writeback Bus Register .293
8.14.12.5 Processor Status Register .293
8.14.13 Instruction Address FIFO Buffer (PC FIFO)294
8.14.14 Reserved Test Control Registers .295
8.14.15 Serial Protocol .295
8.14.16 OnCE Commands .296
8.14.17 Target Site Debug System Requirements296
8.14.18 Interface Connector for JTAG/OnCE Serial Port296

Appendix A. Nomenclature

A.1 Contents .299

A.2 Introduction .299

A.3 References .299

A.4 Units and Measures .299
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

14 Table of Contents MOTOROLA

Table of Contents

A.5 Symbology .300

A.6 Terminology .300

Appendix B. M210 and M210S Core Instruction
Pipeline and Timing

B.1 Contents .303

B.2 Introduction .303

B.3 Instruction Pipeline .303

B.4 Instruction Execution Time .305

Appendix C. M210/M210S Core Interface

C.1 Contents .309

C.2 Introduction .310

C.3 M210 Core Interface Overview. .311

C.4 MLB Signal Descriptions. .317
C.4.1 Bus Signals .317
C.4.1.1 Address Bus (ADDR[22:0]) .317
C.4.1.2 Data Bus (DATA[31:0]) .317
C.4.1.3 Input Data Bus (DATAIn[31:0]) .317
C.4.1.4 Output Data Bus (DATAOut[31:0]) 317
C.4.1.5 Data Bus Byte Output Enable (DATAEN[3:0]) 317
C.4.2 Transfer Control .318
C.4.2.1 Transfer Acknowledge (TA) .318
C.4.2.2 Transfer Error Acknowledge (TEA)318
C.4.2.3 Transfer Request (TREQ) .318
C.4.2.4 Transfer Busy (TBUSY) .318
C.4.2.5 Transfer Busy Output (TBUSYOUT) 318
C.4.2.6 Transfer Busy Input (TBUSYIN).319
C.4.2.7 Transfer Abort (ABORT) .319
C.4.3 Transfer Attribute Signals. .319
C.4.3.1 Transfer Code (TC[2:0]) .319
C.4.3.2 Read/Write (R/W). .320
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Table of Contents 15

Table of Contents
C.4.3.3 Transfer Size (TSIZ[1:0]) .320
C.4.3.4 Sequential Access (SEQ) .320
C.4.4 Translate Control (TE) .320
C.4.5 Data to Address Signal (D2A) .320
C.4.6 Processor Status Signals .321
C.4.6.1 Processor Status (PSTAT[3:0])321

C.5 Other Processor Signals. .322
C.5.1 Master Clock (MCLK) .322
C.5.2 Reset Control Signals. .322
C.5.2.1 Master Reset (RST) .322
C.5.2.2 Power-On Reset (POR) .322
C.5.3 Bus Arbitration Control Signals .323
C.5.3.1 Bus Request (BR) .323
C.5.3.2 Bus Grant (BG) .323
C.5.3.3 Three-State Control Address (TSCA) 323
C.5.3.4 Three-State Control Data (TSCD)323
C.5.4 Power Management Control Signals324
C.5.4.1 Low-Power Mode (LPMD[1:0]).324
C.5.4.2 Wakeup (WAKEUP). .325
C.5.5 Global Status and Control Interface Signals 325
C.5.5.1 Global Control (GCB[31:0]) .325
C.5.5.2 Global Status (GSB[31:0]) .325
C.5.6 Interrupt Control Signals. .326
C.5.6.1 Normal Interrupt Request (INT)326
C.5.6.2 Raw Normal Interrupt Request (INTRAW).326
C.5.6.3 Fast Interrupt Request (FINT) .326
C.5.6.4 Raw Fast Interrupt Request (FINTRAW)326
C.5.6.5 Interrupt Pending (IPEND) .326
C.5.6.6 Interrupt Vector Number (VEC[6:0]).326
C.5.6.7 Autovector (AVEC). .327
C.5.7 Power Supply Connections .327

Appendix D. M210/M210S Interface Operation

D.1 Contents .329

D.2 Introduction .330

D.3 Bus Characteristics. .330
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

16 Table of Contents MOTOROLA

Table of Contents

D.4 Data Transfer Mechanism .331

D.5 Processor Instruction/Data Transfers333
D.5.1 Instruction and Data Read Transfer Cycles334
D.5.2 Read Transfer Cycles with Wait State336
D.5.3 Write Transfer Cycles. .337
D.5.4 Write Transfer Cycles with Wait State339
D.5.5 Data Bus Hand-Off .340

D.6 Bidirectional Three-State Data Bus .341

D.7 Bus Exception Control Cycles .342

D.8 Bus Errors. .342

D.9 Abort SIgnal Operation .343

D.10 Data to Address Transfer Operation.344

D.11 Breakpoint Request Operation .345

D.12 Bus Arbitration Operation .346
D.12.1 Operation Examples. .348
D.12.2 Interaction with Low-Power Modes

and Debug Operation .360
D.12.3 Bus Arbitration and Entry into Low-Power States 360

D.13 Reset Operation .362
D.13.1 System Issues .363
D.13.2 Timing. .364

D.14 Interrupt Interface Operation. .365

D.15 Global Status and Control Interface Operation.367

D.16 Power Management Interface Operation367

D.17 Emulation/Debug Interface Operation 370

Index

Index .371
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Table of Contents 17

Table of Contents
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

18 Table of Contents MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

List of Figures

Figure Title Page

1-1 Programming Model .32
1-2 Data Organization in Memory .33
1-3 Data Organization in Registers. .34

2-1 User Programming Model. .40
2-2 Supervisor Additional Resources .42
2-3 Processor Status Register (PSR) .44
2-4 Vector Base Register (VBR) .50

3-1 Monadic Format .55
3-2 Dyadic Format .56
3-3 Register with 5-Bit Immediate Format 57
3-4 Register with 5-Bit Offset Immediate Format58
3-5 Register with 7-Bit Immediate Format 58
3-6 Control Register Addressing Format .59
3-7 Scaled 4-Bit Immediate Format .59
3-8 Load/Store Register Quadrant Format60
3-9 Load/Store Multiple Registers Format 60
3-10 Load Relative Word Format .60
3-11 Scaled 11-Bit Displacement Format .61
3-12 Register Addressing Format .61
3-13 Indirect Format .62
3-14 Register with 4-Bit Displacement Addressing Format 62

4-1 Interrupt Interface Signals. .175

5-1 M•CORE Signal Groups .183
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA List of Figures 19

List of Figures
Figure Title Page

6-1 Signal Relationships to Clocks .197
6-2 External Multiplexer Connections .198
6-3 Instruction/Data Read Cycle .201
6-4 Read Cycle with Wait States .203
6-5 Write Cycle .203
6-6 Write Cycle with Wait States. .205
6-7 Data Bus Hand-Off Operation. .206
6-8 Data Bus Hand-Off Operation with Wait State207
6-9 ABORT Operation. .209
6-10 D2A Operation .210
6-11 Translation Control Output .212
6-12 Interrupt Interface Signals. .213
6-13 Global Status and Control Signals .214
6-14 Power Management Control Signals (Assertion)216
6-15 Power Management Control Signals (Negation) 216
6-16 Debug Request Input Control Signal 217
6-17 Debug Output Control Signal .217

7-1 Register Snoop Operation .222
7-2 Basic Instruction Interface

Operation, H_BUSY Negated .223
7-3 Basic Instruction Interface Operation,

H_BUSY Asserted .224
7-4 Instruction Discard .225
7-5 Instruction Pipeline Stall .226
7-6 Back-to-Back HAI Instruction Execution226
7-7 Back-to-Back HAI Instruction Execution

with Pipeline Stall. .227
7-8 Back-to-Back HAI Instruction Execution

with H_BUSY Stall .228
7-9 H_EXCP Operation, H_BUSY Negated228
7-10 H_EXCP Operation, HAI Busy .229
7-11 Register Transfers to External Block with Wait State231
7-12 Register Transfers from External Block with Wait State232
7-13 Memory Transfer to External Block .233
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

20 List of Figures MOTOROLA

List of Figures

Figure Title Page

7-14 Memory Transfer to External Block
with Access Exception .234

7-15 Memory Transfer from External Block 235
7-16 Delayed Memory Transfer from External Block 236
7-17 Memory Transfer from External Block, Error Termination . . .237
7-18 H_CALL Primitive Format .238
7-19 H_RET Primitive Format. .239
7-20 H_LD Primitive Format .239
7-21 H_ST Primitive Format .240
7-22 H_EXEC Primitive Format .241

8-1 Top-Level Tap Module and Low-Level (OnCE)
TAP Module .250

8-2 Top-Level TAP Controller State Machine254
8-3 IDCODE Register Bit Specification. .259
8-4 OnCE Block Diagram .267
8-5 Low-Level (OnCE) Tap Module Data Registers (DRs)268
8-6 OnCE Controller .271
8-7 OnCE Controller and Serial Interface273
8-8 OnCE Command Register (OCMR) .276
8-9 OnCE Control Register (OCR) .278
8-10 OnCE Status Register (OSR) .282
8-11 OnCE Memory Breakpoint Logic .284
8-12 OnCE Trace Logic Block Diagram .287
8-13 CPU Scan Chain Register (CPUSCR)290
8-14 Control State Register (CTL) .292
8-15 OnCE PC FIFO. .294
8-16 Recommended Connector Interface

to JTAG/OnCE Port .297

B-1 Pipeline Stages. .304
B-2 Pipeline Flow .304

C-1 M210 Core Interface Signals .311
C-2 M210S Core Interface Signals .312
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA List of Figures 21

List of Figures
Figure Title Page

D-1 Mux Byte Organization .331
D-2 Internal Multiplexer Connections .332
D-3 Instruction/Data Read Cycle .334
D-4 Read Cycle with Wait States .336
D-5 Write Cycle .337
D-6 Write Cycle with Wait States. .339
D-7 Data Bus Hand-Off Operation. .340
D-8 Data Bus Hand-Off Operation with Wait State341
D-9 Combining DATAIn and DATAOut

Into a Single Bidirectional Data Bus 341
D-10 Abort Operation .344
D-11 Data to Address Transfer .345
D-12 Arbitration Operation, Bus Request → Bus

Grant Assertion .348
D-13 Arbitration Operation, Bus Request → Bus

Grant Assertion, Wait State on Outstanding
Cycle Before Assertion,
Assertion Delayed .349

D-14 Arbitration Operation, Bus Request → Bus
Grant Assertion, Wait State on Outstanding
Cycle After Assertion .351

D-15 Arbitration Operation, Bus Request → Bus
Grant Negation .352

D-16 Arbitration Operation, Back-to-Back Cycles353
D-17 Arbitration Operation, Bus Request → Bus

Grant Negation, No Pending CPU Request.354
D-18 Arbitration Operation, Bus Request → Bus

Grant Negation, One Wait State
on Alternate Master Cycle .355

D-19 Arbitration Operation, Bus Request → Bus
Grant Negation, Multiple Wait States
on Alternate Master Cycle .356

D-20 Bus Re-request with Wait State
on Alternate Master Cycle .357

D-21 Bus Re-request with Multiple Wait States
on Alternate Master Cycle .358
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

22 List of Figures MOTOROLA

List of Figures

Figure Title Page

D-22 Arbitration Operation, Bus Request → Bus
Grant Negation, No Pending CPU Request,
Bus Re-Request .359

D-23 Arbitration Operation, Entry into Low-Power Mode 361
D-24 M210 Clocks and Reset Domains .362
D-25 Reset Timing Requirements .364
D-26 Interrupt Interface Signals. .365
D-27 Interrupt Signals .366
D-28 Global Status and Control Signals .367
D-29 Power Management Signals Assertion.368
D-30 Power Management Signals Negation368
D-31 Wakeup Control Signal (WAKEUP) .369
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA List of Figures 23

List of Figures
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

24 List of Figures MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

List of Tables

Table Title Page

1-1 M•CORE Instruction Set .35

3-1 Monadic Instructions. .55
3-2 Dyadic Instructions .56
3-3 5-Bit Immediate Instructions .57
3-4 5-Bit Offset Immediate Instructions. .58
3-5 Opcode Map .63

4-1 Exception Vector Assignments .167
4-2 Exception Priority Groups .177
4-3 Exceptions, Tracing, and BRKRQ Results178

5-1 Signal Index .183
5-2 Transfer Code Encoding. .186
5-3 TSIZx Encoding .186
5-4 LPMD[1:0] Encoding. .190
5-5 PSTATx Encoding .191
5-6 Signal Summary .194

6-1 Interface Requirements for Read and Write Cycles199
6-2 Termination Result Summary .207

8-1 JTAG Instructions .256
8-2 List of Pins Not Scanned in JTAG Mode 262
8-3 Boundary-Scan Register Definition. .263
8-4 OnCE Register Addressing. .277
8-5 Sequential Control Field Settings .279
8-6 Memory Breakpoint Control Field Settings281
8-7 Processor Mode Field Settings. .283
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA List of Tables 25

List of Tables
Table Title Page

A-1 Symbols and Operators .300

B-1 Instruction Execution Time .305

C-1 M210/M210S Signal Descriptions. .313
C-2 M210/M210S Signal Characteristics.315
C-3 Transfer Code Encoding. .319
C-4 Transfer Size Encoding .320
C-5 Processor Status Encoding .321
C-6 Low-Power Mode Encoding .324

D-1 Interface Requirements for Read and Write Cycles333
D-2 Termination Result Summary .342
D-3 M210 Reset and Clock Domains .362
D-4 Reset Signals .363
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

26 List of Tables MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Section 1. Overview

1.1 Contents

1.2 Introduction .27

1.3 Features .28

1.4 Microarchitecture Summary .29

1.5 Programming Model .30

1.6 Data Format Summary .33

1.7 Operand Addressing Capabilities .34

1.8 Instruction Set Overview. .34

1.2 Introduction

The 32-bit M•CORE microRISC engine represents a new line of
Motorola microprocessor core products. The processor architecture has
been designed for high-performance and cost-sensitive embedded
control applications, with particular emphasis on reduced system power
consumption. This makes the M•CORE suitable for battery-operated,
portable products, as well as for highly integrated parts designed for a
high temperature environment.

Total system power consumption is dictated by various components in
addition to the processor core. In particular, memory power consumption
(both on-chip and external) is expected to dominate overall power
consumption of the core-plus-memory subsystem. With this factor in
mind, the instruction set architecture (ISA) for M•CORE makes the trade-
off of absolute performance capability versus total energy consumption
in favor of reducing the overall energy consumption, while maintaining
an acceptably high level of performance at a given clock frequency.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Overview 27

Overview
The M•CORE is a streamlined execution engine that provides many of
the same performance enhancements as mainstream reduced
instruction set computer (RISC) designs. Fixed length instruction
encodings and a strict load/store architecture minimize control
complexity and overhead. The goal of minimizing the overhead of
memory system energy consumption is achieved by adopting a
(relatively) short 16-bit instruction encoding. This choice significantly
lowers the memory bandwidth needed to sustain a high rate of
instruction execution.

Code density statistics for a number of applications show relative code
density competitive in comparison to complex instruction set computer
(CISC) designs, and implementation statistics show a large reduction in
complexity and overhead relative to a CISC approach.

In addition to substantial cost and performance benefits, M•CORE also
offers advantages in power consumption and power management.
M•CORE minimizes power dissipation by using a fully static design,
dynamic power management, and low-voltage operation. The M•CORE
automatically powers down internal functional blocks that are not
needed on a clock-by-clock basis. Power conservation modes are also
provided for absolute power conservation on a coarser granularity.

1.3 Features

The main features of the M•CORE are:

• 32-bit load/store RISC architecture

• Fixed 16-bit instruction length

• 16-entry 32-bit general-purpose register file

• Efficient 4-stage execution pipeline, hidden from application
software

• Single-cycle instruction execution for many instructions

• Two cycles for branches and memory access instructions

• Support for byte, half-word, and word memory accesses
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

28 Overview MOTOROLA

Overview
Microarchitecture Summary

• Fast interrupt support with 16-entry dedicated alternate register
file

• Vectored and autovectored interrupt support

1.4 Microarchitecture Summary

The M•CORE instruction execution pipeline consists of these stages:

• Instruction fetch

• Instruction decode/register file read

• Execute

• Register writeback

These stages operate in an overlapped fashion, allowing single clock
instruction execution for most instructions.

Sixteen general-purpose registers are provided for source operands and
instruction results. Register R15 is used as the link register to hold the
return address for subroutine calls, and register R0 is associated with
the current stack pointer value by convention.

The execution unit consists of:

• 32-bit arithmetic/logic unit (ALU)

• 32-bit barrel shifter

• Find-first-one unit (FFO)

• Result feed-forward hardware

• Miscellaneous support hardware for multiplication and multiple
register loads and stores

Arithmetic and logical operations are executed in a single cycle with the
exception of the multiply, signed divide, and unsigned divide
instructions. The multiply instruction is implemented with a 2-bit per
clock, overlapped-scan, modified Booth algorithm with early-out
capability to reduce execution time for operations with small multiplier
values. The signed divide and unsigned divide instructions also have
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Overview 29

Overview
data-dependent timing. A find-first-one unit operates in a single clock
cycle.

The program counter unit has a PC incrementer and a dedicated branch
address adder to minimize delays during change of flow operations.
Branch target addresses are calculated in parallel with branch
instruction decode, with a single pipeline bubble for taken branches and
jumps. This results in an execution time of two clocks. Conditional
branches that are not taken execute in a single clock.

Memory load and store operations are provided for byte, half-word, and
word (32-bit) data with automatic zero extension of byte and half-word
load data. These instructions can execute in two clock cycles. Load and
store multiple register instructions allow low overhead context save and
restore operations. These instructions can execute in (N + 1) clock
cycles, where N is the numbers of registers to transfer.

A single condition code/carry (C) bit is provided for condition testing and
for use in implementing arithmetic and logical operations greater than
32 bits. Typically, the C bit is set only by explicit test/comparison
operations, not as a side-effect of normal instruction operation.
Exceptions to this rule occur for specialized operations for which it is
desirable to combine condition setting with actual computation.

A 16-entry alternate register file is provided to support low overhead
interrupt exception processing. The CPU supports both vectored and
autovectored interrupts.

1.5 Programming Model

The M•CORE programming model is defined separately for two privilege
modes: supervisor and user. Certain operations are not available in user
mode.

User programs can only access registers specific to the user mode;
system software executing in the supervisor mode can access all
registers, using the control registers to perform supervisory functions.
User programs are thus restricted from accessing privileged information.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

30 Overview MOTOROLA

Overview
Programming Model

The operating system performs management and service tasks for the
user programs by coordinating their activities.

Most instructions execute in either mode, but some instructions that
have important system effects are privileged and can only execute in the
supervisor mode. For instance, user programs cannot execute the
STOP, DOZE, or WAIT instructions. To prevent a user program from
entering the supervisor mode except in a controlled manner, instructions
that can alter the S-bit in the program status register (PSR) are
privileged. The TRAP #N instructions provide controlled access to
operating system services for user programs. Access to special control
registers is also precluded in user mode.

When the S bit in the PSR is set, the processor executes instructions in
the supervisor mode. Bus cycles associated with an instruction indicate
either supervisor or user access depending on the mode.

The processor uses the user programming model during normal user
mode processing. During exception processing, the processor changes
from user to supervisor mode. Exception processing saves the current
value of the PSR in the EPSR or FPSR shadow control register and then
sets the S bit in the PSR, forcing the processor into the supervisor mode.
To return to the previous operating mode, a system routine may execute
the RTE (return from exception) or RFI (return from fast interrupt)
instruction as appropriate, causing the instruction pipeline to be flushed
and refilled from the appropriate address space.

The registers depicted in the programming model (see Figure 1-1)
provide operand storage and control. The registers are partitioned into
two levels of privilege: user and supervisor. The user programming
model consists of:

• 16 general-purpose 32-bit registers

• 32-bit program counter (PC)

• Condition/carry (C) bit

The C bit is implemented as bit 0 of the PSR. This is the only portion of
the PSR accessible by the user. The supervisor programming model
consists of sixteen additional 32-bit general-purpose registers (the
alternate file), as well as a set of status/control registers and scratch
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Overview 31

Overview
registers. By convention, register R15 serves as the link register for
subroutine calls, and register R0 is typically used as the current stack
pointer.

The alternate file is selected for use via a control bit in the PSR. The
status, control, and scratch registers are accessed via the move-from-
control register (MFCR) and move-to-control register (MTCR)
instructions. When the alternate file is selected via the AF bit in the PSR,
general-purpose operands are accessed from it. When the AF bit is
cleared, operands are accessed from the normal file. This alternate file
is provided to allow very low overhead context switching capability for
real-time event handling.

Figure 1-1. Programming Model

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R12

R13

R14

R15

R11

R10

C

R0’

R1

R2

R3

R4

R5

R6

R7

R8

R9

R12

R13

R14

R15

R11

R10

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R12

R13

R14

R15

R11

R10

ALTERNATE FILE

PC
PC

C * BIT 0 OF PSR

PSR

VBR

EPSR

FPSR

EPC

FPC

SS0

SS1

SS2

CR0

CR1

CR2

CR3

CR4

CR5

CR6

CR7

CR8

CR9

SS4 CR10

GCR CR11

SS3

GSR CR12

USER PROGRAMMER’S
MODEL

SUPERVISOR PROGRAMMER’S
MODEL
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

32 Overview MOTOROLA

Overview
Data Format Summary

The supervisor programming model includes the PSR, which contains
operation control and status information. In addition, a set of exception
shadow registers are provided to save the state of the PSR and the
program counter at the time an exception occurs. A separate set of
shadow registers is provided for fast interrupt support to minimize
context saving overhead.

Five scratch registers are provided for supervisor software use in
handling exception events. A single register is provided to alter the base
address of the exception vector table. Two registers are provided for
global control and status.

1.6 Data Format Summary

The operand data formats supported by the integer unit are standard
two’s-complement data formats. The operand size for each instruction is
either explicitly encoded in the instruction (load/store instructions) or
implicitly defined by the instruction operation (index operations, byte
extraction). Typically, instructions operate on all 32 bits of the source
operand(s) and generate a 32-bit result.

Memory is viewed from a big-endian byte ordering perspective. The
most significant byte (byte 0) of word 0 is located at address 0. Bits are
numbered within a word starting with bit 31 as the most significant bit.

Figure 1-2. Data Organization in Memory

BYTE 0 BYTE 1 BYTE 2 BYTE 3 WORD AT 0

31 0

BYTE 4 BYTE 5 BYTE 6 BYTE 7 WORD AT 4

BYTE 8 BYTE 9 BYTE A BYTE B WORD AT 8

BYTE C BYTE D BYTE E BYTE F WORD AT C
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Overview 33

Overview
Figure 1-3. Data Organization in Registers

1.7 Operand Addressing Capabilities

M•CORE accesses all memory operands through load and store
instructions, transferring data between the general-purpose registers
and memory. Register-plus-four-bit scaled displacement addressing
mode is used for the load and store instructions to address byte, half-
word, or word (32-bit) data.

Load and store multiple instructions allow a subset of the 16 general-
purpose registers to be transferred to or from a base address pointed to
by register R0 (the default stack pointer by convention).

Load and store register quadrant instructions use register indirect
addressing to transfer a register quadrant to or from memory.

1.8 Instruction Set Overview

The instruction set is tailored to support high-level languages and is
optimized for those instructions most commonly executed. A standard
set of arithmetic and logical instructions is provided, as well as
instruction support for bit operations, byte extraction, data movement,
control flow modification, and a small set of conditionally executed

BYTE SIGNED BYTESS S

08 731

BYTE UNSIGNED BYTE0 0

08 731

HALF-WORD
SIGNED

SS S S S S S S S S S S S S S S S

016 1531

HALF-WORD

HALF-WORD
UNSIGNED

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

016 1531

HALF-WORD

031

WORDBYTE 3 BYTE 2 BYTE 1 BYTE 0
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

34 Overview MOTOROLA

Overview
Instruction Set Overview

instructions which can be useful in eliminating short conditional
branches.

Table 1-1 is an alphabetized listing of the M•CORE instruction set. Refer
to Section 3. Instructions for more details on instruction operation.

Table 1-1. M•CORE Instruction Set (Sheet 1 of 3)

Mnemonic Description

ABS
ADDC
ADDI
ADDU
AND
ANDI
ANDN
ASR
ASRI
ASRC

Absolute Value
Add with C bit
Add Immediate
Add Unsigned
Logical AND
Logical AND Immediate
AND NOT
Arithmetic Shift Right
Arithmetic Shift Right Immediate
Arithmetic Shift Right, Update C Bit

BCLRI
BF
BGENI
BGENR
BKPT
BMASKI
BR
BREV
BSETI
BSR
BT
BTSTI

Clear Bit
Branch on Condition False
Bit Generate Immediate
Bit Generate Register
Breakpoint
Bit Mask Immediate
Branch
Bit Reverse
Bit Set Immediate
Branch to Subroutine
Branch on Condition True
Bit Test Immediate

CLRF
CLRT
CMPHS
CMPLT
CMPLTI
CMPNE
CMPNEI

Clear Register on Condition False
Clear Register on Condition True
Compare Higher or Same
Compare Less Than
Compare Less Than Immediate
Compare Not Equal
Compare Not Equal Immediate

DECF
DECGT
DECLT
DECNE
DECT
DIVS
DIVU
DOZE

Decrement on Condition False
Decrement Register and Set Condition if Result Greater Than Zero
Decrement Register and Set Condition if Result Less Than Zero
Decrement Register and Set Condition if Result Not Equal to Zero
Decrement on Condition True
Divide (Signed)
Divide (Unsigned)
Doze
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Overview 35

Overview
FF1 Find First One

INCF
INCT
IXH
IXW

Increment on Condition False
Increment on Condition True
Index Half-Word
Index Word

JMP
JMPI
JSR
JSRI

Jump
Jump Indirect
Jump to Subroutine
Jump to Subroutine Indirect

LD.[BHW]
LDM
LDQ
LOOPT
LRW
LSL, LSR
LSLC, LSRC
LSLI, LSRI

Load
Load Multiple Registers
Load Register Quadrant
Decrement with C-Bit Update and Branch if Condition True
Load Relative Word
Logical Shift Left and Right
Logical Shift Left and Right, Update C Bit
Logical Shift Left and Right by Immediate

MFCR
MOV
MOVI
MOVF
MOVT
MTCR
MULT
MVC
MVCV

Move from Control Register
Move
Move Immediate
Move on Condition False
Move on Condition True
Move to Control Register
Multiply
Move C Bit to Register
Move Inverted C Bit to Register

NOT Logical Complement

OR Logical Inclusive-OR

ROTLI
RSUB
RSUBI
RTE
RFI

Rotate Left by Immediate
Reverse Subtract
Reverse Subtract Immediate
Return from Exception
Return from Interrupt

SEXTB
SEXTH
ST.[BHW]
STM
STQ
STOP
SUBC
SUBU
SUBI
SYNC

Sign-Extend Byte
Sign-Extend Half-word
Store
Store Multiple Registers
Store Register Quadrant
Stop
Subtract with C Bit
Subtract
Subtract Immediate
Synchronize

Table 1-1. M•CORE Instruction Set (Sheet 2 of 3)

Mnemonic Description
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

36 Overview MOTOROLA

Overview
Instruction Set Overview

TRAP
TST
TSTNBZ

Trap
Test Operands
Test for No Byte Equal Zero

WAIT Wait

XOR
XSR
XTRB0
XTRB1
XTRB2
XTRB3

Exclusive OR
Extended Shift Right
Extract Byte 0
Extract Byte 1
Extract Byte 2
Extract Byte 3

ZEXTB
ZEXTH

Zero-Extend Byte
Zero-Extend Half-Word

Table 1-1. M•CORE Instruction Set (Sheet 3 of 3)

Mnemonic Description
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Overview 37

Overview
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

38 Overview MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Section 2. Registers

2.1 Contents

2.2 Introduction .39

2.3 User Programming Model .40
2.3.1 General-Purpose Registers .41
2.3.2 Program Counter .41
2.3.3 Condition Code/Carry Bit .41

2.4 Supervisor Programming Model .41
2.4.1 Alternate Register File .43
2.4.2 Processor Status Register .43
2.4.2.1 Updates to the PSR .48
2.4.2.2 Exception Recognition and Processing Updates48
2.4.2.3 RTE and RFI Instruction Updates 48
2.4.2.4 MTCR Instruction Updates. .49
2.4.3 Vector Base Register .49
2.4.4 Supervisor Storage Registers .50
2.4.5 Exception Shadow Registers .50
2.4.6 Global Control Register .51
2.4.7 Global Status Register .51

2.2 Introduction

This section describes the organization of the M•CORE general-purpose
registers (GPRs) and control registers in the user and supervisor
programming models. Refer to Section 4. Exception Processing for
details on the exception model.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Registers 39

Registers
2.3 User Programming Model

The user programming model’s register usage, as proposed by the
Motorola Applications Binary Interface Standard (Motorola document
number MCOREABISM/AD) and shown in Figure 2-1, consists of these
registers and the described uses:

• 16 general-purpose 32-bit registers (R[0:15])

• 32-bit program counter (PC)

• Condition code/carry flag (C bit)

Figure 2-1. User Programming Model

The registers with local usage, as well as R0 (stack pointer), are
preserved (by conforming compliers) during a function call. The contents
of the argument and scratch registers must be saved by the calling
routine if they are to be preserved. More detail about standard register
usage can be found in the M•CORE ABI manual cited above.

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R12

R13

R14

R15

R11

R10

C

PC

STACK POINTER

SCRATCH

FIRST ARGUMENT

SECOND ARGUMENT

THIRD ARGUMENT

FOURTH ARGUMENT

FIFTH ARGUMENT

SIXTH ARGUMENT

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LOCAL

LINK/SCRATCH

PROGRAM COUNTER
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

40 Registers MOTOROLA

Registers
Supervisor Programming Model

2.3.1 General-Purpose Registers

The general-purpose registers contain instruction operands and results,
and provide address information as well. Software and hardware register
conventions have been established for subroutine linkage, parameter
passing, and for a stack pointer.

2.3.2 Program Counter

The program counter (PC) contains the address of the currently
executing instruction. During instruction execution and exception
processing, the processor automatically increments the PC value or
places a new value in the PC, as appropriate. For some instructions, the
PC can be used as a pointer for PC-relative addressing. The low order
bit of the PC is always forced to 0.

2.3.3 Condition Code/Carry Bit

The condition code/carry (C) bit represents a condition generated by a
processor operation. The C bit can be set explicitly by comparison
operations or implicitly as a result of executing extended precision
arithmetic and logical operations. In addition, specialized instructions
(such as the decrement, loop, and extract byte instructions) update the
C bit as a result of normal execution.

2.4 Supervisor Programming Model

System programmers use the supervisor programming model to
implement sensitive operating system functions, input/output (I/O)
control, and privileged operations.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Registers 41

Registers
The supervisor programming model consists of the registers available to
the user as well as these registers (see Figure 2-2):

• 16-entry, 32-bit alternate register file

• Processor status register (PSR)

• Vector base register (VBR)

• Exception saved PSR (EPSR)

• Fast interrupt saved PSR (FPSR)

• Exception saved program counter (EPC)

• Fast interrupt saved program counter (FPC)

• Five 32-bit supervisor scratch registers (SS0–SS4)

• 32-bit global control register (GCR)

• 32-bit global status register (GSR)

Figure 2-2. Supervisor Additional Resources

R0’

R1’

R2’

R3’

R4’

R5’

R6’

R7’

R8’

R9’

R12’

R13’

R14’

R15’

R11’

R10’

ALTERNATE FILE

PSR

VBR

EPSR

FPSR

EPC

FPC

SS0

SS1

SS2

CR0

CR1

CR2

CR3

CR4

CR5

CR6

CR7

CR8

CR9

SS4 CR10

GCR CR11

SS3

GSR CR12
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

42 Registers MOTOROLA

Registers
Supervisor Programming Model

The following paragraphs describe the supervisor programming model
registers. Additional information can be found in Section 4. Exception
Processing.

2.4.1 Alternate Register File

The alternate register file is provided to reduce the overhead associated
with context switching and saving/restoring for time critical tasks. When
selected, the alternate register file replaces the general register file for
all instructions that normally use a general register. The alternate
register file is active when the PSR(AF) bit is set. It is disabled and not
accessible when the PSR(AF) bit is cleared. Important parameters and
pointer values may be retained in the alternate file and thus are readily
accessible when a high-priority task is entered.

In addition, register R0 in the alternate file serves as a stack pointer for
the task, making independent stack implementation efficient.

Hardware does not prevent software from accessing the alternate file in
user mode if the AF bit is set. To prevent this, system software should
ensure that the AF bit is cleared before user mode is entered.

NOTE: When an exception occurs, the low-order bit of the exception vector
content is copied to the AF bit to select the register fileto be used in
processing the exception.

2.4.2 Processor Status Register

The processor status register (PSR) stores the processor status
(including the C bit) and control data. The control bits indicate these
states for the processor:

• Trace mode (TM bits)

• Supervisor or user mode (S bit)

• Normal or alternate file state (AF)
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Registers 43

Registers
They also indicate whether exception shadow registers are available for
context saving, and whether interrupts are enabled. The PSR can be
accessed in supervisor mode only. See Figure 2-3.

S — Supervisor Mode Bit
1 = Processor is operating in supervisor mode
0 = Processor is operating in user mode

This bit is set by reset. The bit is also set by hardware when exception
processing is initiated.

SP[1:0] — Spare Bits

These bits are spare bits. They are cleared by reset and are currently
undefined for other exceptions. These bits should be written only to 0
to avoid undefined behavior.

Bit 31 30 29 28 27 26 25 Bit 24

Read:
S 0 SP U3 U2 U1 U0

Write:

Reset: 1 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 Bit 16

Read:
0 VEC

Write:

Reset: 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 Bit 8

Read:
TM TP(1) TC 0 SC MM EE

Write:

Reset: 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 Bit 0

Read:
IC IE 0 FE 0 0 AF C

Write:

Reset: 0 0 0 0 0 0 0 0

1. This bit exists in the PSR shadow register only. In the PSR, this bit is hardwired
to 0.

Figure 2-3. Processor Status Register (PSR)
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

44 Registers MOTOROLA

Registers
Supervisor Programming Model

U[3:0] — Hardware Accelerator Control Bits

The U[3:0] bits control execution of the hardware accelerator
instructions. Each bit corresponds to one encoded value of the UU
field of a hardware accelerator opcode. If the appropriate bit is
cleared, an attempt to execute a corresponding hardware accelerator
instruction is aborted, and a disabled hardware accelerator exception
is taken. These bits are cleared by hard reset and are unaffected by
other exceptions.

Refer to the appropriate microcontroller user’s manual for details of
the hardware accelerator instructions. In addition, 4.6.12 Hardware
Accelerator Exception (Vector Offset 0x30) describes the disabled
hardware accelerator exception.

VEC[6:0] — Vector Number Field

This seven-bit field is written with the vector number used to fetch an
exception vector when an exception occurs. This field is cleared by
reset.

TM[1:0] — Trace Mode Field

When this field is non-zero, the M•CORE is placed in trace mode. A
trace exception may be taken after the execution of each instruction
or only after potential change of flow instructions. This field is cleared
by reset and also by hardware when exception processing is initiated.
The field is defined as:

11 = Change of flow trace mode

10 = Reserved

01 = Instruction trace mode

00 = Normal execution

Refer to 4.6.7 Trace Exception (Vector Offset 0x18) for more details
on trace operation.

TP — Trace Pending Bit

This bit is set in the appropriate PSR shadow register as part of
exception recognition when the M•CORE is in instruction trace mode,
a trace exception is pending, and another exception takes priority
over the trace exception at an instruction boundary. Setting this bit in
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Registers 45

Registers
the PSR has no effect, as the bit is hardwired to 0. A trace exception
is taken after the execution of return from exception (RTE) or return
from interrupt (RFI) if this bit is set in the appropriate shadow PSR.

TC — Translation Control Bit

This bit allows control over address translation of instruction and data
accesses by an external memory management unit. When this bit is
set, the TE output signal is asserted, indicating that access addresses
should be translated by an optional external memory management
unit. (This signal can also be used for an alternate function.) When an
exception occurs, this bit is cleared. This bit is also cleared by reset.

SC — Spare Control Bit

This bit is a spare control bit. This bit is cleared when an exception
occurs and by reset.

MM — Misalignment Exception Mask Bit
1 = Alignment restrictions are ignored, and the lower address bit(s)

are ignored and assumed to be 0.
0 = Loading and storing instructions to a misaligned address

causes a misalignment exception to occur instead of a memory
access.

This bit does not affect exceptions for the jump indirect (JMPI) or
jump-to-subroutine indirect (JSRI) instructions. This bit is cleared by
reset and is unaffected by other exceptions.

EE — Exception Enable Bit
1 = The EPSR and EPC shadow registers are available to save the

exception state.
0 = Shadowing of the PSR and PC by the EPSR and EPC registers

on an exception is assumed to result in an unrecoverable error.

This bit is cleared by reset. Hardware clears this bit on any exception
(including a fast interrupt exception) to indicate that processor context
for the exception cannot be overwritten in a recoverable manner.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

46 Registers MOTOROLA

Registers
Supervisor Programming Model

IC — Interrupt Control Bit
1 = Valid pending interrupt (INT or FINT) is allowed to cause a long

latency, multi-cycle instruction (divide signed (DIVS), divide
unsigned (DIVU), load multiple registers (LDM), load register
quadrant (LDQ), multiply (MULT), store multiple registers
(STM), or store register quadrant (STQ)) to be interrupted
before completion. The instruction will be restarted on return
from the interrupt handler. For the load multiple registers
(LDM), load register quadrant (LDQ), store multiple registers
(STM), and store register quadrant (STQ) instructions, an
access in progress will complete prior to interruption.

0 = Interrupts are only recognized on instruction boundaries.

This bit is cleared by soft reset. It is not affected by other exceptions.

IE — Interrupt Enable Bit
1 = The INT interrupt is sampled.
0 = The INT interrupt input is disabled.

This bit is cleared by soft reset. It is also cleared when any exception
occurs to disable interrupts signalled by the INT input.

FE — Fast Interrupt Enable Bit
1 = The FPSR and FPC registers are unfrozen, shadowing by

these registers is enabled, and the FINT interrupt can be
sampled.

0 = The FPSR and FPC shadow registers are frozen and the FINT
interrupt input is disabled.

This bit is cleared by reset and soft reset. It is also cleared when a fast
interrupt exception occurs. FE is unaffected by other exceptions.

AF — Alternate File Enable Bit
1 = The alternate file is enabled.
0 = The general file is enabled.

When an exception occurs, the low-order bit of the exception vector
content is copied to this bit to select the file to be used in processing
the exception. Although hardware clears this bit on reset, it is
overwritten with the low order bit in the fetched reset vector.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Registers 47

Registers
C — Condition Code/Carry Bit

The C bit is used as a condition code or carry bit for certain
instructions. This bit is undefined following reset or after being copied
into the appropriate shadow PSR register after any other exception.

Bits 30, 28, 23, 11, 10, 5, 3, and 2

These bits are reserved for future use and must always be written
to 0.

2.4.2.1 Updates to the PSR

The content of the PSR can be modified by exception recognition and
processing, the return-from-exception (RTE) and return-from-interrupt
(RFI) instructions, and the move-to-control register (MTCR) instruction.
Each affects the PSR in different ways.

2.4.2.2 Exception Recognition and Processing Updates

Updates to the PSR occur as part of the exception recognition and
vectoring process. These updates may affect the S, TM, TC, VEC, IE,
FE, EE, and AF bits or fields. Changes to the S, TM, TC, IE, FE and EE
bits are effective prior to the fetch of the exception vector. Changes to
the VEC and AF bits are effective prior to the execution of the first
instruction of a handler.

2.4.2.3 RTE and RFI Instruction Updates

The RTE and RFI instructions update the PSR. These updates may
change the state of all bits in the PSR. Changes to the S, DB, TM, TP,
TC, IE, FE and EE bits are effective prior to the fetch of the instruction at
the return PC location. Changes to the U[3:0], VEC, MM, IC, AF, and C
bits are effective prior to the execution of this instruction.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

48 Registers MOTOROLA

Registers
Supervisor Programming Model

2.4.2.4 MTCR Instruction Updates

The MTCR instruction updates the PSR when CR0 is the control register
destination. These updates may change the state of all bits in the PSR.
However, due to the pipelined nature of an implementation, not all
changes are reflected immediately. In particular, prefetching and
decoding of instructions following the MTCR instruction may involve use
of the prior state of the S, DB, TM, TC, EE, and AF bits in the PSR.
Changes to these bits may not become effective for several instructions
past the MTCR instruction. To minimize the uncertainty of this, the
MTCR instruction should be followed with an unconditional branch
instruction with a displacement value of 0. All instructions following the
branch will be fetched, decoded, and executed with the updates made
to the PSR with the MTCR instruction.

An alternative instruction to follow an MTCR to the PSR is a low-power
mode instruction (DOZE, WAIT, or STOP).

Interrupt recognition is delayed following an MTCR-to-PSR instruction to
allow the following instruction to execute prior to interrupt exception
events. This allows a low-power mode instruction which follows an
MTCR to the PSR (which enables interrupts) to begin execution before
a pending interrupt is recognized.

2.4.3 Vector Base Register

The vector base register holds the base address of the exception vector
table. This register contains 22 high-order bits, with the low-order ten bits
hardwired to 0. (This allows for possible future expansion of the vector
table.) This register is cleared when a reset or soft reset exception
occurs.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Registers 49

Registers
2.4.4 Supervisor Storage Registers

The CPU core contains a set of five 32-bit supervisor storage registers.
These registers are provided for supervisor software to store data and
pointers and to assist in exception state saving, protected from user
mode software. Software determines their use and contents. Typically,
one of these registers is used as a supervisor stack pointer storage
location. These registers are accessed through the MTCR and move-
from-control register (MFCR) instructions.

2.4.5 Exception Shadow Registers

The EPSR, EPC, FPSR, and FPC registers are used during exceptions
to store execution context of the processor. Refer to Section 4.
Exception Processing for details.

Bit 31 30 29 28 27 26 25 Bit 24

Read:
VECTOR BASE

Write:

Reset: 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 Bit 16

Read:
VECTOR BASE

Write:

Reset: 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 Bit 8

Read:
VECTOR BASE R R

Write:

Reset: 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 Bit 0

Read:
R R R R R R R R

Write:

Reset: 0 0 0 0 0 0 0 0

R = Reserved

Figure 2-4. Vector Base Register (VBR)
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

50 Registers MOTOROLA

Registers
Supervisor Programming Model

2.4.6 Global Control Register

The 32-bit global control register (GCR) is used for global control of
devices and events external to the core. Thirty-two parallel outputs are
provided at the core interface for implementation-defined control
purposes. Power management, device control, event scheduling, and
other basic control functions can be easily implemented using the GCR.
It is beyond the scope of this document to specify the exact functions of
the bits in this register. Refer to the appropriate microcontroller user’s
guide for details. This register can be read and written.

NOTE: Most M210/M210S core devices do not use this register for any special
purpose and therefore the register is not updated by hardware.

2.4.7 Global Status Register

The 32-bit global status register (GSR) is used for global status reporting
by devices and events external to the core. Thirty-two parallel inputs are
provided at the core interface for implementation-defined purposes.
Device status and other events can be easily monitored using the GSR.
It is beyond the scope of this document to specify the exact meaning of
the bits in this register. Refer to the appropriate microcontroller user’s
manual for details.

This register is read only. Writes to this register while in supervisor mode
are ignored. Writes to this register in user mode result in a privilege
violation exception.

NOTE: Most M210/M210S core devices do not use this register for any special
purpose and therefore the register is not updated by hardware.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Registers 51

Registers
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

52 Registers MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Section 3. Instructions

3.1 Contents

3.2 Introduction .54

3.3 Instruction Types and Addressing Modes.54
3.3.1 Register-to-Register Instructions .54
3.3.1.1 Monadic Register Addressing Mode 55
3.3.1.2 Dyadic Register Addressing Mode.56
3.3.1.3 Register with 5-Bit Immediate Mode 57
3.3.1.4 Register with 5-Bit Offset Immediate Mode58
3.3.1.5 Register with 7-Bit Immediate Mode 58
3.3.1.6 Control Register Addressing Mode 59
3.3.2 Data Memory Access Instructions .59
3.3.2.1 Scaled 4-Bit Immediate Addressing Mode.59
3.3.2.2 Load/Store Register Quadrant Mode59
3.3.2.3 Load/Store Multiple Register Mode60
3.3.2.4 Load Relative Word Mode .60
3.3.3 Flow Control Instructions .61
3.3.3.1 Scaled 11-Bit Displacement Mode.61
3.3.3.2 Register Addressing Mode. .61
3.3.3.3 Indirect Mode .61
3.3.3.4 Register with 4-Bit Negative Displacement Mode62

3.4 Opcode Map .63

3.5 Instruction Set. .67
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 53

Instructions
3.2 Introduction

This section describes the M•CORE instruction set and provides a
reference to M•CORE instructions. An opcode map is provided along
with individual instruction pages.

3.3 Instruction Types and Addressing Modes

All M•CORE instructions are 16 bits in length. Immediate operands and
displacements are encoded in the instruction word. Other operands are
located in registers which can be moved to and from memory with load
and store instructions.

M•CORE implements three types of instructions:

• Flow control

• Data memory access

• Register-to-register operations

Flow control instructions alter the sequential flow of instruction
execution. Data memory access instructions load or store operands to
or from the general-purpose registers. Register-to-register instructions
perform operations on general-purpose registers, or are used to access
control registers. Instruction formats are shown here.

3.3.1 Register-to-Register Instructions

M•CORE supports five addressing modes for register-to-register
instructions as described in this subsection.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

54 Instructions MOTOROLA

Instructions
Instruction Types and Addressing Modes

3.3.1.1 Monadic Register Addressing Mode

Monadic register addressing uses a single 4-bit register field to specify
the source/destination for an operation. Instructions with this format are
shown in Table 3-1. Figure 3-1 shows the monadic format.

Figure 3-1. Monadic Format

Table 3-1. Monadic Instructions

Mnemonic Description

ABS
ASRC

Absolute Value
Arithmetic Shift Right, Update C Bit

BREV Bit Reverse

CLRF
CLRT

Clear Register on Condition False
Clear Register on Condition True

DECF
DECGT
DECLT
DECNE
DECT

Decrement on Condition False
Decrement Register and Set Condition if Result Greater Than Zero
Decrement Register and Set Condition if Result Less Than Zero
Decrement Register and Set Condition if Result Not Equal to Zero
Decrement on Condition True

FF1 Find First One

INCF
INCT

Increment on Condition False
Increment on Condition True

LSLC, LSRC Logical Shift Left and Right, Update C Bit

MVC
MVCV

Move C Bit to Register
Move Inverted C Bit to Register

NOT Logical Complement

SEXTB
SEXTH

Sign-Extend Byte
Sign-Extend Half-Word

TSTNBZ Test for No Byte Equal Zero

XSR
XEXTB
XEXTH

Extended Shift Right
Zero-Extend Byte
Zero-Extend Half-Word

OPCODE SUB-OPCODE RX

03415
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 55

Instructions
3.3.1.2 Dyadic Register Addressing Mode

Dyadic register addressing uses two 4-bit register fields encoded in the
instruction to specify a source register and a source/destination register.
For some instructions, only a single source value is used; the second
register specifier is used as a destination specifier only. Instructions with
this format are shown in Table 3-2. Figure 3-2 shows the dyadic format.

Figure 3-2. Dyadic Format

Table 3-2. Dyadic Instructions

Mnemonic Description

ADDC
ADDU
AND
ANDN
ASR

Add with C bit
Add Unsigned
Logical AND
AND NOT
Arithmetic Shift Right

BGENR Bit Generate Register

CMPHS
CMPLT
CMPNE

Compare Higher or Same
Compare Less Than
Compare Not Equal

IXH
IXW

Index Half-Word
Index Word

LSLI, LSRI Logical Shift Left and Right by Immediate

MOV
MOVF
MOVT
MULT

Move
Move on Condition False
Move on Condition True
Multiply

OR Logical Inclusive-OR

RSUB Reverse Subtract

SUBC
SUBU

Subtract with C Bit
Subtract

TST Test Operands

XOR Exclusive OR

ZEXTB
ZEXTH

Zero-Extend Byte
Zero-Extend Half-word

OPCODE RX

03415

RY

78

SUB-OPCODE
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

56 Instructions MOTOROLA

Instructions
Instruction Types and Addressing Modes

3.3.1.3 Register with 5-Bit Immediate Mode

Register with 5-bit immediate addressing uses a 4-bit register field
encoded in the instruction to specify a source/destination register and a
5-bit field to specify an unsigned immediate value as the second source
operand. Instructions with this format are shown in Table 3-3.
Figure 3-3 shows the 5-bit immediate format.

Figure 3-3. Register with 5-Bit Immediate Format

Table 3-3. 5-Bit Immediate Instructions

Mnemonic Description

ANDI
ASRI

Logical AND Immediate
Arithmetic Shift Right Immediate

BCLRI
BGENI
BMASKI
BSETI
BTSTI

Clear Bit
Bit Generate Immediate
Bit Mask Immediate
Bit Set Immediate
Bit Test Immediate

CMPNEI Compare Not Equal Immediate

LSLI, LSRI Logical Shift Left and Right by Immediate

ROTLI
RSUBI

Rotate Left by Immediate
Reverse Subtract Immediate

SUBI Subtract Immediate

OPCODE RX

03415

IMM5

89

SUB-OPCODE
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 57

Instructions
3.3.1.4 Register with 5-Bit Offset Immediate Mode

Register with 5-bit offset immediate addressing uses a 4-bit register field
encoded in the instruction to specify a source/destination register, and a
5-bit field to specify an unsigned immediate value as the second source
operand. The binary encoding for the immediate value is offset by one
from the actual immediate value, thus, offset immediate values fall in the
range from 1 to 32, corresponding to binary encodings of 0 to 31.
Instructions with this format are shown in Table 3-4. Figure 3-4 shows
the 5-bit offset immediate format.

Figure 3-4. Register with 5-Bit Offset Immediate Format

3.3.1.5 Register with 7-Bit Immediate Mode

Register with 7-bit immediate addressing uses a 4-bit register field
encoded in the instruction to specify a destination register and a 7-bit
field to specify an unsigned immediate value as the source operand.
Only the move immediate (MOVI) instruction uses this format.
Figure 3-5 shows the 7-bit immediate format.

Figure 3-5. Register with 7-Bit Immediate Format

Table 3-4. 5-Bit Offset Immediate Instructions

Mnemonic Description

ADDI Add Immediate

CMPLTI Compare Less Than Immediate

SUBI Subtract Immediate

OIMM5OPCODE RX

03415 89

SUB-OPCODE

OPCODE RX

03415

IMM7

1011
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

58 Instructions MOTOROLA

Instructions
Instruction Types and Addressing Modes

3.3.1.6 Control Register Addressing Mode

Control register addressing uses a 4-bit register field encoded in the
instruction to specify a general-purpose source/destination register and
a 5-bit field to specify a control register. Only the move from control
register (MFCR) and move to control register (MTCR) instructions use
this format. Figure 3-6 shows the control register addressing format.

Figure 3-6. Control Register Addressing Format

3.3.2 Data Memory Access Instructions

M•CORE supports four addressing modes for accessing memory-based
operands as described in this subsection.

3.3.2.1 Scaled 4-Bit Immediate Addressing Mode

The load (LD) and store (ST) instructions use this addressing mode for
effective address calculations. The contents of the general-purpose
register specified by the RX instruction field are added to the unsigned
4-bit immediate field which has been scaled (shifted left) according to the
size of the memory access to form the effective address for the access.
Register RZ serves as the destination register for loads and as the
source of store data for stores. Figure 3-7 shows the scaled 4-bit
immediate format.

Figure 3-7. Scaled 4-Bit Immediate Format

3.3.2.2 Load/Store Register Quadrant Mode

The load register quadrant (LDQ) and store register quadrant (STQ)
instructions use this mode to transfer a contiguous set of registers to or

OPCODE RX

03415

CREG

89

OPCODE RX

03415

IMM4

78

RZ

1112
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 59

Instructions
from the memory location pointed to by the contents of general-purpose
register RX. Registers R4 through R7 are transferred in ascending order
to or from memory. Figure 3-8 shows the load/store register quadrant
format.

Figure 3-8. Load/Store Register Quadrant Format

3.3.2.3 Load/Store Multiple Register Mode

The load multiple registers (LDM) and store multiple register (STM)
instructions use this mode to transfer a contiguous set of registers to or
from the memory location pointed to by the contents of general-purpose
register R0. The RF instruction field specifies the first register in the list
to be transferred. Registers RF through R15 are transferred in
ascending order to or from memory. Figure 3-9 shows the load/store
multiple registers format.

Figure 3-9. Load/Store Multiple Registers Format

3.3.2.4 Load Relative Word Mode

The load relative word (LRW) instruction uses this format to address a
32-bit word located relative to the program counter (PC). The effective
address is obtained by adding the zero-extended value of the 8-bit
displacement field, scaled by four, to the value of PC + 2. The lower two
bits of this value are truncated to 00, and a word is fetched from this
location into the general-purpose register specified by the RZ instruction
field. Figure 3-10 shows the load relative word format.

Figure 3-10. Load Relative Word Format

OPCODE SUB-OPCODE RX

03415

OPCODE SUB-OPCODE RF

03415

OPCODE RZ

07815

DISP_8

12 11
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

60 Instructions MOTOROLA

Instructions
Instruction Types and Addressing Modes

3.3.3 Flow Control Instructions

M•CORE supports four addressing modes for flow control instructions.

3.3.3.1 Scaled 11-Bit Displacement Mode

The branch (BR), branch-on-condition false (BF), and branch-to-
subroutine (BSR) instructions use this addressing mode for branch
target address calculations. The content of the PC plus two (PC + 2) are
added to the sign-extended 11-bit displacement field which has been
scaled by two (shifted left by one bit). Figure 3-11 shows the scaled
11-bit displacement format.

Figure 3-11. Scaled 11-Bit Displacement Format

3.3.3.2 Register Addressing Mode

The jump (JMP) and jump-to-subroutine (JSR) instructions use this
addressing mode for effective address calculations. The target address
is contained in the general-purpose register specified by the RX
instruction field. Figure 3-12 shows the register addressing format.

Figure 3-12. Register Addressing Format

3.3.3.3 Indirect Mode

The jump indirect (JMPI) and jump-to-subroutine indirect (JSRI)
instructions use this format to address a 32-bit word located relative to
the PC. The effective address is obtained by adding the zero-extended
value of the 8-bit displacement field, scaled by four, to the value of
PC + 2. The lower two bits of this value are truncated to 00, and a word
is fetched from this location and loaded into the PC. If the value of the

OPCODE

015

DISP_11

11 10

OPCODE RX

03415
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 61

Instructions
fetched word is even, instruction execution proceeds from the new PC
value; otherwise a misaligned access exception is taken. Figure 3-13
shows the indirect format.

Figure 3-13. Indirect Format

3.3.3.4 Register with 4-Bit Negative Displacement Mode

The decrement with C-bit update and branch if condition true (LOOPT)
instruction uses this addressing mode for effective address calculations.
The target address is formed by extending the DISP_4 instruction field
with ones, shifting this negative number left by one to scale by two,
and adding the resultant displacement to PC + 2. A count value is held
in the general-purpose register specified by the RX instruction field.
Figure 3-14 shows the 4-bit displacement addressing format.

Figure 3-14. Register with 4-Bit Displacement
Addressing Format

OPCODE

07815
DISP_8

OPCODE RX

03415

DISP_4

78
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

62 Instructions MOTOROLA

Instructions
Opcode Map

3.4 Opcode Map

Table 3-5 is the opcode map for M•CORE.

Table 3-5. Opcode Map (Sheet 1 of 5)

Opcode Mnemonic

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BKPT

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 SYNC

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 RTE

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 RFI

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 STOP

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 WAIT

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 DOZE

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 —

0 0 0 0 0 0 0 0 0 0 0 0 1 0 i i TRAP #II

0 0 0 0 0 0 0 0 0 0 0 0 1 1 x x —

0 0 0 0 0 0 0 0 0 0 0 1 r r r r MVC

0 0 0 0 0 0 0 0 0 0 1 1 r r r r MVCV

0 0 0 0 0 0 0 0 0 1 0 0 r r r r LDQ

0 0 0 0 0 0 0 0 0 1 0 1 r r r r STQ

0 0 0 0 0 0 0 0 0 1 1 0 r r r r LDM

0 0 0 0 0 0 0 0 0 1 1 1 r r r r STM

0 0 0 0 0 0 0 0 1 0 0 0 r r r r DECT

0 0 0 0 0 0 0 0 1 0 0 1 r r r r DECF

0 0 0 0 0 0 0 0 1 0 1 0 r r r r INCT

0 0 0 0 0 0 0 0 1 0 1 1 r r r r INCF

0 0 0 0 0 0 0 0 1 1 0 0 r r r r JMP

0 0 0 0 0 0 0 0 1 1 0 1 r r r r JSR

0 0 0 0 0 0 0 0 1 1 1 0 r r r r FF1

0 0 0 0 0 0 0 0 1 1 1 1 r r r r BREV

0 0 0 0 0 0 0 1 0 0 0 0 r r r r XTRB3

Key

rrrr - RX field
ssss - RY field
zzzz - RZ field
ffff - Rfirst field
ccccc - control register specifier
iii..i - one of several immediate fields

ddddddddddd - branch displacement
bbbb - loopt displacement
uu- accelerator unit
ee..e - execution code
nnn - register count
p - update option
x..x - undefined fields
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 63

Instructions
0 0 0 0 0 0 0 1 0 0 0 1 r r r r XTRB2

0 0 0 0 0 0 0 1 0 0 1 0 r r r r XTRB1

0 0 0 0 0 0 0 1 0 0 1 1 r r r r XTRB0

0 0 0 0 0 0 0 1 0 1 0 0 r r r r ZEXTB

0 0 0 0 0 0 0 1 0 1 0 1 r r r r SEXTB

0 0 0 0 0 0 0 1 0 1 1 0 r r r r ZEXTH

0 0 0 0 0 0 0 1 0 1 1 1 r r r r SEXTH

0 0 0 0 0 0 0 1 1 0 0 0 r r r r DECLT

0 0 0 0 0 0 0 1 1 0 0 1 r r r r TSTNBZ

0 0 0 0 0 0 0 1 1 0 1 0 r r r r DECGT

0 0 0 0 0 0 0 1 1 0 1 1 r r r r DECNE

0 0 0 0 0 0 0 1 1 1 0 0 r r r r CLRT

0 0 0 0 0 0 0 1 1 1 0 1 r r r r CLRF

0 0 0 0 0 0 0 1 1 1 1 0 r r r r ABS

0 0 0 0 0 0 0 1 1 1 1 1 r r r r NOT

0 0 0 0 0 0 1 0 s s s s r r r r MOVT

0 0 0 0 0 0 1 1 s s s s r r r r MULT

0 0 0 0 0 1 0 0 s s s s b b b b LOOPT

0 0 0 0 0 1 0 1 s s s s r r r r SUBU

0 0 0 0 0 1 1 0 s s s s r r r r ADDC

0 0 0 0 0 1 1 1 s s s s r r r r SUBC

0 0 0 0 1 0 0 0 s s s s r r r r —

0 0 0 0 1 0 0 1 s s s s r r r r —

0 0 0 0 1 0 1 0 s s s s r r r r MOVF

0 0 0 0 1 0 1 1 s s s s r r r r LSR

0 0 0 0 1 1 0 0 s s s s r r r r CMPHS

0 0 0 0 1 1 0 1 s s s s r r r r CMPLT

0 0 0 0 1 1 1 0 s s s s r r r r TST

0 0 0 0 1 1 1 1 s s s s r r r r CMPNE

Table 3-5. Opcode Map (Sheet 2 of 5)

Opcode Mnemonic

Key

rrrr - RX field
ssss - RY field
zzzz - RZ field
ffff - Rfirst field
ccccc - control register specifier
iii..i - one of several immediate fields

ddddddddddd - branch displacement
bbbb - loopt displacement
uu- accelerator unit
ee..e - execution code
nnn - register count
p - update option
x..x - undefined fields
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

64 Instructions MOTOROLA

Instructions
Opcode Map

0 0 0 1 0 0 0 c c c c c r r r r MFCR

0 0 0 1 0 0 1 0 s s s s r r r r MOV

0 0 0 1 0 0 1 1 s s s s r r r r BGENR

0 0 0 1 0 1 0 0 s s s s r r r r RSUB

0 0 0 1 0 1 0 1 s s s s r r r r IXW

0 0 0 1 0 1 1 0 s s s s r r r r AND

0 0 0 1 0 1 1 1 s s s s r r r r XOR

0 0 0 1 1 0 0 c c c c c r r r r MTCR

0 0 0 1 1 0 1 0 s s s s r r r r ASR

0 0 0 1 1 0 1 1 s s s s r r r r LSL

0 0 0 1 1 1 0 0 s s s s r r r r ADDU

0 0 0 1 1 1 0 1 s s s s r r r r IXH

0 0 0 1 1 1 1 0 s s s s r r r r OR

0 0 0 1 1 1 1 1 s s s s r r r r ANDN

0 0 1 0 0 0 0 i i i i i r r r r ADDI

0 0 1 0 0 0 1 i i i i i r r r r CMPLTI

0 0 1 0 0 1 0 i i i i i r r r r SUBI

0 0 1 0 0 1 1 i i i i i r r r r —

0 0 1 0 1 0 0 i i i i i r r r r RSUBI

0 0 1 0 1 0 1 i i i i i r r r r CMPNEI

0 0 1 0 1 1 0 0 0 0 0 0 r r r r BMASKI #32 (SET)

0 0 1 0 1 1 0 0 0 0 0 1 r r r r DIVU

0 0 1 0 1 1 0 0 0 0 1 x r r r r —

0 0 1 0 1 1 0 0 0 1 x x r r r r —

0 0 1 0 1 1 0 0 1 i i i r r r r BMASKI

0 0 1 0 1 1 0 1 i i i i r r r r BMASKI

0 0 1 0 1 1 1 i i i i i r r r r ANDI

0 0 1 1 0 0 0 i i i i i r r r r BCLRI

0 0 1 1 0 0 1 0 0 0 0 0 r r r r —

Table 3-5. Opcode Map (Sheet 3 of 5)

Opcode Mnemonic

Key

rrrr - RX field
ssss - RY field
zzzz - RZ field
ffff - Rfirst field
ccccc - control register specifier
iii..i - one of several immediate fields

ddddddddddd - branch displacement
bbbb - loopt displacement
uu- accelerator unit
ee..e - execution code
nnn - register count
p - update option
x..x - undefined fields
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 65

Instructions
0 0 1 1 0 0 1 0 0 0 0 1 r r r r DIVS

0 0 1 0 1 1 0 0 0 0 1 x r r r r —

0 0 1 0 1 1 0 0 0 1 0 x r r r r —

0 0 1 0 1 1 0 0 0 1 1 0 r r r r —

0 0 1 1 0 0 1 0 0 1 1 1 r r r r BGENI

0 0 1 1 0 0 1 0 1 i i i r r r r BGENI

0 0 1 1 0 0 1 1 i i i i r r r r BGENI

0 0 1 1 0 1 0 i i i i i r r r r BSETI

0 0 1 1 0 1 1 i i i i i r r r r BTSTI

0 0 1 1 1 0 0 0 0 0 0 0 r r r r XSR

0 0 1 1 1 0 0 i i i i i r r r r ROTLI

0 0 1 1 1 0 1 0 0 0 0 0 r r r r ASRC

0 0 1 1 1 0 1 i i i i i r r r r ASRI

0 0 1 1 1 1 0 0 0 0 0 0 r r r r LSLC

0 0 1 1 1 1 0 i i i i i r r r r LSLI

0 0 1 1 1 1 1 0 0 0 0 0 r r r r LSRC

0 0 1 1 1 1 1 i i i i i r r r r LSRI

0 1 0 0 u u 0 0 e e e e e e e e H_EXEC

0 1 0 0 u u 0 1 0 n n n e e e e H_RET

0 1 0 0 u u 0 1 1 n n n e e e e H_CALL

0 1 0 0 u u 1 0 0 p i i r r r r H_LD

0 1 0 0 u u 1 0 1 p i i r r r r H_ST

0 1 0 0 u u 1 1 0 p i i r r r r H_LD.H

0 1 0 0 u u 1 1 1 p i i r r r r H_ST.H

0 1 0 1 x x x x x x x x x x x x —

0 1 1 0 0 i i i i i i i r r r r MOVI

0 1 1 0 1 x x x x x x x x x x x —

0 1 1 1 z z z z d d d d d d d d LRW

0 1 1 1 0 0 0 0 d d d d d d d d JMPI

Table 3-5. Opcode Map (Sheet 4 of 5)

Opcode Mnemonic

Key

rrrr - RX field
ssss - RY field
zzzz - RZ field
ffff - Rfirst field
ccccc - control register specifier
iii..i - one of several immediate fields

ddddddddddd - branch displacement
bbbb - loopt displacement
uu- accelerator unit
ee..e - execution code
nnn - register count
p - update option
x..x - undefined fields
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

66 Instructions MOTOROLA

Instructions
Instruction Set

3.5 Instruction Set

This section provides a detailed description of each M•CORE instruction.
The descriptions are arranged in alphabetical order according to
instruction mnemonic.

0 1 1 1 1 1 1 1 d d d d d d d d JSRI

1 0 0 0 z z z z i i i i r r r r LD

1 0 0 1 z z z z i i i i r r r r ST

1 0 1 0 z z z z i i i i r r r r LD.B

1 0 1 1 z z z z i i i i r r r r ST.B

1 1 0 0 z z z z i i i i r r r r LD.H

1 1 0 1 z z z z i i i i r r r r ST.H

1 1 1 0 0 d d d d d d d d d d d BT

1 1 1 0 1 d d d d d d d d d d d BF

1 1 1 1 0 d d d d d d d d d d d BR

1 1 1 1 1 d d d d d d d d d d d BSR

Table 3-5. Opcode Map (Sheet 5 of 5)

Opcode Mnemonic

Key

rrrr - RX field
ssss - RY field
zzzz - RZ field
ffff - Rfirst field
ccccc - control register specifier
iii..i - one of several immediate fields

ddddddddddd - branch displacement
bbbb - loopt displacement
uu- accelerator unit
ee..e - execution code
nnn - register count
p - update option
x..x - undefined fields
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 67

Instructions
ABS Absolute Value ABS

Operation: RX ← |RX|

Syntax: abs rx

Description: Calculate the absolute value of register X, and store the result in
register X.

NOTE: An input operand of 0x80000000 yields a result of 0x80000000. No
special indication of this is provided.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 1 1 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

68 Instructions MOTOROLA

Instructions
Instruction Set

ADDC Unsigned Add with C Bit, Update C Bit ADDC

Operation: RX ← RX + RY + C, C ← carry out

Syntax: addc rx,ry

Description: Add the contents of register Y, the C bit, and the contents of register X.
Store the result in register X.

Condition Code: C ← carry out

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 0 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 69

Instructions
ADDI Unsigned Add with Immediate ADDI

Operation: RX ← RX + unsigned OIMM5

Syntax: addi rx,oimm5

Description: Add the immediate value to the content of register X. The immediate
value must be in the range 1 to 32.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

OIMM5 Field — Specifies immediate value to be added to RX

NOTE: The binary encoding is offset by one from the actual value to be added.

00000 — add 1
00001 — add 2
…
11111 — add 32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 OIMM5 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

70 Instructions MOTOROLA

Instructions
Instruction Set

ADDU Unsigned Add ADDU

Operation: RX ← RX + RY

Syntax: addu rx,ry

Description: Add the contents of register Y to the contents of register X and store the
result in register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 0 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 71

Instructions
AND Logical AND AND

Operation: RX ← RX ^ RY

Syntax: and rx,ry

Description: Logically AND the value of register Y with register X, and store the result
in register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 0 Register Y Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

72 Instructions MOTOROLA

Instructions
Instruction Set

ANDI Logical AND with Immediate ANDI

Operation: RX ← RX ^ (unsigned IMM5)

Syntax: andi rx,imm5

Description: Logically AND the zero-extended IMM5 field with source/destination
register X. The result is stored in register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies the unsigned 5-bit immediate value
00000 — 0
00001 — 1
…
11111 — 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 1 IMM5 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 73

Instructions
ANDN Logical AND NOT ANDN

Operation: RX ← RX ^ (RY!)

Syntax: andn rx,ry

Description: Logically AND the inverted value of register Y with register X. Store the
result in register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 1 Register Y Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

74 Instructions MOTOROLA

Instructions
Instruction Set

ASR Arithmetic Shift Right (Dynamic) ASR

Operation: RX ← asr(RX) by RY[5:0] bits

Syntax: asr rx,ry

Description: RX ← asr(RX) by RY[5:0] bits. If RY[5:0] >30, RX ← 0 or –1.

Arithmetically shift right the value in register X by the value of RY[5:0],
and store the result in register X. If the value of register Y [5:0] is greater
than 30, RX will be 0 or –1 depending on the original sign of RX.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 0 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 75

Instructions
ASRC Arithmetic Shift Right by 1 Bit, Update C Bit ASRC

Operation: C ← RX[0], RX ← asr(RX) by 1

Syntax: asrc rx

Description: RX ← asr(RX) by one bit into the C bit.

Condition Code: RX[0] is copied into the C bit before shifting occurs.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 1 0 0 0 0 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

76 Instructions MOTOROLA

Instructions
Instruction Set

ASRI Arithmetic Shift Right Immediate (Static) ASRI

Operation: RX ← asr(RX) by IMM5 bits

Syntax: asri rx,imm5

Description: RX ← asr(RX) by IMM5 bits (1–31); arithmetically shift right the value in
register X by the value of the IMM5 field.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies shift value, must be in the range 1 to 31
00001 — 1
…
11111 — 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 1 IMM5 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 77

Instructions
BCLRI Bit Clear Immediate BCLRI

Operation: Clear bit [IMM5] of RX

Syntax: bclri rx,imm5

Description: Clear the bit of register RX specified by the immediate field.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies bit of RX to be cleared
00000 — Bit 0
00001 — Bit 1
…
11111 — Bit 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 IMM5 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

78 Instructions MOTOROLA

Instructions
Instruction Set

BF Conditional Branch if False BF

Operation: Conditional Branch if False:
If (C == 0),

PC ← PC + 2 + (signed-extended 11-bit displacement << 1)
else

PC ← PC + 2

Syntax: bf label

Description: If the C bit in the PSR is clear, the program counter is updated by adding
its value + 2 to a scaled, sign-extended 11-bit displacement field;
otherwise, the program counter is incremented by two to the next
instruction. The displacement indicates the destination offset in half-
words from the address of the instruction following the branch.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Branch Displacement Field — Specifies the branch displacement

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 1 Branch displacement field
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 79

Instructions
BGENI Bit Generate Immediate (Static) BGENI

Operation: RX ← (2)IMM5

Syntax: bgeni rx,imm5

Description: Set the bit of register X specified by the immediate field and clear all
other bits of register X.

NOTE: Immediate values of zero to six are implemented using the MOVI
instruction.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies the single bit to be set in RX

NOTE: Values for the immediate field of 00000 to 00110 are not allowed, as
these opcodes are used for other instructions. Assemblers will map the
mnemonics for bgeni rx,#0-6 to the MOVI instruction. Disassembly will
indicate the MOVI instruction instead of the original BGENI mnemonic.

00111 — Bit 7
01000 — Bit 8
01001 — Bit 9
…
11111 — Bit 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 IMM5 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

80 Instructions MOTOROLA

Instructions
Instruction Set

BGENR Bit Generate Register (Dynamic) BGENR

Operation: If
RY[5] = 0, RX ← 2RY[4. . .0]

else
RX ← 0

Syntax: bgenr rx,ry

Description: If RY[5] is clear, set bit in register X specified by the five lower bits
(bits 4:0) of register Y and clear all other bits of register X; otherwise
clear RX.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 1 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 81

Instructions
BKPT Breakpoint BKPT

Operation: Cause a breakpoint instruction exception to be taken

Syntax: bkpt

Description: Breakpoint

Instruction
Format: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

82 Instructions MOTOROLA

Instructions
Instruction Set

BMASKI Bit Mask Generate Immediate BMASKI

Operation: RX ← (2)IMM5–1

Syntax: bmaski rx,imm5

Description: Set the low-order IMM5 bits of register RX to 1 and clear the remaining
upper bits. From one to 32 bits may be set. An IMM5 value of 32 is
encoded in the instruction as an IMM5 field of 00000 by the assembler.

NOTE: Immediate values of one to seven are implemented using the MOVI
instruction.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies the number of low-order bits to be set in RX. An
IMM5 value of 0 is interpreted as a value of 32.

NOTE: Values for the immediate field of 00001 to 00111 are not allowed, as
these opcodes are used for other instructions. Assemblers will map the
mnemonics for BMASKI rx, #1-7 to the MOVI instruction. Disassembly
will indicate the MOVI instruction instead of the original BMASKI
mnemonic.

00000 — Set bits 0 to 31
00001 to 00111 — Invalid
01000 — Set bits 0 to 7
01001 — Set bits 0 to 8
…
11111 — Set bits 0 to 30

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 IMM5 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 83

Instructions
BR Unconditional Branch BR

Operation: Unconditional Branch; PC ← PC + 2 + (signed-extended 11-bit
displacement <<1)

Syntax: br label

Description: The program counter is updated by adding its value + 2 to a scaled, sign-
extended 11-bit displacement field. The displacement indicates the
destination offset in half-words from the address of the instruction
following the branch.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Branch Displacement Field — Specifies the branch displacement

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 Branch displacement field
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

84 Instructions MOTOROLA

Instructions
Instruction Set

BREV Bit Reverse BREV

Operation: Reverse the bits in RX

Syntax: brev rx

Description: Reverse the bits in register RX.
If RX is initially “abcdefghijklmnopqrstuvwxyz012345”,
it becomes “543210zyxwvutsrqponmlkjihgfedcba”

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 1 1 1 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 85

Instructions
BSETI Bit Set Immediate BSETI

Operation: Set bit [IMM5] of RX

Syntax: bseti rx,imm5

Description: Set the bit of register RX specified by the immediate field.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies the bit of RX to be set
00000 — Bit 0
00001 — Bit 1
…
11111 — Bit 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 0 IMM5 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

86 Instructions MOTOROLA

Instructions
Instruction Set

BSR Branch to Subroutine BSR

Operation: Branch to Subroutine:
R15 ← PC + 2
PC ← PC + 2 + (signed-extended 11 bit displacement << 1)

Syntax: bsr label

Description: Return address is saved in R15. The program counter is updated by
adding its value + 2 to a scaled, sign-extended 11-bit displacement field.
The displacement indicates the destination offset in half-words from the
address of the instruction following the branch.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Branch Displacement Field — Specifies the branch displacement

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 Branch displacement field
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 87

Instructions
BT Conditional Branch if True BT

Operation: Conditional Branch if True:
if (C == 1)

PC ← PC + 2 + (signed-extended 11 bit displacement << 1)
else

PC ← PC +2

Syntax: bt label

Description: If the C bit in the PSR is set, the program counter is updated by adding
its value + 2 to a scaled, sign-extended 11-bit displacement field,
otherwise the program counter is incremented by two to the next
instruction. The displacement indicates the destination offset in half-
words from the address of the instruction following the branch.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Branch Displacement Field — Specifies the branch displacement

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 Branch displacement field
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

88 Instructions MOTOROLA

Instructions
Instruction Set

BTSTI Bit Test Immediate; Update C Bit BTSTI

Operation: C ← RX[IMM5]

Syntax: btsti rx,imm5

Description: Test the bit of register X selected by the IMM5 field, and set the C bit to
the value of this bit.

Condition Code: Set to the value of the bit of RX pointed to by IMM5

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies which bit of RX is to be tested
00000 — Bit 0
00001 — Bit 1
…
11111 — Bit 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 1 1 IMM5 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 89

Instructions
CLRF Clear if Condition False CLRF

Operation: Conditionally clear RX to 0; if (C == 0), RX ← 0

Syntax: clrf rx

Description: If (C == 0), RX ← 0, move the value 0 to RX when C bit is cleared.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 1 0 1 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

90 Instructions MOTOROLA

Instructions
Instruction Set

CLRT Clear if Condition True CLRT

Operation: Conditionally clear RX to 0; if (C == 1), RX ← 0

Syntax: clrt rx

Description: If (C == 1), RX ← 0, move the value 0 to RX if the C bit is set

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 1 0 0 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 91

Instructions
CMPHS Compare for Higher or Same CMPHS

Operation: Compare register X to register Y. If the value in register X is higher than
or the same as the value in register Y,

C bit ← 1
else

C bit ← 0

Syntax: cmphs rx,ry

Description: Subtract the contents of register Y from the contents of register X.
Compare the result with 0 and update the C bit appropriately. The
CMPHS instruction treats the operands as unsigned. If RX is higher than
or the same as RY, the C bit is set; otherwise it is cleared.

Condition Code: Set as a result of the comparison operation

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 0 Register Y Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

92 Instructions MOTOROLA

Instructions
Instruction Set

CMPLT Compare for Less Than CMPLT

Operation: Compare register X to register Y. If specified condition is true,
C bit ← 1

else
C bit ← 0

Syntax: cmplt rx,ry

Description: Subtract the contents of register Y from the contents of register X.
Compare the result with 0 and update the C bit appropriately. CMPLT
treats the operands as signed two’s complement integers. If RX is less
than RY, the C bit is set; otherwise it is cleared.

Condition Code: Set as a result of the comparison operation.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 0 1 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 93

Instructions
CMPLTI Compare with Immediate for Less Than CMPLTI

Operation: Compare register X with immediate value. If specified condition is true,
C bit ← 1

else
C bit ← 0

Syntax: cmplti rx, oimm5

Description: Compare the value in register X with the immediate value. The CMPLTI
instruction treats the operands as signed two’s complement integers (the
immediate value is always positive). If RX is less than the immediate
value, the C bit is set; otherwise it is cleared. The immediate value must
be in the range one to 32.

Condition Code: Set as a result of the comparison operation.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

OIMM5 Field — Specifies immediate value to be compared to RX.

NOTE: The binary encoding is offset by one from the actual immediate value to
be compared.

00000 — Compare with 1
00001 — Compare with 2
…
11111 — Compare with 32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 0 1 OIMM5 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

94 Instructions MOTOROLA

Instructions
Instruction Set

CMPNE Compare for Not Equal CMPNE

Operation: Compare register X to register Y. If specified condition is true,
C bit ← 1

else
C bit ← 0

Syntax: cmpne rx,ry

Description: Compare the contents of register Y with the contents of register X.
CMPNE compares RX and RY, and sets the C bit if the values are not
equal; otherwise it clears the C bit.

Condition Code: Set as a result of the comparison operation.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 1 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 95

Instructions
CMPNEI Compare with Immediate for Not Equal CMPNEI

Operation: Compare register X with immediate value. If specified condition is true,
C bit ← 1

else
C bit ← 0

Syntax: cmpnei rx, imm5

Description: CMPNEI compares the value in register X with the immediate value. If
RX is not equal to the immediate value, the C bit is set; otherwise it is
cleared. The immediate value must be in the range zero to 31.

Condition Code: Set as a result of the comparison operation.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies immediate value to be compared with RX
00000 — Compare with 0
00001 — Compare with 1
…
11111 — Compare with 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 1 IMM5 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

96 Instructions MOTOROLA

Instructions
Instruction Set

DECF Decrement Conditionally on False DECF

Operation: if C == 0, then
RX ← RX – 1

else
RX ← RX

Syntax: decf rx

Description: Decrement the value in register RX if the C bit is clear; otherwise the
content of register X remains unchanged.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies the source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 1 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 97

Instructions
DECGT Decrement, Set C Bit on Greater Than DECGT

Operation: RX ← RX – 1
Update C bit

Syntax: decgt rx

Description: Decrement the value in register RX and set the C bit if result is greater
than 0.

Condition Code: C bit is set to 1 if the result in RX is greater than 0; otherwise it is cleared.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 0 1 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

98 Instructions MOTOROLA

Instructions
Instruction Set

DECLT Decrement, Set C Bit on Less Than DECLT

Operation: RX ← RX – 1
Update C bit

Syntax: declt rx

Description: Decrement the value in register RX and set the C bit if the result is less
than 0.

Condition Code: C bit is set to 1 if the result in RX is less than 0; otherwise the C bit is
cleared.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 0 0 0 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 99

Instructions
DECNE Decrement, Set C Bit on Not Equal DECNE

Operation: RX ← RX – 1, update C bit

Syntax: decne rx

Description: Decrement the value in register RX and set the C bit if the result is not
equal to 0.

Condition Code: C bit is set to 1 if the result in RX is not equal to 0; otherwise the C bit is
cleared.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 0 1 1 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

100 Instructions MOTOROLA

Instructions
Instruction Set

DECT Decrement Conditionally on True DECT

Operation: If C == 1 then,
RX ← RX – 1

else
RX ← RX

Syntax: dect rx

Description: If the C bit is set, decrement the value in register RX; otherwise the
content of register X remains unchanged.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 0 0 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 101

Instructions
DIVS Signed Divide RX by R1 DIVS

Operation:

Syntax: divs rx,r1

Description: Divide the contents of register X by the contents of register R1 and store
the result in register X. The values in RX and R1 are treated as 32-bit
signed integers. For the case of 0x8000 0000 divided by 0xFFFF FFFF,
the result is undefined. If the value in R1 is 0, no result is written, and a
divide-by-zero exception is generated (vector offset 0x00C).

Condition Code: Undefined

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

RX
RX
R1
--------←

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 0 1 0 0 0 0 1 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

102 Instructions MOTOROLA

Instructions
Instruction Set

DIVU Unsigned Divide RX by R1 DIVU

Operation:

Syntax: divu rx,r1

Description: Divide the contents of register X by the contents of register R1 and store
the result in register X. The values in RX and R1 are treated as 32-bit
unsigned integers. For the case of 0x8000 0000 divided by 0xFFFF
FFFF, the result is undefined. If the value in R1 is 0, no result is written,
and a divide-by-zero exception is generated (vector offset 0x00C).

Condition Code: Undefined

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

RX
RX
R1
--------←

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 1 0 0 0 0 0 1 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 103

Instructions
DOZE Enter Low-Power Doze Mode DOZE

Operation: Enter low-power doze mode

Syntax: doze

Attributes: Privileged

Description: Place the processor in low-power doze mode and wait for an interrupt to
exit. The CPU clock is stopped. Which peripherals are stopped is
implementation dependent. Refer to the appropriate microcontroller
user’s manual for details on how this instruction is implemented and how
it affects peripherals in a particular implementation.

Condition Code: Unaffected

Instruction
Format: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

104 Instructions MOTOROLA

Instructions
Instruction Set

FF1 Find First One in RX FF1

Operation: RX ← ff1(RX)

Syntax: ff1 rx

Description: Find the first set bit in register RX, and return the result into RX. RX is
scanned from the most significant bit (MSB) to the least significant bit
(LSB), searching for a set bit. The value returned is the offset from the
MSB of RX. If bit 31 of RX is set, the value returned is 0. If no bits are set
in RX, a value of 32 is returned.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 1 1 0 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 105

Instructions
INCF Increment RX Conditionally on False INCF

Operation: If C == 0, then
RX ← RX + 1

else
RX ← RX

Syntax: incf rx

Description: If the C bit is clear, increment the value in register RX; otherwise the
content of register X remains unchanged.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 1 1 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

106 Instructions MOTOROLA

Instructions
Instruction Set

INCT Increment RX Conditionally on True INCT

Operation: If C == 1, then
RX ← RX + 1

else
RX ← RX

Syntax: inct rx

Description: If the C bit is set, increment the value in register RX; otherwise the
content of register X remains unchanged.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 0 1 0 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 107

Instructions
IXH Index Half-Word IXH

Operation: RX ← RX + [RY << 1]

Syntax: ixh rx,ry

Description: Add the value in register RX to the value in register RY left shifted by
one, and store the result in register RX.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 1 Register Y Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

108 Instructions MOTOROLA

Instructions
Instruction Set

IXW Index Word IXW

Operation: RX ← RX + [RY << 2]

Syntax: ixw rx,ry

Description: Add the value in register RX to the value in register RY shifted left by two,
and store the result in register RX.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 1 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 109

Instructions
JMP Unconditional Jump JMP

Operation: Unconditional jump:
PC ← (RX)

Syntax: jmp rx

Description: Unconditionally jump to the location specified by the content of register
RX. The low-order bit of RX is ignored and replaced with a 0.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 1 0 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

110 Instructions MOTOROLA

Instructions
Instruction Set

JMPI Unconditional Jump Indirect JMPI

Operation: Unconditional jump indirect:
PC ← MEM[(PC + 2 + (unsigned disp_8 << 2)) & 0xfffffffc]

Syntax: jmpi [label]

Description: The 8-bit displacement field is zero extended, scaled by two, and added
to PC + 2. The low-order two bits of this address are forced to 0, and a
word is loaded from this address into the PC. In essence, the destination
address is stored in a memory location relative to the current PC (at
location label). This word is fetched and loaded into the PC, and
instruction execution resumes at the new PC value. Note that only
forward offsets from the PC are available for referencing the jump target
address. If the value fetched for the destination address is odd, a
misaligned access exception is taken.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

DISP_8 Field — Unsigned 8-bit displacement

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 0 0 0 0 DISP_8
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 111

Instructions
JSR Unconditional Jump to Subroutine JSR

Operation: Unconditional jump to subroutine:
R15 ← PC + 2,
PC ← (RX)

Syntax: jsr rx

Description: Unconditionally jump to the subroutine location specified by the content
of RX, and save the return address in R15. The low-order bit of RX is
ignored and replaced with a 0.

CAUTION: RX must not specify R15; this condition is undefined and undetected.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source register RX
0000 — Register R0
0001 — Register R1
…
1110 — Register R14
1111 — Illegal specifier; do not use

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 1 1 0 1 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

112 Instructions MOTOROLA

Instructions
Instruction Set

JSRI Unconditional Jump Subroutine Indirect JSRI

Operation: Unconditional jump subroutine indirect:
R15 ← PC + 2,
PC ← MEM[(PC + 2 + (unsigned disp_8 << 2)) & 0xfffffffc]

Syntax: jsri [label]

Description: (PC + 2) is saved in R15, and then the 8-bit displacement field is zero
extended, scaled by two, and added to PC + 2. The low-order two bits of
the address are forced to 0, and a word is loaded from this address into
the PC. In essence, the destination address is stored in a memory
location relative to the current PC (at location label). This word is fetched
and loaded into the PC, and instruction execution resumes at the new
PC value. Note that only forward offsets from the PC are available for
referencing the jump target address. If the value fetched for the
destination address is odd, a misaligned access exception is taken.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

DISP_8 Field — Unsigned 8-bit displacement

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 1 1 DISP_8
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 113

Instructions
LD.[BHW] Load Register from Memory LD.[BHW]

Operation: Source/destination register ← Memory location:
RZ ← MEM[RX + unsigned IMM4 <<{0,1,2}]

Syntax: ld.[bhw] rz,(rx,disp)
[ld, ldb, ldh, ldw] rz,(rx,disp)

Description: The load operation has three options: w (word), h (half-word), and b
(byte). Disp is obtained by taking the IMM4 field, scaling by the size of
the load, and zero-extending. This value is added to the value of register
RX, and a load of the specified size is performed from this address, with
the result of the load stored in register RZ. For byte and half-word loads,
the data fetched is zero-extended before being placed in RZ.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Size — Specifies load size
00 — Word
01 — Byte
10 — Half-word

Register Z — Specifies the destination register for the load

IMM4 Field — Specifies a 4-bit scaled immediate value

Register X — Specifies the base address to be added to the scaled
immediate field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 Size 0 register Z IMM4 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

114 Instructions MOTOROLA

Instructions
Instruction Set

LDM Load Multiple Registers from Memory LDM

Operation: Destination Registers ← Memory

Syntax: ldm rf–r15,(r0)

Description: The LDM instruction is used to load a contiguous range of registers from
the stack. Register 0 (R0) serves as the base address pointer for this
form. Registers Rf–R15 are loaded in increasing significance from
ascending memory locations. Rf must not specify R0 or R15; these
instruction forms are considered illegal, although they are not
guaranteed to be detected by hardware. For valid instruction forms,
register 0 (R0) is not affected or updated.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register First Field — Specifies the first register to be transferred
Only R1–R14 should be specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 0 register first
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 115

Instructions
LDQ Load Register Quadrant from Memory LDQ

Operation: Destination registers ← memory;

Syntax: ldq r4–r7,(rx)

Description: The LDQ instruction is used to load four registers (R4–R7) from memory.
Register X points to the location of the first transfer. Registers are loaded
in increasing significance from ascending memory locations. If register
X is specified to be R4, R5, R6, or R7, the instruction form is considered
invalid, and the results are undefined. For valid instruction forms,
register X is not affected or updated.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X — Specifies the base address for the transfers
Register X should not specify R4, R5, R6, or R7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 0 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

116 Instructions MOTOROLA

Instructions
Instruction Set

LOOPT Branch on True, Decrementing Count, LOOPT
Set C Bit on Greater Than

Operation: If C == 1,
then

PC ← PC + 2 + (one’s extended 4-bit displacement << 1)
RY ← RY –1
Update C bit

else
RY ← RY –1
Update C bit

Syntax: loopt ry,label

Description: Decrement the value in register RY setting the C bit if the (signed) result
is greater than 0 (clear the C bit otherwise). Branch to label if the C bit
was set prior to the decrement.

Condition Code: C bit is set to 1 if the (signed) result in RY is greater than 0, and cleared
otherwise.

Instruction
Format:

Instruction
Fields:

Register Y Field — Specifies source/destination register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Disp_4 Field — Loop displacement from PC + 2
0000 — Displacement of –32
0001 — Displacement of –30
…
1111 — Displacement of –2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 0 Register Y Disp_4
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 117

Instructions
LRW Load PC-Relative Word LRW

Operation: RZ ← MEM(PC + 2 + (unsigned imm_8 << 2)) & 0xfffffffc

Syntax: lrw rz,[label]
Assembler sets the 8-bit displacement to point to label.

lrw rz,label
Assembler allocates a literal table entry containing address of label,
and sets the 8-bit displacement to point to table entry.

lrw rz,0x 32-bit value expressed in hexadecimal notation
lrw rz,0b 32-bit value expressed in binary notation
lrw rz, 32-bit value expressed in decimal notation

Assembler allocates a literal table entry containing the specified
32-bit value (expressed in hexadecimal, binary, or decimal form)
and sets the 8-bit displacement to point to table entry.

Description: The DISP_8 field is zero extended, scaled by four (for example, left-
shifted by two), and added to PC + 2. The low-order two bits of this
address are forced to 0, and a word is loaded from this address into
register RZ. RZ may not be R0 (the stack pointer by convention)
or R15 (the link register). The 8-bit displacement field is an unsigned
value — forward displacements from PC + 2 in the range 0x4 to 0x3FC
are available for referencing load data.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register Z — Specifies the destination register for the load
May not be R0 (0000) or R15 (1111)

DISP_8 Field — Specifies an unsigned 8-bit displacement value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 Register Z DISP_8
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

118 Instructions MOTOROLA

Instructions
Instruction Set

LSL Logical Shift Left (Dynamic) LSL

Operation: RX ← lsl(RX) by RY[5:0] bits

Syntax: lsl rx,ry

Description: RX ← lsl(RX) by RY[5:0] bits. If RY[5:0] > 31, RX ← 0.
Perform a logical shift left of the value in register X by the value of
RY[5:0]. If the value of register Y[5:0] is greater than 31, RX will be 0.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 1 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 119

Instructions
LSLC Logical Shift Left by 1, Update C Bit LSLC

Operation: C ← RX[31], RX ← lsl (RX) by 1

Syntax: lslc rx

Description: RX ← lsl(RX) by one bit into the C bit

Condition Code: Copy RX[31] into the C bit before shifting occurs.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 0 0 0 0 0 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

120 Instructions MOTOROLA

Instructions
Instruction Set

LSLI Logical Shift Left Immediate (Static) LSLI

Operation: RX ← lsl(RX) by IMM5 bits (1...31)

Syntax: lsli rx,imm5

Description: RX ← lsl(RX) by IMM5 bits (1...31); logically shift left the value in register
X by the value of the IMM5 field.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies shift value. Must be in the range one to 31
00001 — 1
…
11111 — 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 0 IMM5 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 121

Instructions
LSR Logical Shift Right (Dynamic) LSR

Operation: RX ← lsr(RX) by RY[5:0] bits

Syntax: lsr rx,ry

Description: RX ← lsr(RX) by RY[5:0] bits. If RY[5:0] > 31, RX ← 0.
Perform logical shift right of the value in register X by the value of
RY[5:0]. If the value of register Y[5:0] is greater than 31, RX will be 0.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 1 Register Y Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

122 Instructions MOTOROLA

Instructions
Instruction Set

LSRC Logical Shift Right by 1 Bit, Update C Bit LSRC

Operation: C ← RX[0], RX ← lsr(RX) by 1

Syntax: lsrc rx

Description: RX ← lsr(RX) by one bit into the C bit.

Condition Code: Copy RX0 into the C bit before shifting occurs.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 0 0 0 0 0 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 123

Instructions
LSRI Logical Shift Right Immediate (Static) LSRI

Operation: RX ← lsr(RX) by IMM5 bits (1...31).

Syntax: lsri rx,imm5

Description: RX ← lsr(RX) by IMM5 bits. Perform logical shift right of the value in
register X by the value of the IMM5 field.

Condition Code: Unaffected.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies shift value, must be in the range one to 31
00001 — 1
…
11111 — 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 1 1 IMM5 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

124 Instructions MOTOROLA

Instructions
Instruction Set

MFCR Move from Control Register MFCR

Operation: Move from control register: RX ← CRy

Syntax: mfcr rx,cry

Attributes: Privileged

Description: Move the contents of control register Y to register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

CRegister Y Field — Specifies source control register CRy
00000 — Control register CR0
00001 — Control register CR1
…
11111 — Control register CR31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 CRegister Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 125

Instructions
MOV Logical Move MOV

Operation: RX ← RY

Syntax: mov rx,ry

Description: Copy the value of register Y to destination register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 0 1 0 Register Y Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

126 Instructions MOTOROLA

Instructions
Instruction Set

MOVF Move RY to RX if Condition False MOVF

Operation: Conditionally move RY to RX; if (C==0), RX ← RY

Syntax: movf rx,ry

Description: If (C == 0) RX ← RY; conditionally move RY to RX when C bit is cleared.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 0 1 0 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 127

Instructions
MOVI Logical Move Immediate MOVI

Operation: RX ← unsigned IMM7

Syntax: movi rx,imm7

Description: Move the zero-extended 7-bit immediate value to destination register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM7 Field — Specifies immediate value to be moved to RX
0000000 — 0
0000001 — 1
…
1111111 — 127

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 IMM7 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

128 Instructions MOTOROLA

Instructions
Instruction Set

MOVT Move RY to RX if Condition True MOVT

Operation: Conditionally move RY to RX; if (C == 1), RX ← RY

Syntax: movt rx,ry

Description: If (C == 1), RX ← RY; conditionally move RY to RX when C bit is set.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 0 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 129

Instructions
MTCR Move to Control Register MTCR

Operation: Move to control register: CRy ← RX

Syntax: mtcr rx,cry

Attributes: Privileged

Description: Move the contents of register X to the control register specified by
CRegister Y.

Condition Code: Unaffected unless CR0 (PSR) specified

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

CRegister Y Field — Specifies destination control register CRy
00000 — Control register CR0
00001 — Control register CR1
…
11111 — Control register CR31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 CRegister Y Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

130 Instructions MOTOROLA

Instructions
Instruction Set

MULT Multiply MULT

Operation: RX ← RX x RY

Syntax: mult rx,ry
mul rx,ry

Description: Multiply the contents of register X with the contents of register Y and
store the low order 32 bits of the result in register X. 32x32 → 32 (low-
order product). The result produced is the same regardless of whether
the source operands are considered signed or unsigned.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 1 1 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 131

Instructions
MVC Move C Bit to Register MVC

Operation: RX ← C bit

Syntax: mvc rx

Description: Copy the value of the C bit to the low-order bit of destination register X,
and clear all other bits of RX.

Condition Code: Unaffected

Instruction
Format:

Instruction Fields: Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

132 Instructions MOTOROLA

Instructions
Instruction Set

MVCV Move Inverted C Bit to Register MVCV

Operation: RX ← (C bit)!

Syntax: mvcv rx

Description: Copy the inverted value of the C bit to the low-order bit of destination
register X, clear all other bits of RX.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 1 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 133

Instructions
NOT Logical NOT NOT

Operation: RX ← (RX)!

Syntax: not rx

Description: Logically invert the value of register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 1 1 1 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

134 Instructions MOTOROLA

Instructions
Instruction Set

OR Logical OR OR

Operation: RX ← RX ∨ RY

Syntax: or rx,ry

Description: Logically OR the value of register Y with register X and store the result
in register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 1 0 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 135

Instructions
RFI Return from Fast Interrupt RFI

Operation: PC ← FPC (CR5);
PSR ← FPSR (CR3)

Syntax: rfi

Attributes: Privileged

Description: The program counter (PC) is loaded with the value saved in control
register CR5, the PSR is loaded from the value in CR3, and instruction
execution begins with the instruction at the new PC value.

Instruction
Format: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

136 Instructions MOTOROLA

Instructions
Instruction Set

ROTLI Rotate Left Immediate (Static) ROTLI

Operation: RX ← rotl(RX) by IMM5 bits (1..31)

Syntax: rotli rx,imm5

Description: RX ← rotl(RX) by IMM5 bits (1...31). Rotate the value in register X left by
the value of the IMM5 field.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies rotate value, must be in the range one to 31
00001 — 1
…
11111 — 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 IMM5 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 137

Instructions
RSUB Reverse Subtract RSUB

Operation: RX ← RY – RX

Syntax: rsub rx,ry

Description: Subtract the contents of register X from the contents of register Y and
store the result in register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 0 0 Register Y Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

138 Instructions MOTOROLA

Instructions
Instruction Set

RSUBI Reverse Subtract with Immediate RSUBI

Operation: RX ← [unsigned IMM5] – RX

Syntax: rsubi rx,imm5

Description: Subtract the contents of register X from the unsigned value specified by
the IMM5 field, and store the result in register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

IMM5 Field — Specifies immediate value to be used
00000 — 0
00001 — 1
…
11111 — 31

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 1 0 0 IMM5 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 139

Instructions
RTE Return from Exception RTE

Operation: PC ← EPC (CR4); PSR ← EPSR (CR2)

Syntax: rte

Attributes: Privileged

Description: The program counter (PC) is loaded with the value saved in control
register CR4, the PSR is loaded from the value in CR2, and instruction
execution begins with the instruction at the new PC value.

Instruction
Format: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

140 Instructions MOTOROLA

Instructions
Instruction Set

SEXTB Sign Extend Byte SEXTB

Operation: RX ← RX[7:0] sign-extended to 32 bits

Syntax: sextb rx

Description: Sign extend the low-order byte of register RX to 32 bits.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 1 0 1 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 141

Instructions
SEXTH Sign Extend Half-Word SEXTH

Operation: RX ← RX[15:0] sign-extended to 32 bits

Syntax: sexth rx

Description: Sign extend the low-order half of register RX to 32 bits.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 1 1 1 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

142 Instructions MOTOROLA

Instructions
Instruction Set

ST.[B,H,W] Store Register to Memory ST.[B,H,W]

Operation: Memory ← Source Register:
MEM[RX + unsigned IMM4 <<{0,1,2}] ← RZ

Syntax: st.[b,h,w] rz,(rx,disp)
[st, stw sth stb] rz,(rx,disp)

Description: Store register contents to memory. The store operation has three
options: w (word), h (half-word), and b (byte). Disp is obtained by taking
the IMM4 field, scaling by the size of the store, and zero-extending. This
value is added to the value of register RX, and a store of the specified
size is performed to this address.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Size — Specifies store size
00 — Word
01 — Byte
10 — Half-word

Register Z — Specifies the source register for store data

IMM4 Field — Specifies a 4-bit scaled immediate value

Register X — Specifies the base address to be added to the scaled
immediate field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 Size 1 register Z IMM4 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 143

Instructions
STM Store Multiple Registers to Memory STM

Operation: Memory ← Source Registers

Syntax: stm rf–r15,(r0)

Description: Store multiple registers to memory. The STM instruction is used to
transfer a contiguous range of registers to the stack. Register 0 (R0)
serves as the base address pointer for this form. Registers Rf –R15 are
stored in increasing significance to ascending memory locations.
Register 0 (R0) is not affected/updated. Rf may not specify R0 or R15;
these instruction forms are considered illegal, although they are not
guaranteed to be detected by hardware.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register First Field — Specifies the first register to be transferred.
Only R1–R14 should be specified.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 1 1 register first
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

144 Instructions MOTOROLA

Instructions
Instruction Set

STOP Enter Low-Power Stop Mode STOP

Operation: Enter stop mode

Syntax: stop

Attributes: Privileged

Description: Place the processor in low-power stop mode and wait for an interrupt to
exit stop mode. The CPU clock is stopped, and most peripherals cease
operation. Refer to the appropriate microcontroller user’s manual for
details on how this instruction is implemented and how it affects
peripherals in a particular implementation.

Condition Code: Unaffected

Instruction
Format: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 145

Instructions
STQ Store Register Quadrant to Memory STQ

Operation: Memory ← Source Registers

Syntax: stq r4–r7,(rx)

Description: Store register quadrant to memory. The STQ instruction is used to
transfer the contents of four registers (R4–R7) to memory. Register X
points to the location of the first transfer. Registers are stored in
increasing significance to ascending memory locations. Register X is not
affected or updated. If register X is part of the quadrant being
transferred, the value stored for this register is undefined.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X — Specifies the base address for the transfers.
Register X should not specify R4, R5, R6, or R7.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 1 0 1 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

146 Instructions MOTOROLA

Instructions
Instruction Set

SUBC Unsigned Subtract with C Bit; Update C Bit SUBC

Operation: RX ← RX – RY – (C!)
C ← carryout

Syntax: subc rx,ry

Description: Subtract the contents of register Y and the inverted value of the C bit
from the contents of register X and store the result in register X. The C
bit is updated with the carryout from the subtract. For subtract, this is the
inverse of a borrow.

Condition Code: C ← carryout

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 1 1 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 147

Instructions
SUBI Unsigned Subtract with Immediate SUBI

Operation: RX ← RX – [unsigned OLMM5]

Syntax: subi rx,oimm5

Description: Subtract the immediate value from the contents of register X. The
immediate value must be in the range of one to 32.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

OIMM5 Field — Specifies immediate value to be subtracted from RX.

NOTE: The encoding is offset by one from the actual value to be subtracted.

00000 — Subtract 1
00001 — Subtract 2
…
11111 — subtract 32

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 OIMM5 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

148 Instructions MOTOROLA

Instructions
Instruction Set

SUBU Unsigned Subtract SUBU

Operation: RX ← RX – RY

Syntax: subu rx,ry
sub rx,ry

Description: Subtract the contents of register Y from the contents of register X and
store the result in register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 1 0 1 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 149

Instructions
SYNC Synchronize CPU SYNC

Operation: Cause the CPU to synchronize

Syntax: sync

Description: When the processor encounters a SYNC instruction, instruction issue is
suspended until all outstanding operations are complete, and no
pending operations remain.

Condition Code: Unaffected

Instruction
Format: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

150 Instructions MOTOROLA

Instructions
Instruction Set

TRAP Unconditional Trap to OS TRAP

Operation: Cause a trap exception to occur

Syntax: trap #trap_number

Description: When the processor encounters a TRAP instruction, trap exception
processing is initiated.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Vec2 — 2-bit immediate field to describe trap number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 vec2
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 151

Instructions
TST Test with Zero TST

Operation: If (RX & RY) ≠ 0, then
C bit ← 1

else
C bit ← 0

Syntax: tst rx,ry

Description: Test the ANDed contents of register X and Y. If the result is non-zero,
set the C bit; otherwise clear the C bit.

Condition Code: Set if (RX & RY) ≠ 0; cleared otherwise.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 1 1 1 0 Register Y Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

152 Instructions MOTOROLA

Instructions
Instruction Set

TSTNBZ Test Register for No Byte Equal to Zero TSTNBZ

Operation: If no byte of register X is 0, then
C bit ← 1

else
C bit ← 0

Syntax: tstnbz rx

Description: Test whether no byte of register X is equal to 0. If true (no byte equals 0),
set the C bit; otherwise clear the C bit.

Condition Code: Set to the result of the test operation.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 1 0 0 1 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 153

Instructions
WAIT Stop Execution and Wait for Interrupt WAIT

Operation: Enter low-power wait mode

Syntax: wait

Attributes: Privileged

Description: Stop execution and wait for an interrupt. The CPU clock is stopped.
Typically, all peripherals continue to run and may generate interrupts,
causing the CPU to exit from the wait state. Refer to the appropriate
microcontroller user’s manual for details on how this instruction is
implemented and how it affects peripherals in a particular
implementation.

Instruction
Format: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

154 Instructions MOTOROLA

Instructions
Instruction Set

XOR Logical Exclusive OR XOR

Operation: RX ← RX ⊗ RY

Syntax: xor rx,ry

Description: Perform logical exclusive OR of register Y with register X; store the result
in register X.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

Register Y Field — Specifies source register RY
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 0 1 1 1 Register Y Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 155

Instructions
XSR Extended Shift Right XSR

Operation: Extended shift right RX by one bit

Syntax: xsr rx

Description: Shift RX right by one bit through the C bit, for example:
Ctmp ← C C ← RX[0] lst(RX, 1) RX[31] ← Ctmp

Condition Code: Set to the original value of RX[0]

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 0 0 0 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

156 Instructions MOTOROLA

Instructions
Instruction Set

XTRB0 Extract High-Order Byte into R1 and Zero-Extend XTRB0

Operation: R1 ← byte 0 of RX (bits 31:24) zero extended to 32 bits

Syntax: xtrb0 r1,rx

Description: Extract high order byte of RX into R1 and zero-extend;
R1[7:0] ← RX[31:24], R1[31:8] ← 0, C ← (result is ≠ 0?)

Condition Code: The C bit is set to 1 if the result is ≠0 and cleared otherwise.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 0 1 1 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 157

Instructions
XTRB1 Extract Byte 1 into R1 and Zero-Extend XTRB1

Operation: R1← byte 1 of RX (bits 23:16) zero extended to 32 bits

Syntax: xtrb1 r1,rx

Description: Extract bits 23:16 of RX into R1 and zero-extend;
R1[7:0] ← RX[23:16], R1[31:8] ← 0, C ← (result is ≠0?)

Condition Code: The C bit is set to 1 if the result is ≠ 0 and cleared otherwise.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 0 1 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

158 Instructions MOTOROLA

Instructions
Instruction Set

XTRB2 Extract Byte 2 into R1 and Zero-Extend XTRB2

Operation: R1← byte 2 of RX zero-extended to 32 bits

Syntax: xtrb2 r1,rx

Description: Extract bits 15:8 of RX into R1 and zero-extend;
R1[7:0] ← RX[15:8], R1[31:8] ← 0, C ← (result is ≠0?)

Condition Code: The C bit is set to 1 if the result is ≠ 0 and cleared otherwise.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 0 0 1 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 159

Instructions
XTRB3 Extract Low-order Byte into R1 and Zero-Extend XTRB3

Operation: R1← byte 3 of RX zero extended to 32 bits

Syntax: xtrb3 r1,rx

Description: Extract low-order byte into R1 and zero-extend;
R1[7:0] ← RX[7:0], R1[31:8] ← 0, C ← (result is ≠0?)

Condition Code: The C bit is set to 1 if the result is ≠ 0 and cleared otherwise.

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 0 0 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

160 Instructions MOTOROLA

Instructions
Instruction Set

ZEXTB Zero Extend Byte ZEXTB

Operation: RX ← low-order byte of RX zero-extended to 32 bits

Syntax: zextb rx

Description: Zero extend the low-order byte of register RX to 32 bits.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX.
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 1 0 0 Register X
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Instructions 161

Instructions
ZEXTH Zero Extend Half-Word ZEXTH

Operation: RX ← low-order half of RX zero-extended to 32 bits

Syntax: zexth rx

Description: Zero extend the low-order half of register RX to 32 bits.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

Register X Field — Specifies source/destination register RX
0000 — Register R0
0001 — Register R1
…
1111 — Register R15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 1 1 0 Register X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

162 Instructions MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Section 4. Exception Processing

4.1 Contents

4.2 Introduction .164

4.3 Exception Processing Overview .164

4.4 Stages of Exception Processing .165

4.5 Exception Vectors. .167

4.6 Exception Types .168
4.6.1 Reset Exception (Vector Offset 0x0) 169
4.6.2 Misaligned Access Exception (Vector Offset 0x4)169
4.6.3 Access Error Exception (Vector Offset 0x8).170
4.6.4 Divide-by-Zero Exception (Vector Offset 0x0C)170
4.6.5 Illegal Instruction Exception (Vector Offset 0x10) 170
4.6.6 Privilege Violation Exception (Vector Offset 0x14).171
4.6.7 Trace Exception (Vector Offset 0x18) 171
4.6.8 Breakpoint Exception (Vector Offset 0x1C)173
4.6.9 Unrecoverable Error Exception (Vector Offset 0x20)173
4.6.10 Soft Reset Exception (Vector Offset 0x24).173
4.6.11 Interrupt Exceptions .174
4.6.11.1 Normal Interrupt (INT) .175
4.6.11.2 Fast Interrupt (FINT) .175
4.6.12 Hardware Accelerator Exception (Vector Offset 0x30). . . .176
4.6.13 Instruction Trap Exception (Vector Offset 0x40-0x5C). . . .176

4.7 Exception Priorities .176

4.8 Returning from Exception Handlers .178
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Exception Processing 163

Exception Processing
4.2 Introduction

Exception processing is performed by the processor hardware in
preparing to execute a software routine for any condition that causes an
exception. This section describes exception processing, exception
priorities, returning from an exception, and bus fault recovery. This
section also describes the exception vector table.

4.3 Exception Processing Overview

Exception processing is the transition from the normal processing of a
program to the processing required for any special internal or external
condition that pre-empts normal processing. External conditions that
cause exceptions are:

• Interrupts from external devices

• Hardware breakpoint requests

• Access errors

• Resets

Internal conditions that cause exceptions are:

• Instructions

• Misalignment errors

• Privilege violations

• Tracing

The TRAP and BKPT instructions generate exceptions as part of their
normal execution. In addition, the following cause exceptions:

• Illegal instructions

• Misaligned addresses for LD, LDM, LDQ, ST, STM, and STQ
instructions

• Odd valued destination addresses for the JMPI and JSRI
instructions

• Privilege violations
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

164 Exception Processing MOTOROLA

Exception Processing
Stages of Exception Processing

Exception processing uses an exception vector table and a set of
internal shadow registers to make the transition to an exception handler.

The M•CORE uses an instruction restart exception processing model.
Exceptions are recognized at the decode or execution stage of the
instruction pipeline and force later instructions that have not yet reached
that stage to be aborted. For exceptions detected at the instruction
decode stage (unimplemented instructions, traps, privilege violations)
and instruction exceptions related to the execute stage (misaligned
accesses, access errors), the program counter value saved for an
exception points to the instruction that caused the exception. For
interrupts and trace exceptions, the program counter points to the next
instruction to be executed. For exceptions related to the hardware
accelerator interface (HAI) refer to the appropriate microcontroller user’s
manual.

Any LD and ST instructions that have reached the execute stage of the
pipeline are allowed to complete before exception processing begins,
unless an access error prevents the instruction from completing. With an
interrupt pending, the saved program counter points to the LD or ST
instruction if an access error occurred, or points to the next instruction if
no access exception occurred. This prevents LD or ST instructions that
have completed successfully from being re-executed on returning from
the interrupt.

4.4 Stages of Exception Processing

Exception processing occurs in these steps:
1. During this step, the processor saves a copy of the status register

(PSR) and program counter (PC) in the appropriate set of shadow
registers. For the fast interrupt exception they are saved in the
FPSR and FPC control registers. For all other exceptions, they are
placed in the EPSR and EPC shadow registers. Exceptions (other
than fast interrupt exceptions) occurring while PSR(EE) is clear
result in an unrecoverable error exception, regardless of their
type. After the PSR and PC are saved in the appropriate shadow
registers, the PSR(EE) bit is cleared to arm the unrecoverable
error exception logic.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Exception Processing 165

Exception Processing
2. On an unrecoverable error exception, the EPSR and ECP are still
updated. If the unrecoverable error is due to an exception on an
exception vector table fetch as part of exception processing
(described below), the values saved in the EPSR and EPC are
undefined.

3. Next, the processor changes to the supervisor mode by setting the
PSR(S) bit and inhibits tracing of the exception handler by clearing
the TM field in the PSR. The interrupt enable flag (IE) is also
cleared to inhibit normal interrupt recognition. Fast interrupt
exceptions and resets clear the fast interrupt enable (FE) bit; it is
unaffected by other exceptions.

4. The translation control (TC) bit in the PSR is cleared to disable
address translation by an optional external memory management
unit for the remainder of exception processing, allowing the
following accesses to be performed untranslated. The exception
handler may re-enable translation as appropriate.

5. During this step, the processor determines the vector number for
the exception. For vectored interrupts, the processor latches the
vector number directly from the interrupt controller interface to the
core. For all other exceptions, internal logic provides the vector
number. This vector number is used in the last step to calculate
the address of the exception vector by multiplying it by four to
convert it to a vector offset. The vector number associated with the
exception is loaded into the VEC field of the PSR to assist shared
exception handlers.

6. During this step, the processor determines the address of the first
instruction of the exception handler and then passes control to the
handler. The processor combines the vector offset with the value
contained in the vector base register to obtain the memory
address of the exception vector. Next, the processor fetches a
word from the vector table entry, loads the new program counter
(PC) value from the exception vector table entry with the address
of the first instruction of the exception handler, and loads the
PSR(AF) control bit from the low-order bit of the vector table entry
to determine which register file to use when the exception handler
is entered. The processor then resumes execution at the new PC
location.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

166 Exception Processing MOTOROLA

Exception Processing
Exception Vectors

4.5 Exception Vectors

The M•CORE supports a 512-byte vector table containing 128 exception
vectors (see Table 4-1). All exception vectors are located in the
supervisor address space and are accessed using program relative
references. Only the reset and soft reset vectors are fixed in the
processor’s memory map. Once initialization is complete, the base
address of the exception vector table can be relocated after reset by
programming the VBR.

Table 4-1. Exception Vector Assignments

Vector
Number(s)

Vector
Offset (Hex)

Assignment

0 000 Reset

1 004 Misaligned access

2 008 Access error

3 00C Divide by zero

4 010 Illegal instruction

5 014 Privilege violation

6 018 Trace exception

7 01C Breakpoint exception

8 020 Unrecoverable error

9 024 Soft reset(1)

1. The M210/M210S core does not support the soft reset and hardware
accelerator assignments.

10 028 INT autovector

11 02C FINT autovector

12 030 Hardware accelerator(1)

13 034

(Reserved)14 038

15 03C

16–19 040–04C TRAP #0–3 instruction vectors

20–31 050–07C Reserved

32–127 080–1FC
Reserved for vectored
interrupt controller use
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Exception Processing 167

Exception Processing
The first 32 vectors are used for internally recognized exceptions.
External devices such as an interrupt controller are provided with an
additional 96 vectors. These vectors are used by supplying a seven-bit
vector number along with an interrupt request. The M•CORE latches the
interrupt vector number when the interrupt request is accepted, and
vectors to the appropriate location. For external devices that cannot
provide a vector, an autovector capability is provided. Separate
autovectors are provided for normal interrupts (INT) and fast interrupts
(FINT).

4.6 Exception Types

This subsection describes the external interrupt exceptions and the
different types of exceptions generated internally by the M•CORE.
These exceptions are discussed:

• Reset

• Misaligned access

• Access error

• Divide by zero

• Illegal instruction

• Privilege violation

• Trace

• Breakpoint

• Unrecoverable error

• Soft reset(1)

• Interrupt

• Fast interrupt

• Hardware accelerator(1)

• Trap instructions

1. Not offered on M210/M210S core.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

168 Exception Processing MOTOROLA

Exception Processing
Exception Types

4.6.1 Reset Exception (Vector Offset 0x0)

The reset exception has the highest priority of any exception. It provides
for system initialization and recovery from catastrophic failure. Reset
aborts any processing in progress; processing cannot be recovered.

The reset exception places the processor in the supervisor mode by
setting the S bit and disables tracing by clearing the TM field in the PSR.
This exception also clears the PSR interrupt enable bits IE and FE, the
debug mode bit (DB), and the hardware accelerator enable bits U[3:0].
The vector base register (VBR) is cleared to place the base of the
exception table at address zero (0x00000000). The CPU fetches the
reset vector from offset $0 in the exception vector table, which is then
loaded into the PC. Reset exception handling proceeds with the transfer
of control to the memory location pointed to by the PC.

4.6.2 Misaligned Access Exception (Vector Offset 0x4)

A misaligned access exception occurs when the processor attempts to
perform a load or store of an operand which does not lie on a natural
boundary consistent with the size of the access. This exception can be
masked by setting the PSR(MM) bit to ignore alignment checks for data.
The data is accessed from the next lower natural boundary in this mode.
On exception handler entry, the EPC points to the instruction that
attempted the misaligned access.

In addition to data-related misaligned access exceptions, the JMPI and
JSRI instructions cause misaligned access exceptions to occur if the
destination address of these change-of-flow instructions is odd. In this
case, the EPC contains the value fetched, not the address of the JMPI
or JSRI instruction. This is the only condition in which the EPC value is
odd when an exception handler is entered.

NOTE: If trace mode is enabled, the TP bit is not set in the EPSR, so the
misaligned JMPI or JSRI is not traced automatically.

The PSR(MM) bit does not mask JMPI or JSRI related misaligned
access exceptions.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Exception Processing 169

Exception Processing
4.6.3 Access Error Exception (Vector Offset 0x8)

An access error exception occurs under certain conditions when the
transfer error acknowledge (TEA) signal is asserted externally to
terminate a bus cycle.

A bus error on an operand access always results in an access error
exception, causing the processor to begin exception processing.

Bus errors that are signaled during instruction prefetches are deferred
until the processor attempts to execute that instruction. At that time, the
bus error exception is signaled and exception processing is initiated. If a
bus error is encountered during an instruction prefetch cycle, but the
corresponding instruction is never executed due to a change-of-flow in
the instruction stream, the bus error is discarded. On exception handler
entry, the EPC points to the instruction associated with the bus error.

The access error exception can also be used by an external memory
management unit to cause exceptions to occur on TLB misses as well
as on access violations.

4.6.4 Divide-by-Zero Exception (Vector Offset 0x0C)

Exception processing for divide instructions with a divisor of zero is
similar to that for instruction traps. When the processor detects a divisor
of zero for a divide instruction, it initiates exception processing instead of
attempting to execute the instruction. On exception handler entry, the
EPC points to the divide instruction.

4.6.5 Illegal Instruction Exception (Vector Offset 0x10)

Exception processing for illegal instructions is similar to that for
instruction traps. When the processor decodes an illegal or
unimplemented instruction, it initiates exception processing instead of
attempting to execute the instruction. On exception handler entry, the
EPC points to the illegal instruction.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

170 Exception Processing MOTOROLA

Exception Processing
Exception Types

4.6.6 Privilege Violation Exception (Vector Offset 0x14)

To provide system security, certain instructions are privileged. An
attempt to execute one of these privileged instructions while in the user
mode causes a privilege violation exception:

• Move from control register (MFCR)

• Move to control register (MTCR)

• Return from interrupt (RTI)

• Return from exception (RTE)

• Stop (STOP)

• Wait (WAIT)

• Doze (DOZE)

Exception processing for privilege violations is similar to that for illegal
instructions. When the processor identifies a privilege violation, it begins
exception processing before executing the instruction. On exception
handler entry, the EPC points to the privileged instruction.

4.6.7 Trace Exception (Vector Offset 0x18)

To aid in program development, the M•CORE includes an instruction-by-
instruction and instruction change of flow tracing capability. In the
instruction trace mode, each instruction generates a trace exception
after the instruction completes execution, allowing a debugging program
to monitor execution of a program. In change of flow trace mode, a trace
exception is taken after each instruction which could cause a change of
flow (BRANCH, JMP, etc.) The exception is taken regardless of the
outcome of a conditional branch or loop instruction.

These instructions cause trace exceptions to be generated in the
change-of-flow trace mode:

• Jump (JMP)

• Jum to subroutine (JSR)

• Jump indirect (JMPI)

• Jump to subroutine indirect (JSRI)
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Exception Processing 171

Exception Processing
• Branch (BR)

• Branch on condition true (BT)

• Branch on condition false (BF)

• Branch to subroutine (BSR)

• Decrement with C-bit update and branch if condition true (LOOPT)

The trace exception is enabled regardless of the taken/not taken
outcome of a conditional change-of-flow instruction.

If an instruction to be traced does not complete due to an instruction-
related exception, trace exception processing is deferred, and no trace
exception is taken or marked pending. This includes detecting a
misaligned condition for the JMPI and JSRI instructions. If an interrupt is
pending at the completion of an instruction to be traced, trace exception
processing is deferred and is marked as pending in the EPSR as part of
exception recognition.

The TM field in the PSR controls tracing. The state of the TM field when
an instruction begins execution determines whether the instruction
generates a trace exception after the instruction completes. See
2.4.2 Processor Status Register for the definition of the TM field.

Trace exception processing starts at the end of normal processing for
the traced instruction and before the start of the next instruction. On
exception handler entry, the EPC points to the next instruction to be
executed, not the traced instruction.

Certain control related instructions (RTE, RFI, TRAP, STOP, WAIT,
DOZE, and BKPT) are never traced, although a trace exception may be
taken as part of the normal execution of an RTE or RFI instruction if the
EPSR(TP) bit is set. This occurs independent of the setting of the TM
field in the PSR or EPSR.

If an interrupt is pending at the completion of an instruction to be traced,
it assumes a higher priority, and the trace pending (TP) bit is set in the
shadow PSR when the interrupt exception is processed. The execution
of an RTE or RFI instruction (as appropriate) at the completion of the
interrupt handler causes the pending trace exception to be taken.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

172 Exception Processing MOTOROLA

Exception Processing
Exception Types

4.6.8 Breakpoint Exception (Vector Offset 0x1C)

The breakpoint instruction BKPT and the hardware breakpoint request
input (BRKRQ) are assigned a unique exception vector. Refer to the
appropriate microcontroller user’s manual for operation of the BRKRQ
input. To minimize the chance that hardware breakpoint exceptions are
lost, this exception has higher priority than interrupts when generated as
a result of the BRKRQ input signal. If the BRKRQ input is asserted for
an instruction prefetch, that instruction will not be executed, and a
breakpoint exception will be taken if the instruction normally would begin
execution (for instance, is not discarded as the result of a change of
instruction flow). If the BRKRQ input is asserted for a data fetch, a
breakpoint exception is taken after the instruction completes. For the
BKPT instruction, or for instruction accesses on which the BRKRQ input
is asserted, the EPC points to the instruction on exception handler entry.
For data accesses that are marked with a BRKRQ request, the EPC
points to the next instruction.

4.6.9 Unrecoverable Error Exception (Vector Offset 0x20)

Exceptions other than a fast interrupt exception that occur while the
PSR(EE) bit is clear cause an unrecoverable exception to be generated,
since the context necessary for exception recovery (previously saved in
the EPC and EPSR shadow registers) is overwritten as a result of the
unrecoverable error.

This error is usually indicative of a system failure, since software should
be written in a manner that precludes exceptions while PSR(EE)
remains cleared. Since the type of exception causing the unrecoverable
error exception is unknown, on entry to the unrecoverable error
exception handler, the EPC points to an instruction that may or may not
have been executed.

4.6.10 Soft Reset Exception (Vector Offset 0x24)

A soft reset exception is recognized when the SRST input signal is
asserted. This exception is non-maskable. The soft reset exception has
the highest priority of any exception below a hard reset; it provides for
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Exception Processing 173

Exception Processing
system recovery from catastrophic failure. A soft reset also aborts any
processing in progress when SRST is recognized; processing cannot be
recovered. Soft reset exception processing begins once the SRST input
is negated.

The soft reset exception places the processor in the supervisor mode by
setting the S bit and disables tracing by clearing the TM field in the PSR.
This exception also clears the processor’s interrupt enable bits IE and
FE in the PSR and the exception shadowing enable bit EE. The
hardware accelerator enable bits U[3:0] and the misalignment mask bit
MM are undefined. The vector base register (VBR) is cleared to place
the base of the exception table at address zero (0x00000000). The CPU
fetches the soft reset vector from offset 0x24 in the exception vector
table, which is then loaded into the PC. Reset exception handling
proceeds with the transfer of control to the memory location pointed to
by the PC.

NOTE: The M210/M210S core does not support this machine exception.

4.6.11 Interrupt Exceptions

When a peripheral device requires the services of the M•CORE or is
ready to send information that the processor requires, it can signal the
processor to take an interrupt exception using the interrupt requests and
vector signals.

Interrupts are normally recognized on instruction boundaries, although
the worst-case interrupt latency may be minimized by allowing certain
multi-cycle instructions to be interrupted prior to completion and then
later restarted. The PSR(IC) bit may be set to allow interruption of these
instructions prior to completion:

• Divide signed (DIVS)

• Divide unsigned (DIVU)

• Load multiple registers (LDM)

• Load register quadrant (LDQ)

• Multiply (MULT)

• Store multiple register (STM)

• Store register quadrant (STQ)
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

174 Exception Processing MOTOROLA

Exception Processing
Exception Types

Two signals are provided for requesting interrupts, and both
autovectoring and explicit vectoring capability is provided.

Figure 4-1 shows the interrupt related interface signals to the CPU core.
For vectorable interrupts (FINT and INT), a seven-bit interrupt vector
number can be supplied at the time a request is generated, or the
autovector input AVEC can be asserted to indicate that the appropriate
predefined vector should be used. If AVEC is asserted, the VEC# inputs
are ignored.

Figure 4-1. Interrupt Interface Signals

4.6.11.1 Normal Interrupt (INT)

INT is the normal interrupt request input. It has the lowest priority of the
interrupt inputs. The INT input is masked when the PSR(IE) bit is clear.
Normal interrupts use the EPSR and EPC exception shadow registers
and consequently are also masked when PSR(EE) is cleared. When INT
is asserted, either the AVEC input can be asserted to cause
autovectoring to occur, or a 7-bit vector number can be provided to
select one of vectors 32–127 to be used. (No explicit attempt is made by
the processor to preclude use of vectors 0–31.) If a normal interrupt is
autovectored, the vector at offset $28 from the vector table base is used.

4.6.11.2 Fast Interrupt (FINT)

FINT is the fast interrupt request input. If enabled (PSR(FE) set), it has
higher priority than the normal interrupt input INT. Fast interrupts use the
FPSR and FPC exception shadow registers and consequently are not
masked when PSR(EE) is cleared. Fast interrupts are masked when
PSR(FE) is cleared. When FINT is asserted, either the AVEC input can
be asserted to cause autovectoring to occur, or a 7-bit vector number

M•CORE

FINT

INT

AVEC

VEC#
7

M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Exception Processing 175

Exception Processing
can be provided to select one of vectors 32–127 to be used. (No explicit
attempt is made by the processor to preclude use of vectors 0–31.) If a
fast interrupt is autovectored, the vector at offset 0x2C from the vector
table base is used.

4.6.12 Hardware Accelerator Exception (Vector Offset 0x30)

The M•CORE provides a set of enable bits in the PSR (U[3:0]) for
controlling execution of hardware accelerator instructions. When an
attempt to execute an HAI opcode associated with a disabled
accelerator block occurs, the instruction is aborted, and this exception is
taken. This exception vector is also used for exceptions reported by a
hardware unit as part of HAI instruction execution. Refer to the
appropriate microcontroller user’s manual for details of the operation of
the HAI instruction and the hardware accelerator interface.

NOTE: The M210/M210S core does not support this machine exception.

4.6.13 Instruction Trap Exception (Vector Offset 0x40-0x5C)

Certain instructions are used to explicitly cause trap exceptions. The
TRAP #N instruction always forces an exception and is useful for
implementing system calls in user programs. On exception handler
entry, the EPC points to the TRAP instruction.

4.7 Exception Priorities

Exceptions can be classified into five groups defined by specific
characteristics and the order in which they are handled, as shown in
Table 4-2.

Reset exceptions override all other exceptions that occur at the same
time. When exceptions of more than one type, other than reset, occur at
the same time, they are handled according to the priority shown. A value
of 1.0 represents the highest priority and a value of 6 represents the
lowest priority.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

176 Exception Processing MOTOROLA

Exception Processing
Exception Priorities

Groups 4 and 5 are mutually exclusive, thus exceptions in those groups
can have the same priority.

An unrecoverable exception may occur in place of an exception in
groups 2 to 6 if the PSR(EE) bit is cleared.

When multiple exceptions are pending, the exception with the highest
priority is processed first. The remaining exceptions may be regenerated
when the original faulting instruction is restarted. Table 4-3 shows the
relationships between certain exceptions.

Table 4-2. Exception Priority Groups
Group
Priority

Exception
and Relative Priority

Characteristics

1.0
1.1

Reset
Soft Reset

The processor aborts all processing
(instruction or exception) and does
not save old context.

2 Hardware Breakpoint Request
Exception processing begins after

completion of the current instruction.

3.0
3.1

Fast Interrupt
Normal Interrupt

Exception processing begins when
the current instruction is completed
(C bit = 0), or certain instructions
may be aborted for interrupt
recognition.

4
Misaligned Access

Access Error
The processor suspends processing

and saves the processor context.

5

Illegal Instruction
Privilege Violation

Disabled Hardware Accelerator
Divide by Zero
Trap Instruction

Hardware Accelerator Exception
Breakpoint Instruction

Exception processing begins before
the instruction is executed.

Exception processing begins when
the instruction is executed.

6 Trace
Exception processing begins when

the current instruction is completed.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Exception Processing 177

Exception Processing
4.8 Returning from Exception Handlers

Returning from an exception handler is performed with the RFI or RTE
instruction, depending on what type of handler is executing. The RFI
instruction is used to return using the context saved in the FSPR and
FPC shadow registers, and the RTE instruction uses the context stored
in the EPSR and EPC registers.

Table 4-3. Exceptions, Tracing, and BRKRQ Results

1. Exception recognized on decode boundary for instruction N type of exception(s)

Ill/Priv/
trap/
bkpt

dacc dbkpt
IACC
(tea

on N)

IBKPT
(brkrq
on N)

Interrupt
Pending

Misalign

Trace of
Previous

Instruction
Pending

Saved
TP in
EPSR

Saved
EPC

Exception
Taken

0 — — 0 0 0 — 0 — —
No
exception

1 — — 0 0 0 — 0 0 N
ill / priv /
trap / bkpt

x — — x 0 1 — 0 0 N Interrupt

x — — x 1 x — 0 0 N Breakpoint

x — — 1 0 0 — 0 0 N
Access
error

x — — x 0 0 — 1 0 N
Trace (for
previous
instruction)

x — — x 0 1 — 1 1 N Interrupt

x — — x 1 x — 1 1 N Breakpoint

2. Exception recognized during execution of MULT/DIV instruction M type of exception(s)

Interrupted
(IC Bit)

Divide by 0
(for divs
and divu)

iacc
(tea

on M)

ibkpt
(brkrq
on M)

Interrupt
Pending

Misalign

Trace of
this

Instruction
Enabled

Saved TP
in EPSR

Saved
EPC

Exception
Taken

x 1 — — 0 — x 0 M
Divide by
zero

1 x — — 1 — x 0 M Interrupt

x 1 — — 1 — x 0 M Interrupt
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

178 Exception Processing MOTOROLA

Exception Processing
Returning from Exception Handlers

3. Exception recognized during execution of LD/ST class instruction M type of exception(s)

Interrupted
(IC bit)

dacc
(tea

on acc)

dbkpt
(brkrq

on acc)

iacc
(tea

on M)

ibkpt
(brkrq
on M)

Interrupt
Pending

Misalign

Trace
of this

Instruction
Enabled

Saved TP
in EPSR

Saved
EPC

Exception
Taken

— — — — — 0 1 x 0 M Misaligned

— — — — — 1 1 x 0 M Interrupt

0 0 1 — — 0 — 0 0 M+ 2 Breakpoint

0 0 1 — — 0 — 1 1 M+ 2 Breakpoint

0 0 1 — — 1 — 0 0 M+ 2 Breakpoint

0 0 1 — — 1 — 1 1 M+ 2 Breakpoint

0 1 0 — — 0 — x 0 M
Access
error

0 1 0 — — 1 — x 0 M Interrupt

0 1 1 — — x — x 0 M Breakpoint

1 x 0 — — x — x 0 M Interrupt

1 x 1 — — 1 — x 0 M Breakpoint

Table 4-3. Exceptions, Tracing, and BRKRQ Results (Continued)

4. Exception recognized during execution of change of flow class instruction N type of
exception(s)

Instruction
iacc on
Table

Access

ibkpt on
Table

Access

iacc on
dest

Access

ibkpt
on dest
Fetch

Interrupt
Pending

Trace of
this

Instruction
Enabled

Saved TP
in EPSR

Saved
EPC

Exception
Taken

BR, BSR,
JMP, JSR,

JMPI, JSRI,
LOOPT

— — x 1 0 0 0 Destination Breakpoint

— — x 1 0 1 1 Destination Breakpoint

— — x 1 1 0 0 Destination Breakpoint

— — x 1 1 1 1 Destination Breakpoint

— — 1 0 0 0 0 Destination
Access
Error

— — 1 0 0 1 1 Destination
Access
Error

— — 1 0 1 0 0 Destination Interrupt

— — 1 0 1 1 1 Destination Interrupt

JMPI, JSRI

0 1 — — x 0 0 Destination Breakpoint

0 1 — — x 1 1 Destination Breakpoint

1 0 — — 0 x 0 N
Access
Error

1 0 — — 1 x 0 N Interrupt

1 1 — — x x 0 N Breakpoint
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Exception Processing 179

Exception Processing
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

180 Exception Processing MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Section 5. Core Interface

5.1 Contents

5.2 Introduction .182

5.3 Signal Descriptions .182
5.3.1 Address Bus (ADDR[31:0]) .185
5.3.2 Data Bus (DATA[31:0]). .185
5.3.3 Transfer Request (TREQ) .185
5.3.4 Transfer Busy (TBUSY) .185
5.3.5 Transfer Abort (ABORT). .185

5.4 Transfer Attribute Signals .185
5.4.1 Transfer Code (TC[2:0]) .186
5.4.2 Read/Write (R/W) .186
5.4.3 Transfer Size (TSIZ[1:0]) .186
5.4.4 Sequential Access (SEQ). .187
5.4.5 Data to Address (D2A) .187

5.5 Transfer Control Signals .187
5.5.1 Transfer Acknowledge (TA) .187
5.5.2 Transfer Error Acknowledge (TEA) 188
5.5.3 Breakpoint Request (BRKRQ) .188

5.6 Memory Management Control Signals188
5.6.1 Translate Control (TE) .188
5.6.2 Soft Reset (SRST) .188

5.7 Interrupt Control Signals .189
5.7.1 Normal Interrupt Request (INT) .189
5.7.2 Fast Interrupt Request (FINT) .189
5.7.3 Interrupt Pending Status (IPEND) 189
5.7.4 Interrupt Vector Number (VEC[6:0])189
5.7.5 Autovector (AVEC) .190
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Core Interface 181

Core Interface
5.8 Power Management Control Signals 190

5.9 Status and Clock Signals .191
5.9.1 Processor Status (PSTAT[3:0]) .191
5.9.2 M•CORE Processor Clock (CLK) .192

5.10 Global Status and Control Interface .192

5.11 Hardware Accelerator Interface .192

5.12 Debug/Emulation Support Signals .193
5.12.1 Debug Request (DBGRQ) .193
5.12.2 Debug Acknowledge (DBUG). .193

5.13 Test Signals .193

5.14 Power Supply Connections. .193

5.15 Signal Summary .193

5.2 Introduction

This section describes the interface to the M•CORE. Signals and the
data transfer protocols are described.

5.3 Signal Descriptions

Figure 5-1 shows functional grouping of M•CORE signals. Table 5-1
lists M•CORE signal names, mnemonics, and functional descriptions of
the signals.

In this subsection, each signal is described concisely. When necessary,
reference is made to detailed information about the signal and related
operations.

NOTE: See Appendix C. M210/M210S Core Interface and Appendix D.
M210/M210S Interface Operation for specific description of the
MM210/M210S core.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

182 Core Interface MOTOROLA

Core Interface
Signal Descriptions

Figure 5-1. M•CORE Signal Groups

TRANSFER REQUEST (TREQ)

ADDRESS (ADDR[31:0])

TRANSFER SIZE (TSIZ[1:0])

SYSTEM CLOCKS

DATA (DATA[31:0])

TRANSFER ACK (TA)

TRANSFER ERROR ACK (TEA)

INTERRUPT REQUESTS

AUTOVECTOR (AVEC)

JTAG/COP

TEST

1

32

1

1

2

1

5

10

32

3

2

2

DATA

TRANSFER

INTERRUPTS

TRANSFER

TERMINATION/

JTAG/COP
INTERFACE
LSSD TEST
CONTROL

TRANSFER
REQUEST

ADDRESS
BUS

CLOCKS

M•CORE

TRANSFER CODE (TC[2:0])

TEST CLOCKS 2

INTERRUPT VECTOR #7

AND RESET

1READ/WRITE (R/W)

TRANSFER
ATTRIBUTES

GLOBAL STATUS (GSB[31:0])32

32

GLOBAL
STATUS/CONTROLGLOBAL CNTRL (GCB[31:0])

INT PENDING (IPEND)1

PROCESSOR
STATE

PSTAT[3:0]4

RESETS (RST, SRST)2

1TRANSLATE CONTROL(TE)MEMORY
MANAGEMENT

2LPMD[1:0]POWER
MANAGEMENT

SEQUENTIAL (SEQ) 1

EMULATION
SUPPORT

~52
HARDWARE

DEBUG REQUEST (DBGRQ)1
DEBUG ACK (DBUG)1

BREAKPT REQUEST (BRKRQ)1

STATUS

ACCELERATOR
INTERFACE

TRANSFER BUSY (TBUSY)TRANSFER
BUSY

1

1D2A DATA TO
ADDRESS

1
ABORT CYCLE (ABORT)TRANSFER

ABORT

Table 5-1. Signal Index

Signal Name Mnemonic Function

Address bus ADDR[31:0] 32-bit address bus

Data bus DATA[31:0] 32-bit data bus used to transfer up to 32 bits of data per bus transfer

Transfer code TC[2:0] Indicate the general transfer type: supervisor/user/instruction/data

Read/write R/W Identifies the transfer as a read or write

Transfer size TSIZ[1:0]
Indicates the data transfer size — these signals, together with

ADDR[0:1] define the active sections of the data bus
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Core Interface 183

Core Interface
Sequential SEQ Indicates the next access is sequential

Data to address D2A Indicates the next access address must be read from the data bus

Transfer busy TBUSY Indicates a bus cycle is in progress

Transfer request TREQ Indicates a request for a bus cycle

Transfer acknowledge TA Asserted to acknowledge a bus transfer

Transfer error
acknowledge

TEA Indicates an error condition exists for a bus transfer

Abort cycle ABORT Output used to abort a requested access

Break request BRKRQ Input to signal hardware breakpoint exception for an access

Reset in RST Processor reset

Interrupt request INT Normal interrupt request to the processor

Fast interrupt request FINT Fast interrupt request to the processor

Soft reset SRST Soft reset input

Interrupt vector number VEC[6:0] Interrupt vector number

Autovector AVEC Used to request internal generation of the interrupt vector number

Interrupt pending IPEND Indicates an interrupt is pending internally

Processor clock CLK Clock input

Low-power mode LPMD[1:0] Outputs used to indicate low-power mode(s)

Debug request DBGRQ Input to signal hardware to enter debug mode

Debug acknowledge DBUG Output to signal that processor has entered debug mode

Processor status PSTAT[3:0] Processor status outputs

Translate control TE Control address translation or alternate control function

Global control bus GCB[31:0] Global control bus outputs

Global status bus GSB[31:0] Global status bus inputs

Hardware accumulator
interface

HAI Hardware accelerator interface signals

Test Interface TBD Test interface signals to be determined.

Emulator interface TBD Emulator interface signals to be determined

Power supply VCC Power supply

Ground GND Ground connection

Table 5-1. Signal Index (Continued)

Signal Name Mnemonic Function
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

184 Core Interface MOTOROLA

Core Interface
Transfer Attribute Signals

5.3.1 Address Bus (ADDR[31:0])

These signals provide the address for a bus transfer.

5.3.2 Data Bus (DATA[31:0])

These three-state bidirectional signals provide the general-purpose data
path between the M•CORE and all other devices. The data bus can
transfer 8, 16, or 32 bits of data per bus transfer.

5.3.3 Transfer Request (TREQ)

The processor drives this active-low signal to indicate that a new access
has been requested. This signal is driven for a single cycle along with
address and transfer attribute signals to request a new cycle.

5.3.4 Transfer Busy (TBUSY)

The processor drives this active-low signal to indicate that an access is
in progress. This signal is driven for the duration of a cycle, and may be
held asserted for multiple transfers.

5.3.5 Transfer Abort (ABORT)

The processor drives this active-low signal to indicate that a requested
access must be aborted. This signal may be driven the clock following a
valid requested cycle. The processor must receive a termination signal
(either TEA or TA) from external logic the same clock cycle ABORT is
asserted.

5.4 Transfer Attribute Signals

The following paragraphs describe the transfer attribute signals, which
provide additional information about the bus transfer cycle. Refer to
Section 6. Interface Operation for detailed information about the
relationship of the transfer attribute signals to bus operation.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Core Interface 185

Core Interface
5.4.1 Transfer Code (TC[2:0])

The processor drives these signals to indicate the type of access for the
current bus cycle. Table 5-2 shows the definitions of the TCx encoding.

5.4.2 Read/Write (R/W)

This output signal defines the data transfer direction for the current bus
cycle. Logic level one indicates a read cycle, and a logic level zero
indicates a write cycle.

5.4.3 Transfer Size (TSIZ[1:0])

These output signals indicate the data size for the bus cycle. Table 5-3
shows the definitions of the TSIZx encoding.

Table 5-2. Transfer Code Encoding

TC[2:0] Transfer Type

000 User data access(1)

1. Except LRW accesses

001 Reserved

010 User instruction access(2)

2. Except change of flow related instruction accesses, includes LRW accesses

011 User change of flow instruction access(3)

3. Change of flow related instruction access for taken branches, jumps, and
LOOPT instructions (includes table accesses for JMPI, JSRI)

100 Supervisor data access(1)

101 Supervisor exception vector access

110 Supervisor instruction access(2)

111 Supervisor change of flow instruction access(3)

Table 5-3. TSIZx Encoding

TSIZ1 TSIZ0 Transfer Size

0 0 Word (4 bytes)

0 1 Byte

1 0 Half-word (2 bytes)

1 1 Reserved
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

186 Core Interface MOTOROLA

Core Interface
Transfer Control Signals

5.4.4 Sequential Access (SEQ)

This active-low output indicates that the current access is sequential
address order from the last access. This signal is driven for sequential
instruction fetches as well as for sequential data transfers for the LDM,
STM, LDQ, and STQ instructions.

NOTE: This signal is not currently implemented.

5.4.5 Data to Address (D2A)

This active-high output indicates that the data received for the current
read access is driven as the next access address. This signal is driven
for table accesses for the JMPI and JSRI instructions as well as for
cases where load data is to be used as a jump or jsr destination prefetch
in the following access. The timing for this control signal is the same as
address timing.

5.5 Transfer Control Signals

The following signals provide control functions for bus cycles when the
M•CORE is the bus master. Refer to 6.5 Processor Instruction/Data
Transfers for detailed information about the relationship of the bus cycle
control signals to bus operation.

5.5.1 Transfer Acknowledge (TA)

This active-low input indicates the completion of a requested data
transfer operation. During transfers by the M•CORE, TA is an input
signal from the referenced slave device indicating completion of the
transfer. For the M•CORE to accept the transfer as successful with a
transfer acknowledge, TEA must be negated when TA is asserted.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Core Interface 187

Core Interface
5.5.2 Transfer Error Acknowledge (TEA)

The current slave asserts this active-low input signal to indicate an error
condition for the current transfer to immediately terminate the bus cycle.
The assertion of TEA has precedence over TA.

5.5.3 Breakpoint Request (BRKRQ)

This active-low input signal is asserted by external logic to request a
breakpoint to be associated with the current access. This signal is
sampled when the assertion of TEA or TA is recognized. A breakpoint is
taken if the access is a data access or if the access is an instruction fetch
which is not discarded due to a change of flow.

5.6 Memory Management Control Signals

These signals can be used to control an optional external memory
management unit.

5.6.1 Translate Control (TE)

When asserted, this active-low output signal may be used to indicate
that access addresses should be translated by an optional external
memory management unit, or may be used for an alternate function. The
TE output is asserted (driven low) while the PSR(TE) bit is set. Refer to
2.4 Supervisor Programming Model for more information on the
operation of the PSR(TE) bit.

5.6.2 Soft Reset (SRST)

The assertion of this active-low input signal causes the M•CORE to enter
soft reset exception processing. Refer to 6.9 Reset Operation for a
description of soft reset operation and to 4.6.10 Soft Reset Exception
(Vector Offset 0x24) for information about the soft reset exception.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

188 Core Interface MOTOROLA

Core Interface
Interrupt Control Signals

5.7 Interrupt Control Signals

These paragraphs describe the signals which control the interrupt
functions.

5.7.1 Normal Interrupt Request (INT)

This active-low input signal provides a normal interrupt request condition
to the M•CORE. This signal is level sensitive. Refer to 4.6.11 Interrupt
Exceptions for information on normal interrupts.

5.7.2 Fast Interrupt Request (FINT)

This active-low input signal provides a fast interrupt request condition to
the M•CORE. This signal is level sensitive. Refer to 4.6.11 Interrupt
Exceptions for information on fast interrupts.

5.7.3 Interrupt Pending Status (IPEND)

This active-low output signal indicates that an interrupt request has been
recognized internally by the processor and is enable by the appropriate
bit PSR. External devices (other bus masters or a bus arbiter) can use
IPEND to be alerted of a pending interrupt condition. External power
management logic may also use this output to control operation of the
core and other logic.

5.7.4 Interrupt Vector Number (VEC[6:0])

These input signals provide the vector number to be used when
exception processing begins for an incoming interrupt request. These
signals are sampled along with the FINT and INT inputs, and must be
driven to a valid value when either of these signals is asserted, unless
the AVEC signal is asserted. If AVEC is asserted, these inputs are not
used.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Core Interface 189

Core Interface
5.7.5 Autovector (AVEC)

This active-low input signal is asserted with either INT or FINT to request
internal generation of the vector number. Refer to 4.6.11 Interrupt
Exceptions for more information about automatic vectoring.

5.8 Power Management Control Signals

Two low-power mode output signals (LPMD[1:0]) are provided for power
management by external control.

The LPMD[1:0] output signals are asserted by the processor when
execution of a DOZE, STOP, or WAIT instruction occurs, as shown in
Table 5-4. These active-low outputs may be used by external logic to
place the processor and system logic in a low-power stopped state. The
LPMD[1:0] outputs assert for one or more clock cycles for execution of
a DOZE, STOP, or WAIT instruction until a valid pending interrupt is
detected by the core, or until a request to enter debug mode is made via
the assertion of the DBGRQ input signal.

The processor can be placed in a low-power state by forcing the CLK
input high.

External logic must detect the asserted edge of these signals to
determine that a low-power instruction has been executed. The IPEND
output signal (or other system state) may be monitored to determine
when to release the processor (and system if applicable) from the
stopped condition. This can be done by re-enabling the processor CLK.

Table 5-4. LPMD[1:0] Encoding

LPMD1 LPMD0 Mode

0 0 STOP

0 1 WAIT

1 0 DOZE

1 1 Normal
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

190 Core Interface MOTOROLA

Core Interface
Status and Clock Signals

5.9 Status and Clock Signals

This subsection describes the signals that provide timing and the internal
processor status.

5.9.1 Processor Status (PSTAT[3:0])

These outputs indicate the internal execution unit status. The timing is
synchronous with the M•CORE processor clock (CLK), and the status
may have nothing to do with the current bus transfer. Table 5-5 lists the
definition of the PSTATx encodings.

Table 5-5. PSTATx Encoding

Hex PSTAT3 PSTAT2 PSTAT1 PSTAT0 Internal Processor Status

$0 0 0 0 0 Execution stalled

$1 0 0 0 1 Execution stalled

$2 0 0 1 0 Execute exception

$3 0 0 1 1 Reserved

$4 0 1 0 0
Processor in stop, wait

or doze state

$5 0 1 0 1 Execution stalled

$6 0 1 1 0 Processor in debug mode

$7 0 1 1 1 Reserved

$8 1 0 0 0 Launch instruction(1)

1. Except RTE, RFI, LDM, STM, LDQ, STQ, LRW, hardware accelerator, or change of flow
instructions

$9 1 0 0 1
Launch LDM, STM, LDQ,

or STQ

$A 1 0 1 0
Launch hardware

accelerator instruction

$B 1 0 1 1 Launch LRW

$C 1 1 0 0
Launch change of program

flow instruction

$D 1 1 0 1 Launch RTE or RFI

$E 1 1 1 0 Reserved

$F 1 1 1 1 Launch JMPI or JSRI
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Core Interface 191

Core Interface
5.9.2 M•CORE Processor Clock (CLK)

CLK is the synchronous clock of the M•CORE. This signal is used
internally to clock the logic of the M•CORE processor core.

Since the M•CORE is designed for static operation, CLK can be gated
off (forced high) to lower power dissipation (for example, during low-
power stopped states). Refer to 6.11 Interrupt Interface Operation for
more information on low-power stopped states.

5.10 Global Status and Control Interface

The M•CORE provides two control registers as part of the supervisor
programming model to monitor global status in the integrated system as
well as to provide global control outputs to the system. Refer to
2.4 Supervisor Programming Model for more information on these
registers.

The GCB[31:0] outputs change state when the GCR register is updated
by the MTCR instruction.

The GSB[31:0] inputs are sampled by the core and the corresponding
values appear in the GSR for transfer to a general register when a MFCR
instruction referencing the GSR is executed.

Refer to 6.12 Global Status and Control Interface Operation for more
information on the timing for these signals.

5.11 Hardware Accelerator Interface

This group of signals is used to interface the M•CORE to one or more
external hardware blocks used for task acceleration. Examples include
high performance arithmetic units (multiply, multiply/accumulate), CRC
generation logic, etc. For a description of this interface and its operation
refer to Section 7. Hardware Accelerator Interface (HAI).
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

192 Core Interface MOTOROLA

Core Interface
Debug/Emulation Support Signals

5.12 Debug/Emulation Support Signals

These interface signals are provided to assist in implementing an
on-chip emulation capability with a controller external to the M•CORE.

5.12.1 Debug Request (DBGRQ)

The DBGRQ input (active-low) is used to place the processor core in
debug mode. Refer to Section 4. Exception Processing and
Section 8. JTAG Test Access Port and OnCE for details of debug
mode operation.

5.12.2 Debug Acknowledge (DBUG)

The DBUG output (active-low) is used to indicate that the processor has
entered/exited debug mode. Refer to Section 4. Exception Processing
and Section 8. JTAG Test Access Port and OnCE for details of debug
mode operation.

5.13 Test Signals

Test signals are currently being defined.

5.14 Power Supply Connections

The M•CORE requires connections to a VCC power supply, positive with
respect to ground. The VCC and ground connections must be planned to
supply adequate current to the various sections of the processor.

5.15 Signal Summary

Table 5-6 is a summary of the electrical characteristics of the M•CORE
signals.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Core Interface 193

Core Interface
Table 5-6. Signal Summary

Signal Name Mnemonic
Input/
Output

Active
State

Reset
State

Address bus ADDR[31:0] Output High Undefined

Data bus DATA[31:0] Input/Output High Three-Stated

Transfer code TC[2:0] Output High Undefined

Read/write R/W Output High/Low High

Transfer size TSIZ[1:0] Output High Undefined

Transfer request TREQ Output Low Negated

Transfer busy TBUSY Output Low Negated

Transfer abort ABORT Output Low Negated

Transfer acknowledge TA Input Low —

Transfer error acknowledge TEA Input Low —

Breakpoint request BRKRQ Input Low —

Reset in RST Input Low —

Normal interrupt request INT Input Low —

Fast interrupt request FINT Input Low —

Soft reset SRST Input Low —

Vector number VEC[6:0] Input High —

Autovector request AVEC Input Low —

Interrupt pending IPEND Output Low Negated

Processor clock CLK Input — —

Low-power mode LPMD[1:0] Output Low Negated

Debug request DBGRQ Input Low —

Debug acknowledge DBUG Output Low Negated

Processor status PSTAT[3:0] Output High Undefined

Translate control TE Output Low Negated

Global control bus GCB[31:0] Output High Undefined

Global status bus GSB[31:0] Input High —

Power supply VCC Input — —

Ground GND Input — —
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

194 Core Interface MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Section 6. Interface Operation

6.1 Contents

6.2 Introduction .196

6.3 Bus Characteristics. .196

6.4 Data Transfer Mechanism .197

6.5 Processor Instruction/Data Transfers199
6.5.1 Instruction and Data Read Transfer Cycles200
6.5.2 Read Transfer Cycles with Wait State(s)202
6.5.3 Write Transfer Cycles. .202
6.5.4 Write Transfer Cycles with Wait State(s)205
6.5.5 Data Bus Hand-Off Between Read and Write Cycles 206

6.6 Exception Bus Control Cycles .207
6.6.1 Bus Errors .208
6.6.2 Breakpoint Requests .208

6.7 ABORT Signal Operation .209

6.8 D2A Signal Operation. .210

6.9 Reset Operation .211
6.9.1 Hard Reset (Power-On Reset) .211
6.9.2 Soft Reset. .211

6.10 Memory Management Interface Operation212

6.11 Interrupt Interface Operation. .212

6.12 Global Status and Control Interface Operation.214

6.13 Power Management Interface Operation215

6.14 Emulation/Debug Interface Operation 217
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 195

Interface Operation
6.2 Introduction

The M•CORE interface supports synchronous data transfers between
the processor and other devices in the system. This section provides a
functional description of the interface, the signals that control the
interface, and the bus cycles provided for data transfer operations.
Descriptions of the power management signals, external memory
management unit control, and the reset operation are also included.

NOTE: See Appendix C. M210/M210S Core Interface and Appendix D.
M210/M210S Interface Operation for specific description of the
MM210/M210S core.

6.3 Bus Characteristics

The M•CORE uses the address bus (ADDR[31:0]) to specify the address
for a data transfer and the data bus (DATA[31:0]) to transfer the data.
Control and attribute signals indicate the beginning and type of a bus
cycle as well as the address space and size of the transfer. The selected
device then controls the length of the cycle by terminating it using the
control signals.

The M•CORE CLK is distributed internally to provide logic timing.

Inputs to the M•CORE (other than the interrupt requests and reset
signals) are synchronously sampled and must be stable during the
sample window(s) defined by tsu3-0 and th3-0 (see Figure 6-1) to
guarantee proper operation. The INT, FINT, and SRST signals are
sampled on the rising edge of CLK, but are also used in an
asynchronous fashion for power management control.

Outputs from the M•CORE transition on one of the two clock edges
depending on the signal class.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

196 Interface Operation MOTOROLA

Interface Operation
Data Transfer Mechanism

Figure 6-1. Signal Relationships to Clocks

6.4 Data Transfer Mechanism

Data transfers occur between an internal register and the external bus.
The internal register connects to the external data bus through the
internal data bus and a data multiplexer. The data multiplexer
establishes the necessary connections for different combinations of
address and data sizes. This multiplexer is physically positioned in the
overall system to minimize power consumption by minimizing loading
and reducing unnecessary signal transitions. Logically, however, it is
considered part of the M•CORE.

The M•CORE does not support dynamic bus sizing and expects the
referenced device to accept the requested access width. Peripherals
with an interface width of N bits should not define internal registers
greater than N bits wide.

Additionally, no misaligned transfers are supported. The M•CORE
interface may drive the ADDR1and ADDR0 address lines to a value
which is not representative of an aligned transfer, but expects aligned

CLK

tsu2 th2

tsu3 th3

tsu0 th0

tsu1 th1
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 197

Interface Operation
data to be transferred. ADDR1 and ADDR0 should be selectively
ignored by external logic based on the size of the transfer.

The data multiplexer takes the four bytes of the core interface data bus
and routes them to their required positions to properly interface to
memory and/or peripherals. The external mux connections to memory
are controlled on a byte granularity and are referred to as MB[0:3] where
MB0 resides at byte address 0 (mod4) and MB3 resides at byte address
3 (mod4). For example, MB0 would normally be routed to DATA[31:24]
on a word transfer, but it can also be routed to DATA[7:0] for supporting
a byte data transfer. The same is true for any of the other operand bytes.
Figure 6-2 shows the connection requirements for the mux. The transfer
size (TSIZ[1:0]) and byte offset (ADDR1 and ADDR0) signals determine
the positioning of the bytes.

Figure 6-2. External Multiplexer Connections

M•CORE

DATA[31:24]

DATA[23:16]

DATA[15:8]

DATA[7:0]

MB0

MB1

MB2

MB3

MEMORY

PORT

MUX STRUCTURE

(BYTE ADDR
0,4,8,C,...)

(BYTE ADDR
3,7,B,F...)

(BYTE ADDR
2,6,A,E,...)

(BYTE ADDR
1,5,9,D,...)

G

G

B, E A
E

C

F, G

D, F, G

CONNECTION CASES
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

198 Interface Operation MOTOROLA

Interface Operation
Processor Instruction/Data Transfers

Table 6-1 lists the combinations of the SIZx, ADDR1, and ADDR0
signals that are used for each possible transfer size and alignment. In
Table 6-1, MB[0:3] indicate the portion of the requested operand that is
read or written during that bus transfer. For word transfers, all bytes are
valid as listed and correspond to portions of the requested operand. The
bytes labeled with a dash are not required; they are ignored on read
transfers and driven with undefined data on write transfers. Additional
information on the encoding for the M•CORE signals can be found in
Section 5. Core Interface.

6.5 Processor Instruction/Data Transfers

The transfer of data between the processor and other devices involves
the address bus, data bus, and control and attribute signals. The
address and data buses are parallel, non-multiplexed buses, supporting
aligned byte, halfword, and word transfers. All bus input and output
signals are sampled or driven with respect to one of the edges of the
CLK signal. The M•CORE moves data on the bus by issuing control
signals and using a handshake protocol to ensure correct data
movement.

Access requests are generated in an overlapped fashion in order to
support sustained single cycle transfers. In addition, the M•CORE may
choose to change the request address and attribute values if a previous

Table 6-1. Interface Requirements for Read and Write Cycles

Transfer
Size

Signal Encoding
Active Interface
Bus Sections Mux

Con-
nectionsTSIZ1 TSIZ0 ADDR1 ADDR0

DATA
[31:24]

DATA
[23:16]

DATA
[15:8]

DATA
[7:0]

Byte

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

—
—
—
—

—
—
—
—

—
—
—
—

MB0
MB1
MB2
MB3

a
b
c
d

Half-word
1
1

0
0

0
1

X
X

—
—

—
—

MB0
MB2

MB1
MB3

e
f

 Word 0 0 X X MB0 MB1 MB2 MB3 g
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 199

Interface Operation
request is still pending. This might occur if an instruction transfer is not
completed in a single cycle, and a data transfer becomes pending. In this
case, the data request may replace a pending instruction request.
Access requests are assumed to be accepted if there are no accesses
in progress (TREQ asserted with TBUSY negated), or if an access in
progress is terminated the same cycle a new request is generated
(TREQ asserted with TBUSY asserted and one of TA/TEA asserted).
Once an access has been accepted, the processor is free to change the
current request, thus access information must be latched by a slave
device.

The M•CORE may also abort an accepted access the cycle following a
valid (taken) request by asserting the ABORT output signal during the
clock cycle following a valid TREQ. In this case, no access should occur,
and external logic must supply a termination by asserting TA or TEA the
same clock cycle ABORT asserts. In the case of an aborted access, the
address bus and all attributes associated with the aborted request are
undefined.

The following paragraphs describe the bus cycles for instruction and
data transfers, as well as the overlapped interface operation.

6.5.1 Instruction and Data Read Transfer Cycles

During a read transfer, the processor receives data from a memory or
peripheral device. Figure 6-3 is a functional timing diagram for
instruction and data read transfers.

State1 (S1)

The read cycle starts in S1. During S1, the processor places valid
values on the address bus and transfer attributes. The transfer code
(TCx) signals identify the specific access type. The TSIZx pins
indicate the size of the transfer. The read/write (R/W) signal is driven
high for a read cycle.

The processor asserts transfer request (TREQ) during S1 to indicate
that a transfer is being requested.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

200 Interface Operation MOTOROLA

Interface Operation
Processor Instruction/Data Transfers

Figure 6-3. Instruction/Data Read Cycle

State2 (S2)

During S2, the memory access takes place using the values of TSIZ1,
TSIZ0, ADDR1, and ADDR0 which are driven during S1 and S2 to
enable reading of one or more bytes of memory. The TBUSY signal
is asserted to indicate that an access is in progress.

State3 (S3)

The memory drives valid data to the core in S3.

The interface control logic uses the values of TSIZ1, TSIZ0, ADDR1,
and ADDR0 which were driven during S1 and S2 to place information
on the data bus. If the memory responds without a wait state, then the
transfer acknowledge (TA) signal is asserted.

The processor samples the level of TA. If it is asserted, the current
value is latched onto the data bus, the bus cycle terminates, and the
data is passed to the appropriate unit of the processor. If TA is not
recognized as asserted at the end of the clock cycle, the processor
ignores the data and inserts a wait state. The processor continues to

CLK

ADDR[31:0]
TSIZ[1:0]

TC[2:0]

TA

DATAIn

R/W

ADDRX

DATAX

S1 S2 S3(S1’)

ADDRY

TREQ

TBUSY
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 201

Interface Operation
sample TA on successive rising edges of CLK until TA is recognized
asserted. Only when TA is recognized asserted is the outstanding
transfer terminated.

During S3, the processor may negate TREQ if no further transfers are
pending, or may keep TREQ asserted to indicate that another transfer
is pending. The R/W, TSIZ, TCx and ADDR[31:0] signals are driven
with the information for the new pending cycle. If no cycle is pending,
the values driven during S3 are undefined.

For back-to-back transfers, S3 and the next S1 occur at the same
time.

6.5.2 Read Transfer Cycles with Wait State(s)

Figure 6-4 shows an example of wait state operation. TA for the first
request (ADDRx) is not asserted following S2, so wait-states (Sw) are
inserted until TA is recognized. Meanwhile, another request is generated
by the core for ADDRy. This request is not considered accepted by the
core since the previous transfer has not been terminated, so the
processor is free to negate or change the request (in this case it changes
the request to ADDRz) on the next cycle. This situation can occur when
a data request becomes pending following an instruction prefetch
request which has not been accepted, and in other circumstances.
Interface control logic must be cognizant of this protocol. With a transfer
in progress, the next request is considered accepted only if assertion of
TA (or TEA) and TREQ occur during the same low phase of CLK.

6.5.3 Write Transfer Cycles

During a write transfer, the processor drives data to a memory or
peripheral device. Figure 6-5 is a functional timing diagram for write
transfers.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

202 Interface Operation MOTOROLA

Interface Operation
Processor Instruction/Data Transfers

Figure 6-4. Read Cycle with Wait States

Figure 6-5. Write Cycle

CLK

ADDR[31:0]
TSIZ[1:0]

TC[2:0]

TBUSY

TA

DATAIn

R/W

ADDRX

DATAX

S1 S2 S3(S1’)

ADDRY ADDRZ ADDRW

SW SW

DATAZ DATAW

S2 S3(S1’) S2 S3

* TREQ for ADDRY ignored since previous transfer not complete

TREQ

CLK

ADDR[31:0]
TSIZ[1:0]

TC[2:0]

DATAOut

R/W

ADDRX

DATAX

S1 S2 S3(S1’)

ADDRY

TA

TREQ

TBUSY
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 203

Interface Operation
State1 (S1)

The write cycle starts in S1. During S1, the processor places valid
values on the address bus and transfer attributes. The transfer code
(TCx) signals identify the specific access type. The TSIZx pins
indicate the size of the transfer. The read/write (R/W) signal is driven
low for a write cycle.

The processor asserts transfer request (TREQ) during S1 to indicate
that a transfer is being requested.

State2 (S2)

The memory or device access begins in S2. The selected device uses
R/W, TSIZ1, TSIZ0, ADDR1, and ADDR0 to select the appropriate
bytes to be written in S3. The TBUSY signal is asserted to indicate
that an access is in progress.

State3 (S3)

During S2, the processor drives the data bus with the data to be
written. The interface control logic uses the values of R/W, TSIZ1,
TSIZ0, ADDR1, and ADDR0 which were driven during S1 and S2 to
align information from the data bus. With the exception of the R/W
signal, these signals also select any or all of the operand bytes
(DATA[31:24], DATA[23:16], DATA[15:8], and DATA[7:0]). If the
memory responds without a wait state, then the transfer acknowledge
(TA) signal is asserted.

The processor samples the level of TA and if asserted, terminates the
bus cycle. If TA is not recognized as asserted at the end of the clock
cycle, the processor inserts a wait state (Sw) instead of terminating
the transfer. The processor continues to sample TA on successive
rising edges of CLK until TA is recognized asserted. Only when TA is
recognized asserted is the outstanding transfer terminated.

During S3, the processor may negate TREQ if no further transfers are
pending, or may keep TREQ asserted to indicate that another transfer
is pending. The R/W, TSIZ, TCx and ADDR[31:0] signals will be
driven with the information for the new pending cycle. If no cycle is
pending, the values driven during S3 are undefined.

For back-to-back transfers, S3 and the next S1 occur at the same
time.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

204 Interface Operation MOTOROLA

Interface Operation
Processor Instruction/Data Transfers

6.5.4 Write Transfer Cycles with Wait State(s)

Figure 6-6 shows an example of wait state operation. TA for the second
write request (ADDRy) is not asserted following S2, so wait states (Sw)
are inserted until TA is recognized. Meanwhile, another request is
generated by the core for ADDRz. This request is not considered
accepted by the core since the previous transfer has not been
terminated, so the processor is free to negate or change the request (in
this case it changes the request to ADDRw) on the next cycle.

This situation can occur when a data request becomes pending following
an instruction prefetch request which has not been accepted, or in other
circumstances as well. Logic controlling the interface must be cognizant
of this protocol. With a transfer in progress, the next request is
considered accepted only if assertion of TA and TREQ occur during the
same low phase of CLK. In this example the request for ADDRz is never
accepted nor should it be.

Figure 6-6. Write Cycle with Wait States

CLK

ADDR[31:0]

TSIZ[1:0]

TC[2:0]

TREQ

TA

DATAOut

R/W

ADDRX

S1 S2 S3(S1’)

ADDRY ADDRZ
ADDRW

SW SW S2’ S3’

DATAX DATAY

* TREQ for ADDRZ ignored since previous transfer not complete

DATAZ DATAW

TBUSY
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 205

Interface Operation
6.5.5 Data Bus Hand-Off Between Read and Write Cycles

Two examples of data bus hand-off operation are:

1. In Figure 6-7, the data bus is driven by either memory or the
processor core during the clock low phase, and hand-off occurs
during the clock high phase. When a requested access changes
from a previous read to a write, hand-off is performed by three-
stating the data bus drivers of memory during the clock high phase
following the assertion of TA for the outstanding read cycle. The
processor is then free to drive write data on the bus during S3 (or
the first Sw) for the write request. The core will only drive valid data
for a single phase when an access is accepted, the memory
interface is responsible for either completing the write in this
phase, or latching the data.

2. Figure 6-8 shows a read cycle with wait states followed by a write
request. Although the processor has driven the address and
attributes for a write cycle to ADDRy, the data associated with the
write cycle is not driven until after the write cycle has been
accepted, in this case with the TA for the ADDRx access.

Figure 6-7. Data Bus Hand-Off Operation

CLK

ADDR[31:0]
TSIZ[1:0]

TC[2:0]

TREQ

TA

DATA

R/W

ADDRX

S1 S2 S3(S1’)

ADDRY ADDRZ ADDRW

SW SW S2’ S3’

DATAX DATAY DATAW

DATA DRIVEN BY MEMORY
DATA DRIVEN BY CORE DATA DRIVEN BY MEMORY

DATAY
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

206 Interface Operation MOTOROLA

Interface Operation
Exception Bus Control Cycles

Figure 6-8. Data Bus Hand-Off Operation with Wait State

6.6 Exception Bus Control Cycles

The M•CORE bus interface requires assertion of TA from an external
device to signal that a bus cycle is complete. External circuitry can
provide TEA when no device responds or may indicate that an error
condition is associated with an access by asserting TEA. This allows the
cycle to terminate and the processor to enter exception processing for
the error condition if appropriate.

To properly control termination of a bus cycle for a bus error condition,
TA and TEA must be asserted and negated about the same rising edge
of CLK. Table 6-2 is a summary of termination results.

* TREQ for ADDRY ignored since previous transfer not complete

CLK

ADDR[31:0],
TSIZ[1:0],

TC[2:0]

TREQ

TA

DATA

R/W

ADDRX

S1 S2 S3(S1’)

ADDRY ADDRY ADDRW

SW SW S2’ S3’

DATAX DATAW

DATA DRIVEN BY MEMORY
DATA DRIVEN BY MEMORY

DATAY

DATA DRIVEN BY CORE

Table 6-2. Termination Result Summary

TA TEA Result

Don’t Care Low Bus error — Terminate, take bus error exception, if appropriate.

Low High Normal cycle — Terminate and continue

High High Insert wait states
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 207

Interface Operation
6.6.1 Bus Errors

The system hardware can use the TEA signal to abort the current bus
cycle when a fault is detected. When the processor recognizes a bus
error condition for an access, the access is terminated immediately.

When a bus cycle is terminated with a bus error, the M•CORE can enter
access error exception processing immediately following the bus cycle,
or it can defer processing the exception. The instruction prefetch
mechanism requests instruction words from the instruction memory unit
before it is ready to execute them. If a bus error occurs on an instruction
fetch, the processor does not take the exception until it attempts to use
the instruction. Should an intervening instruction cause a branch, or
should a task switch occur, the access error exception for the unused
access does not occur. A bus error termination for any write access or
read access that reference data specifically requested by the execution
unit causes the processor to begin exception processing immediately.
Refer to Section 4. Exception Processing for details of access error
exception processing.

6.6.2 Breakpoint Requests

The M•CORE bus interface supports an input signal, BRKRQ, to allow
accesses to be tagged with breakpoint requests. The BRKRQ input
signal is sampled when an access is terminated with TA or TEA to tag
an operand or instruction fetch with a breakpoint request. Operand
accesses terminated with BRKRQ asserted will result in a breakpoint
exception being taken following completion of the instruction associated
with the access. Instruction accesses terminated with BRKRQ asserted
will result in breakpoint processing when (and if) the instruction attempts
execution. Refer to Section 8. JTAG Test Access Port and OnCE and
Section 4. Exception Processing for other details on breakpoint
operation.

The BRKRQ signal does not terminate a bus cycle, it only provides
status associated with a cycle. This signal must be valid when the
processor recognizes a TA or a TEA termination. Refer to Section 4.
Exception Processing for details of breakpoint exception processing.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

208 Interface Operation MOTOROLA

Interface Operation
ABORT Signal Operation

6.7 ABORT Signal Operation

Under certain circumstances involving exception conditions, the CPU
will abort an access in the clock following a valid (taken) TREQ in the
previous clock. In this event, the access address is an invalid one and
must not be used to access devices.

Aborted accesses are indicated by the assertion by the CPU of the
ABORT output early in the clock cycle following a taken access.

Although the CPU asserts the ABORT output, it still expects a
termination signal to be asserted, and expects a no wait-state response.

Figure 6-9 shows an example of ABORT operation. In this example, the
access for addry is initially stalled, then aborted.

NOTE: The access for ADDRw is valid and taken, even though ABORT has not
yet negated, since it is a C1 to C1 signal.

Figure 6-9. ABORT Operation

* TREQ for ADDRY ignored since previous transfer not complete

CLK

ADDR[31:0]
TSIZ[1:0]

TC[2:0]

TREQ

TA

DATA

ADDRX

C2 C1

ADDRY ADDRY ADDRW

C2 C1

DATAX

R/W

CPU ACCESS TAKEN

TERMCTL NEGATES TA, ACCESS IS MULTICYCLE

[EIM | PIG] ASSERTS TA, ACCESS IS COMPLETE

TERMCTL DOES NOT NEGATE TA,
 ACCESS IS ABORTED

CPU ACCESS ABORTED

SIGNAL HELD BY KEEPER

SIGNAL DRIVEN

ABORT

CPU ACCESS TAKEN
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 209

Interface Operation
6.8 D2A Signal Operation

Under certain circumstances involving instruction change of flow
fetches, the CPU will immediately forward data received on a read
access to the address bus for the following access. The D2A signal is
provided to indicate this occurrence, and may be used to control system
behavior as needed for these cases. Usually, no functionality need be
modified, but if timing conditions require it, the signal may be used to
delay termination of an access in progress, or the succeeding access.

Figure 6-10 shows an example of the D2A signal operation. In this
example, the access for ADDRY is a table access for a JMPI (or JSRI)
instruction. The returning data, DATAY, is then forwarded to the address
bus for the destination prefetch.

Figure 6-10. D2A Operation

* ADDRY IS A TABLE FETCH FOR A JMPI

CLK

ADDR[31:0]

TSIZ[1:0]

TC[2:0]

TREQ

DATA

ADDRX

C2 C1

ADDRY
ADDR=Y ADDRW

C2 C1

DATAY

R/W

CPU ACCESS TAKEN

DATAY DRIVEN ON ADDRESS BUS

D2A

CPU ACCESS TAKEN
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

210 Interface Operation MOTOROLA

Interface Operation
Reset Operation

6.9 Reset Operation

This subsection describes the reset operation.

6.9.1 Hard Reset (Power-On Reset)

To implement the hard reset function, an external block (typically the
clock/scan control module for the chip) controls the reset of the
processor. This is accomplished by disabling the CLK input and forcing
the SCAN1 and SCAN2 test clocks asserted, while providing a low level
on the scan data input pin. Exact details of this function will be provided
at a later date as part of the definition for this external module. The reset
function will be accomplished in approximately 10 µs after the core is
placed in this state. During the hard reset period, all signals that can be
are driven to high impedance, and the remaining signals are driven to
their inactive state. Resetting the processor causes any bus cycle in
progress to be aborted. In addition, the processor initializes registers
appropriately for a reset exception. After the scan clocks have been
disabled and the CLK input is restored, reset exception processing is
initiated. Section 4. Exception Processing describes hard reset
exception processing.

6.9.2 Soft Reset

The soft reset (SRST) input signal is provided to cause a non-maskable
exception to occur within the CPU to provide for system recovery from
catastrophic failure. A soft reset aborts any processing in progress when
SRST is recognized; processing cannot be recovered.

The CPU will abort any activity in progress upon recognition of a soft
reset, and will wait for the SRST input to negate before beginning soft
reset exception processing. Section 4. Exception Processing
describes soft reset exception processing.

External logic is responsible for holding the SRST input to the CPU
asserted until the rest of the system environment has reached an idle
state. The CPU will not wait for outstanding accesses to complete before
preparing for soft reset exception processing. Any outstanding bus
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 211

Interface Operation
access must be terminated (by external means) prior to releasing the
CPU, otherwise the potential exists for the CPU to see the termination of
a previously initiated access, and confuse it with termination of the first
access requested after beginning reset processing.

6.10 Memory Management Interface Operation

The M•CORE provides a control signal to an external memory
management unit, the translation control (TE) output. This output
changes state as part of the exception recognition process as well as
when the PSR is updated by the MTCR, RTE, and RFI instructions.
Figure 6-11 shows the functional timing of this signal.

Figure 6-11. Translation Control Output

If no memory management signal is present in an M•CORE-based
system, this output may be used to perform another control function.
One possible use is as a logical address extension bit (context) which is
controllable independent of the operating mode (supervisor/user) of the
CPU.

6.11 Interrupt Interface Operation

The M•CORE provides a flexible interrupt interface to an external
interrupt control module.

The FINT and INT inputs are used to request a particular type of
interrupt, and the AVEC and VEC# inputs are used to control the
interrupt vectoring process. When the FINT or INT input signal is
asserted, either the AVEC or VEC# inputs must be driven to a valid value
as well, in order to properly generate the interrupt exception vector.

CLK

TE
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

212 Interface Operation MOTOROLA

Interface Operation
Interrupt Interface Operation

Interrupt inputs to the core are all level sensitive, not edge-triggered,
thus the interrupt controller module must keep the interrupt request as
well as keep the VEC# or AVEC inputs (as appropriate) asserted until
the interrupt is serviced to guarantee that the CPU core recognizes the
request. On the other hand, once a request is generated, there is no
guarantee the CPU will not recognize the interrupt request even if the
request is later removed.

The IPEND output can be used to control power management operation
as well as assist in bus arbitration. The IPEND output is a function of the
interrupt request inputs as well as interrupt enable bits in the PSR. The
interrupt input signals must meet the set up and hold requirements with
respect to the rising edge of the clock, although the IPEND output is
generated combinatorially from these inputs, thus is not referenced to a
clock edge. This allows it to be used as a wake-up signal to an external
power management/clock generation module when the M•CORE clock
input has been disabled in the LOW state. The IPEND output remains
asserted until the processor begins exception processing and updates
the PSR to mask further interrupts. At this point the IPEND output can
negate with setup to the rising edge of the CLK.

Figure 6-12 shows the functional timing of these signals.

Figure 6-12. Interrupt Interface Signals

CLK

INT

FINT

AVEC

VEC[6:0]

IPEND
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 213

Interface Operation
The IPEND output is not guaranteed to be negated if another interrupt
which is not masked by recognition of the first (FINT following INT) is
presented to the core before the first instruction of the handler for the
original interrupt is fetched and decoded, and exception processing
begins again for the higher priority interrupt.

6.12 Global Status and Control Interface Operation

The M•CORE provides two control registers as part of the supervisor
programming model to monitor global status in the integrated system
as well as to provide global control outputs to the system. Refer to
Section 2. Registers for more information on these registers.

The GCB[31:0] outputs change state when the GCR register is updated
by the MTCR instruction.

The GSB[31:0] inputs are sampled by the core and the corresponding
values appear in the GSR for transfer to a general register when an
MFCR instruction referencing the GSR is executed.

Figure 6-13 shows the functional timing of these signals. The GSB[31:0]
inputs are sampled with the falling edge of the CLK, the GCB[31:0]
outputs transition following the rising edge of the CLK.

Figure 6-13. Global Status and Control Signals

CLK

GSB[31:0]

GCB[31:0]
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

214 Interface Operation MOTOROLA

Interface Operation
Power Management Interface Operation

6.13 Power Management Interface Operation

The M•CORE provides three instructions, DOZE, STOP, and WAIT, to
enter low-power operating modes. The functionality of these modes is
not dictated by the core, but is determined by the design of an external
power management module. The M•CORE provides output signals
associated with the execution of each of these instructions that may be
monitored by external logic to control operation of the core as well as the
rest of the system.

When a DOZE, STOP, or WAIT instruction is executed, the appropriate
mode is indicated by the core on the LPMD[1:0] outputs. External logic
may then place the core in a low-power state by forcing the CLK input
low. The core may be re-enabled by providing the CLK input as system
events dictate. Completion of the DOZE, STOP, or WAIT instruction
requires recognition of a valid interrupt, and the assertion of the IPEND
output. The processor will remain in a stopped or waiting state until a
valid interrupt is pending and the CLK input has been re-enabled.

Execution of the DOZE, STOP, or WAIT instruction will be held off until
any outstanding prefetch has completed.

Figure 6-14 and Figure 6-15 show the functional timing of these signals.
The LPMD[1:0] outputs transition following the rising edge of the CLK
after all outstanding fetches have been completed.

Refer to 6.11 Interrupt Interface Operation for more information on
interrupt recognition while in a stopped or waiting state.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 215

Interface Operation
Figure 6-14. Power Management Control Signals (Assertion)

Figure 6-15. Power Management Control Signals (Negation)

CLK

FETCH STOP INST

FETCH NEXT INST

DECODE STOP COMPLETE

 PREFETCH
ASSERT

OUTPUT

LPMD[1:0]

(WAIT)(WAIT)

ENTER LOW POWER STATE

CLK

EXIT LOW POWER STATE

INT

IPEND

NMI

FINT

LPMD[1:0]
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

216 Interface Operation MOTOROLA

Interface Operation
Emulation/Debug Interface Operation

6.14 Emulation/Debug Interface Operation

The M•CORE provides an input signal for use by an external
emulation/debug module which allows execution of the core to be
controlled. The DBGRQ input is used to force the CPU to enter debug
mode at the next instruction boundary.

A dedicated output signal is provided to handshake these requests, the
DBUG active low output. Refer to Section 8. JTAG Test Access Port
and OnCE for more information on the use of these signals.

Figure 6-16 and Figure 6-17 show the functional timing of these signals.
The DBGRQ input is sampled with the rising edge of the CLK. The
DBUG output transitions following the rising edge of the clock once the
debug state has been entered.

Figure 6-16. Debug Request Input Control Signal

Figure 6-17. Debug Output Control Signal

CLK

DBGRQ

CLK

DBUG
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Interface Operation 217

Interface Operation
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

218 Interface Operation MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Section 7. Hardware Accelerator Interface (HAI)

7.1 Contents

7.2 Introduction .220

7.3 Overview. .220

7.4 Register Snooping Mechanism. .221

7.5 Instruction Transfer Mechanism .222
7.5.1 Control Handshake. .222
7.5.2 Driving the H_BUSY and H_EXCP Signals229

7.6 Data Transfer Mechanism .230
7.6.1 Register Transfers .230
7.6.2 Memory Transfers .233
7.6.2.1 H_LD Transfer .233
7.6.2.2 H_ST Transfer .234

7.7 Instruction Primitives. .238
7.7.1 H_CALL Primitive .238
7.7.2 H_RET Primitive. .239
7.7.3 H_LD Primitive .239
7.7.4 H_ST Primitive .240
7.7.5 H_EXEC Primitive .241

7.8 Instruction Primitive Glossary .241

NOTE: This feature is not offered for the M210/M210S core.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 219

Hardware Accelerator Interface (HAI)
7.2 Introduction

The M•CORE hardware accelerator interface (HAI) supports tightly
coupled hardware function blocks which are optimized for application
specific purposes. An example block might be a DSP arithmetic block
(MAC) unit, other examples are simpler blocks such as a population
count block (POPC). This section provides a functional description of the
interface, the signals that control the interface, and the cycles provided
for data transfer operations. The primitives available through the
processor core ISA are also described.

Accelerator functions are designed to be implementation specific units,
thus the exact functionality of a given unit is free to be changed across
different implementations, even though the same instruction mappings
may be present.

7.3 Overview

The M•CORE provides support for task acceleration by an external
hardware block which is optimized for specific application-related
operations. These external blocks may be as simple as a block for
performing a population count, or a more complicated function such as
a DSP acceleration block capable of high speed multiply/accumulate
operation.

Data is transferred between the core and an accelerator block by one or
more of several mechanisms as appropriate for a particular
implementation. These can be divided into transfers to the block and
transfers from the block.

One method of transferring data to a block is the register snooping
mechanism, which involves no instruction primitive, but is a by-product
of normal core operation. This involves reflecting updates to the core’s
general-purpose registers across the interface such that a block could
monitor updates to one or more core registers. This might be appropriate
if a block “overlays” a GPR for an internal register or function. In this
case, no explicit passing of parameters from the core to a block would
be required.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

220 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Register Snooping Mechanism

Instruction primitives are provided in the base core for explicit transfer of
operands and instructions between external accelerators and the core
as well. A handshaking mechanism is provided to allow control over the
rate of instruction and data transfer.

NOTE: Accelerator functions are designed to be implementation specific units,
thus the exact functionality of a given unit is free to be changed across
different implementations, even though the same instruction mappings
may be present.

7.4 Register Snooping Mechanism

To avoid the performance overhead of parameter passing to a hardware
block, a register snooping mechanism is provided. This allows a
hardware block to implement a shadow copy of one or more of the core’s
general registers. The capability is implemented by transferring the
value being written into one of the core GPRs and an indication of which
register is being updated for each GPR update. A strobe signal REGWR
is asserted for each register update. The value is transferred across the
32-bit bidirectional data path HDP[31:0], and a 5-bit register number bus
provides a pointer to the actual core register being updated (REG[4:0]).
The register number may refer to a register in the normal file or in the
alternate file. Alternate file registers are indicated by REG4 == 1, normal
file registers by REG4 == 0. Refer to Section 2. Registers for a
description of these registers.

The hardware block may latch the value internally along with an
indication of the destination register number to avoid an explicit move
later. This functionality may also be used by a debug block to track the
state of the register file or a subset of it.

Figure 7-1 shows an example of the snooping capability. Caveats to
using this mechanism in the presence of exceptions are discussed later.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 221

Hardware Accelerator Interface (HAI)
Figure 7-1. Register Snoop Operation

7.5 Instruction Transfer Mechanism

A dedicated 12-bit instruction bus (H_OP[11:0]) provides the HAI
opcode being issued to the external block. This bus reflects the low order
12 bits of the M•CORE opcode. The high-order four bits are not reflected
as they are always 0b0100. A supervisor mode indicator (H_SUP) is also
provided to indicate the current state of the PSR(S) bit, indicating
whether the processor is operating in supervisor or user mode. A set of
handshake signals between the core and external accelerator blocks
coordinate HAI instruction execution.

7.5.1 Control Handshake

The control signals generated by the core are a reflection of the internal
pipeline structure of the processor. The processor pipeline consists of
stages for instruction fetch, instruction decode, execution, and result
writeback. The processor also contains an instruction prefetch buffer to
allow buffering of an instruction prior to the decode stage. Instructions
proceed from this buffer to the instruction decode stage by entering the
instruction decode register IR.

The instruction decoder receives inputs from the IR, and generates
outputs based on the value held in the IR. These decode outputs are not

CLK

RA VALUEHDP[31:0]

ADDC RA,RB OR RC,RD

RC VALUE

RESULT OF ADDC RESULT OF OR

REGWR

RA #REG[4:0] RC #
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

222 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Instruction Transfer Mechanism

always valid, and may be discarded due to exception conditions or
changes in instruction flow. Even when valid, instructions may be held in
the IR until they can proceed to the execute stage of the instruction
pipeline. Since this cannot occur until previous instructions have
completed execution (which may take multiple clocks), the decoder will
continue to decode the value contained in the IR until the IR is updated.

Figure 7-2 shows the basic instruction interface operation for instruction
handshaking.

Figure 7-2. Basic Instruction Interface
Operation, H_BUSY Negated

An instruction decode strobe (H_DEC) signal is provided to indicate the
decode of an HAI opcode by the core. This signal will be asserted when
an HAI opcode resides in the IR, even if the instruction may be discarded
without execution. The H_DEC output may remain asserted for multiple
clocks for the same instruction until the instruction is actually issued or
is discarded.

CLK

DECODE H_OP XX,

H_DEC

OP XXH_OP[11:0]

NOT BUSY

H_BUSY

H_SUP

H_EXEC

EXECUTE H_OP XX,

IGNORE BUSY

H_EXCP
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 223

Hardware Accelerator Interface (HAI)
A busy signal (H_BUSY) is monitored by the core to determine if an
external block can accept the HAI instruction, and partially controls when
issuance of the instruction occurs. If the H_BUSY signal is negated while
H_DEC is asserted, instruction execution will not be stalled by the
interface, and the H_EXEC signal may assert as soon as instruction
execution can proceed. If the H_BUSY signal is asserted when the core
decodes an HAI opcode (indicated by the assertion of H_DEC),
execution of the HAI opcode will be forced to stall. Once the H_BUSY
signal is negated, the core may issue the instruction by asserting
H_EXEC. If a hardware block is capable of buffering instructions, the
H_BUSY signal may be used to assist filling of the buffer.

Figure 7-3 shows the instruction interface operation when H_BUSY is
used to control HAI instruction execution.

Figure 7-3. Basic Instruction Interface Operation, H_BUSY Asserted

CLK

DECODE H_OP XX, DECODE H_OP XX,

H_DEC

OP XXH_OP[11:0]

BUSY NOT BUSY

H_BUSY

H_SUP

OP XX

H_EXEC

EXECUTE H_OP XX,

IGNORE BUSY

H_EXCP
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

224 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Instruction Transfer Mechanism

Once any internal stall condition has been resolved, and the H_BUSY
signal has been negated, the processor can assert H_EXEC to indicate
that the HAI instruction has entered the execute stage of the pipeline. An
external block should monitor the H_EXEC signal to control actual
execution of the instruction, since it is possible for the processor to
discard the instruction prior to execution in certain circumstances. If
execution of an earlier instruction results in an exception being taken,
the H_EXEC signal will not be asserted, and the H_DEC output will be
negated. A similar process can occur if the instruction in the IR is
discarded as the result of a change in program flow.

If an instruction is discarded, the H_DEC signal will be negated before
another HAI opcode is placed on the H_OP bus. Figure 7-4 shows an
example of this.

Figure 7-4. Instruction Discard

There are circumstances where the core may delay the assertion of
H_EXEC even though H_DEC is asserted and H_BUSY is negated.
This can occur while waiting for an earlier instruction to complete (see
Figure 7-5).

For back-to-back HAI instructions, the H_DEC signal can remain
asserted without negation, even though the H_OP bus is updated as
new instructions enter the IR.

CLK

DECODE H_OP XX, DECODE H_OP XX,

H_DEC

OP XXH_OP[11:0]

H_BUSY

H_SUP

OP XX

DISCARD H_OP XX,
NO EXECUTE

OP YY

DECODE H_OP YY,

H_EXEC
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 225

Hardware Accelerator Interface (HAI)
Figure 7-5. Instruction Pipeline Stall

Figure 7-6 shows example of back-to-back execution with no stalls. In
general, the assertion of H_EXEC corresponds to execution of the
instruction being decoded on the previous clock.

Figure 7-6. Back-to-Back HAI Instruction Execution

CLK

DECODE H_OP XX, DECODE H_OP XX,

H_DEC

OP XXH_OP[11:0]

H_BUSY

H_SUP

OP XX

H_EXEC

EXECUTE H_OP XX,

OP YY

DECODE H_OP YY,
STALLED INTERNALLY

CLK

DECODE H_OP XX, DECODE H_OP YY,

H_DEC

OP XXH_OP[11:0]

H_BUSY

H_SUP

OP YY

H_EXEC

DECODE NON-HAI,

OP ZZ

DECODE H_OP ZZ,
EXECUTE H_OP XX EXECUTE H_OP YY
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

226 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Instruction Transfer Mechanism

Figure 7-7 shows back-to-back operation with internal pipeline stalls. In
this case, H_BUSY is negated, but the processor does not assert
H_EXEC for the second HAI instruction until the internal stall condition
disappears.

Figure 7-7. Back-to-Back HAI Instruction Execution
with Pipeline Stall

Figure 7-8 shows back-to-back HAI instructions with H_BUSY stalls. In
this example, the external block is busy, and cannot accept the second
instruction immediately. H_BUSY asserts to prevent the second
instruction from being issued by the core. Once the accelerator becomes
free, H_BUSY is negated, and the next HAI instruction advances to the
execute stage.

Exceptions related to the decode of an HAI opcode may be signaled by
an external block with the H_EXCP signal. This input to the core is
sampled during the clock cycle that H_DEC is asserted and H_BUSY is
negated, and will result in exception processing for a hardware
accelerator exception if the HAI opcode is not discarded as previously
described. Details of this exception processing are described in
Section 4. Exception Processing.

CLK

DECODE H_OP XX, DECODE H_OP YY,

H_DEC

OP XXH_OP[11:0]

H_BUSY

H_SUP

OP YY

H_EXEC

PIPELINE STALL, DECODE NEXT INST,
EXECUTE H_OP YYEXECUTE H_OP XX DECODE H_OP YY

OP YY
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 227

Hardware Accelerator Interface (HAI)
Figure 7-8. Back-to-Back HAI Instruction Execution
with H_BUSY Stall

Figure 7-9 shows an example of the H_EXCP signal being asserted by
an accelerator block in response to the decode and attempted execution
of an HAI opcode. The H_EXCP signal is sampled by the core during the
clock that H_DEC is asserted. The H_EXEC signal is asserted
regardless of whether an exception is signaled by the interface; this
distinguishes the exception taken case from the instruction discard case.

Figure 7-9. H_EXCP Operation, H_BUSY Negated

CLK

DECODE H_OP XX, DECODE H_OP YY,

H_DEC

OP XXH_OP[11:0]

H_BUSY

H_SUP

OP YY

H_EXEC

PIPELINE STALL, DECODE NEXT INST,
EXECUTE H_OP YYEXECUTE H_OP XX DECODE H_OP YY

OP YY

CLK

DECODE H_OP XX,

H_DEC

OP XXH_OP[11:0]

NOT BUSY

H_BUSY

H_SUP

H_EXEC

EXECUTE H_OP XX,
IGNORE BUSY

H_EXCP
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

228 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Instruction Transfer Mechanism

NOTE: The exception corresponds to the instruction being decoded the
previous clock cycle, and that no actual execution takes place. An
accelerator block must accept the offending instruction and signal an
exception prior to the execute stage of the processor pipeline for it to be
recognized. The H_EXCP signal is ignored for all clock cycles where
H_DEC is negated or H_BUSY is asserted.

Figure 7-10 shows an example where H_BUSY has been asserted to
delay the execution of an HAI opcode which will result in an exception.

Figure 7-10. H_EXCP Operation, HAI Busy

7.5.2 Driving the H_BUSY and H_EXCP Signals

The H_BUSY and H_EXCP signals are shared by all accelerator blocks,
thus they must be driven in a coordinated manner.

These signals should be driven (either high or low, whichever is
appropriate) by the hardware unit corresponding to H_OP[11:10] on
clock cycles where H_DEC is asserted. By driving the output only during
the low portion of the clock, these signals may be shared by multiple
blocks without contention. A holding latch internal to the processor is

CLK

DECODE H_OP XX, DECODE H_OP XX,

H_DEC

OP XXH_OP[11:0]

BUSY NOT BUSY

H_BUSY

H_SUP

OP XX

H_EXEC

(EXECUTE) H_OP XX,
ASSERT EXCEPTION

H_EXCP

BEGIN EXCEPTION
PROCESSING
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 229

Hardware Accelerator Interface (HAI)
provided on this input to hold it in a valid state for the high phase of the
clock while no unit is driving it.

7.6 Data Transfer Mechanism

Some of the HAI instruction primitives also imply a transfer of data items
between the core and an external block. Operands may be transferred
across the interface as a function of the particular primitive being
executed.

Provisions are made for transferring one or more of the core GPRs either
to or from an accelerator block across a 32-bit bidirectional data path. In
addition, provisions are also made to load or store a single data item
from/to memory with the data sink/source being the interface. The core
passes parameters to external blocks via the HDP[31:0] bus during the
high portion of CLK; operands are received and latched from the
interface by the core during the low phase of the clock. A delay is
provided as the clock transitions high before drive occurs to allow for a
small period of bus hand off. A block interface must provide the same
small delay at the falling clock edge. Handshaking of data items is
supported with the data strobe (H_DS) output, the data acknowledge
(H_DA) input, and the data error (H_DERR) output signals.

7.6.1 Register Transfers

The core provides the capability of transferring a list of call or return
parameters to the interface in much the same way as software
subroutines are called or returned from. A count of arguments is
indicated in the H_CALL or H_RET primitive to control the number of
parameters passed. Register values beginning with the content of R4
are transferred to (from) the external hardware block as part of the
execution of the H_CALL (H_RET) primitive. Up to seven register
parameters may be passed. This convention is similar to the software
subroutine calling convention (see Section 2. Registers).

Handshaking of the operand transfers are controlled by the data strobe
(H_DS) output and data acknowledge (H_DA) input signals. Data strobe
will be asserted by the core for the duration of the transfers, and
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

230 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Data Transfer Mechanism

transfers will occur in an overlapped manner, much the same as the core
interface operation. Data acknowledge (H_DA) is used to indicate that a
data element has been accepted or driven by a hardware block.

Instruction primitives are provided to transfer multiple processor
registers and the transfers can ideally occur every clock. For transfers to
an external block, the processor will automatically begin driving the next
operand (if needed) prior to (or concurrent with) the acknowledge of the
current item. External logic must be capable of one level of buffering to
ensure no loss of data. Figure 7-11 shows the sequencing of an
H_CALL transfer to the interface, where two registers are to be
transferred. The second transfer is repeated due to a negated data
acknowledge (H_DA).

For transfers from an external block to processor registers, the
processor is capable of accepting values from an external block every
clock cycle after H_DS has been asserted, and these values are written
into the register file as they are received, so no buffering is required.

Figure 7-11Register Transfers to External Block with Wait State

CLK

DECODE H_CALL #2,
ISSUE

H_CALL #2

H_OP[11:0]

H_EXEC

H_BUSY

HDP[31:0] R4

DRIVE R4
CONTENTS

DRIVE R5
CONTENTS

RE-DRIVE R5
CONTENTS

H_DS

H_DA

RPREV R5R5

HDP DRIVEN BY CORE WITH RESULT OF PREVIOUS INSTRUCTION
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 231

Hardware Accelerator Interface (HAI)
An example of register transfers associated with the H_RET primitive is
shown in Figure 7-12.

In this example, two register values are transferred. The block may drive
data beginning with the clock following the assertion of the H_EXEC
signal, as this is the clock where H_DS will first be asserted.

The H_DS output transitions with the rising edge of CLK, while the H_DA
input is sampled during the low phase of CLK. Refer to xxx for more
detail on the actual timing of these signals.

Figure 7-12. Register Transfers from External Block with Wait State

DECODE H_RET #2,
ISSUE

H_RET #2

RPREV R4

DRIVE R4
CONTENTS

INVALID
CONTENTS

DRIVE R5
CONTENTS

R5

HDP DRIVEN Y CORE WITH RESULT OF PREVIOUS INSTRUCTION HDP DRIVEN BY HW ACC.

CLK

H_OP[11:0]

H_BUSY

HDP[31:0]

H_DS

H_DA

H_EXEC
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

232 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Data Transfer Mechanism

7.6.2 Memory Transfers

The core provides the capability of transferring a single memory operand
to or from the interface with the h_ld or h_st instruction primitives.

7.6.2.1 H_LD Transfer

The h_ld primitive is used to transfer data from memory to a hardware
block. Handshaking of the operand transfer to the block is controlled by
the data strobe (H_DS) signal. Data strobe will be asserted by the core
to indicate that a valid operand has been placed on the HDP[31:0] bus.
The data acknowledge (H_DA) input is ignored for this transfer.

Figure 7-13 shows the sequencing of an h_ld transfer to the interface.
In this case, there is a no-wait state memory access. For memory
accesses with n wait-states, the operand and H_DS would be driven n
clocks later. If the option to update the base register with the effective
address of the load is selected, the update value is driven on HDP[31:0]
the first clock after it has been calculated (the clock following the
assertion of H_EXEC).

Figure 7-13. Memory Transfer to External Block

CLK

DECODE H_LD,
ISSUE

H_LDH_OP[11:0]

H_BUSY

HDP[31:0]

CALC EA FOR
ACCESS

DRIVE LD
OPERAND

H_DS

TREQ (TO MEMORY)

MEM ACCESS
[REG UPDATE]

RPREV LD_DATARUPDT

TA (FROM MEMORY)

H_EXEC
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 233

Hardware Accelerator Interface (HAI)
If the memory access results in an access exception, the H_ERR signal
is asserted back to the external block as shown in Figure 7-14.

Figure 7-14. Memory Transfer to External Block with Access Exception

7.6.2.2 H_ST Transfer

The h_st primitive can be used to transfer data to memory from a
hardware block. If the option to update the base register with the
effective address of the store is selected, the update value is driven on
HDP[31:0] the first clock after it has been calculated (the clock following
the assertion of H_EXEC).

An example of a transfer associated with the h_st primitive is shown in
Figure 7-15. The handshake associated with the h_st primitive consists
of two parts, an initial handshake from the hardware block, which must
provide data for the store, and a completion handshake from the core
once the store to memory has completed.

CLK

DECODE H_LD,
ISSUE

H_LDH_OP[11:0]

H_BUSY

HDP[31:0]

CALC EA FOR
ACCESS

DRIVE UNDEFINED
OPERAND

H_ERR

TREQ (TO MEMORY)

MEM ACCESS
[REG UPDATE]

RPREV RUPDT

TEA (FROM MEMORY)

H_EXEC

H_DS
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

234 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Data Transfer Mechanism

The initial handshake uses the H_DA input to the core to signal that the
hardware block has driven store data to the core. The H_DA signal is
asserted the same clock that data is driven onto the HDP[31:0] bus by
the hardware block. The store data is taken from the lower half of the bus
for a half-word sized store, the upper 16 bits will not be written into
memory. The H_DA signal will be sampled beginning with the clock the
H_EXEC signal is asserted. The memory cycle is requested during the
clock where H_DA is recognized, and store data will be driven to
memory on the following clock. Once the store has completed, the core
will assert the H_DS signal.

Figure 7-15. Memory Transfer from External Block

CLK

DECODE H_ST,
ISSUE

H_STH_OP[11:0]

H_BUSY

HDP[31:0]
ST_DATA

TREQ (TO MEMORY)

RPREV RUPDT

CALC EA FOR
ACCESS

MEM ACCESS
[REG UPDATE]

H_EXEC

H_DA

H_DS

TA (FROM MEMORY)
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 235

Hardware Accelerator Interface (HAI)
Figure 7-16 shows an example of a transfer with delayed store data.

Figure 7-16. Delayed Memory Transfer from External Block

CLK

DECODE H_ST,
ISSUE

H_STH_OP[11:0]

H_BUSY

HDP[31:0]
ST_DATA

TREQ (TO MEMORY)

RPREV RUPDT

CALC EA FOR
ACCESS

MEM ACCESS
[REG UPDATE]

H_EXEC

H_DA

H_DS

TA (FROM MEMORY)
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

236 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Data Transfer Mechanism

Figure 7-17 shows how the H_ERR signal is asserted when the store
results in an access error.

If the hardware unit aborts the instruction by asserting H_EXCP the
clock where H_EXEC is asserted, the H_DA signal should not be
asserted.

Figure 7-17. Memory Transfer from External Block, Error Termination

CLK

DECODE H_ST,
ISSUE

H_STH_OP[11:0]

H_BUSY

HDP[31:0] ST_DATA

TREQ (TO MEMORY)

RPREV RUPDT

CALC EA FOR
ACCESS

MEM ACCESS
[REG UPDATE]

H_EXEC

H_DA

H_ERR

TEA (FROM MEMORY)

H_DS
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 237

Hardware Accelerator Interface (HAI)
7.7 Instruction Primitives

The M•CORE provides several primitives in the core instruction set to
interface to a hardware accelerator. This subsection provides a
description of the formats of the primitives. The core interprets some of
the fields in the primitives, others are interpreted by the accelerator block
alone.

NOTE: These primitive definitions are preliminary and subject to change. They
are provided to give an overall “feel” for the interface, and have not been
finalized.

7.7.1 H_CALL Primitive

The h_call primitive is used to “call” a function implemented by an
accelerator. The paradigm is similar to the software calling convention
used by the M•CORE, but in a hardware context. The h_call primitive is
interpreted by both the core and the external block to transfer a list of
“call parameters” or arguments from the core and initiate a particular
function in the block. The instruction format for this primitive is shown in
Figure 7-18.

Figure 7-18. H_CALL Primitive Format

The UU and CODE fields of the instruction word are not interpreted by
the core, these are used to specify a block specific function. The UU field
may specify a hardware unit, and the CODE field may specify a
particular operation. The CNT field is interpreted by both the core and
the block, and specifies the number of register arguments to pass to the
block.

Arguments are passed from the general registers beginning with R4 and
continuing through R(4+CNT – 1). Up to seven parameters may be
passed. A CNT value of 0b000 is reserved for the h_exec primitive (see
7.7.5 H_EXEC Primitive). It would be possible for a block to redefine the
meaning of the CODE field for different values of the CNT field if this is
appropriate.

0100 CODE

03415

CNT

67

011

1112 10 9

UU
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

238 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Instruction Primitives

7.7.2 H_RET Primitive

The h_ret primitive is used to “return from” a function implemented by an
accelerator. The paradigm is similar to the software calling convention
used by the M•CORE, but in a hardware context. The h_ret primitive is
interpreted by both the core and the external block to transfer a list of
“return parameters” or values to the core from a block. The instruction
format for this primitive is shown in Figure 7-19.

Figure 7-19. H_RET Primitive Format

The UU and CODE fields of the instruction word are not interpreted by
the core, these are used to specify a block specific function. The UU field
may specify a hardware unit, and the CODE field may specify a
particular operation or set of registers in the block to return. The CNT
field is interpreted by both the core and the block, and specifies the
number of register arguments to pass from the block to the core.

Arguments are passed to the core general registers beginning with R4
and continuing through R(4+CNT – 1). Up to seven parameters may be
returned. A CNT value of 0b000 is reserved for the h_exec primitive (see
7.7.5 H_EXEC Primitive). It would be possible for a block to redefine the
meaning of the CODE field for different values of the CNT field if this is
appropriate.

7.7.3 H_LD Primitive

The h_ld primitive is used to pass a value from memory to a block
without temporarily storing the memory operand in a core GPR. The
memory operand is addressed using a base pointer and an offset. The
instruction format for this primitive is shown in Figure 7-20.

Figure 7-20. H_LD Primitive Format

0100 CODE

03415

CNT

67

010

1112 10 9

UU

0100 Rbase

03415

Disp

67

1

1112 10 9

UU

5

UpSz

8

0

M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 239

Hardware Accelerator Interface (HAI)
The UU field of the instruction word is not interpreted by the core, this
field may specify a hardware unit. The Sz field specifies the size of the
operand (half-word or word only). The Disp field specifies an unsigned
offset value to be added to the content of the register specified by the
Rbase field to form the effective address for the load. The value of the
Disp field is scaled by the size of the operand to be transferred. The Up
field specifies whether the Rbase register should be updated with the
effective address of the load after it has been calculated. This option
allows an “auto-update” addressing mode, although the caveats
specified in xxx apply for handling faults on the load data access.

7.7.4 H_ST Primitive

The h_st primitive is used to pass a value from a block to memory
without temporarily storing the memory operand in a core GPR. The
memory operand is addressed using a base pointer and an offset. The
instruction format for this primitive is shown in Figure 7-21.

Figure 7-21. H_ST Primitive Format

The UU field of the instruction word is not interpreted by the core, this
field may specify a hardware unit. The Sz field specifies the size of the
operand (half-word or word only). The Disp field specifies an unsigned
offset value to be added to the content of the register specified by the
Rbase field to form the effective address for the store. The value of the
Disp field is scaled by the size of the operand to be transferred. The Up
field specifies whether the Rbase register should be updated with the
effective address of the store after it has been calculated. This option
allows an “auto-update” addressing mode, although the caveats
specified in xxx apply for handling faults on the store data access.

0100 Rbase

03415

Disp

67

1

1112 10 9

UU

5

UpSz

8

1

Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

240 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Instruction Primitive Glossary

7.7.5 H_EXEC Primitive

The h_exec primitive is used to initiate a function or enter an operating
mode implemented by an accelerator. The instruction format for this
primitive is shown in Figure 7-22.

Figure 7-22. H_EXEC Primitive Format

The UU and CODE fields of the instruction word are not interpreted by
the core, these are used to specify a block specific function. The UU field
may specify a hardware unit, and the CODE field may specify a
particular operation.

7.8 Instruction Primitive Glossary

This section provides a instruction primitive glossary.

0100 CODE

015 7

00

1112 10 9

UU

8

M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 241

Hardware Accelerator Interface (HAI)
H_CALL Hardware Accelerator Call Primitive H_CALL

Operation: Pass parameters to hardware accelerator

Assembler
Syntax:

h_call #uu, r4-rlast, #code

Description: h_call passes a set of register-based parameters and a code to
hardware block #uu.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

UU field — Specifies hardware block

00 — Block 0

01 — Block 1

10 — Block 2

11 — Block 3

Cnt field — Specifies number of registers to pass, beginning with R4

000 — Reserved, do not use

001 — Pass R4

..

111 — Pass R4-R10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 UU 0 1 1 CNT CODE
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

242 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Instruction Primitive Glossary

H_RET Hardware Accelerator Return Primitive H_RET

Operation: Pass parameters from hardware accelerator

Assembler
Syntax:

h_ret #uu, r4-rlast, #code

Description: h_ret passes a code to hardware block #uu and receives a set of return
parameters to be loaded into CPU registers.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

UU field — Specifies hardware block

00 — Block 0

01 — Block 1

10 — Block 2

11 — Block 3

Cnt field — Specifies number of registers to pass, beginning with R4

000 — Reserved, do not use

001 — Pass R4

010 — Pass R4-R5

....

111 — Pass R4-R10

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 UU 0 1 0 CNT CODE
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 243

Hardware Accelerator Interface (HAI)
H_EXEC Hardware Accelerator Execute Primitive H_EXEC

Operation: Pass execution code to hardware accelerator

Assembler
Syntax:

h_exec #uu,#code

Description: h_exec is used to control a function in hardware block #uu. The code
field is not interpreted by the core

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

UU field — Specifies hardware block

00 — Block 0

01 — Block 1

10 — Block 2

11 — Block 3

Code field — Specifies an operation code for a hardware block

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 UU 0 0 CODE
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

244 Hardware Accelerator Interface (HAI) MOTOROLA

Hardware Accelerator Interface (HAI)
Instruction Primitive Glossary

H_LD Hardware Accelerator Load Primitive H_LD

Operation: Load operand from memory and pass to hardware accelerator

Assembler
Syntax:

h_ld.[hw][u] #uu, (rx,disp)
h_ld.[u] #uu, (rx,disp)

Description: h_ld performs a load of a value in memory, and passes the memory
operand to the hardware block without storing it in a GPR. The h_ld
operation has three options, w (word), h (half-word), and u (update).
Disp is obtained by scaling the IMM2 field by the size of the load, and
zero-extending. This value is added to the value of register RX and a
load of the specified size is performed from this address, with the result
of the load passed to the hardware interface. For half-word loads, the
data fetched is zero-extended to 32-bits. If the .u option is specified, the
effective address of the load is placed in register RX after it is calculated.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

UU field — Specifies hardware block
00 — Block 0
...
11 — Block 3

Size — Specifies load size
0 — Word
1 — Half-word

UP — Specifies whether the base register should be updated
0 — No update
1 — Update base register with effective address

IMM2 Field — Specifies a 2-bit scaled immediate value

Register X — Specifies the base address to be added to the scaled
immediate field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 UU 1 SZ 0 UP IMM2 Rx
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Hardware Accelerator Interface (HAI) 245

Hardware Accelerator Interface (HAI)
H_ST Hardware Accelerator Store Primitive H_ST

Operation: Store operand to memory from hardware accelerator

Assembler
Syntax:

h_st.[hw][u] #uu, (rx,disp)

Description: h_st performs a store to memory, of an operand from a hardware block
without storing it in a GPR. The h_st operation has three options, w
(word), h (half-word), and u (update). Disp is obtained by scaling the
IMM2 field by the size of the store and zero-extending. This value is
added to the value of register RX and a store of the specified size is
performed to this address, with the data for the store obtained from the
hardware interface. If the .u option is specified, the effective address of
the load is placed in register RX after it is calculated.

Condition Code: Unaffected

Instruction
Format:

Instruction
Fields:

UU field — Specifies hardware block
00 — Block 0
...
11 — Block 3

Size — Specifies store size
0 — Word
1 — Half-word

UP — Specifies whether the base register should be updated
0 — No update
1 — Update base register with effective address

IMM2 Field — Specifies a 2-bit scaled immediate value

Register X — Specifies the base address to be added to the scaled
immediate field

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 UU 1 SZ 1 UP IMM2 Rx
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

246 Hardware Accelerator Interface (HAI) MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Section 8. JTAG Test Access Port and OnCE

8.1 Contents

8.2 Introduction .249

8.3 Top-Level Test Access Port (TAP) .251
8.3.1 Test Clock (TCLK) .252
8.3.2 Test Mode Select (TMS) .252
8.3.3 Test Data Input (TDI) .252
8.3.4 Test Data Output (TDO) .252
8.3.5 Test Reset (TRST) .252
8.3.6 Debug Event (DE) .252

8.4 Top-Level TAP Controller .254

8.5 Instruction Shift Register. .255
8.5.1 EXTEST Instruction .255
8.5.2 IDCODE Instruction .256
8.5.3 SAMPLE/PRELOAD Instruction .257
8.5.4 ENABLE_MCU_ONCE Instruction257
8.5.5 HIGHZ Instruction. .258
8.5.6 CLAMP Instruction .258
8.5.7 BYPASS Instruction .258

8.6 IDCODE Register .259

8.7 Bypass Register .260

8.8 Boundary SCAN Register .260

8.9 Restrictions .260

8.10 Non-Scan Chain Operation. .261

8.11 Boundary Scan .261

8.12 Low-Level TAP (OnCE) Module .267

8.13 Signal Descriptions .269
8.13.1 Debug Serial Input (TDI) .269
8.13.2 Debug Serial Clock (TCLK) .269
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 247

JTAG Test Access Port and OnCE
8.13.3 Debug Serial Output (TDO) .269
8.13.4 Debug Mode Select (TMS). .270
8.13.5 Test Reset (TRST) .270
8.13.6 Debug Event (DE) .270

8.14 Functional Description .270
8.14.1 Operation .271
8.14.2 OnCE Controller and Serial Interface.272
8.14.3 OnCE Interface Signals .273
8.14.3.1 Internal Debug Request Input (IDR) 273
8.14.3.2 CPU Debug Request (DBGRQ).274
8.14.3.3 CPU Debug Acknowledge (DBGACK).274
8.14.3.4 CPU Breakpoint Request (BRKRQ).274
8.14.3.5 CPU Address, Attributes (ADDR, ATTR)274
8.14.3.6 CPU Status (PSTAT) .274
8.14.3.7 OnCE Debug Output (DEBUG)274
8.14.4 OnCE Controller Registers. .275
8.14.4.1 OnCE Command Register .275
8.14.4.2 OnCE Control Register .278
8.14.4.3 OnCE Status Register .282
8.14.5 OnCE Decoder (ODEC) .284
8.14.6 Memory Breakpoint Logic. .284
8.14.6.1 Memory Address Latch (MAL) .285
8.14.6.2 Breakpoint Address Base Registers 285
8.14.7 Breakpoint Address Mask Registers 285
8.14.7.1 Breakpoint Address Comparators 286
8.14.7.2 Memory Breakpoint Counters .286
8.14.8 OnCE Trace Logic .286
8.14.8.1 OnCE Trace Counter .287
8.14.8.2 Trace Operation .288
8.14.9 Methods of Entering Debug Mode288
8.14.9.1 Debug Request During RESET288
8.14.9.2 Debug Request During Normal Activity289
8.14.9.3 Debug Request During Stop, Doze, or Wait Mode 289
8.14.9.4 Software Request During Normal Activity 289
8.14.10 Enabling OnCE Trace Mode .289
8.14.11 Enabling OnCE Memory Breakpoints.290
8.14.12 Pipeline Information and Write-Back Bus Register 290
8.14.12.1 Program Counter Register .291
8.14.12.2 Instruction Register .291
8.14.12.3 Control State Register .291
8.14.12.4 Writeback Bus Register .293
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

248 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Introduction

8.14.12.5 Processor Status Register .293
8.14.13 Instruction Address FIFO Buffer (PC FIFO)294
8.14.14 Reserved Test Control Registers .295
8.14.15 Serial Protocol .295
8.14.16 OnCE Commands .296
8.14.17 Target Site Debug System Requirements296
8.14.18 Interface Connector for JTAG/OnCE Serial Port296

8.2 Introduction

The device has two JTAG (Joint Test Action Group) TAP (test access
port) controllers:

1. A top-level controller that allows access to the the device’s
boundary scan (external pins) register, IDCODE register, and
bypass register

2. A low-level OnCE (on-chip emulation) controller that allows
access to the device’s central processor unit (CPU) and
debugger-related registers

At power-up, only the top-level TAP controller will be visible. If desired,
a user can then enable the low-level OnCE controller which will in turn
disable the top-level TAP controller. The top-level TAP controller will
remain disabled until either power is removed and reapplied to the
device or until the test reset signal, TRST, is asserted (logic 0).

The OnCE TAP controller can be enabled in either of two ways:

1. With the top-level TAP controller in its test-logic-reset state:

a. Deassert TRST, test reset (logic1)
b. Assert DE, the debug event (logic 0) for two TCLK, test clock,

cycles

2. Shift the ENABLE_MCU_ONCE instruction, 0x3, into the top-level
TAP controller’s instruction register (IR) and pass through the TAP
controller state update-IR.

Refer to Figure 8-1.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 249

R
efere

250
JT

A
G

 T
est A

ccess P
ort and O

nC
E

M
O

T
O

R
O

LA

JTA
G

 Te
st A

c
c

e
ss Po

rt a
nd

 O
nC

E

dule

DE TCLK TMS TRST

OnCE CMD
INSTRUCTION

REGISTER

OnCE
DATA

REGISTERS

MUX
ECT
nce M
anual

M
•C

O
R

E
 w

ith M
210/M

210S
 S

pecifications —
 R

ev. 1.0

Figure 8-1. Top-Level Tap Module and Low-Level (OnCE) TAP Mo

TOP-LEVEL
TAP

TAP
CONTROLLER

TAP
INSTRUCTION

REGISTER

IDCODE
(SHIFT)

REGISTER

MUX

LOW-LEVEL TDO

BOUNDARY
SCAN

(SHIFT)
REGISTER

MSB
199

0
LSB

TDO

BYPASS

1 BIT

LOW-LEVEL
TAP (OnCE)

MSB
31

0
LSB

MUX

MUX

OnCE
TAP

CONTROLLER

TDI

MODULE MODULE

MSB
3

0
LSB

IR[3:0] = 0 x 3?
ENABLE_MCU_ONCE

CMD

SEL
IF YES, THEN B,
SELECT LOW-LEVEL
(OnCE) TDO;
IF NO, THAN A,
SELECT

A B
SELECT

TOP-LEVEL TDO

TOP-LEVEL TDO

TDO

SELECT

JTAG Test Access Port and OnCE
Top-Level Test Access Port (TAP)

8.3 Top-Level Test Access Port (TAP)

The device provides a dedicated user-accessible test access port (TAP)
that is fully compatible with the IEEE 1149.1 Standard Test Access Port
and Boundary-Scan Architecture. Problems associated with testing
high-density circuit boards have led to development of this proposed
standard under the sponsorship of the Test Technology Committee of
IEEE and the Joint Test Action Group (JTAG). The device
implementation supports circuit-board test strategies based on this
standard.

The top-level TAP consists of five dedicated signal pins, a 16-state TAP
controller, an instruction register, and three data registers, a boundary
scan register for monitoring and controlling the device’s external pins, a
device identification register, and a 1-bit bypass (do nothing) register.

The top-level TAP provides the ability to:

1. Perform boundary scan (external pin) drive and monitor
operations to test circuitry external to the device

2. Disable the device’s output pins

3. Read the device’s IDCODE device identification register

CAUTION: Certain precautions must be observed to ensure that the top-level
TAP module does not interfere with non-test operation. See
8.10 Non-Scan Chain Operation for details.

The device’s top-level TAP module includes a TAP controller, a 4-bit
instruction register, and three test data registers (a 1-bit bypass register,
a 200-bit boundary scan register, and a 32-bit IDCODE register). The
top-level tap controller and the low-level (OnCE) TAP controller share
the external signals described here.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 251

JTAG Test Access Port and OnCE
8.3.1 Test Clock (TCLK)

TCLK is a test clock input to synchronize the test logic. TCLK is
independent of the device processor clock. It includes an internal pullup
resistor.

8.3.2 Test Mode Select (TMS)

TMS is a test mode select input (with an internal pullup resistor) that is
sampled on the rising edge of TCLK to sequence the TAP controller’s
state machine.

8.3.3 Test Data Input (TDI)

TDI is a serial test data input (with an internal pullup resistor) that is
sampled on the rising edge of TCLK.

8.3.4 Test Data Output (TDO)

TDO is a three-state test data output that is actively driven in the shift-IR
and shift-DR controller states. TDO changes on the falling edge of
TCLK.

8.3.5 Test Reset (TRST)

TRST is an active low asynchronous reset with an internal pullup resistor
that forces the TAP controller into the test-logic-reset state.

8.3.6 Debug Event (DE)

This is a bidirectional, active-low signal.

As an output, this signal will be asserted for three system clocks,
synchronous to the rising CLKOUT edge, to acknowledge that the CPU
has entered debug mode as a result of a debug request or a breakpoint
condition.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

252 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Top-Level Test Access Port (TAP)

As an input, this signal provides multiple functions such as:

• The main function is a means of entering debug mode from an
external command controller. This signal, when asserted, causes
the CPU to finish the current instruction being executed, save the
instruction pipeline information, enter debug mode, and wait for
commands to be entered from the serial debug input line. This
input must be asserted for at least three system clocks, sampled
with the rising CLKOUT edge. This function is ignored during
reset. While the processor is in debug mode, this signal is still
sampled but has no effect until debug mode is exited.

• Another input function is to enable OnCE. This is an alternate
method to the ENABLE_MCU_ONCE JTAG command to enable
the OnCE logic to be accessible via the JTAG interface. This input
signal must be asserted low (while in the test-logic-reset state with
POR/TRST not asserted) for at least two TCLK rising edges. Once
enabled, the OnCE will remain enabled until the next POR or
TRST resets.

• Another input function is as a wake-up event from a low-power
mode of operation. Asynchronously asserting this signal will cause
the clock controller to restart. This signal must be held asserted
until the M•CORE receives three valid rising edges on the system
clock. Then the processor will exit the low-power mode and go into
debug mode.

NOTE: If used to enter debug mode, DE must be pulled negated before the
processor exits debug mode to prevent a still low signal from being
unintentionally recognized as another debug request. Also, asserting
this signal to enter debug mode may prevent external logic from seeing
the processor output acknowledgment since the external pullup may not
be able to pull the signal negated before the handshake is asserted.
Finally, if using this signal to enable OnCE outside of reset it may be
seen as a request to enter debug mode.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 253

JTAG Test Access Port and OnCE
8.4 Top-Level TAP Controller

The top-level TAP controller is responsible for interpreting the sequence
of logical values on the TMS signal. It is a synchronous state machine
that controls the operation of the JTAG logic. The machine’s states are
shown in Figure 8-2. The value shown adjacent to each arc represents
the value of the TMS signal sampled on the rising edge of the TCLK
signal.

The top-level TAP controller can be asynchronously reset to the test-
logic-reset state by asserting TRST, test reset. As Figure 8-2 shows,
holding TMS high (to logic 1) while clocking TCLK through at least five
rising edges will also cause the state machine to enter its test-logic-reset
state.

Figure 8-2. Top-Level TAP Controller State Machine

TEST-LOGIC-
RESET

RUN-TEST/IDLE SELECT-DR_SCAN

CAPTURE-DR

SHIFT-DR

EXIT1-DR

PAUSE-DR

EXIT2-DR

UPDATE-DR

SELECT-IR_SCAN

CAPTURE-IR

SHIFT-IR

EXIT1-IR

PAUSE-IR

EXIT2-IR

UPDATE-IR

0

0

0

1

1

1

0 0

111

1

0

0

11

1

0

0

0

1

0

1

0

0

1

0

0

0

1

1

1

Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

254 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Instruction Shift Register

8.5 Instruction Shift Register

The device top-level TAP module uses a 4-bit instruction shift register
with no parity. This register transfers its value to a parallel hold register
and applies an instruction on the falling edge of TCLK when the TAP
state machine is in the update-IR state. To load the instructions into the
shift portion of the register, place the serial data on the TDI pin prior to
each rising edge of TCLK. The MSB of the instruction shift register is the
bit closest to the TDI pin and the LSB is the bit closest to the TDO pin.

Table 8-1 lists the instructions supported along with their opcodes,
IR3–IR0. The last three instructions in the table are reserved for
manufacturing purposes only.

Unused opcodes are currently decoded to perform the BYPASS
operation, but Motorola reserves the right to change their decodings in
the future.

8.5.1 EXTEST Instruction

The external test instruction (EXTEST) selects the boundary-scan
register. The EXTEST instruction forces all output pins and bidirectional
pins configured as outputs to the preloaded fixed values (with the
SAMPLE/PRELOAD instruction) and held in the boundary-scan update
registers. The EXTEST instruction can also configure the direction of
bidirectional pins and establish high-impedance states on some pins.
EXTEST also asserts internal reset for the device system logic to force
a predictable internal state while performing external boundary scan
operations.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 255

JTAG Test Access Port and OnCE
8.5.2 IDCODE Instruction

The IDCODE instruction selects the 32-bit IDCODE register for
connection as a shift path between the TDI pin and the TDO pin. This
instruction allows interrogation of the device to determine its version
number and other part identification data. The IDCODE register has
been implemented in accordance with the IEEE 1149.1 standard so that
the least significant bit of the shift register stage is set to logic 1 on the
rising edge of TCLK following entry into the capture-DR state. Therefore,
the first bit to be shifted out after selecting the IDCODE register is always

Table 8-1. JTAG Instructions

Instruction IR3–IR0 Instruction Summary

EXTEST 0000
Selects the boundary scan register while

applying fixed values to output pins and
asserting functional reset

IDCODE 0001 Selects IDCODE register for shift

SAMPLE/PRELOAD 0010
Selects the boundary scan register for

shifting, sampling, and preloading without
disturbing functional operation

ENABLE_MCU_ONCE 0011
Instruction to enable the M•CORE TAP

controller

HIGHZ 1001
Selects the bypass register while three-

stating all output pins and asserting
functional reset

CLAMP 1100
Selects bypass while applying fixed values to

output pins and asserting functional reset

BYPASS 1111
Selects the bypass register for data

operations

Reserved
0100
0110

Instruction for chip manufacturing purposes
only

Reserved 0101
Instruction for chip manufacturing purposes

only(1)

1. To exit this instruction, the TRST pin must be asserted or power-on reset.

Reserved
0111–10001
101–1110
1010–1011

Decoded to select bypass register(2)

2. Motorola reserves the right to change the decoding of the unused opcodes in the future.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

256 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Instruction Shift Register

a logic 1. The remaining 31 bits are also set to fixed values on the rising
edge of TCLK following entry into the capture-DR state.

IDCODE is the default instruction placed into the instruction register
when the top-level TAP resets. Thus, after a TAP reset, the IDCODE
(data) register will be selected automatically.

8.5.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction provides two separate functions.

First, it obtains a sample of the system data and control signals present
at the device input pins and just prior to the boundary scan cell at the
output pins. This sampling occurs on the rising edge of TCLK in the
capture-DR state when an instruction encoding of hex 2 is resident in the
instruction register. The user can observe this sampled data by shifting
it through the boundary scan register to the output TDO by using the
shift-DR state. Both the data capture and the shift operation are
transparent to system operation.

NOTE: The user is responsible for providing some form of external
synchronization to achieve meaningful results because there is no
internal synchronization between TCLK and the system clock.

The second function of the SAMPLE/PRELOAD instruction is to initialize
the boundary scan register update cells before selecting EXTEST or
CLAMP. This is achieved by ignoring the data being shifted out of the
TDO pin while shifting in initialization data. The update-DR state in
conjunction with the falling edge of TCLK can then transfer this data to
the update cells. This data will be applied to the external output pins
when EXTEST or CLAMP instruction is applied.

8.5.4 ENABLE_MCU_ONCE Instruction

The ENABLE_MCU_ONCE is a public instruction to enable the
M•CORE OnCE TAP controller. When the OnCE TAP controller is
enabled, the top-level TAP controller connects the internal OnCE TDO
to the pin TDO and remains in the run-test/idle state. It will remain in this
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 257

JTAG Test Access Port and OnCE
state until TRST is asserted. While the OnCE TAP controller is enabled,
the top-level JTAG remains transparent.

8.5.5 HIGHZ Instruction

The HIGHZ instruction is provided as a manufacturer’s optional public
instruction to prevent having to backdrive the output pins during circuit-
board testing. When HIGHZ is invoked, all output drivers, including the
2-state drivers, are turned off (for example, high impedance). The
instruction selects the bypass register. HIGHZ also asserts internal reset
for the device system logic to force a predictable internal state.

8.5.6 CLAMP Instruction

The CLAMP instruction selects the bypass register and asserts internal
reset while simultaneously forcing all output pins and bidirectional pins
configured as outputs to the fixed values that are preloaded and held in
the boundary scan update register. This instruction enhances test
efficiency by reducing the overall shift path to a single bit (the bypass
register) while conducting an EXTEST type of instruction through the
boundary scan register.

8.5.7 BYPASS Instruction

The BYPASS instruction selects the single-bit bypass register, creating
a single-bit shift register path from the TDI pin to the bypass register to
the TDO pin. This instruction enhances test efficiency by reducing the
overall shift path when a device other than the device processor
becomes the device under test on a board design with multiple chips on
the overall IEEE 1149.1 standard defined boundary scan chain. The
bypass register has been implemented in accordance with IEEE 1149.1
standard so that the shift register state is set to logic 0 on the rising edge
of TCLK following entry into the capture-DR state. Therefore, the first bit
to be shifted out after selecting the bypass register is always a logic 0 (to
differentiate a part that supports an IDCODE register from a part that
supports only the bypass register).
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

258 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
IDCODE Register

8.6 IDCODE Register

An IEEE 1149.1 standard compliant JTAG identification register
(IDCODE) has been included on the device.

Bits 31–28 — Version Number (Part Revision Number)
This is equivalent to the lower four bits of the PRN of the chip
identification register located in the chip configuration module.

Bits 27–22 — Design Center
Indicates the Motorola Microcontroller Division

Bits 21–12 — Device Number (Part Identification Number)
Bits 19-12 are equivalent to the PIN of the chip identification register
located in the chip configuration module.

Bits 11–1 — JEDEC ID
Indicates the reduced JEDEC ID for Motorola. JEDEC refers to the
Joint Electron Device Engineering Council. Refer to JEDEC
publication 106-A and chapter 11 of the IEEE 1149.1 standard for
further information on this field.

Bit 0
Differentiates this register as the JTAG IDCODE register (as opposed
to the bypass register), according to the IEEE 1149.1 standard

Bit 31 30 29 28 27 26 25 Bit 24

0 0 0 0 0 1 0 1

Bit 23 22 21 20 19 18 17 Bit 16

1 1 0 0 0 0 0 1

Bit 15 14 13 12 11 10 9 Bit 8

0 1 1 1 0 0 0 0

Bit 7 6 5 4 3 2 1 Bit 0

0 0 0 1 1 1 0 1

Figure 8-3. IDCODE Register Bit Specification
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 259

JTAG Test Access Port and OnCE
8.7 Bypass Register

The device includes an IEEE 1149.1 standard-compliant bypass
register, which creates a single bit shift register path from TDI to the
bypass register to TDO when the BYPASS instruction is selected.

8.8 Boundary SCAN Register

The device includes an IEEE 1149.1 standard-compliant boundary-scan
register. The boundary-scan register is connected between TDI and
TDO when the EXTEST or SAMPLE/PRELOAD instructions are
selected. This register captures signal pin data on the input pins, forces
fixed values on the output signal pins, and selects the direction and drive
characteristics (a logic value or high impedance) of the bidirectional and
three-state signal pins.

8.9 Restrictions

The test logic is implemented using static logic design, and TCLK can be
stopped in either a high or low state without loss of data. The system
logic, however, operates on a different system clock which is not
synchronized to TCLK internally. Any mixed operation requiring the use
of the IEEE 1149.1 standard test logic, in conjunction with system
functional logic that uses both clocks, must have coordination and
synchronization of these clocks done externally.

The control afforded by the output enable signals using the boundary
scan register and the EXTEST instruction requires a compatible circuit-
board test environment to avoid device-destructive configurations. The
user must avoid situations in which the device output drivers are enabled
into actively driven networks.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

260 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Non-Scan Chain Operation

The device features a low-power stop mode. The interaction of the scan
chain interface with low-power stop mode is:

1. The TAP controller must be in the test-logic-reset state to either
enter or remain in the low-power stop mode. Leaving the test-
logic-reset state negates the ability to achieve low-power, but
does not otherwise affect device functionality.

2. The TCLK input is not blocked in low-power stop mode. To
consume minimal power, the TCLK input should be externally
connected to VDD.

3. The TMS, TDI, TRST pins include on-chip pullup resistors. In low-
power stop mode, these three pins should remain either
unconnected or connected to VDD to achieve minimal power
consumption.

8.10 Non-Scan Chain Operation

Keeping the TAP controller in the test-logic-reset state will ensure that
the scan chain test logic is kept transparent to the system logic. It is
recommended that TMS, TDI, TCLK, and TRST be pulled up. TRST
could be connected to ground. However, since there is a pullup on
TRST, some amount of current will result. JTAG will be initialized to the
test-logic-reset state on power-up without TRST asserted low due to the
JTAG power-on-reset internal input. The low-level TAP module in the
M•CORE also has the power-on-reset input.

8.11 Boundary Scan

The device boundary-scan register contains 200 bits. This register can
be connected between TDI and TDO when EXTEST or
SAMPLE/PRELOAD instructions are selected. This register is used for
capturing signal pin data on the input pins, forcing fixed values on the
output signal pins, and selecting the direction and drive characteristics
(a logic value or high impedance) of the bidirectional and three-state
signal pins.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 261

JTAG Test Access Port and OnCE
This IEEE 1149.1 standard-compliant boundary-scan register contains
bits for bonded-out and non-bonded signals excluding JTAG signals,
analog signals, power supplies, compliance enable pins, and clock
signals.To maintain JTAG compliance, TEST should be held to logic 0
and DE should be held to logic 1. These non-scanned pins are shown in
Table 8-2.

Table 8-2. List of Pins Not Scanned in JTAG Mode

Pin Name Pin Type

EXTAL Clock/analog

XTAL Clock/analog

VDDSYN Supply

VSSSYN Supply

PQA4–PQA3 and PQA1–PQA0 Analog

PQB3–PQB0 Analog

VRH Supply

VRL Supply

VDDA Supply

VSSA Supply

VDDH Supply

TRST JTAG

TCLK JTAG

TMS JTAG

TDI JTAG

TDO JTAG

DE JTAG compliance enable

TEST JTAG compliance enable

Vpp Supply

VDDF Supply

VSSF Supply

VSTBY Supply

VDD Supply

VSS Supply
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

262 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Boundary Scan

Table 8-3 defines the boundary-scan register.

• The first column shows bit numbers assigned to each of the
register’s cells. The bit nearest to TDO (the first to be shifted in) is
defined as bit 0.

• The second column lists the logical state bit for each device pin
alternately with the read/write direction control bit for that pin. The
logic state bits are non-inverting with respect to their associated
pins, so that a 1 logical state bit equates to a logical high voltage
on its corresponding pin. A direction control bit value of 1 causes
a pin’s logical state to be expressed by its logic state bit, a read of
a pin. A direction control bit value of 0 causes a pin’s logical
voltage to follow the state of its logical state bit, a write to a pin.

Table 8-3. Boundary-Scan Register Definition (Sheet 1 of 4)
(Note: Shaded regions indicate optional pins)

Bit
Logical State and Direction
Control Bits for Each Pin

Bit
Logical State and Direction
Control Bits for Each Pin

0 D31 logical state 17 A18 direction control

1 D31 direction control 18 A19 logical state

2 A12 logical state 19 A19 direction control

3 A12 direction control 20 RSTOUT logical state

4 A13 logical state 21 RSTOUT direction control

5 A13 direction control 22 A20 logical state

6 A14 logical state 23 A20 direction control

7 A14 direction control 24 RESET logical state

8 A15 logical state 25 RESET direction control

9 A15 direction control 26 A21 logical state

10 A16 logical state 27 A21 direction control

11 A16 direction control 28 A22 logical state

12 A17 logical state 29 A22 direction control

13 A17 direction control 30 TEA logical state

14 CLKOUT logical state 31 TEA direction control

15 CLKOUT direction control 32 EB0 logical state

16 A18 logical state 33 EB0 direction control

34 EB1 logical state 64 CS2 logical state
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 263

JTAG Test Access Port and OnCE
35 EB1 direction control 65 CS2 direction control

36 TA logical state 66 INT4 logical state

37 TA direction control 67 INT4 direction control

38 EB2 logical state 68 CS3 logical state

39 EB2 direction control 69 CS3 direction control

40 SHS logical state 70 TC0 logical state

41 SHS direction control 71 TC0 direction control

42 EB3 logical state 72 INT3 logical state

43 EB3 direction control 73 INT3 direction control

44 OE logical state 74 TC1 logical state

45 OE direction control 75 TC1 direction control

46 SS logical state 76 INT2 logical state

47 SS direction control 77 INT2 direction control

48 SCK logical state 78 INT1 logical state

49 SCK direction control 79 INT1 direction control

50 MISO logical state 80 INT0 logical state

51 MISO direction control 81 INT0 direction control

52 MOSI logical state 82 RXD1 logical state

53 MOSI direction control 83 RXD1 direction control

54 INT7 logical state 84 TXD1 logical state

55 INT7 direction control 85 TXD1 direction control

56 INT6 logical state 86 RXD2 logical state

57 INT6 direction control 87 RXD2 direction control

58 CS0 logical state 88 TC2 logical state

59 CS0 direction control 89 TC2 direction control

60 CS1 logical state 90 TXD2 logical state

61 CS1 direction control 91 TXD2 direction control

62 INT5 logical state 92 CSE0 logical state

63 INT5 direction control 93 CSE0 direction control

94 ICOC1_0 logical state 124 D2 logical state

Table 8-3. Boundary-Scan Register Definition (Sheet 2 of 4)
(Note: Shaded regions indicate optional pins)

Bit
Logical State and Direction
Control Bits for Each Pin

Bit
Logical State and Direction
Control Bits for Each Pin
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

264 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Boundary Scan

95 ICOC1_0 direction control 125 D2 direction control

96 CSE1 logical state 126 D3 logical state

97 CSE1 direction control 127 D3 direction control

98 R/W logical state 128 D4 logical state

99 R/W direction control 129 D4 direction control

100 ICOC1_1 logical state 130 D5 logical state

101 ICOC1_1 direction control 131 D5 direction control

102 ICOC1_2 logical state 132 D6 logical state

103 ICOC1_2 direction control 133 D6 direction control

104 ICOC1_3 logical state 134 D7 logical state

105 ICOC1_3 direction control 135 D7 direction control

106 ICOC2_0 logical state 136 D8 logical state

107 ICOC2_0 direction control 137 D8 direction control

108 ICOC2_1 logical state 138 D9 logical state

109 ICOC2_1 direction control 139 D9 direction control

110 ICOC2_2 logical state 140 D10 logical state

111 ICOC2_2 direction control 141 D10 direction control

112 ICOC2_3 logical state 142 D11 logical state

113 ICOC2_3 direction control 143 D11 direction control

114 D0 logical state 144 D12 logical state

115 D0 direction control 145 D12 direction control

116 A0 logical state 146 D13 logical state

117 A0 direction control 147 D13 direction control

118 A1 logical state 148 D14 logical state

119 A1 direction control 149 D14 direction control

120 D1 logical state 150 A3 logical state

121 D1 direction control 151 A3 direction control

122 A2 logical state 152 A4 logical state

123 A2 direction control 153 A4 direction control

154 D15 logical state 177 A8 direction control

Table 8-3. Boundary-Scan Register Definition (Sheet 3 of 4)
(Note: Shaded regions indicate optional pins)

Bit
Logical State and Direction
Control Bits for Each Pin

Bit
Logical State and Direction
Control Bits for Each Pin
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 265

JTAG Test Access Port and OnCE
155 D15 direction control 178 A9 logical state

156 A5 logical state 179 A9 direction control

157 A5 direction control 180 D23 logical state

158 D16 logical state 181 D23 direction control

159 D16 direction control 182 A10 logical state

160 A6 logical state 183 A10 direction control

161 A6 direction control 184 D24 logical state

162 A7 logical state 185 D24 direction control

163 A7 direction control 186 D25 logical state

164 D17 logical state 187 D25 direction control

165 D17 direction control 188 A11 logical state

166 D18 logical state 189 A11 direction control

167 D18 direction control 190 D26 logical state

168 D19 logical state 191 D16 direction control

169 D19 direction control 192 D27 logical state

170 D20 logical state 193 D27 direction control

171 D20 direction control 194 D28 logical state

172 D21 logical state 195 D28 direction control

173 D21 direction control 196 D29 logical state

174 D22 logical state 197 D29 direction control

175 D22 direction control 198 D30 logical state

176 A8 logical state 199 D30 direction control

Table 8-3. Boundary-Scan Register Definition (Sheet 4 of 4)
(Note: Shaded regions indicate optional pins)

Bit
Logical State and Direction
Control Bits for Each Pin

Bit
Logical State and Direction
Control Bits for Each Pin
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

266 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Low-Level TAP (OnCE) Module

8.12 Low-Level TAP (OnCE) Module

The low-level TAP (OnCE, on-chip emulation) circuitry provides a
simple, inexpensive debugging interface that allows external access to
the processor’s internal registers and to memory/peripherals. OnCE
capabilities are controlled through a serial interface, mapped onto a
JTAG test access port (TAP) protocol.

Refer to Figure 8-4 for a block diagram of the OnCE.

NOTE: The interface to the OnCE controller and its resources is based on the
TAP defined for JTAG in the IEEE 1149.1 standard.

Figure 8-4. OnCE Block Diagram

Figure 8-5 shows the OnCE (low-level TAP module) data registers in the
device.

PIPELINE
INFORMATION

OnCE
CONTROLLER
AND SERIAL

BREAKPOINT
REGISTERS

AND
PC

FIFO

BREAKPOINT
AND TRACE

INTERFACE

LOGIC

COMPARATORS

TCLK
TDI
TMS
TDO
TRST
DE
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 267

R
efere

268
JT

A
G

 T
est A

ccess P
ort and O

nC
E

M
O

T
O

R
O

LA

JTA
G

 Te
st A

c
c

e
ss Po

rt a
nd

 O
nC

E

)

SQC
DR

IDRE
TME
FRZC
RCB

BCB

RCA

BCA
0

LSB

0
LSB

1 BIT

MSB
31

17
16

15
14
13

12
11
10

6
5
4

MSB
15

(SHIFT)
EGISTER,

OSR

BYPASS
REGISTER

PASS-

OnCE
STATUS

THROUGH,
BYPASS

0xd 0xe 0x1f

DETAILED VIEW OF OnCE DATA REGISTERS BLOCK FOUND IN FIGURE 8-1
nce M
anual

M
•C

O
R

E
 w

ith M
210/M

210S
 S

pecifications —
 R

ev. 1.0

Figure 8-5. Low-Level (OnCE) Tap Module Data Registers (DRs

CTL

IR

PC

PSR

WBBR

TDO

0
LSB

0
LSB

0
LSB

0
LSB

0
LSB

0
LSB

0
LSB

0
LSB

1 BIT

MSB
15

MSB
15

MSB
31

MSB

MSB
31

MSB
31

MSB
31

MSB
15 127

112
111

96
95

64
63

32
31

MEMORY
BKPT

COUNTER A
(SHIFT)

REGISTER,
MBCA

PROGRAM
COUNTER
FIFO AND

INCREMENT
COUNTER

(SHIFT)
REGISTER,

PC FIFO

BKPT
ADDRESS

BASE
REGISTER B

(SHIFT)
REGISTER,

BABB

BKPT
ADDRESS

MASK
REGISTER B

(SHIFT)
REGISTER,

BAMB

R(SHIFT)
REGISTER,

BYPASS

(SHIFT)
REGISTER,

OTC (SHIFT)
 REGISTER,

MBCB
(SHIFT)

REGISTER,
BABA

(SHIFT)
REGISTER,

BAMA

(SHIFT)
REGISTER,

OCR
(SHIFT)

REGISTER,
CPUSCR

BYPASS
REGISTER

PASS-

TRACE
COUNTER

MEMORY
BKPT

COUNTER
B

BKPT
ADDRESS

BASE
REGISTER

A

BKPT
ADDRESS

MASK
REGISTER

A

CPU
SCAN

CHAIN
REGISTER

OnCE
CONTROL
REGISTER

THROUGH

0
LSB

MSB
31

TDI

MUX
OCMR,

0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xcRS[4:0] =

RS4–RS0 FROM
ONCE CMD (INSTRUCTION) REGISTER, OCMR
IN FIGURE 8-1 (TEST DATA IN)

(TEST DATA OUT)

JTAG Test Access Port and OnCE
Signal Descriptions

8.13 Signal Descriptions

The OnCE pin interface is used to transfer OnCE instructions and data
to the OnCE control block. Depending on the particular resource being
accessed, the CPU may need to be placed in debug mode. For
resources outside of the CPU block and contained in the OnCE block,
the processor is not disturbed and may continue execution. If a
processor resource is required, the OnCE controller may assert a debug
request (DBGRQ) to the CPU. This causes the CPU to finish the
instruction being executed, save the instruction pipeline information,
enter debug mode, and wait for further commands. Asserting DBGRQ
causes the device to exit stop, doze, or wait mode.

8.13.1 Debug Serial Input (TDI)

Data and commands are provided to the OnCE controller through the
TDI pin. Data is latched on the rising edge of the TCLK serial clock. Data
is shifted into the OnCE serial port least significant bit (LSB) first.

8.13.2 Debug Serial Clock (TCLK)

The TCLK pin supplies the serial clock to the OnCE control block. The
serial clock provides pulses required to shift data and commands into
and out of the OnCE serial port. (Data is clocked into the OnCE on the
rising edge and is clocked out of the OnCE serial port on the falling
edge.) The debug serial clock frequency must be no greater than
50 percent of the processor clock frequency.

8.13.3 Debug Serial Output (TDO)

Serial data is read from the OnCE block through the TDO pin. Data is
always shifted out the OnCE serial port LSB first. Data is clocked out of
the OnCE serial port on the falling edge of TCLK. TDO is three-stateable
and is actively driven in the shift-IR and shift-DR controller states. TDO
changes on the falling edge of TCLK.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 269

JTAG Test Access Port and OnCE
8.13.4 Debug Mode Select (TMS)

The TMS input is used to cycle through states in the OnCE debug
controller. Toggling the TMS pin while clocking with TCLK controls the
transitions through the TAP state controller.

8.13.5 Test Reset (TRST)

The TRST input is used to reset the OnCE controller externally by
placing the OnCE control logic in a test logic reset state. OnCE operation
is disabled in the reset controller and reserved states.

8.13.6 Debug Event (DE)

The DE pin is a bidirectional open drain pin. As an input, DE provides a
fast means of entering debug mode from an external command
controller. As an output, this pin provides a fast means of acknowledging
debug mode entry to an external command controller.

The assertion of this pin by a command controller causes the CPU to
finish the current instruction being executed, save the instruction
pipeline information, enter debug mode, and wait for commands to be
entered from the TDI line. If DE was used to enter debug mode, then DE
must be negated after the OnCE responds with an acknowledgment and
before sending the first OnCE command.

The assertion of this pin by the CPU acknowledges that it has entered
debug mode and is waiting for commands to be entered from the TDI
line.

8.14 Functional Description

The on-chip emulation (OnCE) circuitry provides a simple, inexpensive
debugging interface that allows external access to the processor’s
internal registers and to memory/peripherals. OnCE capabilities are
controlled through a serial interface, mapped onto a JTAG test access
port (TAP) protocol. Figure 8-6 shows the components of the OnCE
circuitry.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

270 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

The interface to the OnCE controller and its resources are based on the
TAP defined for JTAG in the IEEE 1149.1 standard.

8.14.1 Operation

An instruction is scanned into the OnCE module through the serial
interface and then decoded. Data may then be scanned in and used to
update a register or resource on a write to the resource, or data
associated with a resource may be scanned out for a read of the
resource.

Figure 8-6. OnCE Controller

CAPTURE — DR

SHIFT — DR

EXIT1 — DR

PAUSE — DR

EXIT2 — DR

UPDATE — DR

SELECT — IR
SCAN

CAPTURE — IR

SHIFT — IR

EXIT1 — IR

PAUSE — IR

EXIT2 — IR

UPDATE — IR

SELECT DR-
SCAN

RUN-TEST/IDLE

TEST-LOGIC-RESET

1

0

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

0 0

00

0 0

00

00

0

0

00

0

M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 271

JTAG Test Access Port and OnCE
For accesses to the CPU internal state, the OnCE controller requests the
CPU to enter debug mode via the CPU DBGRQ input. Once the CPU
enters debug mode, as indicated by the OnCE status register, the
processor state may be accessed through the CPU scan register.

The OnCE controller is implemented as a 16-state finite state machine,
with a one-to-one correspondence to the states defined for the JTAG
TAP controller.

CPU registers and the contents of memory locations are accessed by
scanning instructions and data into and out of the CPU scan chain.
Required data is accessed by executing the scanned instructions.
Memory locations may be read by scanning in a load instruction to the
CPU that references the desired memory location, executing the load
instruction, and then scanning out the result of the load. Other resources
are accessed in a similar manner.

Resources contained in the OnCE module that do not require the CPU
to be halted for access may be controlled while the CPU is executing and
do not interfere with normal processor execution. Accesses to certain
resources, such as the PC FIFO and the count registers, while not part
of the CPU, may require the CPU to be stopped to allow access to avoid
synchronization hazards. If it is known that the CPU clock is enabled and
running no slower than the TCLK input, there is sufficient
synchronization performed to allow reads but not writes of these specific
resources. Debug firmware may ensure that it is safe to access these
resources by reading the OSR to determine the state of the CPU prior to
access. All other cases require the CPU to be in the debug state for
deterministic operation.

8.14.2 OnCE Controller and Serial Interface

Figure 8-7 is a block diagram of the OnCE controller and serial interface.

The OnCE command register acts as the instruction register (IR) for the
TAP controller. All other OnCE resources are treated as data registers
(DR) by the TAP controller. The command register is loaded by serially
shifting in commands during the TAP controller shift-IR state, and is
loaded during the update-IR state. The command register selects a
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

272 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

OnCE resource to be accessed as a DR during the TAP controller
capture-DR, shift-DR and update-DR states.

Figure 8-7. OnCE Controller and Serial Interface

8.14.3 OnCE Interface Signals

The following paragraphs describe the OnCE interface signals to other
internal blocks associated with the OnCE controller. These signals are
not available externally, and descriptions are provided to improve
understanding of OnCE operation.

8.14.3.1 Internal Debug Request Input (IDR)

The internal debug request input is a hardware signal which is used in
some implementations to force an immediate debug request to the CPU.
If present and enabled, it functions in an identical manner to the control
function provided by the DR control bit in the OCR. This input is
maskable by a control bit in the OCR.

OnCE COMMAND REGISTER

OnCE STATUS
AND CONTROL

REGISTERS

ISBKPT

ISTRACE

ISDR

OnCE
DECODER

OnCE TAP
CONTROLLER

TDI

TCLK

TDO

TMS

REGISTER
READ

CPU
CONTROL/

STATUS

REGISTER
WRITE
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 273

JTAG Test Access Port and OnCE
8.14.3.2 CPU Debug Request (DBGRQ)

The DBGRQ signal is asserted by the OnCE control logic to request the
CPU to enter the debug state. It may be asserted for a number of
different conditions. Assertion of this signal causes the CPU to finish the
current instruction being executed, save the instruction pipeline
information, enter debug mode, and wait for further commands.
Asserting DBGRQ causes the device to exit stop, doze, or wait mode.

8.14.3.3 CPU Debug Acknowledge (DBGACK)

The CPU asserts the DBGACK signal upon entering the debug state.
This signal is part of the handshake mechanism between the OnCE
control logic and the CPU.

8.14.3.4 CPU Breakpoint Request (BRKRQ)

The BRKRQ signal is asserted by the OnCE control logic to signal that
a breakpoint condition has occurred for the current CPU bus access.

8.14.3.5 CPU Address, Attributes (ADDR, ATTR)

The CPU address and attribute information may be used in the memory
breakpoint logic to qualify memory breakpoints with access address and
cycle type information.

8.14.3.6 CPU Status (PSTAT)

The trace logic uses the PSTAT signals to qualify trace count
decrements with specific CPU activity.

8.14.3.7 OnCE Debug Output (DEBUG)

The DEBUG signal is used to indicate to on-chip resources that a debug
session is in progress. Peripherals and other units may use this signal to
modify normal operation for the duration of a debug session. This may
involve the CPU executing a sequence of instructions solely for the
purpose of visibility/system control. These instructions are not part of the
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

274 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

normal instruction stream that the CPU would have executed had it not
been placed in debug mode.

This signal is asserted the first time the CPU enters the debug state and
remains asserted until the CPU is released by a write to the OnCE
command register with the GO and EX bits set, and a register specified
as either no register selected or the CPUSCR. This signal remains
asserted even though the CPU may enter and exit the debug state for
each instruction executed under control of the OnCE controller.

8.14.4 OnCE Controller Registers

This section describes the OnCE controller registers:

• OnCE command register (OCMR)

• OnCE control register (OCR)

• OnCE status register (OSR)

All OnCE registers are addressed by means of the RS field in the OCMR,
as shown in Table 8-4.

8.14.4.1 OnCE Command Register

The OnCE command register (OCMR) is an 8-bit shift register that
receives its serial data from the TDI pin. This register corresponds to the
JTAG IR and is loaded when the update-IR TAP controller state is
entered. It holds the 8-bit commands shifted in during the shift-IR
controller state to be used as input for the OnCE decoder. The OCMR
contains fields for controlling access to a OnCE resource, as well as
controlling single-step operation, and exit from OnCE mode.

Although the OCMR is updated during the update-IR TAP controller
state, the corresponding resource is accessed in the DR scan sequence
of the TAP controller, and as such, the update-DR state must be
transitioned through in order for an access to occur. In addition, the
update-DR state must also be transitioned through in order for the
single-step and/or exit functionality to be performed, even though the
command appears to have no data resource requirement associated
with it.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 275

JTAG Test Access Port and OnCE
R/W — Read/Write Bit
1 = Read the data in the register specified by the RS field.
0 = Write the data associated with the command into the register

specified by the RS field.

GO — Go Bit
When the GO bit is set, the device executes the instruction in the IR
register in the CPUSCR. To execute the instruction, the processor
leaves debug mode, executes the instruction, and if the EX bit is
cleared, returns to debug mode immediately after executing the
instruction. The processor resumes normal operation if the EX bit is
set. The GO command is executed only if the operation is a read/write
to either the CPUSCR or to “no register selected.” Otherwise, the GO
bit has no effect. The processor leaves debug mode after the TAP
controller update-DR state is entered.

1 = Execute instruction in IR
0 = Inactive (no action taken)

EX — Exit Bit
When the EX bit is set, the processor leaves debug mode and
resumes normal operation until another debug request is generated.
The exit command is executed only if the GO bit is set and the
operation is a read/write to the CPUSCR or a read/write to “no register
selected.” Otherwise, the EX bit has no effect. The processor exits
debug mode after the TAP controller update-DR state is entered.

1 = Leave debug mode
0 = Remain in debug mode

RS4–RS0 — Register Select Field
The RS field defines the source for the read operation or the
destination for the write operation. Table 8-4 shows OnCE register
addresses.

Bit 7 6 5 4 3 2 1 Bit 0

R/W G EX RS4 RS3 RS2 RS1 RS0

Figure 8-8. OnCE Command Register (OCMR)
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

276 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

Table 8-4. OnCE Register Addressing

RS4–RS0 Register Selected

00000 Reserved

00001 Reserved

00010 Reserved

00011 OTC — OnCE trace counter

00100 MBCA — memory breakpoint counter A

00101 MBCB — memory breakpoint counter B

00110 PC FIFO — program counter FIFO and increment counter

00111 BABA — breakpoint address base register A

01000 BABB — breakpoint address base register B

01001 BAMA — breakpoint address mask register A

01010 BAMB — breakpoint address mask register B

01011 CPUSCR — CPU scan chain register

01100 Bypass — no register selected

01101 OCR — OnCE control register

01110 OSR — OnCE status register

01111 Reserved (factory test control register — do not access)

10000 Reserved (MEM_BIST — do not access)

10001–10110 Reserved (bypass, do not access)

10111 Reserved (LSRL, do not access)

11000–11110 Reserved (bypass, do not access)

11111 Bypass
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 277

JTAG Test Access Port and OnCE
8.14.4.2 OnCE Control Register

The 32-bit OnCE control register (OCR) selects the events that put the
device in debug mode and enables or disables sections of the OnCE
logic.

SQC1 and SQC0 — Sequential Control Field
The SQC field allows memory breakpoint B and trace occurrences to
be suspended until a qualifying event occurs. Test logic reset clears
the SQC field. See Table 8-5.

Bit 31 30 29 28 27 26 25 Bit 24

Read: 0 0 0 0 0 0 0 0

Write:

Reset: 0 0 0 0 0 0 0 0

Bit 23 22 21 20 19 18 17 Bit 16

Read: 0 0 0 0 0 0
SQC1 SQC0

Write:

Reset: 0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 Bit 8

Read:
DR IDRE TME FRZC RCB BCB4 BCB3 BCB2

Write:

Reset: 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 Bit 0

Read:
BCB1 BCB0 RCA BCA4 BCA3 BCA2 BCA1 BCA0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or reserved

Figure 8-9. OnCE Control Register (OCR)
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

278 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

DR — Debug Request Bit
DR requests the CPU to enter debug mode unconditionally. The PM
bits in the OnCE status register indicate that the CPU is in debug
mode. Once the CPU enters debug mode, it returns there even with
a write to the OCMR with GO and EX set until the DR bit is cleared.
Test logic reset clears the DR bit.

IDRE — Internal Debug Request Enable Bit
The internal debug request (IDR) input to the OnCE control logic may
not be used in all implementations. In some implementations, the IDR
control input may be connected and used as an additional hardware
debug request. Test logic reset clears the IDRE bit.

1 = IDR input enabled
0 = IDR input disabled

Table 8-5. Sequential Control Field Settings

SQC1
and SQC0

Meaning

00
Disable sequential control operation. Memory breakpoints and trace

operation are unaffected by this field.

01

Suspend normal trace counter operation until a breakpoint condition
occurs for memory breakpoint B. In this mode, memory breakpoint B
occurrences no longer cause breakpoint requests to be generated.
Instead, trace counter comparisons are suspended until the first
memory breakpoint B occurrence. After the first memory breakpoint
B occurrence, trace counter control is released to perform normally,
assuming TME is set. This allows a sequence of breakpoint
conditions to be specified prior to trace counting.

10

Qualify memory breakpoint B matches with a breakpoint occurrence
for memory breakpoint A. In this mode, memory breakpoint A
occurrences no longer cause breakpoint requests to be generated.
Instead, memory breakpoint B comparisons are suspended until the
first memory breakpoint A occurrence. After the first memory
breakpoint A occurrence, memory breakpoint B is enabled to
perform normally. This allows a sequence of breakpoint conditions
to be specified.

11

Combine the 01 and 10 qualifications. In this mode, no breakpoint
requests are generated, and trace count operation is enabled once
a memory breakpoint B occurrence follows a memory breakpoint A
occurrence if TME is set.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 279

JTAG Test Access Port and OnCE
TME — Trace Mode Enable Bit
TME enables trace operation. Test logic reset clears the TME bit.
Trace operation is also affected by the SQC field.

1 = Trace operation enabled
0 = Trace operation disabled

FRZC — Freeze Control Bit
This control bit is used in conjunction with memory breakpoint B
registers to select between asserting a breakpoint condition when a
memory breakpoint B occurs or freezing the PC FIFO from further
updates when memory breakpoint B occurs while allowing the CPU to
continue execution. The PC FIFO remains frozen until the FRZO bit
in the OSR is cleared.

1 = Memory breakpoint B occurrence freezes PC FIFO and does
not assert breakpoint condition.

0 = Memory breakpoint B occurrence asserts breakpoint condition.

RCB and RCA — Memory Breakpoint B and A Range Control Bits
RCB and RDA condition enabled memory breakpoint occurrences
happen when memory breakpoint matches are either within or outside
the range defined by memory base address and mask.

1 = Condition breakpoint on access outside of range
0 = Condition breakpoint on access within range

BCB4–BCB0 and BCA4–BCA0 — Memory Breakpoint B and A Control
Fields

The BCB and BCA fields enable memory breakpoints and qualify the
access attributes to select whether the breakpoint matches are
recognized for read, write, or instruction fetch (program space)
accesses. Test logic reset clears BCB4–BCB0 and BCA4–BCA0.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

280 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

Table 8-6. Memory Breakpoint Control Field Settings

BCB4–BCB0
BCA4–BCA0

Description

00000 Breakpoint disabled

00001 Qualify match with any access

00010 Qualify match with any instruction access

00011 Qualify match with any data access

00100 Qualify match with any change of flow instruction access

00101 Qualify match with any data write

00110 Qualify match with any data read

00111 Reserved

01XXX Reserved

10000 Reserved

10001 Qualify match with any user access

10010 Qualify match with any user instruction access

10011 Qualify match with any user data access

10100 Qualify match with any user change of flow access

10101 Qualify match with any user data write

10110 Qualify match with any user data read

10111 Reserved

11000 Reserved

11001 Qualify match with any supervisor access

11010 Qualify match with any supervisor instruction access

11011 Qualify match with any supervisor data access

11100 Qualify match with any supervisor change of flow access

11101 Qualify match with any supervisor data write

11110 Qualify match with any supervisor data read

11111 Reserved
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 281

JTAG Test Access Port and OnCE
8.14.4.3 OnCE Status Register

The 16-bit OnCE status register (OSR) indicates the reason(s) that
debug mode was entered and the current operating mode of the CPU.

HDRO — Hardware Debug Request Occurrence Flag
HDRO is set when the processor enters debug mode as a result of a
hardware debug request from the IDR signal or the DE pin. This bit is
cleared on test logic reset or when debug mode is exited with the GO
and EX bits set.

DRO — Debug Request Occurrence Flag
DRO is set when the processor enters debug mode and the debug
request (DR) control bit in the OnCE control register is set. This bit is
cleared on test logic reset or when debug mode is exited with the GO
and EX bits set.

MBO — Memory Breakpoint Occurrence Flag
MBO is set when a memory breakpoint request has been issued to
the CPU via the BRKRQ input and the CPU enters debug mode. In
some situations involving breakpoint requests on instruction
prefetches, the CPU may discard the request along with the prefetch.
In this case, this bit may become set due to the CPU entering debug
mode for another reason. This bit is cleared on test logic reset or
when debug mode is exited with the GO and EX bits set.

Bit 15 14 13 12 11 10 9 Bit 8

Read: 0 0 0 0 0 0 HDRO DRO

Write:

Reset: 0 0

Bit 7 6 5 4 3 2 1 Bit 0

Read: MBO SWO TO FRZO SQB SQA PM1 PM0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented or reserved

Figure 8-10. OnCE Status Register (OSR)
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

282 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

SWO — Software Debug Occurrence Flag
SWO bit is set when the processor enters debug mode of operation
as a result of the execution of the BKPT instruction. This bit is cleared
on test logic reset or when debug mode is exited with the GO and EX
bits set.

TO — Trace Count Occurrence Flag
TO is set when the trace counter reaches zero with the trace mode
enabled and the CPU enters debug mode. This bit is cleared on test
logic reset or when debug mode is exited with the GO and EX bits set.

FRZO — FIFO Freeze Occurrence Flag
FRZO is set when a FIFO freeze occurs. This bit is cleared on test
logic reset or when debug mode is exited with the GO and EX bits set.

SQB — Sequential Breakpoint B Arm Occurrence Flag
SQB is set when sequential operation is enabled and a memory
breakpoint B event has occurred to enable trace counter operation.
This bit is cleared on test logic reset or when debug mode is exited
with the GO and EX bits set.

SQA — Sequential Breakpoint A Arm Occurrence Flag
SQA is set when sequential operation is enabled and a memory
breakpoint A event has occurred to enable memory breakpoint B
operation. This bit is cleared on test logic reset or when debug mode
is exited with the GO and EX bits set.

PM1 and PM0 — Processor Mode Field
These flags reflect the processor operating mode. They allow
coordination of the OnCE controller with the CPU for synchronization.

Table 8-7. Processor Mode Field Settings

PM1
and PM0

Meaning

00 Processor in normal mode

01 Processor in stop, doze, or wait mode

10 Processor in debug mode

11 Reserved
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 283

JTAG Test Access Port and OnCE
8.14.5 OnCE Decoder (ODEC)

The ODEC receives as input the 8-bit command from the OCMR and
status signals from the processor. The ODEC generates all the strobes
required for reading and writing the selected OnCE registers.

8.14.6 Memory Breakpoint Logic

Memory breakpoints can be set for a particular memory location or on
accesses within an address range. The breakpoint logic contains an
input latch for addresses, registers that store the base address and
address mask, comparators, attribute qualifiers, and a breakpoint
counter. Figure 8-11 illustrates the basic functionality of the OnCE
memory breakpoint logic. This logic is duplicated to provide two
independent breakpoint resources.

Figure 8-11. OnCE Memory Breakpoint Logic

ADDRESS COMPARATOR

DEC

ADDRESS MASK REGISTER X

BREAKPOINT COUNTER

MEMORY
BREAKPOINT

QUALIFICATION

MATCH

BC[4:0], RCx

BREAKPOINT
MATCH
OCCURRED

ISBKPTx

COUNT = 0

DSO
DSI

DSCK

ADDR[31:0]
ATTR

MEMORY ADDRESS LATCH

ADDRESS BASE REGISTER X
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

284 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

Address comparators can be used to determine where a program may
be getting lost or when data is being written to areas which should not
be written. They are also useful in halting a program at a specific point
to examine or change registers or memory. Using address comparators
to set breakpoints enables the user to set breakpoints in RAM or ROM
in any operating mode. Memory accesses are monitored according to
the contents of the OCR.

The address comparator generates a match signal when the address on
the bus matches the address stored in the breakpoint address base
register, as masked with individual bit masking capability provided by the
breakpoint address mask register. The address match signal and the
access attributes are further qualified with the RCx4–RCx0 and
BCx4–BCx0 control bits. This qualification is used to decrement the
breakpoint counter conditionally if its contents are non-zero. If the
contents are zero, the counter is not decremented and the breakpoint
event occurs (ISBKPTx asserted).

8.14.6.1 Memory Address Latch (MAL)

The MAL is a 32-bit register that latches the address bus on every
access.

8.14.6.2 Breakpoint Address Base Registers

The 32-bit breakpoint address base registers (BABA and BABB) store
memory breakpoint base addresses. BABA and BABB can be read or
written through the OnCE serial interface. Before enabling breakpoints,
the external command controller should load these registers.

8.14.7 Breakpoint Address Mask Registers

The 32-bit breakpoint address mask registers (BAMA and BAMB)
registers store memory breakpoint base address masks. BAMA and
BAMB can be read or written through the OnCE serial interface. Before
enabling breakpoints, the external command controller should load
these registers.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 285

JTAG Test Access Port and OnCE
8.14.7.1 Breakpoint Address Comparators

The breakpoint address comparators are not externally accessible. Each
compares the memory address stored in MAL with the contents of BABx,
as masked by BAMx, and signals the control logic when a match occurs.

8.14.7.2 Memory Breakpoint Counters

The 16-bit memory breakpoint counter registers (MBCA and MBCB) are
loaded with a value equal to the number of times, minus one, that a
memory access event should occur before a memory breakpoint is
declared. The memory access event is specified by the RCx4–RCx0 and
BCx4–BCx0 bits in the OCR and by the memory base and mask
registers. On each occurrence of the memory access event, the
breakpoint counter, if currently non-zero, is decremented. When the
counter has reached the value of zero and a new occurrence takes
place, the ISBKPTx signal is asserted and causes the CPU’s BRKRQ
input to be asserted. The MBCx can be read or written through the OnCE
serial interface.

Anytime the breakpoint registers are changed, or a different breakpoint
event is selected in the OCR, the breakpoint counter must be written
afterward. This assures that the OnCE breakpoint logic is reset and that
no previous events will affect the new breakpoint event selected.

8.14.8 OnCE Trace Logic

The OnCE trace logic allows the user to execute instructions in single or
multiple steps before the device returns to debug mode and awaits
OnCE commands from the debug serial port. The OnCE trace logic is
independent of the M•CORE trace facility, which is controlled through
the trace mode bits in the M•CORE processor status register. The OnCE
trace logic block diagram is shown in Figure 8-12.

8.14.8.1 OnCE Trace Counter

The OnCE trace counter register (OTC) is a 16-bit counter that allows
more than one instruction to be executed in real time before the device
returns to debug mode. This feature helps the software developer debug
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

286 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

sections of code that are time-critical. The trace counter also enables the
user to count the number of instructions executed in a code segment.

Figure 8-12. OnCE Trace Logic Block Diagram

The OTC register can be read, written, or cleared through the OnCE
serial interface. If N instructions are to be executed before entering
debug mode, the trace counter should be loaded with N – 1. N must not
equal zero unless the sequential breakpoint control capability is being
used. In this case a value of zero (indicating a single instruction) is
allowed.

A hardware reset clears the OTC.

8.14.8.2 Trace Operation

To initiate trace mode operation:

1. Load the OTC register with a value. This value must be non-zero,
unless sequential breakpoint control operation is enabled in the
OCR register. In this case, a value of zero (indicating a single
instruction) is allowed.

2. Initialize the program counter and instruction register in the
CPUSCR with values corresponding to the start location of the
instruction(s) to be executed real time.

DEC
OnCE TRACE COUNTER

COUNT = 0

ISTRACE

DSO

DSI

DSCK

END
OF

INSTRUCTION
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 287

JTAG Test Access Port and OnCE
3. Set the TME bit in the OCR.

4. Release the processor from debug mode by executing the
appropriate command issued by the external command controller.

When debug mode is exited, the counter is decremented after each
execution of an instruction. Interrupts can be serviced, and all
instructions executed (including interrupt services) will decrement the
trace counter.

When the trace counter decrements to zero, the OnCE control logic
requests that the processor re-enter debug mode, and the trace
occurrence bit TO in the OSR is set to indicate that debug mode has
been requested as a result of the trace count function. The trace counter
allows a minimum of two instructions to be specified for execution prior
to entering trace (specified by a count value of one), unless sequential
breakpoint control operation is enabled in the OCR. In this case, a value
of zero (indicating a single instruction) is allowed.

8.14.9 Methods of Entering Debug Mode

The PM status field in the OSR indicates that the CPU has entered
debug mode. The following paragraphs discuss conditions that invoke
debug mode.

8.14.9.1 Debug Request During RESET

When the DR bit in the OCR is set, assertion of RESET causes the
device to enter debug mode. In this case the device may fetch the reset
vector and the first instruction of the reset exception handler but does not
execute an instruction before entering debug mode.

8.14.9.2 Debug Request During Normal Activity

Setting the DR bit in the OCR during normal device activity causes the
device to finish the execution of the current instruction and then enter
debug mode. Note that in this case the device completes the execution
of the current instruction and stops after the newly fetched instruction
enters the CPU instruction latch. This process is the same for any newly
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

288 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

fetched instruction, including instructions fetched by interrupt processing
or those that will be aborted by interrupt processing.

8.14.9.3 Debug Request During Stop, Doze, or Wait Mode

Setting the DR bit in the OCR when the device is in stop, doze, or wait
mode (for instance, after execution of a STOP, DOZE, or WAIT
instruction) causes the device to exit the low-power state and enter the
debug mode. Note that in this case, the device completes the execution
of the STOP, DOZE, or WAIT instruction and halts after the next
instruction enters the instruction latch.

8.14.9.4 Software Request During Normal Activity

Executing the BKPT instruction when the FDB (force debug enable
mode) control bit in the control state register is set causes the CPU to
enter debug mode after the instruction following the BKPT instruction
has entered the instruction latch.

8.14.10 Enabling OnCE Trace Mode

When the OnCE trace mode mechanism is enabled and the trace count
is greater than zero, the trace counter is decremented for each
instruction executed. Completing execution of an instruction when the
trace counter is zero causes the CPU to enter debug mode.

NOTE: Only instructions actually executed cause the trace counter to
decrement. An aborted instruction does not decrement the trace counter
and does not invoke debug mode.

8.14.11 Enabling OnCE Memory Breakpoints

When the OnCE memory breakpoint mechanism is enabled with a
breakpoint counter value of zero, the device enters debug mode after
completing the execution of the instruction that caused the memory
breakpoint to occur. In case of breakpoints on instruction fetches, the
breakpoint is acknowledged immediately after the execution of the
fetched instruction. In case of breakpoints on data memory addresses,
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 289

JTAG Test Access Port and OnCE
the breakpoint is acknowledged after the completion of the memory
access instruction.

8.14.12 Pipeline Information and Write-Back Bus Register

A number of on-chip registers store the CPU pipeline status and are
configured in the CPU scan chain register (CPUSCR) for access by the
OnCE controller. The CPUSCR is used to restore the pipeline and
resume normal device activity upon return from debug mode. The
CPUSCR also provides a mechanism for the emulator software to
access processor and memory contents. Figure 8-13 shows the block
diagram of the pipeline information registers contained in the CPUSCR.

Figure 8-13. CPU Scan Chain Register (CPUSCR)

CTL

WBBR

31

0

0

PSR

31 0

PC

31 0

15

IR

015

TDO

TDI
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

290 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

8.14.12.1 Program Counter Register

The program counter register (PC) is a 32-bit latch that stores the value
in the CPU program counter when the device enters debug mode. The
CPU PC is affected by operations performed during debug mode and
must be restored by the external command controller when the CPU
returns to normal mode.

8.14.12.2 Instruction Register

The instruction register (IR) provides a mechanism for controlling the
debug session. The IR allows the debug control block to execute
selected instructions; the debug control module provides single-step
capability.

When scan-out begins, the IR contains the opcode of the next instruction
to be executed at the time debug mode was entered. This opcode must
be saved in order to resume normal execution at the point debug mode
was entered.

On scan-in, the IR can be filled with an opcode selected by debug control
software in preparation for exiting debug mode. Selecting appropriate
instructions allows a user to examine or change memory locations and
processor registers.

Once the debug session is complete and normal processing is to be
resumed, the IR can be loaded with the value originally scanned out.

8.14.12.3 Control State Register

The control state register (CTL) is used to set control values when debug
mode is exited. On scan-in, this register is used to control specific
aspects of the CPU. Certain bits reflect internal processor status and
should be restored to their original values.

The CTL register is a 16-bit latch that stores the value of certain internal
CPU state variables before debug mode is entered. This register is
affected by the operations performed during the debug session and
should be restored by the external command controller when returning
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 291

JTAG Test Access Port and OnCE
to normal mode. In addition to saved internal state variables, the bits are
used by emulation firmware to control the debug process.

Reserved bits represent the internal processor state. Restore these bits
to their original value after a debug session is completed, for example,
when a OnCE command is issued with the GO and EX bits set and not
ignored. Set these bits to 1s while instructions are executed during a
debug session.

FFY — Feed Forward Y Operand Bit
This control bit is used to force the content of the WBBR to be used
as the Y operand value of the first instruction to be executed following
an update of the CPUSCR. This gives the debug firmware the
capability of updating processor registers by initializing the WBBR
with the desired value, setting the FFY bit, and executing a MOV
instruction to the desired register.

FDB — Force Debug Enable Mode Bit
Setting this control bit places the processor in debug enable mode. In
debug enable mode, execution of the BKPT instruction as well as
recognition of the BRKRQ input causes the processor to enter debug
mode, as if the DBGRQ input had been asserted.

SZ1 and SZ0 — Prefetch Size Field
This control field is used to drive the CPU SIZ1 and SIZ0 outputs on
the first instruction pre-fetch caused by issuing a OnCE command
with the GO bit set and not ignored. It should be set to indicate a
16-bit size, for example, 0b10. This field should be restored to its

Bit 15 14 13 12 11 10 9 Bit 8

Read:
RSVD RSVD RSVD RSVD RSVD RSVD RSVD FFY

Write:

Reset: 0

Bit 7 6 5 4 3 2 1 Bit 0

Read:
FDB SZ1 SZ0 TC2 TC1 TC0 RSVD RSVD

Write:

Reset: 0 0 0 0 0 0

Figure 8-14. Control State Register (CTL)
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

292 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

original value after a debug session is completed, for example, when
a OnCE command is issued with the GO and EX bits set and not
ignored.

TC — Prefetch Transfer Code
This control field is used to drive the CPU TC2–TC0 outputs on the
first instruction pre-fetch caused by issuing a OnCE command with
the GO bit set and not ignored. It should typically be set to indicate a
supervisor instruction access, for example, 0b110. This field should
be restored to its original value after a debug session is completed,
for example, when a OnCE command is issued with the GO and EX
bits set and not ignored.

8.14.12.4 Writeback Bus Register

The writeback bus register (WBBR) is a means of passing operand
information between the CPU and the external command controller.
Whenever the external command controller needs to read the contents
of a register or memory location, it forces the device to execute an
instruction that brings that information to WBBR.

For example, to read the content of processor register r0, a MOV r0,r0
instruction is executed, and the result value of the instruction is latched
into the WBBR. The contents of WBBR can then be delivered serially to
the external command controller.

To update a processor resource, this register is initialized with a data
value to be written, and a MOV instruction is executed which uses this
value as a write-back data value. The FFY bit in the CTL register forces
the value of the WBBR to be substituted for the normal source value of
a MOV instruction, thus allowing updates to processor registers to be
performed.

8.14.12.5 Processor Status Register

The processor status register (PSR) is a 32-bit latch used to read or write
the M•CORE processor status register. Whenever the external
command controller needs to save or modify the contents of the
M•CORE processor status register, the PSR is used. This register is
affected by the operations performed in debug mode and must be
restored by the external command controller when returning to normal
mode.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 293

JTAG Test Access Port and OnCE
8.14.13 Instruction Address FIFO Buffer (PC FIFO)

To ease debugging activity and keep track of program flow, a first-in-
first-out (FIFO) buffer stores the addresses of the last eight instruction
change-of-flow prefetches that were issued.

The FIFO is a circular buffer containing eight 32-bit registers and one 3-
bit counter. All the registers have the same address, but any read access
to the FIFO address causes the counter to increment and point to the
next FIFO register. The registers are serially available to the external
command controller through the common FIFO address.
Figure 8-15 shows the structure of the PC FIFO.

Figure 8-15. OnCE PC FIFO

PC FIFO REGISTER 0

TDO
TCLK

INSTRUCTION FETCH ADDRESS

CIRCULAR
BUFFER
POINTER

PC FIFO REGISTER 1

PC FIFO REGISTER 2

PC FIFO REGISTER 3

PC FIFO REGISTER 4

PC FIFO REGISTER 5

PC FIFO REGISTER 6

PC FIFO REGISTER 7

PC FIFO SHIFT REGISTER
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

294 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

The FIFO is not affected by operations performed in debug mode,
except for incrementing the FIFO pointer when the FIFO is read. When
debug mode is entered, the FIFO counter points to the FIFO register
containing the address of the oldest of the eight change-of-flow pre-
fetches. The first FIFO read obtains the oldest address, and the following
FIFO reads return the other addresses from the oldest to the newest, in
order of execution.

To ensure FIFO coherence, a complete set of eight reads of the FIFO
must be performed. Each read increments the FIFO pointer, causing it
to point to the next location. After eight reads, the pointer points to the
same location as before the start of the read procedure.

8.14.14 Reserved Test Control Registers

The reserved test control registers (MEM_BIST, FTCR, and LSRL) are
reserved for factory testing.

CAUTION: To prevent damage to the device or system, do not access these
registers during normal operation.

8.14.15 Serial Protocol

The serial protocol permits an efficient means of communication
between the OnCE external command controller and the MCU. Before
starting any debugging activity, the external command controller must
wait for an acknowledgment that the device has entered debug mode.
The external command controller communicates with the device by
sending 8-bit commands to the OnCE command register and 16 to 128
bits of data to one of the other OnCE registers. Both commands and data
are sent or received LSB first. After sending a command, the external
command controller must wait for the processor to acknowledge
execution of certain commands before it can properly access another
OnCE register.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 295

JTAG Test Access Port and OnCE
8.14.16 OnCE Commands

The OnCE commands can be classified as:

• Read commands (the device delivers the required data)

• Write commands (the device receives data and writes the data in
one of the OnCE registers)

• Commands with no associated data transfers

8.14.17 Target Site Debug System Requirements

A typical debug environment consists of a target system in which the
MCU resides in the user-defined hardware.

The external command controller acts as the medium between the MCU
target system and a host computer. The external command controller
circuit acts as a serial debug port driver and host computer command
interpreter. The controller issues commands based on the host
computer inputs from a user interface program which communicates
with the user.

8.14.18 Interface Connector for JTAG/OnCE Serial Port

Figure 8-16 shows the recommended connector pinout and interface
requirements for debug controllers that access the JTAG/OnCE port.
The connector has two rows of seven pins with 0.1-inch center-to-center
spacing between pins in each row and each column.
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

296 JTAG Test Access Port and OnCE MOTOROLA

JTAG Test Access Port and OnCE
Functional Description

Figure 8-16. Recommended Connector Interface to JTAG/OnCE Port

TDI

TDO

TCLK

GPIO/SI

TARGET_RESET

KEY (NO CONNECT)

GND

1 2

3 4

5 6

7 8

9 10

10 kΩ

10 kΩ

TOP VIEW

11 12

13 14

TARGET VDD

GPIO/SO

DE

(0.1 INCH CENTER-TO-CENTER)

10 kΩ

10 kΩ

TARGET VDD

TARGET VDD

TRST 10 kΩ

TMS 10 kΩ

Note: GPIO/SI and GPIO/SO are not required for OnCE operation at this time.
These pins can be used for high-speed downloads with a recommended interface.

10 kΩ

WIRED OR WITH TARGET RESET
CIRCUIT. THIS SIGNAL MUST BE
ABLE TO ASSERT/MONITOR SYSTEM
RESET.
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA JTAG Test Access Port and OnCE 297

JTAG Test Access Port and OnCE
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

298 JTAG Test Access Port and OnCE MOTOROLA

User’s Manual — M•CORE with M210/M210S Specifications

Appendix A. Nomenclature

A.1 Contents

A.2 Introduction .299

A.3 References .299

A.4 Units and Measures .299

A.5 Symbology .300

A.6 Terminology .300

A.2 Introduction

This section explains the nomenclature used in this manual.

A.3 References

The M•CORE Technology Center (MTC) uses the Sematech Official
Dictionary and the JEDEC/EIA Reference Guide to Letter Symbols for
Semiconductor Devices as references for terminology and symbology.

A.4 Units and Measures

SIU units and abbreviations are used in MTC technical documentation.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA Nomenclature 299

Nomenclature
A.5 Symbology

MTC uses the standard symbols and operators shown in Table A-1.

A.6 Terminology

Logic level 1 is a voltage that corresponds to Boolean true (1) state.

Logic level 0 is a voltage that corresponds to Boolean false (0) state.

To set a bit or bits means to establish logic level 1 on them.

Table A-1. Symbols and Operators

Symbol Function

+ Addition

- Subtraction (two’s complement) or negation

* Multiplication

/ Division

> Greater

< Less

= Equal

≥ Equal or greater

≤ Equal or less

≠ Not equal

• AND

+ Inclusive OR (OR)

⊕ Exclusive OR (EOR)

NOT Complementation

: Concatenation

⇒ Transferred

⇔ Exchanged

± Tolerance

0b0011 Binary value

0x0F Hexadecimal value
Reference Manual M•CORE with M210/M210S Specifications

300 Nomenclature MOTOROLA

Nomenclature
Terminology

To clear a bit or bits means to establish logic level 0 on them.

A signal is an electronic construct whose state or changes in state
convey information.

A pin is an external physical connection. The same pin can be used to
connect a number of signals.

Asserted means that a discrete signal is in active logic state.

• Active low signals change from logic level 1 to logic level 0.

• Active high signals change from logic level 0 to logic level 1.

Negated means that an asserted discrete signal changes logic state.

• Active low signals change from logic level 0 to logic level 1.

• Active high signals change from logic level 1 to logic level 0.

LSB means least significant bit or bits. MSB means most significant bit
or bits. References to low and high bytes or words are spelled out.

Memory and registers use Big Endian ordering. The most significant
byte (byte 0) of word 0 is located at address 0.

Bits within a word are numbered downward from the MSB, bit 31.

Signal, bit field, and control bit mnemonics follow this general numbering
scheme:

• A range of mnemonics is referred to by mnemonic and numbers
that define the range, from highest to lowest. For example,
ADDR[4:0] are lines four to zero of the address bus.

• A single mnemonic stands alone or includes a single numeric
designator when appropriate. For example, RST is a unique
mnemonic, while ADDR15 represents line 15 of the address bus.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA Nomenclature 301

Nomenclature
Reference Manual M•CORE with M210/M210S Specifications

302 Nomenclature MOTOROLA

User’s Manual — M•CORE with M210/M210S Specifications

Appendix B. M210 and M210S Core Instruction
Pipeline and Timing

B.1 Contents

B.2 Introduction .303

B.3 Instruction Pipeline .303

B.4 Instruction Execution Time .305

B.2 Introduction

This section describes the M210 instruction pipeline and instruction
timing information.

B.3 Instruction Pipeline

The processor pipeline consists of stages for:

• Instruction fetch

• Instruction decode

• Execution

• Result writeback

Refer to Figure B-1 and Figure B-2. The processor also contains an
instruction prefetch buffer to allow buffering of an instruction prior to the
decode stage. Instructions proceed from this buffer to the instruction
decode stage by entering the instruction decode register IR.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210 and M210S Core Instruction Pipeline and Timing 303

M210 and M210S Core Instruction Pipeline and Timing
Figure B-2. Pipeline Flow

Figure B-1. Pipeline Stages

Stage Description

FETCH Instruction fetch from memory

DECODE Instruction decode

EXECUTE / MEM Instruction execution/memory access

WB Write back to registers

FETCH DECODE EXECUTE WB

FETCH DECODE EXECUTE WB

FETCH DECODE EXECUTE WB

FETCH DECODE EXECUTE WB

FETCH DECODE EXECUTE WB

1ST INSTRUCTION

2ND INSTRUCTION

3RD INSTRUCTION

4TH INSTRUCTION

5TH INSTRUCTION

TIME SLOT
Reference Manual M•CORE with M210/M210S Specifications

304 M210 and M210S Core Instruction Pipeline and Timing MOTOROLA

M210 and M210S Core Instruction Pipeline and Timing
Instruction Execution Time

B.4 Instruction Execution Time

Table B-1 contains an instruction execution time and bus access time
summary.

Table B-1. Instruction Execution Time (Sheet 1 of 4)

Instruction
Instruction
Summary

Execution
Clocks

Bus Access
(Including
Instruction
Prefetch)

ABS Absolute value 1 1

ADDC Unsigned add with c bit, update c bit 1 1

ADDI Unsigned add with immediate 1 1

ADDU Unsigned add 1 1

AND Logical AND 1 1

ANDI Logical AND with immediate 1 1

ANDN Logical AND not 1 1

ASR Arithmetic shift right (dynamic) 1 1

ASRC Arithmetic shift right by 1 bit, update c bit 1 1

ASRI Arithmetic shift right immediate (static) 1 1

BCLRI Bit clear immediate 1 1

BF Conditional branch if false
1 (not taken)/

2 (taken)
1 (not taken)/

2 (taken)

BGENI Bit generate immediate (static) 1 1

BGENR Bit generate register (dynamic) 1 1

BKPT Breakpoint – 1

BMASKI Bit mask generate immediate 1 1

BR Unconditional branch 2 2

BREV Bit reverse 1 1

BSETI Bit set immediate 1 1

BSR Branch to subroutine 2 2

BT Conditional branch if true
1 (not taken)/

2 (taken)
1 (not taken)/

2 (taken)

BTSTI Bit test immediate; update C bit 1 1

CLRF Clear if condition false 1 1
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210 and M210S Core Instruction Pipeline and Timing 305

M210 and M210S Core Instruction Pipeline and Timing
CLRT Clear if condition true 1 1

CMPHS Compare for higher or same 1 1

CMPLT Compare for less than 1 1

CMPLTI Compare with immediate for less than 1 1

CMPNE Compare for not equal 1 1

CMPNEI Compare with immediate for not equal 1 1

DECF Decrement conditionally on false 1 1

DECGT Decrement, set C bit on greater than 1 1

DECLT Decrement, set C bit on less than 1 1

DECNE Decrement, set C bit on not equal 1 1

DECT Decrement conditionally on true 1 1

DIVS Signed divide RX by R1 (32/32) 4 to 38 1

DIVU Unsigned divide RX by R1 (32/32) 4 to 36 1

DOZE Enter low power doze mode – 1

FF1 Find first one in RX 1 1

INCF Increment RX conditionally on false 1 1

INCT Increment RX conditionally on true 1 1

IXH Index half-word 1 1

IXW Index word 1 1

JMP Unconditional jump 2 2

JMPI Unconditional jump indirect 3 3

JSR Unconditional jump to subroutine 2 2

JSRI Unconditional jump to subroutine indirect 3 3

LD.[BHW] Load register from memory 2 2

LDM
Load multiple registers from memory,

N = actual number of registers moved
N+1 N+1

LDQ Load register quadrant from memory 5 5

LOOPT Decrement with C-bit update and branch if condition true
1 (not taken)/

2 (taken)
1 (not taken)/

2 (taken)

LRW Load PC-relative word 2 2

Table B-1. Instruction Execution Time (Sheet 2 of 4)

Instruction
Instruction
Summary

Execution
Clocks

Bus Access
(Including
Instruction
Prefetch)
Reference Manual M•CORE with M210/M210S Specifications

306 M210 and M210S Core Instruction Pipeline and Timing MOTOROLA

M210 and M210S Core Instruction Pipeline and Timing
Instruction Execution Time

LSL Logical shift left (dynamic) 1 1

LSLC Logical shift left by 1 bit, update C bit 1 1

LSLI Logical shift left immediate (static) 1 1

LSR Logical shift right (dynamic) 1 1

LSRC Logical shift right by 1 bit, update C bit 1 1

LSRI Logical shift right immediate (static) 1 1

MFCR Move from control register 1 1

MOV Logical move 1 1

MOVF Move RY to RX if condition false 1 1

MOVI logical move immediate 1 1

MOVT Move RY to RX if condition true 1 1

MTCR Move to control register 2 1

MULT Multiply 3 to 18 1

MVC Move C bit to register 1 1

MVCV Move inverted C bit to register 1 1

NOT Logical NOT 1 1

OR Logical OR 1 1

RFI Return from fast interrupt 3 2

ROTLI Rotate left immediate (static) 1 1

RSUB Reverse subtract 1 1

RSUBI Reverse subtract with immediate 1 1

RTE Return from exception 3 2

SEXTB Sign extend byte 1 1

SEXTH Sign extend half-word 1 1

ST.[BHW] Store register to memory 2 2

STM
Store multiple registers to memory,

N = actual number of registers moved
N+1 N+1

STOP Enter low power stop mode – 1

STQ Store register quadrant to memory 5 5

SUBC Unsigned subtract with C bit; update C bit 1 1

Table B-1. Instruction Execution Time (Sheet 3 of 4)

Instruction
Instruction
Summary

Execution
Clocks

Bus Access
(Including
Instruction
Prefetch)
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210 and M210S Core Instruction Pipeline and Timing 307

M210 and M210S Core Instruction Pipeline and Timing
SUBI Unsigned subtract with immediate 1 1

SUBU Unsigned subtract 1 1

SYNC Synchronize CPU 1 1

TRAP Unconditional trap to OS 4 3

TST Test with zero 1 1

TSTNBZ Test register for no byte equal to zero 1 1

WAIT Stop execution and wait for interrupt – 1

XOR Logical exclusive OR 1 1

XSR Extended shift right 1 1

XTRB0 Extract byte 0 into R1 and zero-extend 1 1

XTRB1 Extract byte 1 into R1 and zero-extend 1 1

XTRB2 Extract byte 2 into R1 and zero-extend 1 1

XTRB3 Extract byte 3 into R1 and zero-extend 1 1

ZEXTB Zero extend byte 1 1

ZEXTH Zero extend half-word 1 1

Table B-1. Instruction Execution Time (Sheet 4 of 4)

Instruction
Instruction
Summary

Execution
Clocks

Bus Access
(Including
Instruction
Prefetch)
Reference Manual M•CORE with M210/M210S Specifications

308 M210 and M210S Core Instruction Pipeline and Timing MOTOROLA

User’s Manual — M•CORE with M210/M210S Specifications

Appendix C. M210/M210S Core Interface

C.1 Contents

C.2 Introduction .310

C.3 M210 Core Interface Overview. .311

C.4 MLB Signal Descriptions. .317
C.4.1 Bus Signals .317
C.4.1.1 Address Bus (ADDR[22:0]) .317
C.4.1.2 Data Bus (DATA[31:0]) .317
C.4.1.3 Input Data Bus (DATAIn[31:0]) .317
C.4.1.4 Output Data Bus (DATAOut[31:0]) 317
C.4.1.5 Data Bus Byte Output Enable (DATAEN[3:0]) 317
C.4.2 Transfer Control .318
C.4.2.1 Transfer Acknowledge (TA) .318
C.4.2.2 Transfer Error Acknowledge (TEA)318
C.4.2.3 Transfer Request (TREQ) .318
C.4.2.4 Transfer Busy (TBUSY) .318
C.4.2.5 Transfer Busy Output (TBUSYOUT) 318
C.4.2.6 Transfer Busy Input (TBUSYIN).319
C.4.2.7 Transfer Abort (ABORT) .319
C.4.3 Transfer Attribute Signals .319
C.4.3.1 Transfer Code (TC[2:0]) .319
C.4.3.2 Read/Write (R/W). .320
C.4.3.3 Transfer Size (TSIZ[1:0]) .320
C.4.3.4 Sequential Access (SEQ) .320
C.4.4 Translate Control (TE). .320
C.4.5 Data to Address Signal (D2A) .320
C.4.6 Processor Status Signals .321
C.4.6.1 Processor Status (PSTAT[3:0])321
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 309

M210/M210S Core Interface
C.5 Other Processor Signals. .322
C.5.1 Master Clock (MCLK) .322
C.5.2 Reset Control Signals .322
C.5.2.1 Master Reset (RST) .322
C.5.2.2 Power-On Reset (POR) .322
C.5.3 Bus Arbitration Control Signals .323
C.5.3.1 Bus Request (BR) .323
C.5.3.2 Bus Grant (BG) .323
C.5.3.3 Three-State Control Address (TSCA) 323
C.5.3.4 Three-State Control Data (TSCD)323
C.5.4 Power Management Control Signals.324
C.5.4.1 Low-Power Mode (LPMD[1:0]).324
C.5.4.2 Wakeup (WAKEUP). .325
C.5.5 Global Status and Control Interface Signals325
C.5.5.1 Global Control (GCB[31:0]) .325
C.5.5.2 Global Status (GSB[31:0]) .325
C.5.6 Interrupt Control Signals .326
C.5.6.1 Normal Interrupt Request (INT)326
C.5.6.2 Raw Normal Interrupt Request (INTRAW).326
C.5.6.3 Fast Interrupt Request (FINT) .326
C.5.6.4 Raw Fast Interrupt Request (FINTRAW)326
C.5.6.5 Interrupt Pending (IPEND) .326
C.5.6.6 Interrupt Vector Number (VEC[6:0]).326
C.5.6.7 Autovector (AVEC). .327
C.5.7 Power Supply Connections .327

C.2 Introduction

The M210 core interface consists of the M•CORE local bus (MLB), which
supports synchronous data transfers between the processor and other
devices in the system, and core-related functions, which include data to
address transfer, bus arbitration control, the reset interface, the interrupt
interface, the global status and control interface, and the power
management interface.
Reference Manual M•CORE with M210/M210S Specifications

310 M210/M210S Core Interface MOTOROLA

M210/M210S Core Interface
M210 Core Interface Overview

C.3 M210 Core Interface Overview

Figure C-1 shows the functional grouping of M210 core interface
signals. Figure C-2 shows the functional grouping of M210S core
interface signals.Table C-1 provides functional descriptions of
M210/M210S signals. Table C-2 provides a summary of electrical
characteristics of M210/M210S signals.

Figure C-1. M210 Core Interface Signals

TCLK

M210

DATA TRANSFER

TRANSFER CYCLE
TERMINATION/
STATUS

INTERRUPT

GLOBAL STATUS/
CONTROL

PROCESSOR STATE

INT, INTRAW

FINT, FINTRAW

AVEC

VEC[6:0]

IPEND

GSB[31:0]

GCB[31:0]D2A

LPMD[1:0]

POR

RST

CLK
CLOCK

AND
RESET

POWER

DATA TO ADDRESS

MEMORY

TRANSFER ABORT

TRANSFER

TRANSFER BUSY

TRANSFER REQUEST

ADDRESS BUS

ATTRIBUTES

Indicates MLB signals

CORE

BG

TSCA

BR

BUS ARBITRATION

TSCD

WAKEUP

PSTAT[3:0]

DATA[31:0]

TA

TEA

ADDR[22:0]

TREQ

TBUSY

R/W

TC[2:0]

TSIZ[1:0]

SEQ

ABORT

TE

EXTERNAL
OnCE

OnCE/DEBUG

MODULE TMS

DBGRQ*

BRKRQ*

DBGACK*

OnCE CONTROL*

TDI

TRST

DE

DEBUG

MANAGEMENT

MANAGEMENT

* These signals are internal to the core

TDO

SIGNALS
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 311

M210/M210S Core Interface
Figure C-2. M210S Core Interface Signals

M210S

DATA TRANSFER

TRANSFER CYCLE
TERMINATION/
STATUS

INTERRUPT

GLOBAL STATUS/
CONTROL

PROCESSOR STATE

INT, INTRAW

FINT, FINTRAW

AVEC

VEC[6:0]

IPEND

GSB[31:0]

BCB[31:0]
D2A

LPMD[1:0]

POR

RST

CLK
CLOCK

AND
RESET

POWER

DATA TO ADDRESS

MEMORY

TRANSFER ABORT

TRANSFER

TRANSFER BUSY

TRANSFER REQUEST

ADDRESS BUS

ATTRIBUTES

Indicates MLB signals

CORE

BG

TSCA

BR

BUS ARBITRATION

TSCD

WAKEUP
PSTAT[3:0]

DATAIN[31:0]

TA

TEA

ADDR[22:0]

TREQ

TBUSYIN

R/W

TC[2:0]

TSIZ[1:0]

SEQ

ABORT

TE

OnCE/DEBUG

MODULE

DBGRQ*

BRKRQ*

DBGACK*

OnCE CONTROL*

MANAGEMENT

MANAGEMENT

* These signals are internal to the core

DATAOUT[31:0]

DATAEN[3:0]

TBUSYOUT

TCLK

EXTERNAL
OnCETMS

TDI

TRST

DE

TDO

SIGNALS

DEBUG
Reference Manual M•CORE with M210/M210S Specifications

312 M210/M210S Core Interface MOTOROLA

M210/M210S Core Interface
M210 Core Interface Overview

Table C-1. M210/M210S Signal Descriptions

Signal Name Mnemonic Function

Address bus ADDR[22:0] 32-bit address bus

Data bus(1) DATA[31:0]
A 32-bit data bus used to transfer up to 32 bits of data

per bus transfer.

Input data bus(2) DATAIn[31:0]
A 32-bit data bus which provides an input data path to

the core. It can transfer up to 32 bits of data per bus
transfer.

Output data bus(2) DATAOut[31:0]
A 32-bit data bus which provides an output data path

from the core. It can transfer up to 32 bits of data per
bus transfer.

Data bus byte output enable(2) DATAEN[3:0] Byte enables for the output data bus.

Transfer code TC[2:0]
Indicates the general transfer type:

supervisor/user/instruction/data

Read/write R/W Identifies the transfer as a read or write.

Transfer size TSIZ[1:0]
Indicates the data transfer size. These signals, together

with ADDR[1:0] define the active sections of the data
bus.

Data to address D2A
Indicates the next access address is the value read

from the data bus.

Sequential access SEQ Indicates that the next access is sequential.

Transfer busy(1) TBUSY Indicates a bus cycle is in progress.

Transfer busy input(2) TBUSYIN
Alternate master-driven signal indicating that an access

is in progress.

Transfer busy output(2) TBUSYOUT
Core-driven signal indicating that an access is in

progress.

Transfer request TREQ Indicates a request for a bus cycle.

Transfer acknowledge TA Asserted to acknowledge a bus transfer.

Transfer error acknowledge TEA Indicates an error condition exists for a bus transfer.

Abort cycle ABORT Aborts a requested access.

Translate control TE
Controls address translation or alternate control

function.

Bus grant BG Grants interface ownership.

Bus request BR Requests interface ownership.

Three-state address TSCA
Can be used to hand off address bus and attributes or

as a mux select for these interface signals.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 313

M210/M210S Core Interface
Three-state data TSCD
Can be used to hand off data bus and p_tbusy_b or as

a mux select for these interface signals.

Reset in
RST Processor reset

POR Power-on reset

Normal interrupt request INT Normal interrupt request to the processor.

Fast interrupt request FINT Fast interrupt request to the processor.

Normal interrupt request raw INTRAW
Raw normal interrupt request to the processor for

IPEND logic.

Fast interrupt request raw FINTRAW
Raw fast interrupt request to the processor for IPEND

logic.

Interrupt vector number VEC[6:0] Interrupt vector number

Autovector AVEC
Requests internal generation of the interrupt vector

number.

Interrupt pending IPEND Indicates an interrupt is pending internally.

System clock CLK Clock input

Low-power mode LPMD[1:0] Indicates low-power mode(s).

Low-power mode wakeup control WAKEUP
Indicates CLK should be activated to exit low-power

mode(s) or to allow bus arbitration to occur.

Processor status PSTAT[3:0] Processor status outputs

Debug request/open-drain output DE Signals hardware to enter debug mode.

Internal debug notification DEBUG Indicates that the processor has entered debug mode.

Debug output DBGACK CPU debug acknowledge

Internal debug request DBGRQ Forces an immediate debug request.

Watchpoint event WATCHPOINT[1:0] Indicates an address watchpoint has been hit.

Hardware breakpoint exception BRKRQ Internal hardware breakpoint exception

Global control GCB[31:0] Global control bus outputs

Global status GSB[31:0] Global status bus inputs

Power supply VDD Power supply

Ground GND Ground connection

1. M210 signal only
2. M210S signal only

Table C-1. M210/M210S Signal Descriptions (Continued)

Signal Name Mnemonic Function
Reference Manual M•CORE with M210/M210S Specifications

314 M210/M210S Core Interface MOTOROLA

M210/M210S Core Interface
M210 Core Interface Overview

Table C-2. M210/M210S Signal Characteristics

Signal Name Mnemonic
Input/
Output

Active
State

Reset
State

Address bus ADDR[22:0] Output High Undefined

Data bus(1) DATA[31:0]
Input/
output

High Three-stated

Input data bus(2) DATAIn[31:0] Input High —

Output data bus(2) DATAOut[31:0] Output High Undefined

Data bus byte output enable(2) DATAEN[3:0] Output High Negated

Transfer code TC[2:0] Output High Undefined

Read/write R/W Output
High/
Low

High

Transfer size TSIZ[1:0] Output High Undefined

Data to address D2A Output High Negated

Sequential access SEQ Output Low Negated

Transfer busy(1) TBUSY
Input/
output

Low Negated

Transfer busy input(2) TBUSYIN Input Low —

Transfer busy output(2) TBUSYOUT Output Low Negated

Transfer request TREQ Output Low Negated

Transfer acknowledge TA Input Low —

Transfer error acknowledge TEA Input Low —

Abort cycle ABORT Output Low Negated

Translate control TE Output Low Negated

Bus grant BG Output Low Negated

Bus request BR Input Low —

Three-state address TSCA Output Low Negated

Three-state data TSCD Output Low Negated

Reset in
RST Input Low —

POR Input High —

Normal interrupt request INT Input Low —
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 315

M210/M210S Core Interface
Fast Interrupt Request FINT Input Low —

Normal interrupt request raw INTRAW Input Low —

Fast interrupt request raw FINTRAW Output Low Negated

Interrupt vector number VEC[6:0] Input High —

Autovector AVEC Input Low —

Interrupt pending IPEND Output Low Negated

System clock CLK Input — —

Low-power mode LPMD[1:0] Output Low Negated

Low-power mode wakeup control WAKEUP Output Low Negated

Processor status PSTAT[3:0] Output High Undefined

Debug request/open-drain output DE Input Low —

Internal debug notification DEBUG
Input/
output

Low Negated

CPU debug acknowledge DBGACK Output Low Negated

Internal debug request DBGRQ Input Low —

Watchpoint event WATCHPOINT[1:0] Output Low High

Internal hardware breakpoint exception BRKRQ Input Low —

Global status GSB[31:0] Input High —

Global control GCB[31:0] Output High Undefined

Power supply VDD Input High —

Ground GND Input — —

1. M210 signal only.
2. M210S signal only.

Table C-2. M210/M210S Signal Characteristics (Continued)

Signal Name Mnemonic
Input/
Output

Active
State

Reset
State
Reference Manual M•CORE with M210/M210S Specifications

316 M210/M210S Core Interface MOTOROLA

M210/M210S Core Interface
MLB Signal Descriptions

C.4 MLB Signal Descriptions

This subsection provides descriptions of MLB signals.

C.4.1 Bus Signals

The address and data bus signals are described here.

C.4.1.1 Address Bus (ADDR[22:0])

On the M210, these outputs are three-stated. They provide the address
for a bus transfer.

On the M210S, these outputs are not three-stated. They provide the
address for a bus transfer.

C.4.1.2 Data Bus (DATA[31:0])

On the M210, these three-state bidirectional signals provide the general-
purpose data path between the M210 core and peripherals. The data
bus can transfer 8, 16, or 32 bits of data per bus transfer.

C.4.1.3 Input Data Bus (DATAIn[31:0])

On the M210S, these input signals provide the data path to the core. The
data bus can transfer 8, 16, or 32 bits of data per bus transfer.

C.4.1.4 Output Data Bus (DATAOut[31:0])

On the M210S, these output signals provide the general-purpose data
path from the core. The data bus can transfer 8, 16, or 32 bits of data per
bus transfer.

C.4.1.5 Data Bus Byte Output Enable (DATAEN[3:0])

On the M210S, these output signals are the byte enables for the output
data bus. A bidirectional DATA bus can be derived by three-stating
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 317

M210/M210S Core Interface
DATAOut with DATAEN and connecting the output of these three-state
buffers to their corresponding DATAIn signal.

C.4.2 Transfer Control

The transfer control signals are described here.

C.4.2.1 Transfer Acknowledge (TA)

This active-low input signal indicates completion of a requested data
transfer operation. An external device asserts TA to terminate the
transfer. For the M210 core to accept the transfer, TEA must remain high
while TA is asserted.

C.4.2.2 Transfer Error Acknowledge (TEA)

This active-low input signal indicates that a transfer error condition has
occurred and causes the M210 core to immediately terminate the
transfer. An external device asserts TEA to terminate the transfer. The
TEA signal has higher precedence than TA.

C.4.2.3 Transfer Request (TREQ)

The M210 core normally drives this active-low signal to indicate that a
new access has been requested. This signal is driven for a single cycle
along with address and transfer attribute signals to request a new cycle.

C.4.2.4 Transfer Busy (TBUSY)

On the M210, the core drives this active-low signal to indicate that an
access is in progress. This signal is driven for the duration of a cycle, and
may be held asserted for multiple transfers.

C.4.2.5 Transfer Busy Output (TBUSYOUT)

On the M210S, the core drives this active-low signal to indicate that an
access is in progress. This signal is driven for the duration of a cycle, and
may be held asserted for multiple transfers.
Reference Manual M•CORE with M210/M210S Specifications

318 M210/M210S Core Interface MOTOROLA

M210/M210S Core Interface
MLB Signal Descriptions

C.4.2.6 Transfer Busy Input (TBUSYIN)

On the M210S, this active-low signal is driven by an alternate master to
indicate that an access is in progress. This signal is driven for the
duration of a cycle, and may be held asserted for multiple transfers.

C.4.2.7 Transfer Abort (ABORT)

The M210 core drives this active-low signal to indicate that a requested
access must be aborted. This signal may be driven by the clock following
a valid requested cycle. The M210 core must receive the error
termination signal (TEA) from external logic during the same clock cycle
ABORT is asserted.

C.4.3 Transfer Attribute Signals

The transfer attribute signals, which provide additional information about
the bus transfer cycle, are described here.

C.4.3.1 Transfer Code (TC[2:0])

The M210 core drives these signals to indicate the type of access for the
current bus cycle. Table C-3 shows the signal encoding.

Table C-3. Transfer Code Encoding

TC[2:0] Transfer Type

0 0 0 User data access(1)

1. Except LRW accesses

0 0 1 Reserved

0 1 0 User instruction access(2)

2. Except change of flow related instruction accesses, includes LRW accesses

0 1 1 User change of flow instruction access(3)

3. Change of flow related instruction access for taken branches, jumps, and
LOOPT instructions (includes table accesses for JMPI and JSRI)

1 0 0 Supervisor data access(1)

1 0 1 Supervisor exception vector access

1 1 0 Supervisor instruction access(2)

1 1 1 Supervisor change of flow instruction access(3)
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 319

M210/M210S Core Interface
C.4.3.2 Read/Write (R/W)

This output signal defines data transfer direction for the current bus
cycle. Logic level 1 indicates a read cycle, and logic level 0 indicates a
write cycle.

C.4.3.3 Transfer Size (TSIZ[1:0])

These output signals indicate the data size for the bus cycle. Table C-4
shows the definitions of the TSIZ[1:0] encoding.

C.4.3.4 Sequential Access (SEQ)

This active-low output signal indicates that the current access is in
sequential address order from the last access. This signal is driven for
sequential instruction fetches. The timing of this signal is approximately
one phase earlier than address timing.

C.4.4 Translate Control (TE)

This active-low output signal indicates that access addresses can be
translated by a memory management unit, or may be used for an
alternate function. The TE output is asserted while the PSR TE bit is set.

C.4.5 Data to Address Signal (D2A)

This active-high output signal indicates that the data received for the
current read access will be driven as the next access address. This
signal is driven for table accesses for the JMPI and JSRI instructions as
well as for cases where load data is to be used as a JUMP or JSR

Table C-4. Transfer Size Encoding

TSIZ[1:0] Transfer Size

0 0 Word (4 bytes)

0 1 Byte

1 0 Half-word (2 bytes)

1 1 Reserved
Reference Manual M•CORE with M210/M210S Specifications

320 M210/M210S Core Interface MOTOROLA

M210/M210S Core Interface
MLB Signal Descriptions

destination prefetch in the following access. The timing for this control
signal is approximately one phase earlier than address timing.

C.4.6 Processor Status Signals

The signals that provide internal processor status are described here.

C.4.6.1 Processor Status (PSTAT[3:0])

These outputs indicate the internal execution unit status. The timing is
synchronous with the MCLK, so the indicated status may not apply to a
current bus transfer. Table C-5 shows PSTAT[3:0] encoding.

Table C-5. Processor Status Encoding

PSTAT[3:0] Internal Processor Status

0 0 0 0 Execution stalled

0 0 0 1 Execution stalled

0 0 1 0 Execute exception

0 0 1 1 Reserved

0 1 0 0 Processor in STOP, WAIT, or DOZE state

0 1 0 1 Execution stalled

0 1 1 0 Processor in debug mode

0 1 1 1 Reserved

1 0 0 0 Launch instruction(1)

1. Except RTE, RFI, JMP1, JSRI, LDM, STM, LDQ, STQ, LRW, and change of
flow Instructions

1 0 0 1 Launch LDM, STM, LDQ, or STQ

1 0 1 0 Reserved

1 0 1 1 Launch LRW

1 1 0 0 Launch branch instruction

1 1 0 1 Launch RTE or RFI

1 1 1 0 Launch JMP or JSR

1 1 1 1 Launch JMPI or JSRI
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 321

M210/M210S Core Interface
C.5 Other Processor Signals

This subsection provides descriptions of non-MLB core interface signals.

C.5.1 Master Clock (MCLK)

The global system clock (MCLK) is used internally to clock the logic of
the processor core. The M210 core is a C2, C1-based machine. Since
the core is designed for static operation, MCLK can be gated off (forced
to logic level one) to lower power dissipation during stopped states. On-
chip modules in M•CORE devices use C1 and C2 phase-derivative
clocks generated from the master clock signal. The relative timing of
these clocks must be the same in all modules.

C.5.2 Reset Control Signals

The master, JTAG (Joint Test Action Group), and power-on reset (POR)
signals are described here.

C.5.2.1 Master Reset (RST)

The RST input is the active-low reset for the M210 processor. RST is
considered an asynchronous input and is sampled by the clock control
logic in the M•CORE debug module in order to exit from reset gracefully.

C.5.2.2 Power-On Reset (POR)

The POR signal is the power-on reset input for the M210 processor. This
signal serves two purposes:

1. It prevents M•CORE processor internal bus contention during the
short power-on initialization time.

2. POR is “ORed” with TRST and the resulting signal clears the
JTAG tap controller, associated registers, and the OnCE state
machine. This is an asynchronous clear with a very short assertion
time requirement.
Reference Manual M•CORE with M210/M210S Specifications

322 M210/M210S Core Interface MOTOROLA

M210/M210S Core Interface
Other Processor Signals

C.5.3 Bus Arbitration Control Signals

The M210 core provides a set of bus arbitration control signals to allow
an alternate bus master such as a direct memory access (DMA) device
or debug module to perform transfers on the interface. The arbitration
protocol uses a simple two wire handshake and also provides three-
state control outputs to simplify bus hand off.

C.5.3.1 Bus Request (BR)

This active-low input signal is used to request ownership of the interface
by an alternate master.

C.5.3.2 Bus Grant (BG)

This active-low output signal is used to grant ownership of the interface
to an alternate master. If BR is asserted, BG is asserted once the central
processor unit (CPU) access pipeline has been drained and the CPU
has reached an idle state. Signals which are required by an alternate
master are relinquished with or prior to assertion of BG.

C.5.3.3 Three-State Control Address (TSCA)

Depending on the implementation, this active-low output signal can be
used to enable/disable three-state outputs of an alternate master driving
ADDR[22:0] and attributes. It can also be used as a mux select for these
interface signals.

C.5.3.4 Three-State Control Data (TSCD)

Depending on the implementation, this active-low output signal can be
used to enable/disable three-state outputs of an alternate master for
driving DATA[31:0] and TBUSY. It can also be used as a mux select for
these interface signals.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 323

M210/M210S Core Interface
C.5.4 Power Management Control Signals

The two output signals which are provided for power management by
external control are described here.

C.5.4.1 Low-Power Mode (LPMD[1:0])

The LPMD[1:0] outputs are asserted by the processor when execution
of a DOZE, STOP, or WAIT instruction occurs, as shown in Table C-6.

The LPMD[1:0] outputs may assert for one or more clock cycles during
the execution of a DOZE, STOP, or WAIT instruction until a valid
pending interrupt is detected by the M210 core, or until a request to enter
debug mode is made, although a simultaneous debug event or interrupt
request may cause the low-power instruction to be exited prior to
assertion of the LPMD[1:0] outputs. External logic can detect the
asserted edge of these signals to determine which low-power instruction
has been executed and then place the M210 core and peripherals in a
low-power consumption state. The IPEND signal (or WAKEUP) can be
monitored to determine when to end the stopped condition.

The M210 core can be placed in a low-power state by forcing the CLK
input high, and brought out of low-power state by re-enabling CLK.

Table C-6. Low-Power Mode Encoding

LPMD[1:0] Mode

0 0 Stop

0 1 Wait

1 0 Doze

1 1 Normal
Reference Manual M•CORE with M210/M210S Specifications

324 M210/M210S Core Interface MOTOROLA

M210/M210S Core Interface
Other Processor Signals

C.5.4.2 Wakeup (WAKEUP)

This active-low output may be used by external logic to exit the M210
core and system logic from a low-power state.

WAKEUP asserts:

• Whenever a valid pending interrupt is detected by the core

• When a request for bus arbitration is made by an alternate bus
master or the alternate bus master still owns the data bus (TSCD)
is still asserted)

• When a request to enter debug mode is made via the assertion of
the DBUG input signal.

WAKEUP (or other system state) may be monitored to determine when
to release the processor (and system if applicable) from the stopped
condition. This can be done by re-enabling CLK.

C.5.5 Global Status and Control Interface Signals

The core provides two control registers as part of the supervisor
programming model to monitor global status in the integrated system as
well as to provide global control outputs to the system. This subsection
provides information on these registers.

C.5.5.1 Global Control (GCB[31:0])

These outputs change state when the global control register (GCR) is
updated by the MTCR instruction.

C.5.5.2 Global Status (GSB[31:0])

These inputs are sampled by the core and the corresponding values
appear in the global status register (GSR) for transfer to a general
register when an MFCR instruction referencing the GSR is executed.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 325

M210/M210S Core Interface
C.5.6 Interrupt Control Signals

This subsection describes the interrupt control function signals.

C.5.6.1 Normal Interrupt Request (INT)

This active-low input provides a normal interrupt request condition to the
M210 core. This signal is level sensitive.

C.5.6.2 Raw Normal Interrupt Request (INTRAW)

This active-low input signal provides an unsynchronized request for
normal interrupt service to the M210 core. This signal is level sensitive.

C.5.6.3 Fast Interrupt Request (FINT)

This active-low input provides a fast interrupt request condition to the
M210 core. This signal is level sensitive.

C.5.6.4 Raw Fast Interrupt Request (FINTRAW)

This active-low input signal provides an unsynchronized request for fast
interrupt service to the M210 core. This signal is level sensitive.

C.5.6.5 Interrupt Pending (IPEND)

This active-low output signal indicates that an interrupt request has been
recognized internally by the core and is enabled by the appropriate bit in
the PSR. The IPEND signal can be used to signal other bus masters or
a bus arbiter that an interrupt condition is pending. External power
management logic can use this output to control operation of the core
and other logic. External logic uses the wakeup signal similarly.

C.5.6.6 Interrupt Vector Number (VEC[6:0])

These input signals provide the core a vector number to be used when
interrupt exception processing begins. These signals are sampled along
with the FINT and INT inputs, and must be driven to a valid value when
Reference Manual M•CORE with M210/M210S Specifications

326 M210/M210S Core Interface MOTOROLA

M210/M210S Core Interface
Other Processor Signals

either of these signals is asserted, unless the AVEC signal is asserted.
If AVEC is asserted, these inputs are ignored.

C.5.6.7 Autovector (AVEC)

This active-low input signal is asserted with either INT or FINT to request
internal generation of the vector number.

C.5.7 Power Supply Connections

The M210 core requires connections to a VDD power supply, positive
with respect to ground. The VDD and ground connections must be
planned to supply adequate current to the various sections of the
processor.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Core Interface 327

M210/M210S Core Interface
Reference Manual M•CORE with M210/M210S Specifications

328 M210/M210S Core Interface MOTOROLA

User’s Manual — M•CORE with M210/M210S Specifications

Appendix D. M210/M210S Interface Operation

D.1 Contents

D.2 Introduction .330

D.3 Bus Characteristics. .330

D.4 Data Transfer Mechanism .331

D.5 Processor Instruction/Data Transfers333
D.5.1 Instruction and Data Read Transfer Cycles334
D.5.2 Read Transfer Cycles with Wait State336
D.5.3 Write Transfer Cycles. .337
D.5.4 Write Transfer Cycles with Wait State339
D.5.5 Data Bus Hand-Off .340

D.6 Bidirectional Three-State Data Bus .341

D.7 Bus Exception Control Cycles .342

D.8 Bus Errors. .342

D.9 Abort SIgnal Operation .343

D.10 Data to Address Transfer Operation.344

D.11 Breakpoint Request Operation .345

D.12 Bus Arbitration Operation .346
D.12.1 Operation Examples. .348
D.12.2 Interaction with Low-Power Modes and Debug Operation .360
D.12.3 Bus Arbitration and Entry into Low-Power States 360

D.13 Reset Operation .362
D.13.1 System Issues .363
D.13.2 Timing. .364

D.14 Interrupt Interface Operation. .365

D.15 Global Status and Control Interface Operation.367

D.16 Power Management Interface Operation367

D.17 Emulation/Debug Interface Operation 370
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 329

M210/M210S Interface Operation
D.2 Introduction

The M210 core interface supports synchronous data transfers between
the processor and other devices in the system. This section provides
functional descriptions of:

• The interface

• The signals that control the interface

• The bus cycles provided for data transfer operations

• Power management signals

• Memory management unit control

• Reset operation

• Emulation/debug interface

D.3 Bus Characteristics

The M210 core interface supports synchronous data transfers between
the M210 core and other devices in the system. The CLK is distributed
internally to provide logic timing.

The M210 core uses the ADDR[22:0] signals to specify the address for
a data transfer and the DATA[31:0] signals to transfer the data.

The M210S core uses the ADDR[22:0] signals to specify the address for
a data transfer and the DATAIn[31:0] or DATAOut[31:0] signals to
transfer the data.

Control and attribute signals indicate the beginning and type of a bus
cycle as well as the address space and size of the transfer. The selected
device controls the length of the cycle by terminating it using the control
signals.

Inputs to the M210 core (other than the interrupt requests and reset
signals) are sampled synchronously and must be stable during the
sample windows.

If an input makes a transition during the window time period, the level
recognized by the core is not predictable. To guarantee proper
Reference Manual M•CORE with M210/M210S Specifications

330 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Data Transfer Mechanism

operation, the INT and FINT signals are sampled on the rising edge of
CLK, but are also used in an asynchronous fashion for power
management control. Refer to 7.5.6 Interrupt Control Signals for more
information.

Outputs from the M210 core transition on one of the two clock edges
depending on the signal class.

D.4 Data Transfer Mechanism

Data transfers occur between a core register and the data bus via an
internal data multiplexer. The data multiplexer establishes connections
for different combinations of address and data sizes.

The core does not support dynamic bus sizing and expects the
peripheral being accessed to accept the requested access width.
Peripherals with an interface width of N bits must not define internal
registers greater than N bits wide.

Additionally, no misaligned transfers are supported. The core can drive
the ADDR[1:0] lines to a value which is not representative of an aligned
transfer, but expects aligned data to be transferred. For proper function,
the TSIZ[1:0] signals must be used to gate ADDR[1:0].

The data multiplexer routes the four bytes of the core data register to
properly interface with memory and peripherals connected to the data
bus. The mux uses a byte granularity that corresponds to the byte
organization in memory, as shown in Figure D-1. Multiplexed core data
register bytes are referred to as MB0, MB1, MB2, and MB3

Figure D-1. Mux Byte Organization

BYTE 0 BYTE 1 BYTE 2 BYTE 3 MEMORY

31 0

MB0 MB1 MB2 MB3 MUX
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 331

M210/M210S Interface Operation
Multiplexed bytes correspond to data bus bytes for 32-bit word transfers,
but can be routed differently to support byte and half-word transfers. For
instance, MB0 is normally routed to DATA[31:24] on a word transfer, but
can be routed to DATA[31:24] to support a byte data transfer.

Figure D-2 shows the connection requirements for the multiplexer. The
transfer size (TSIZ[1:0]) and byte offset (ADDR[1:0]) signals indicate
byte position. Table D-1 shows each possible transfer size and
alignment, and the corresponding multiplexer routing. MB0–MB3
indicates the portion of the requested operand that is read or written
during that bus transfer. For word transfers, all bytes are valid. Bytes
labeled “—” are not required; they are ignored on read transfers and
driven with undefined data on write transfers.

Figure D-2. Internal Multiplexer Connections

INTERNAL DATA[31:24]

INTERNAL DATA[23:16]

INTERNAL DATA[15:8]

INTERNAL DATA[7:0]

MB0

MB1

MB2

MB3

MEMORY PORT

(BYTE ADDR
0,4,8,C,...)

(BYTE ADDR
3,7,B,F...)

(BYTE ADDR
2,6,A,E,...)

(BYTE ADDR
1,5,9,D,...)

CONNECTION CASES

d, f, g

f, g

g

g

e

ab, e

c

DATA[31:24]

DATA[23:16]

DATA[15:8]

DATA[7:0]

M210 CORE
Reference Manual M•CORE with M210/M210S Specifications

332 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Processor Instruction/Data Transfers

This is perhaps best understood by considering it from a read
perspective. Data from 8-bit or 16-bit reads is routed to the same location
in the processor data register, regardless of the internal data lines used
to access the data. Designers of on-chip peripherals must be aware of
these operating constraints.

D.5 Processor Instruction/Data Transfers

Transfer of data between the M210 core and peripherals involves the
address bus, data bus, and control and attribute signals. The address
and data buses are parallel, non-multiplexed buses, supporting aligned
byte, half-word, and word transfers. All bus input and output signals are
sampled or driven with respect to one of the edges of the CLK signal.
The M210 core moves data on the bus by issuing control signals and
using a handshake protocol to ensure correct data movement.

Access requests are generated in an overlapped fashion in order to
support sustained single-cycle transfers. In addition, the M210 core may
choose to change the request address and attribute values if a previous
request is still pending. This might occur if an instruction transfer is not
completed in a single cycle, and a data transfer becomes pending. In this
case, the data request may replace a pending instruction request.

On the M210, access requests are assumed to be accepted if there are
no accesses in progress (TREQ asserted with TBUSY negated), or if an
access in progress is terminated during the same cycle a new request is

Table D-1. Interface Requirements for Read and Write Cycles

Transfer
Size

Signal Encoding Active Interface Bus Sections
Mux

ConnectionTSIZ[1:0] ADDR[1:0]
Internal

DATA[31:24]
Internal

DATA[23:16]
Internal

DATA[15:8]
Internal

DATA[7:0]

Byte

0
0
0
0

1
1
1
1

0
0
1
1

0
1
0
1

—
—
—
—

—
—
—
—

—
—
—
—

MB0
MB1
MB2
MB3

a
b
c
d

Half-word
1
1

0
0

0
1

X
X

—
—

—
—

MB0
MB2

MB1
MB3

e
f

 Word 0 0 X X MB0 MB1 MB2 MB3 g
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 333

M210/M210S Interface Operation
generated (TREQ asserted with TBUSY asserted and one of TA or TEA
asserted).

On the M210S, access requests are assumed to be accepted if there are
no accesses in progress (TREQ asserted with TBUSY negated), or if an
access in progress is terminated during the same cycle a new request is
generated (TREQ asserted with TBUSY asserted and one of TA or TEA
asserted).

Once an access has been accepted, the core is free to change the
current request: peripherals may need to latch access information.

The core can also abort an accepted access during the cycle following a
valid (taken) request, by asserting ABORT during the clock cycle
following a valid TREQ. In this case, external logic must terminate the
access by asserting TEA during the same clock cycle ABORT asserts.
In the case of an aborted access, the address bus and all attributes
associated with the aborted request are undefined.

D.5.1 Instruction and Data Read Transfer Cycles

During a read transfer, the core receives data from a memory or
peripheral device. Figure D-3 is a functional timing diagram for
instruction and data read transfers

Figure D-3. Instruction/Data Read Cycle

ADDRX ADDRY

S1 S2 S3(S1')

DATAX

CLK

ADDR[22:0]

R/W

 TREQ

 TBUSY

 TA

DATAIn

TSIZ[1:0]
TC[2:0]
Reference Manual M•CORE with M210/M210S Specifications

334 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Processor Instruction/Data Transfers

State1 (S1)
The read cycle starts in S1. During S1, the core places valid values
on the address bus and transfer attributes.The transfer code (TC[2:0])
signals identify the specific access type. The TSIZ[1:0] signals
indicate the size of the transfer. The read/write (R/W) signal is driven
high for a read cycle.

The M210 core asserts transfer request (TREQ) during S1 to indicate
that a transfer is being requested.

State2 (S2)
During S2, the memory access takes place using the values of
TSIZ[1:0] and ADDR[1:0], which are driven during S1 and S2 to
enable reading of one or more bytes of memory. On the M210, the
TBUSY signal is asserted to indicate that an access is in progress. On
the M210S, the TBUSY signal is asserted to indicate that an access
is in progress.

State3 (S3)

The memory drives valid data to the core in S3. The interface control
logic uses the values of TSIZ[1:0] and ADDR[1:0], which were driven
during S1 and S2 to place information on the data bus. If the memory
can respond without a wait state, then the transfer acknowledge TA
signal is asserted.

The M210 core samples the level of TA. If it is asserted, the current
value is latched from the data bus, the bus cycle terminates, and the
data is passed to the appropriate unit of the core. If the M210 core
does not recognize assertion of TA by the end of the clock cycle, it
ignores the data and inserts a wait state. The M210 core continues to
sample TA on successive rising edges of CLK until TA is recognized
“asserted.” Only when TA is recognized “asserted” is the outstanding
transfer terminated.

During S3, the M210 core may negate TREQ if no further transfers
are pending, or may keep TREQ asserted to indicate that another
transfer is pending. The R/W, TSIZ[1:0], TC[2:0] and ADDR[22:0]
signals are driven with the information for the new pending cycle. If no
cycle is pending, the values driven during S3 are undefined.

For back-to-back transfers, S3 and the next S1 occur at the same
time.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 335

M210/M210S Interface Operation
D.5.2 Read Transfer Cycles with Wait State

Figure D-4 shows an example of wait state operation. Signal TA for the
first request (ADDRX) is not asserted following S2, so wait states (Sw)
are inserted until TA is recognized.

Meanwhile, another request is generated by the M210 core for ADDRY.
This request is not considered accepted by the M210 core since the
previous transfer has not been terminated, so the M210 core is free to
negate or change the request (in this case it changes the request to
ADDRZ) on the next cycle.

This situation can occur when a data request becomes pending following
an instruction prefetch request which has not been accepted, and in
other circumstances. Interface control logic must be cognizant of this
protocol. With a transfer in progress, the next request is considered
accepted only if assertion of TA (or TEA) and TREQ occur during the
same low phase of CLK.

Figure D-4. Read Cycle with Wait States

ADDRX ADDRY ADDRZ ADDRW

S1 S2 Sw

DATAX

Sw S3(S1') S2 S3(S1') S2 S3

DATAZ DATAW

Note 1. TREQ for ADDRY ignored since previous transfer not complete.

CLK

ADDR[22:0]

R/W

TREQ(1)

 TBUSY

 TA

DATAIn

TSIZ[1:0]
TC[2:0]
Reference Manual M•CORE with M210/M210S Specifications

336 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Processor Instruction/Data Transfers

D.5.3 Write Transfer Cycles

During a write transfer, the M210 core drives data to a memory or
peripheral device. Figure D-5 shows an example of a write transfer
operation.

Figure D-5. Write Cycle

State1 (S1)

The write cycle starts in S1. During S1, the M210 core places valid
values on the address bus and transfer attributes. The transfer code
(TC[2:0]) signals identify the specific access type. The TSIZ[1:0]
signals indicate the size of the transfer. The read/write (R/W) signal is
driven low for a write cycle.

The M210 core asserts transfer request (TREQ) during S1 to indicate
that a transfer is being requested.

ADDRX ADDRY

TSIZX TSIZY

TCX TCY

S1

DATAX

CLK

ADDR[22:0]

R/W

 TREQ

 TBUSY

 TA

DATAOUT

tCFWV tHRTS

tHARM

TSIZ[1:0]

TC[2:0]

tCFTV

S2 S3(S1')

tHFTI

tSARM
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 337

M210/M210S Interface Operation
State2 (S2)

The memory or device access begins in S2.The selected device uses
R/W, TSIZ[1:0], and ADDR[1:0] to select the appropriate bytes to be
written in S3. On the M210, the TBUSY signal is asserted to indicate
that an access is in progress. On the M210S, the TBUSYOUT signal
is asserted to indicate that an access is in progress.

State3 (S3)

During S3, the M210 core drives the data bus with the data to be
written. The interface control logic uses the values of R/W, TSIZ[1:0],
and ADDR[1:0] which were driven during S1 and S2 to align
information from the data bus. With the exception of the R/W signal,
these signals also select the operand bytes (DATA[31:24],
DATA[23:16], DATA[15:8], and DATA[7:0]). If the memory can
respond without a wait state, then it asserts the transfer acknowledge
(TA) signal.

The M210 core samples the level of TA and if it is asserted,
terminates the bus cycle. If the M210 core does not recognize
assertion of TA by the end of the clock cycle, it inserts a wait state
instead of terminating the transfer. The M210 core continues to
sample TA on successive rising edges of CLK until TA is recognized
asserted. Only when the M210 core recognizes assertion of TA is the
outstanding transfer terminated.

During S3, the M210 core may negate TREQ if no further transfers
are pending, or may keep TREQ asserted to indicate that another
transfer is pending. The R/W, TSIZ[1:0], TC[2:0], and ADDR[22:0]
signals are driven with the information for the new pending cycle. If no
cycle is pending, the values driven during S3 are undefined.

For back-to-back transfers, S3 and the next S1 occur at the same
time.
Reference Manual M•CORE with M210/M210S Specifications

338 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Processor Instruction/Data Transfers

D.5.4 Write Transfer Cycles with Wait State

Figure D-6 shows an example of wait state operation. For the second
write request (ADDRY), TA is not asserted following S2, so wait states
are inserted until TA is recognized.

Meanwhile, the core generates another request, for ADDRZ. This
request is not considered accepted by the core since the previous
transfer has not been terminated, so the core is free to negate or change
the request (in this case, the request is changed to ADDRW) on the next
cycle.

This situation can occur when a data request becomes pending following
an instruction prefetch request which has not been accepted, and in
other circumstances. Logic controlling the interface must be cognizant of
this protocol. With a transfer in progress, the next request is considered
accepted only if assertion of TA (or TEA) and TREQ occur during the
same low phase of CLK. In this example the request for ADDRZ is never
accepted nor should it be.

Figure D-6. Write Cycle with Wait States

S1 S2 Sw Sw S3(S1') S2' S3

DATAX DATAW

Note 1. TREQ for ADDRZ ignored since previous transfer not complete.

CLK

ADDR[22:0]

R/W

TREQ(1)

TBUSY

TA

DATAOut

TSIZ[1:0]

TC[2:0]

ADDRX ADDRY ADDRZ

DATAY

ADDRW
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 339

M210/M210S Interface Operation
D.5.5 Data Bus Hand-Off

Two examples of data bus hand-off operation are:

1. In Figure D-7, the data bus is driven by either memory or the
M210 core during the CLK low phase, and hand off occurs during
the CLK high phase. When a requested access changes from a
previous read to a write, hand off is performed by three-stating the
data bus drivers of memory during the clock high phase following
the assertion of TA for the outstanding read cycle. The M210 core
is then free to drive write data on the bus during S3 (or the first Sw)
for the write request. The M210 core only drives valid data for a
single phase when an access is accepted. The memory interface
is responsible for either completing the write in this phase, or
latching the data.

2. Figure D-8 shows a read cycle with wait states followed by a write
request. Although the M210 core has driven the address and
attributes for a write cycle to ADDRY, the data associated with the
write cycle is not driven until after the write cycle has been
accepted, in this case with the TA for the ADDRX access.

Figure D-7. Data Bus Hand-Off Operation

ADDRX ADDRY ADDRZ ADDRW

S1

DATAX

S2 SW SW S3(S1') S2’ S3’

DATAY DATAZ DATAW

DATA DRIVEN BY MEMORY
DATA DRIVEN BY CORE

DATA DRIVEN BY MEMORY

CLK

 ADDR[22:0]

R/W

 TREQ

 TA

DATA

TSIZ[1:0]
TC[2:0]
Reference Manual M•CORE with M210/M210S Specifications

340 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Bidirectional Three-State Data Bus

Figure D-8. Data Bus Hand-Off Operation with Wait State

D.6 Bidirectional Three-State Data Bus

The design of the M210S core is well suited for a multiplexed bus
implementation with the data bus being split into an input data bus
(DATAIn[31:0]) and an output data bus (DATAOut[31:0]). Should the
environment in which the core is to be integrated require a single
bidirectional data bus, DATAIn[31:0] and DATAOut[31:0] can be
combined as shown in Figure D-9.

Figure D-9. Combining DATAIn and DATAOut

Into a Single Bidirectional Data Bus

ADDRX ADDRY ADDRY ADDRW

S1 S2 SW SW S3(S1') S2' S3'

DATAX DATAY DATAW

DATA DRIVEN BY CORE

Note 1. TREQ for ADDRY ignored since previous transfer not complete.

CLK

ADDR[22:0]

R/W

TREQ(1)

 TA

DATA

TSIZ[1:0]
TC[2:0]

DATA DRIVEN BY MEMORY

DATA DRIVEN BY MEMORY

DATAOut

DATAIn

DATAEN
BIDIRECTIONAL

DATA

CLK

THREE-STATE
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 341

M210/M210S Interface Operation
D.7 Bus Exception Control Cycles

The bus interface requires assertion of TA from an external device to
signal that a bus cycle is complete.

External circuitry can provide TEA when no device responds or can
indicate that an error condition is associated with an access by asserting
TEA. This allows the cycle to terminate and the M210 core to enter
exception processing for the error condition if appropriate.

To properly control termination of a bus cycle for a bus error condition,
TA and TEA must be asserted and negated about the same rising edge
of CLK. Table D-2 is a summary of termination results.

D.8 Bus Errors

The system hardware can use the TEA signal to abort the current bus
cycle when a fault is detected. When the M210 core recognizes a bus
error condition for an access, the access is terminated immediately.

When a bus cycle is terminated with a bus error, the M210 core can enter
access error exception processing immediately following the bus cycle,
or it can defer processing the exception.

The instruction prefetch mechanism requests instruction words from the
instruction memory unit before it is ready to execute them. If a bus error
occurs on an instruction fetch, the M210 core does not take the
exception until it attempts to use the instruction. Should an intervening
instruction cause a branch, or should a task switch occur, the access
error exception for the unused access does not occur.

Table D-2. Termination Result Summary

TA TEA Result

Don’t care Low
Bus error — terminate, take bus error exception,

if appropriate.

Low High Normal cycle — terminate and continue

High High Insert wait states
Reference Manual M•CORE with M210/M210S Specifications

342 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Abort SIgnal Operation

A bus error termination for any write access or read access that
reference data specifically requested by the execution unit causes the
M210 core to begin exception processing immediately.

D.9 Abort SIgnal Operation

Under certain circumstances involving exception conditions, the central
processor unit (CPU) aborts an access in the clock following a valid
(taken) TREQ in the previous clock. In this event, the access address is
an invalid one and must not be used to access devices. Other
circumstances which may cause aborted accesses include:

• When any sort of exception is detected on a taken request

• When TEA occurs on a data access

• When a misaligned exception and the next request is taken

• When a hardware breakpoint occurs during a data transaction with
the forced debug enable (FDB) bit in the CPU scan chain control
state (CTL) register cleared

• When an interrupt occurs during a load multiple registers (LDM) or
store multiple registers (STM) instruction with the interrupt control
(IC) bit in the processor status register (PSR) set

Aborted accesses are indicated by the assertion of the ABORT output
early in the clock cycle following a taken access. Although the CPU
asserts ABORT, it still requires the error termination (TEA) signal to be
asserted, and requires a no wait state response.

Figure D-10 shows an example of ABORT operation. The access for
ADDRY is initially stalled, then aborted.

NOTE: The access for ADDRW is valid and taken, even though ABORT has not
yet negated, since it is a C1-to-C1 signal.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 343

M210/M210S Interface Operation
Figure D-10. Abort Operation

D.10 Data to Address Transfer Operation

Under certain circumstances involving instruction change of flow
fetches, the CPU immediately forwards data received on a read access
to the address bus for the following access. The D2A signal is provided
to indicate this occurrence, and may be used to control system behavior
as needed for these cases. Usually, no functionality need be modified,
but if timing conditions require it, the signal may be used to delay
termination of an access in progress, or the succeeding access.

Figure D-11 shows an example of D2A signal operation. In this
example, the access for ADDRY is a table access for a jump indirect
(JMPI) or jump to subroutine indirect (JSRI) instruction. The returning
data, DATAY is then forwarded to the address bus for the destination
prefetch.

ADDRX ADDRY ADDRY ADDRW

C2 C1 C2 C1

DATAX

TEA ASSERTED, ACCESS ABORTED

CLK

ADDR[22:0]

 TREQ

 ABORT

DATA

TA

TSIZ[1:0]
TC[2:0]

R/W

ACCESS TAKEN

TREQ FOR ADDRY IGNORED SINCE PREVIOUS TRANSFER NOT COMPLETE

ACCESS TAKEN

ACCESS ABORTED

Signal held by keeper
Signal driven

TA ASSERTED, ACCESS IS COMPLETE

TA NEGATED, ACCESS IS MULTICYCLE

TEA
Reference Manual M•CORE with M210/M210S Specifications

344 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Breakpoint Request Operation

Figure D-11. Data to Address Transfer

D.11 Breakpoint Request Operation

The M210 core bus interface supports input signal BRKRQ to allow
accesses to be tagged with breakpoint requests. This signal may also
allow the CPU core to enter debug mode via the debug enable (FDB) bit
in the CPU scan chain control state (CTL) register. Refer to Section 9.
JTAG Test Access Port and OnCE for more information. BRKRQ is
sampled when an access is terminated with TA or TEA to tag an operand
or instruction fetch with a breakpoint request.

Operand accesses terminated with BRKRQ asserted result in a
breakpoint exception being taken following completion of the instruction
associated with the access. Instruction accesses terminated with
BRKRQ asserted result in breakpoint processing when (and if) the
instruction attempts execution.

The BRKRQ signal does not terminate a bus cycle, it only provides
status associated with a cycle. This signal must be valid when the core
recognizes a TA or a TEA termination.

ADDRX ADDRY ADDR = Y ADDRW

C2 C1 C2 C1

DATAY

CLK

ADDR[22:0]

 TREQ

 D2A

DATA

TSIZ[1:0]
TC[2:0]

R/W

ADDRY IS A TABLE FETCH FOR A JMPI DATAY DRIVEN ON ADDRESS BUS

ACCESS TAKEN ACCESS TAKEN
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 345

M210/M210S Interface Operation
D.12 Bus Arbitration Operation

Support for an alternate master to obtain ownership of the interface is
provided with the bus arbitration logic block. An external device requests
ownership via BR, and is granted ownership by the arbiter with the
assertion of BG. Three-state control signals for the address and data
buses with their associated signals are provided to allow full bus
bandwidth utilization.

Alternate masters request control of the interface by asserting BR.
Requests for ownership are granted after initiation of pending CPU
accesses. The CPU releases the interface after initiation of outstanding
accesses and asserts BG. Two control signals are provided for bus hand
off: TSCA (three-state or mux control for ADDR[22:0] and attributes) and
TSCD (three-state or mux control for DATA[31:0] and TBUSY) control
signals. These signals indicate the CPU has placed the associated
signals in a high-impedance state and are used to enable the three-
stateable outputs of the alternate master for low-overhead bus hand off.
For a unidirectional bus implementation, these signals can be used to
control a mux to select between the core or an alternate master for
control of the bus.

The arbitration logic function NOT is available while RST is asserted.
Thus, an alternate master may not perform arbitration sequences while
the CPU is held in a reset condition. Once RST is released, assertion of
BG occurs if BR has been previously asserted and remains asserted.

Maximum latency from assertion of BR to the assertion of BG is one
clock cycle, plus the length of any outstanding cycle in progress. Thus,
for no-wait state accesses, the maximum latency is two clock cycles, and
for an access which requires three cycles to complete, the maximum
latency from BR asserted to BG asserted is four clock cycles.

An external master waits for the assertion of BG, after which time the
CPU releases the ADDR[22:0], R/W, TSIZ[1:0], TC[2:0], TREQ, TE,
SEQ, and D2A signals and places these outputs in a high-impedance
state. TSCA is asserted one-half clock following assertion of BG to
indicate this has occurred. The external master is then responsible for
ensuring the correct operation of these signals (including negation, etc.
where required). If a cycle is not initiated by the requestor at the time
Reference Manual M•CORE with M210/M210S Specifications

346 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Bus Arbitration Operation

these signals are handed off, the alternate master must drive TREQ high
to negate it.

NOTE: Assertion of BR does not prevent the assertion of TREQ by the CPU
during the same clock, and the requested cycle is initiated prior to
assertion of BG.

A requesting device should continue to assert BR past the assertion of
BG and TSCA until the alternate cycle is taken. A requested access is
taken in a cycle where TREQ is asserted and either TBUSY is negated,
or TBUSY is asserted and either TA or TEA asserts to terminate an
access in progress.

Since a cycle may still be in progress for the CPU (awaiting TA or TEA,
and awaiting returning data for read cycles), the data bus is not
relinquished until TSCD is asserted. This may be several cycles for an
access in progress with wait states.

As is the case for TREQ at address bus hand off, the external master is
responsible for proper negation of the TBUSY signal at the time of data
hand off (TSCD assertion) if an access is not immediately requested.

Once asserted, the bus arbitration logic continues to assert BG until BR
is negated. If the BR is negated and then reasserted, BG is negated, and
then reasserted after any accesses which might have been initiated by
the CPU in the negation interval have completed.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 347

M210/M210S Interface Operation
D.12.1 Operation Examples

Figure D-12 shows an example of the CPU relinquishing the interface
due to assertion of BR.

NOTE: The BG signal is asserted once pending accesses in the CPU pipeline
have been initiated.

Figure D-12. Arbitration Operation, Bus Request → Bus Grant Assertion

ADDRX ADDRY

R/WALT

ADDRALT

MCLK

CLK

ADDR[22:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

BR

BG

TA

DATA[31:0]

TSCD

zz

TSIZ[1:0]
TC[2:0]

zz

zz

TBUSY RELEASED
BY CPU WITH TSCD

zz

zz

ADDR[22:0], ATTRIBUTES, TREQ,
D2A, SEQ RELEASED AFTER
CLK FALLS

TSCA ASSERTS AFTER
THREE STATE OF ABOVE
SIGNALS BY CPU

DATAYDATAX DATAALT

TSCD asserts after three state
WRITE DATA DRIVEN BY CORE

DATA INTERFACE, TBUSY RELEASED BY CORE

BY CPU OF DATA BUS, TBUSY

READ DATA DRIVEN BY MEMORY
Reference Manual M•CORE with M210/M210S Specifications

348 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Bus Arbitration Operation

Figure D-13 shows another example of bus hand off during a read cycle
with wait-states. In this case, BG is held off until the pending CPU cycle
has been accepted.

Figure D-13. Arbitration Operation, Bus Request → Bus Grant Assertion,
Wait State on Outstanding Cycle Before Assertion, Assertion Delayed

ADDRX ADDRY

R/WALT

ADDRALT

MCLK

CLK

ADDR[22:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

BR

BG

TA

DATA[31:0]

TSCD

zz

TSOZ[1:0]
TC[2:0]

zz

zz

zz

ADDR[22:0], ATTRIBUTES, TREQ,
D2A, SEQ RELEASED AFTER

CLK FALLS

TSCA ASSERTS AFTER
THREE STATE OF ABOVE
SIGNALS BY CPU

DATAYDATAX DATAALT

READ DATA DRIVEN BY MEMORY

DATA INTERFACE, TBUSY RELEASED BY CORE

ADDRY

zz

TBUSY RELEASED
BY CPU WITH TSCD

TSCD ASSERTS AFTER THREE STATE
BY CPU OF DATA BUS, TBUSY
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 349

M210/M210S Interface Operation
Figure D-14 shows another example of bus hand off during a write cycle
with wait states.

NOTE: In this example, since an access is still in progress (TBUSY asserted)
when the address and attributes are released to an alternate master
(assertion of TSCA), the alternate master must continue to drive its
request and requested address until completion of the data cycle in
progress. This is indicated by assertion of TA or TEA while TBUSY is
asserted. Alternately, it may be determined by assertion of TSCD if the
timing permits.

On negation of BR, the CPU negates BG and retakes ownership of the
bus. Figure D-15 through Figure D-22 show examples of the CPU
regaining ownership of the interface due to negation of BR.

NOTE: For proper system operation, the alternate master must ensure that the
D2A and SEQ signals have been negated prior to releasing them.
Reference Manual M•CORE with M210/M210S Specifications

350 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Bus Arbitration Operation

Figure D-14. Arbitration Operation, Bus Request → Bus Grant Assertion,

Wait State on Outstanding Cycle After Assertion

ADDRX ADDRY

R/WALT

ADDRALT

MCLK

CLK

ADDR[22:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

BR

BG

TA

DATA[31:0]

TSCD

zz

TSIZ[1:0]
TC[2:0]

zz

zz

zz

zz

ADDR[22:0], ATTRIBUTES, TREQ,
D2A, SEQ RELEASED AFTER
CLK FALLS

TSCA ASSERTS AFTER
THREE STATE OF ABOVE
SIGNALS BY CPU

DATAYDATAX DATAALT

READ DATA DRIVEN BY MEMORY

WRITE DATA DRIVEN BY CORE

TBUSY RELEASED
BY CPU WITH TSCD

TSCD ASSERTS AFTER THREE STATE
BY CPU OF DATA BUS, TBUSY

DATA INTERFACE, TBUSY RELEASED BY CORE
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 351

M210/M210S Interface Operation
Figure D-15. Arbitration Operation, Bus Request → Bus Grant Negation

ALT ADDR ADDRX

ALT R/W R/WX

DATAALT DATAX

MCLK

CLK

ADDR[22:0]

TSIZ[1:0]

TC[2:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

TA

DATA[31:0]

BR

BG

TSCD

zz

zz

zz

zz

TSCA NEGATES TO HANDOFF
ABOVE SIGNALS BACK TO CPU
(EXCEPT TBUSY)

TSCD NEGATES TO HANDOFF
TO DATA BUS, TBUSY back
TO CPU
Reference Manual M•CORE with M210/M210S Specifications

352 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Bus Arbitration Operation

Figure D-16 shows interleaved CPU and alternate master cycles.

NOTE: The alternate master negates BR as soon as its requested address has
been taken, since it only has a single access to run per request. This
ensures no dead time on the address bus.

Figure D-16. Arbitration Operation, Back-to-Back Cycles

ADDRX ADDRALT ADDRY ADDRZ ADDRALT

R/WALT R/WY R/WZ R/WALT

DATAX DATAALT DATAY DATAZ

MCLK

CLK

ADDR[22:0]

TSIZ[1:0]

TC[2:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

BR

BG

TA

DATA[31:0]

TSCD

zz

zz

zz

zz

zz

zz

zz

zz

zz zz

zz

zz

zz

TSCD ASSERTS AFTER
THREE-STATE BY CPU OF
DATA BUS, TBUSY)

READ DATA DRIVEN BY MEMORY

DATA INTERFACE, TBUSY RELEASED BY CORE
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 353

M210/M210S Interface Operation
Figure D-17 shows an example of release of the bus by an alternate
master with no pending CPU request. In this case, the CPU negates the
TREQ and TBUSY signals after TSCA negates.

Figure D-17. Arbitration Operation, Bus Request → Bus Grant Negation,
No Pending CPU Request

ALT ADDR

ALT R/W

DATAALT

MCLK

CLK

ADDR[22:0]

TSIZ[1:0]

TC[2:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

TA

DATA[31:0]

BR

BG

TSCD

zz

zz

zz

zz

TSCD NEGATES TO
HANDOFF DATA BUS, TBUSY
BACK TO CPU

CPU NEGATES SINCE NO PENDING
ACCESS

TSCA NEGATES TO HANDOFF ABOVE
SIGNALS BACK TO CPU (EXCEPT TBUSY)
Reference Manual M•CORE with M210/M210S Specifications

354 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Bus Arbitration Operation

Figure D-18 and Figure D-19 show examples of one or more wait states
following negation of BR. In this case, TSCD is held asserted until
completion of the alternate cycle in progress even though BG has
already negated.

Figure D-18. Arbitration Operation, Bus Request → Bus Grant Negation,
One Wait State on Alternate Master Cycle

ALT ADDR ADDRX ADDRX

ALT R/W R/WX R/WX

DATAALT DATAX

MCLK

CLK

ADDR[22:0]

TSIZ[1:0]

TC[2:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

TA

DATA[31:0]

BR

BG

TSCD

zz

zz

zz

zz

TSCA NEGATES TO HANDOFF ABOVE
SIGNALS BACK TO CPU (EXCEPT TBUSY)

TSCD NEGATES TO
HANDOFF DATA BUS, TBUSY

BACK TO CPU
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 355

M210/M210S Interface Operation
Figure D-19. Arbitration Operation, Bus Request → Bus Grant Negation,
Multiple Wait States on Alternate Master Cycle

ALT ADDR ADDRX ADDRX ADDRX

ALT R/W R/WX R/WX R/WX

DATAALT DATAx

MCLK

CLK

ADDR[22:0]

TSIZ[1:0]

TC[2:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

TA

DATA[31:0]

BR

BG

TSCD

zz

zz

zz

zz

TSCA NEGATES TO HANDOFF ABOVE
SIGNALS BACK TO CPU (EXCEPT TBUSY)

TSCD NEGATES TO
HANDOFF DATA BUS, TBUSY

BACK TO CPU
Reference Manual M•CORE with M210/M210S Specifications

356 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Bus Arbitration Operation

Figure D-20 and Figure D-21 show examples of bus re-request with an
outstanding alternate master cycle. In this case, a pending CPU request
is initiated prior to reassertion of BG.

Figure D-20. Bus Re-request with Wait State on Alternate Master Cycle

ALT ADDR ADDRX ADDRX ADDRALT

ALT R/W R/WX R/WX R/WALT

DATAALT DATAX DATAALT

MCLK

CLK

ADDR[22:0]

TSIZ[1:0]

TC[2:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

TA

DATA[31:0]

BR

BG

zz

zz

zz

zz

zz

zz

zz

zz

TSCA NEGATES TO HANDOFF ABOVE
SIGNALS BACK TO CPU (EXCEPT TBUSY)

TSCA ASSERTS TO
HANDOFF ABOVE SIGNALS
TO ALT MASTER (EXCEPT
TBUSY)

BR MUST ASSERT UNTIL ACCESS IS “TAKEN”

TSCD NEGATES TO
HANDOFF DATA BUS, TBUSY

BACK TO CPU

TSCD ASSERTS TO
HANDOFF DATA BUS, TBUSY

TSCD
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 357

M210/M210S Interface Operation
Figure D-21. Bus Re-request with Multiple Wait States on Alternate Master Cycle

ALT ADDR ADDRX ADDRX ADDRX ADDRALT

ALT R/W R/WX R/WX R/WX R/WALT

MCLK

CLK

ADDR[22:0]

TSIZ[1:0]

TC[2:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

TA

DATA[31:0]

BR

BG

TSCD

zz

zz

zz

DATAALT DATAX

zz

zz

zz

zz zz

BR MUST ASSERT UNTIL ACCESS IS “TAKEN”

TSCD NEGATES TO
HANDOFF DATA BUS, TBUSY
BACK TO CPU

TSCA ASSERTS TO
HANDOFF DATA BUS, TBUSY

TSCA ASSERTS TO
HANDOFF ABOVE SIGNALS
TO ALT MASTER (EXCEPT
TBUSY)

TSCA NEGATES TO
HANDOFF ABOVE SIGNALS
BACK TO CPU (EXCEPT
TBUSY)
Reference Manual M•CORE with M210/M210S Specifications

358 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Bus Arbitration Operation

Figure D-22 shows an example of bus re-request with no pending CPU
access.

Figure D-22. Arbitration Operation, Bus Request → Bus Grant Negation,
No Pending CPU Request, Bus Re-Request

ALT ADDR ALT ADDR

ALT R/W ALT R/W

DATAALT

MCLK

CLK

ADDR[22:0]

TSIZ[1:0]

TC[2:0]

R/W

TREQ

TBUSY

D2A

SEQ

TSCA

TA

DATA[31:0]

BR

BG

TSCD

zz

zz

zz

zz

zz

zz

zz

zz

TSCD NEGATES TO
HANDOFF DATA BUS, TBUSY
BACK TO CPU

TSCA NEGATES TO
HANDOFF ABOVE SIGNALS
BACK TO CPU (EXCEPT
TBUSY)

TSCD ASSERTS TO
HANDOFF DATA BUS, TBUSY

CPU NEGATES SINCE NO PENDING ACCESS
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 359

M210/M210S Interface Operation
D.12.2 Interaction with Low-Power Modes and Debug Operation

The CPU is capable of signalling the DOZE, STOP, and WAIT low-
power modes via LPMD[1:0] once a low-power state has been entered.
Refer to D.16 Power Management Interface Operation for more
information. While in these modes, the clocks to the CPU core may be
disabled at the system level. The bus arbitration logic needs to have the
clocks re-enabled to allow the bus to be granted, and this is handled in
a similar manner to receiving an interrupt while in a low-power state.
Upon detecting assertion of BR, the CPU generates a wakeup signal
(WAKEUP) to the system level clock module to cause the CPU clocks to
be re-enabled for the duration of the alternate master’s bus ownership.
Following the release of the bus by the alternate master, WAKEUP is
negated (assuming no other wakeup event is pending), allowing the
CPU clocks to be disabled again if desired. In this manner, bus
arbitration functions normally even with the CPU in a low-power state.
Arbitration latency is a function of the system clock controller’s response
time to WAKEUP. The M210 remains in a low-power state until a
pending interrupt or debug request is detected.

In debug mode, the CPU continues to respond to bus requests and
grants the bus with minimal to no additional latency over normal
operation. In certain circumstances, such as a pending access or
accesses which must be completed, entry into debug mode may be
delayed due to arbitration by the alternate master. This has no affect on
the alternate master however.

D.12.3 Bus Arbitration and Entry into Low-Power States

A problem may occur if a bus request is received in the clock cycle just
prior to the clock cycle where the system clock controller would normally
freeze the CPU clock in an inactive (high) state. In this case, the bus may
be granted by assertion of BG, but since the CPU clock is held high, no
TSCA or TSCD assertion occurs. Although the WAKEUP output signal
will be asserted, if the system clock control uses a synchronized version
(for example, delayed), it will not be seen until after the alternate master
has potentially been clocked. Either the BR input signal or the WAKEUP
output signal (if it is synchronous to the system clock and not delayed)
Reference Manual M•CORE with M210/M210S Specifications

360 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Bus Arbitration Operation

must be monitored by the system clock controller in a synchronous
fashion to ensure the clocks remain running or the alternate master clock
must be disabled as well. Figure D-23 shows the window where this
might occur.

Figure D-23. Arbitration Operation, Entry into Low-Power Mode

MCLK

CLK

ADDR[22:0]
TSIZ[1:0]

TC[2:0]

R/W

TREQ

TBUSY

LPMD[1:0]

WAKEUP

BR

BG

TSCA

TSCD

CPU CLOCK MUST NOT FREEZE YET, OR
TSCA AND TSCD WILL NOT ASSERT

CPU ENTERS LOW-POWER MODE
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 361

M210/M210S Interface Operation
D.13 Reset Operation

This subsection describes the functionality and requirements for M210
reset related signals. The three reset inputs on the M210 are
summarized in Table D-3.

Figure D-24 depicts the two functional reset and clock domains of M210.
The clock synchronization logic between the two clock domains is also
shown.

Figure D-24. M210 Clocks and Reset Domains

The reset and clock domains have been partitioned such that the RST
signal does not affect JTAG/OnCE logic and TRST does not affect
processor logic. It is possible and desirable to access OnCE registers
while the processor is running or in reset. Alternatively, it is also possible
and desirable to assert TRST and clear the JTAG/OnCE logic without
affecting the processor.

NOTE: Since the clock synchronization logic and the JTAG-based OnCE state
machine must be cleared at power-up, either TRST or POR must be

Table D-3. M210 Reset and Clock Domains

Signal Description
Clock

Domain
Assertion

Time Requirement

RST Processor (system) reset CLK 10 µs (CDR1)

TRST JTAG reset TCLK 10 ns

POR Power-on reset CLK and TCLK 10 ns

PROCESSOR
(CLK)

CLOCK SYNC
LOGIC

DEBUG MODULE
(JTAG/OnCE)

(TCLK)

CLK

RST

TCLK

TRST
POR
Reference Manual M•CORE with M210/M210S Specifications

362 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Reset Operation

asserted during processor power-up reset (RST) for proper operation.
After power-up, the two clock domains may be reset independently.

Table D-4 describes the functions of the reset related signals.

D.13.1 System Issues

JTAG compliance requires that the pin associated with TRST include a
pullup resistor. Since it is desirable to connect a device containing an
M210 processor to a debug controller via the JTAG/OnCE port interface
connector, most designs leave TRST floating. The pullup resistor causes
a logic 1 on the pin and TRST is negated.

As mentioned earlier, the synchronization logic between the processor
and debug module requires an assertion of either TRST or POR during
processor power-up reset (RST) in order to ensure proper operation. If
the pin associated with the TRST input is designed with a pullup resistor
and left floating, then assertion of POR is required during processor
reset. Similarly, for those systems which do not have a power-on reset
circuit and choose to tie POR low, it is required to assert TRST during

Table D-4. Reset Signals

Signal Description

RST

The RST input is the M210 processor’s active low reset. RST is
considered an asynchronous input and is sampled by the clock
control logic in the M210 debug module in order to exit from reset
gracefully. The hold time specified in Table D-3 reflects the time
required to flush all M210 scan chains to zero.

TRST

The TRST signal is the JTAG reset, commonly referred to in the
IEEE1149.1 specification. This is an asynchronous clear with a
very short assertion time requirement. It is ORed with POR and the
resulting signal clears the JTAG tap controller and associated
registers as well as the OnCE state machine. TRST (along with the
other JTAG signals) is part of a defined JTAG/OnCE port interface
connector which has been developed for Motorola and third party
debug controllers.

POR

The POR input is an asynchronous clear with a very short assertion
time requirement. It is ORed with TRST and the resulting signal
clears the JTAG tap controller and associated registers as well as
the OnCE state machine. POR also initializes the clock logic.
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 363

M210/M210S Interface Operation
processor power-up reset. Again, once a power-up reset has been
achieved, the two clock domain resets can be asserted independently.

It is strongly suggested that customers implement a power-on reset
circuit to drive POR. In those cases where RST may be unknown during
the initial power-on sequence, POR is used to prevent internal bus
contention and therefore may increase the long term reliability of the
part.

D.13.2 Timing

The timing requirements for the resets are shown in Figure D-25.

Figure D-25. Reset Timing Requirements

CLK

RST

TRST

POR

10 ns MIN

10 ns MIN

10 µs MIN
Reference Manual M•CORE with M210/M210S Specifications

364 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Interrupt Interface Operation

D.14 Interrupt Interface Operation

The M210 core provides a flexible interrupt interface to an external
interrupt control module.

The FINT and INT inputs are used to request a particular type of
interrupt, and the AVEC and VEC[6:0] inputs are used to control the
interrupt vectoring process. When FINT or INT is asserted, either the
AVEC or VEC[6:0] inputs must be driven to a valid value as well, in order
to properly generate the interrupt exception vector. If INT has been
asserted and FINT becomes asserted, the vector number provided must
track the interrupt which will be recognized, otherwise the wrong vector
number may be used. On each rising clock edge, the vector number
and/or AVEC must be driven appropriately for the particular interrupt
request lines which are also asserted.

Interrupt inputs to the M210 core are all level sensitive, not edge-
triggered, thus the interrupt request as well as the VEC[6:0] or AVEC
inputs must remain asserted until the interrupt is serviced to guarantee
that the M210 core recognizes the request. On the other hand, once a
request is generated, there is no guarantee the M210 core will not
recognize the interrupt request even if the request is later removed.

Figure D-26 shows the functional timing of these signals. All of these
signals must meet setup time requirements to the rising edge of the clock
for proper CPU operation. Once asserted, the CPU recognizes and
begins to process the interrupt exception on the next instruction decode
boundary where the interrupt is the highest priority exception.

Figure D-26. Interrupt Interface Signals

INT

VEC[6:0]

FINT
AVEC

tSVAVR

tHIAVR

C1

tSIAVR
tHVAVR
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 365

M210/M210S Interface Operation
The IPEND output can be used to control power management operation
as well as assist in bus arbitration priority schemes. The IPEND output
is a function of INTRAW and FINTRAW, as well as interrupt enable bits
in the PSR. These interrupt input signals have no setup and hold
requirements with respect to the rising edge of the clock, as IPEND is
generated from a combination of these inputs, thus is not referenced to
a clock edge. This allows it to be used as a wakeup signal to an external
power management/clock generation module when CLK has been
disabled in the high state. IPEND remains asserted until the processor
begins exception processing and updates the PSR to mask further
interrupts. At this point, the IPEND setup to the rising edge of the CLK is
negated unless a normal interrupt is pending and acknowledged and a
fast interrupt becomes pending prior to the normal negation of IPEND.
Refer to Figure D-27.

The IPEND output is not guaranteed to be negated if another interrupt
which is not masked by recognition of the first (FINT following INT) is
presented to the core before the first instruction of the handler for the
original interrupt is fetched and decoded, and exception processing
begins again for the higher priority interrupt.

NOTE: INTRAW and FINTRAW do not directly request interrupts, they only
participate in IPEND and WAKEUP signal generation. INT and FINT are
used to actually control interrupt recognition.

Figure D-27. Interrupt Signals

CLK

INT

IPEND

INTRAW

FINT
AVEC

FINTRAW

EXCEPTION VECTOR FETCH
Reference Manual M•CORE with M210/M210S Specifications

366 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Global Status and Control Interface Operation

D.15 Global Status and Control Interface Operation

The M210 core provides two control registers as part of the supervisor
programming model to monitor global status in the integrated system as
well as to provide global control outputs to the system. Refer to
Section 2. Registers for register information.

The GCB[31:0] outputs change state when the GCR register is updated
by the MTCR instruction.

The GSB[31:0] inputs are sampled by the core and the corresponding
values appear in the GSR for transfer to a general register when an
MFCR instruction referencing the GSR is executed.

Figure D-28 shows the functional timing of these signals. The GSB
inputs are sampled with the falling edge of the C1, and the GCB outputs
transition following the rising edge of the C1.

Figure D-28. Global Status and Control Signals

D.16 Power Management Interface Operation

The M210 core provides three instructions, DOZE, STOP, and WAIT, to
implement low-power operating modes. The functionality of these
modes is not dictated by the M210 core, but is determined by the design
of external power management circuitry. The M210 core provides output
signals associated with the execution of each of these instructions that
can be monitored by external logic to control M210 core and system
operation.

When a DOZE, STOP, and WAIT instruction is executed, the
appropriate mode is indicated on the LPMD[1:0] outputs. External logic
can decode the signals, then place the M210 core in a low-power state

C1

GCB[31:0]

GSB[31:0]
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 367

M210/M210S Interface Operation
by forcing CLK high. The M210 core can be re-enabled by providing CLK
as system events dictate.

Terminating a low-power mode requires recognition of a valid interrupt
service request, and the assertion of IPEND or the assertion of a debug
request. The M210 core remains in a stopped or waiting state until a
valid interrupt is pending and CLK has been re-enabled.

Execution of the DOZE, STOP, and WAIT instruction is delayed until any
outstanding prefetch has completed.

Figure D-29 and Figure D-30 show the functional timing of these
signals. The LPMD[1:0] outputs transition following the rising edge of
CLK after all outstanding fetches have been completed.

Figure D-29. Power Management Signals Assertion

Figure D-30. Power Management Signals Negation

LPMD[1:0]

FETCH STOP INST
(WAIT)

FETCH NEXT INSTRUCTION

DECODE STOP
(WAIT)

COMPLETE
PREFETCH

ASSERT
OUTPUT

ENTER LOW-POWER STATE

C1

tRLI

tHRLI

LPMD[1:0]

INT

IPEND

FINT

EXIT LOW-POWER STATE

C1
Reference Manual M•CORE with M210/M210S Specifications

368 M210/M210S Interface Operation MOTOROLA

M210/M210S Interface Operation
Power Management Interface Operation

Refer to D.14 Interrupt Interface Operation for more information on
interrupt recognition while in a stopped or waiting state.

Figure D-31 shows the WAKEUP signal. The WAKEUP output is
asserted to cause the system level clock generation logic to reapply the
CPU clock in the case of the assertion of the INTRAW, FINTRAW, BR,
or DBUG inputs. In the case of INTRAW, FINTRAW, or DBUG, the
processor exits low-power modes, and LPMD[1:0] are negated. In the
case where BR only is asserted, the WAKEUP is asserted, but the CPU
does not exit a low-power state. Arbitration occurs once CLK has been
re-enabled by the system clock controller. Once the alternate master has
relinquished the bus and the arbitration sequence has completed,
WAKEUP is negated (unless another cause to wakeup exists) and the
CLK may be disabled.

WAKEUP is generated asynchronously from these inputs, so it should
be synchronized if required. However, certain problems with clock
freezing and bus arbitration may occur. Refer to D.12.3 Bus Arbitration
and Entry into Low-Power States for more information.

Figure D-31. Wakeup Control Signal (WAKEUP)

CLK

INTRAW

WAKEUP

LPMD[1:0]

FINTRAW

EXIT LOW-POWER STATE(1)

BR
DBUG

Note 1. Exit low-power state does not occur for BR-only assertion.

C1

tRLI
M•CORE with M210/M210S Specifications Reference Manual

MOTOROLA M210/M210S Interface Operation 369

M210/M210S Interface Operation
D.17 Emulation/Debug Interface Operation

When asserted, the DBUG input sends a debug request to the M210
processor and subsequently forces the processor to enter debug mode.
This signal is part of a defined JTAG/OnCE port interface connector
which has been developed for Motorola and Third Party debug
controllers. For more information refer to Section 8. JTAG Test Access
Port and OnCE.
Reference Manual M•CORE with M210/M210S Specifications

370 M210/M210S Interface Operation MOTOROLA

Reference Manual — M•CORE with M210/M210S Specifications

Index

A

ABORT . 185, 200, 209

Aborted bus cycles . 209

ABS instruction . 68

Absolute value. 68

Accelerator block . 220, 221

Access error exception . 170

ADDC instruction . 69

ADDI instruction. 70

Address
bus . 182

Addressing
control register . 59
dyadic register . 56
indirect mode . 61
modes . 54
monadic register. 55
register with 4-bit negative displacement 62
register with 5-bit immediate . 57
register with 5-bit offset immediate . 58
register with 7-bit immediate . 58
scaled 11-bit displacement mode. 61
scaled 4-bit immediate . 59

ADDU instruction . 71

AF bit . 32, 43, 47

Alternate file. 30, 31, 43
bit . 32, 43, 47
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 371

Index
AND instruction . 72

ANDI instruction. 73

ANDN instruction . 74

Arithmetic shift right
by 1 bit . 76
dynamic . 75
immediate (static). 77

ASR instruction . 75

ASRC instruction . 76

ASRI instruction. 77

Autovector signal . 190

AVEC. 175, 190, 213

B

BCLRI instruction. 78

BF instruction. 79

BGENI instruction . 80

BGENR instruction . 81

Big-endian byte ordering . 33

Bit
clear immediate . 78
generate

immediate (static) . 80
register (dynamic) . 81

mask generate immediate . 83
reverse . 85
set immediate. 86
test immediate . 89

BKPT instruction . 82, 173

BMASKI instruction . 83

BR instruction . 84
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

372 Index MOTOROLA

Index

Branch
if true . 88
on true, decrementing count . 117
to subroutine . 87
unconditional . 84

Breakpoint
bus cycles . 208
exception . 173
instruction. 82
signal . 188

BREV instruction . 85

BRKRQ . 173, 188

BSETI instruction. 86

BSR instruction . 87

BT instruction. 88

BTSTI instruction. 89

Bus
aborted cycles . 209
address . 182, 196
alignment 196, 197, 199, 200, 201, 202, 203, 204, 206,

207, 208, 209, 210, 211
breakpoint cycles . 208
changes of flow . 210
characteristics . 196
control signals 196, 197, 199, 200, 201, 202, 203,

204, 206, 207, 208, 209, 210, 211
data . 182, 185, 196, 206
data multiplexer . 197, 199, 200, 201, 202, 203, 204, 206, 207, 208
data transfer . 196
error .170, 207, 208
exception cycles. 207, 208
reset cycles . 211
transfers 185, 197, 199, 200, 201, 202, 203, 204,

206, 207, 208, 209, 210, 211
wait states . 202, 204
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 373

Index
C

C bit . 30, 41, 48

Clear
if condition false . 90
if condition true. 91

CLK . 192

Clock signal . 191, 192

CLRF instruction . 90

CLRT instruction . 91

CMPHS instruction . 92

CMPLT instruction . 93

CMPLTI instruction . 94

CMPNE instruction . 95

CMPNEI instruction . 96

Compare
for higher or same . 92
for less than . 93
for not equal . 95
with immediate

for less than . 94
for not equal . 96

Condition code/carry bit. 30, 41, 48

Conditional branch
if false. 79
if true . 88

Connections
power . 193

Control
interface signals . 192
register addressing mode. 59
registers . 31

addressing . 59

Cycle
bus transfer . 185
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

374 Index MOTOROLA

Index

D

D2A . 187, 210

Data
bus . 182, 185
bus hand-off . 206
memory access instructions. 59
multiplexer . 196
organization

in memory . 33
in registers . 34

read cycles . 200, 201, 202
to address signal . 187
transfer mechanism . 196

Data organization
in memory . 331

DBGRQ . 193, 217

DBUG . 193, 217

Debug
acknowledge signal . 193
interface . 217
request signal. 193
signals . 193

DECF instruction . 97

DECGT instruction. 98

DECLT instruction . 99

DECNE instruction. 100

Decrement
conditionally on false . 97
conditionally on true . 101
set C bit on greater than. 98
set C bit on less than . 99
set C bit on not equal . 100

DECT instruction . 101

Divide-by-zero exception . 170

DIVS instruction. 102
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 375

Index
DIVU instruction. 103

DOZE instruction . 104

Dyadic register addressing . 56

Dynamic bus sizing . 196

E

EE bit . 46

Emulation interface . 217

Emulation support . 193

EPC . 50, 165

EPSR. 31, 50, 165

Exception
control cycles . 207, 208
processing . 164

Exceptions
access error . 170
breakpoint . 173
bus error. 170
divide-by-zero. 170
enable bit . 46
hardware accelerator . 176
illegal instruction. 170
interrupt . 175
misaligned access . 169
priorities . 176
privilege violation . 171
processing . 31, 165
reset . 169, 173
returning from. 178
shadow registers . 33, 50
trace . 171
trap . 176
types. 168
unrecoverable error . 173
vectors . 167

Execution status . 191
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

376 Index MOTOROLA

Index

Extended shift right . 156

External accelerator block . 220, 221

Extract
byte 1 into R1 and zero-extend . 158
byte 2 into R1 and zero-extend . 159
high-order byte into R1 and zero-extend 157
low-order byte into R1 and zero-extend 160

F

Fast interrupt request signal . 189

Fast interrupts . 175
enable bit . 47

FE bit . 47

FF1 instruction. 105

Find first one in RX . 105

FINT. 175, 189, 196, 212

Flow control instructions . 61

FPC . 50, 165

FPSR. 31, 50, 165

G

GCR. 51

General-purpose registers. 31, 41

Global
control register . 51
status register. 51

GPRs. 39, 41

GSR. 51

H

H_BUSY . 224

H_CALL. 230, 238

H_DA. 230, 237
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 377

Index
H_DEC . 223

H_DERR . 230

H_DS. 230

H_ERR . 237

H_EXCP . 228, 237

H_EXEC . 224, 237, 241

H_LD . 239

H_OP. 222

H_RET. 230, 239

H_ST . 240

H_SUP. 222

HAI. 222

Hand-off
data bus . 206

Hard reset . 211

Hardware accelerator . 220
back-to-back execution . 225
control bits . 45
control handshake 222, 224, 225, 227, 229,

230, 233, 234, 237
data transfer . 229, 230
exception . 176
instruction primitives. 221, 238, 239, 240, 241,

242, 243, 244, 245, 246
instruction transfer . 222, 224, 225, 227
memory transfer .233, 234
register snooping 221, 222, 224, 227, 229, 230
register transfer . 230
signals . 192, 221, 222, 224, 225, 227,

229, 230, 233, 234, 237
transfer error .237

HDP. 230
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

378 Index MOTOROLA

Index

I

IC bit . 47

IE bit . 47

Illegal instruction exception . 170

INCF instruction. 106

Increment RX conditionally
on false. 106
on true . 107

INCT instruction. 107

Index
halfword . 108
word . 109

Indirect mode. 61

Instruction
primitives . 238

H_CALL . 238, 242
H_EXEC . 241, 244
H_LD. 239, 245
H_RET . 239, 243
H_ST. 240, 246

read cycles . 200, 201, 202

Instructions . 54
ABS . 68
ADDC. 69
ADDI. 70
ADDU. 71
AND . 72
ANDI. 73
ANDN. 74
ASR . 75
ASRC . 76
ASRI. 77
BCLRI. 78
BF. 79
BGENI . 80
BGENR . 81
BKPT . 82, 173
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 379

Index
BMASKI . 83
BR . 84
BREV . 85
BRKRQ . 173
BSETI. 86
BSR . 87
BT. 88
BTSTI . 89
CLRF . 90
CLRT . 91
CMPHS . 92
CMPLT. 93
CMPLTI . 94
CMPNE . 95
CMPNEI . 96
DECF . 97
DECGT. 98
DECLT . 99
DECNE. 100
DECT . 101
DIVS. 102
DIVU. 103
DOZE . 104
FF. 1 105
flow control . 61
INCF. 106
INCT. 107
IXH . 108
IXW . 109
JMP . 110
JMPI. 111
JSR . 112
JSRI . 113
LD. 114
LDM . 115
LDQ . 116
LOOPT. 117
LRW . 118
LSL. 119
LSLC . 120
LSLI . 121
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

380 Index MOTOROLA

Index

LSR . 122
LSRC . 123
LSRI . 124
MFCR. 125
MOV. 126
move from control register . 32
move to control register . 32
MOVF. 127
MOVI . 128
MOVT. 129
MTCR. 130
MULT . 131
MVC . 132
MVCV. 133
NOT . 134
OR . 135
register-to-register . 54
RFI .136
ROTLI. 137
RSUB . 138
RSUBI . 139
RTE . 140
SEXTB . 141
SEXTH . 142
ST. 143
STM . 144
STOP . 145
STQ . 146
SUBC . 147
SUBI. 148
SUBU . 149
SYNC . 150
timing . 29
TRAP . 151
trap exception. 176
TST . 152
TSTNBZ . 153
WAIT . 154
XOR . 155
XSR . 156
XTRB0 . 157
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 381

Index
XTRB1 . 158
XTRB2 . 159
XTRB3 . 160
ZEXTB . 161
ZEXTH . 162

INT. 175, 189, 196, 212

Interrupt
control signals . 189, 212
pending status signals . 189
request signal. 189
vector number signal . 189

Interrupts
autovector .190
control bit . 47
cycles . 212
enable bit . 47
fast . 175, 189, 212
normal . 175, 189, 212
status . 189
vector number . 189

IPEND . 189, 213

IXH instruction . 108

IXW instruction . 109

J

JMP instruction . 110

JMPI instruction . 111

JSR instruction . 112

JSRI instruction . 113

L

LD instruction. 114

LDM instruction . 115

LDQ instruction . 59, 116

Link register . 32
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

382 Index MOTOROLA

Index

Load
multiple registers from memory . 115
PC-relative word. 118
register from memory . 114
register quadrant from memory . 116
relative word mode. 60
store

multiple register mode . 60
register quadrant mode. 59

Load and store. 30

Logical
AND . 72
AND NOT. 74
AND with immediate. 73
exclusive OR . 155
move . 126
move immediate. 128
NOT . 134
OR . 135
shift left

by 1, update C bit . 120
dynamic . 119
immediate (static) . 121

shift right
by 1 bit, update C bit. 123
dynamic . 122
immediate (static) . 124

LOOPT instruction . 117

Low-power
doze mode

enter . 104
mode signals . 190
stop mode

enter . 145
wait mode

enter . 154

LRW instruction . 118
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 383

Index
LSL instruction. 119

LSLC instruction . 120

LSLI instruction . 121

LSR instruction . 122

LSRC instruction . 123

LSRI instruction . 124

M

Memory
load and store . 30
organization . 33

Memory management
signals . 212

MFCR instruction. 32, 125, 171

Misaligned access exception. 169

Misaligned transfers . 196

Misalignment exception mask . 46

MM bit . 46

Monadic register addressing . 55

MOV instruction . 126

Move
C bit to register. 132
from control register .32, 125
inverted C bit to register .133
to control register .32, 130

Move RY to RX if condition false . 127

Move RY to RX if condition true . 129

MOVF instruction. 127

MOVI instruction . 128

MOVT instruction. 129

MTCR instruction. 32, 49, 130

MULT instruction . 131

Multiply . 29, 131
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

384 Index MOTOROLA

Index

MVC instruction . 132

MVCV instruction. 133

N

Normal interrupts . 175

NOT instruction . 134

O

Opcode map . 63

OR instruction . 135

P

PC . 30, 31, 41

Pipeline
instruction execution . 29

Power connections . 193

Power management
control signals . 190
instructions . 215
low-power mode. 190
restart timing . 215
signals . 213, 215

Power-on reset . t 211

Primitives
H_CALL . 238, 242
H_EXEC. 241, 244
H_LD . 239, 245
H_RET . 239, 243
H_ST . 240, 246

Privilege mode. 30
supervisor. 30
user . 30

Privilege violation exception . 171

Processor clock . 192
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 385

Index
Processor status register. 43
updating . 48

Processor status signals . 191

Program counter . 30, 31, 41

Programming mode. 30
supervisor .41
user . 40

PSR . 43
updating . 48

PSTAT. 191

R

R/W . 186, 203

R0 . 32, 34, 43

R15 . 32

Read cycles . 200, 201, 202

Read/write signal . 186

Register
addressing mode . 61
plus-four-bit scaled displacement. 34
snooping. 220, 221, 222, 224, 225, 230, 233, 234, 237
vector base. 49
with 4-bit negative displacement mode . 62
with 5-bit immediate addressing. 57
with 5-bit offset immediate addressing. 58
with 7-bit immediate addressing. 58

Registers
control . 31
EPC . 165
EPSR . 165
FPC . 165
FPSR . 165
general-purpose. 31, 41
global control . 51
global status . 51
link . 32
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

386 Index MOTOROLA

Index

processor status. 43, 48
scratch . 31, 33
shadow. 33, 50, 165
status . 31
supervisor storage . 50
vector base. 49

REGWR. 221

Reset
exception . 169
hard . 211
soft . 173, 188, 211

Return
from exception . 31, 140
from fast interrupt . 31, 136

Reverse
subtract . 138

with immediate . 139

RFI instruction . 31, 48, 136

RISC . 28

Rotate
left immediate (static) . 137

ROTLI instruction. 137

RSUB instruction . 138

RSUBI instruction . 139

RTE instruction . 31, 48, 140

S

S bit . 31, 44

SC bit. 46

Scaled
11-bit displacement mode . 61
4-bit immediate addressing . 59

Scratch registers . 31, 33

SEQ. 187
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 387

Index
Sequential access signal . 187

SEXTB instruction . 141

SEXTH instruction . 142

Shadow registers. 31, 33, 50, 165

Sign extend
byte . 141
halfword . 142

Signals
autovector . 190
breakpoint . 188
bus control . 197, 200, 201, 202, 203, 204,

206, 207, 208, 209, 210, 211
clock. 191
control interface . 192
data to address . 187
debug . 193
debug acknowledge .193
debug interface . 217
debug request . 193
electrical state .193
fast interrupt request . 189
hardware accelerator 192, 220, 221, 222, 224, 225,

227, 229, 230, 233, 234, 237
interrupt control . 189
interrupt pending status . 189
interrupt request . 189
interrupt vector number . 189
low-power mode. 190
memory management . 188, 212
power management . 190, 215
processor clock . 192
processor status. 191
read/write . 186
sequential access. 187
soft reset . 188
status . 191, 192, 214
test . 193
transfer abort . 185
transfer acknowledge. 187
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

388 Index MOTOROLA

Index

transfer attribute . 185
transfer busy . 185
transfer code . 186
transfer control . 187
transfer error acknowledg . 188
transfer request . 185
transfer size . 186
translate control . 188

Signed divide RX by R1. 102

Soft
reset . 211
reset exception. 173
reset signal. .188

SP bit . 44

Spare bits . 44

Spare control . 46

SRST. 188, 196, 211

ST instruction. 143

Stack pointer . 32, 34, 43
supervisor. 50

Status
and control interface .214
registers . 31
signals . 191, 192

STM instruction . 144

STOP instruction . 145

Store
multiple registers to memory . 144
register quadrant to memory . 146
register to memory . 143

STQ instruction . 146

SUBC instruction . 147

SUBI instruction. 148

Subroutine calls . 32

SUBU instruction . 149
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 389

Index
Supervisor
bit . 44
mode . 30
programming model . 41, 192
stack pointer. 50
storage registers . 50

SYNC instruction . 150

Synchronize CPU . 150

Synchronous clock signal . 192

T

TA . 187

TBUSY. 185, 199

TC . 186

TC bit . 46

TE . 188

TEA . 188, 208

TEA signal . 170

Test
register for no byte equal to zero . 153
with zero. 152

Test signals . 193

TM . 43

TM field . 45

TP bit . 45

Trace
exception . 171
mode . 45
pending . 45

Transfer
abort signal. 185
acknowledge signal .187
attribute signals . 185
busy signal . 185
code signals . 186
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

390 Index MOTOROLA

Index

control signals . 187
error acknowledge . 170
error acknowledge signal . 188
request signal. .185
size signals. 186

Translate control signal . 188

Translation control . 46

TRAP instruction . 151

TREQ. 185, 199, 204

TSIZ. 186

TST instruction . 152

TSTNBZ instruction . 153

U

U bits . 45

Unconditional
branch . 84
jump .110

indirect . 111
subroutine indirect . 113
to subroutine. 112

trap to OS. 151

Unrecoverable error exception . 173

Unsigned
add . 71

with C bit . 69
with immediate . 70

divide RX by R1 . 103
subtract . 149

with C bit . 147
with immediate . 148

User
mode . 30
programming model . 40
M•CORE with M210/M210S Specifications — Rev. 1.0 Reference Manual

MOTOROLA Index 391

Index
V

VBR . 49

VEC . 189

VEC field . 45

VEC# . 175, 212

Vectors
exception . 167

base register . 49
number . 45

W

WAIT instruction . 154

Wait states. 202

Write cycles . 203, 204

X

XOR instruction . 155

XSR instruction . 156

XTRB0 instruction . 157

XTRB1 instruction . 158

XTRB2 instruction . 159

XTRB3 instruction . 160

Z

Zero extend
byte instruction . 161
halfword instruction . 162

ZEXTB instruction . 161

ZEXTH instruction . 162
Reference Manual M•CORE with M210/M210S Specifications — Rev. 1.0

392 Index MOTOROLA

blank

MCORERM/D
REV 1

M
M

C
2

1
0

7
Technical D

ata

How to Reach Us:

USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1-303-675-2140
1-800-441-2447

TECHNICAL INFORMATION CENTER:
1-800-521-6274

JAPAN:
Motorola Japan Ltd.
SPS, Technical Information Center
3-20-1, Minami-Azabu, Minato-ku
Tokyo 106-8573 Japan
81-3-3440-3569

ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.
Silicon Harbour Centre
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
852-26668334

HOME PAGE:
http://www.motorola.com/semiconductors/

Q4/00
REV 1

	Reference Manual
	List of Sections
	Appendix A. Nomenclature 299
	Appendix B. M210 and M210S Core Instruction Pipeline and Timing 303
	Appendix C. M210/M210S Core Interface 309
	Appendix D. M210/M210S Interface Operation 329
	Index 371

	Table of Contents
	Index

	List of Figures
	List of Tables
	Section 1. Overview
	1.1 Contents
	1.2 Introduction
	1.3 Features
	1.4 Microarchitecture Summary
	1.5 Programming Model
	1.6 Data Format Summary
	1.7 Operand Addressing Capabilities
	1.8 Instruction Set Overview

	Section 2. Registers
	2.1 Contents
	2.2 Introduction
	2.3 User Programming Model
	2.3.1 General-Purpose Registers
	2.3.2 Program Counter
	2.3.3 Condition Code/Carry Bit

	2.4 Supervisor Programming Model
	2.4.1 Alternate Register File
	2.4.2 Processor Status Register
	2.4.2.1 Updates to the PSR
	2.4.2.2 Exception Recognition and Processing Updates
	2.4.2.3 RTE and RFI Instruction Updates
	2.4.2.4 MTCR Instruction Updates

	2.4.3 Vector Base Register
	2.4.4 Supervisor Storage Registers
	2.4.5 Exception Shadow Registers
	2.4.6 Global Control Register
	2.4.7 Global Status Register

	Section 3. Instructions
	3.1 Contents
	3.2 Introduction
	3.3 Instruction Types and Addressing Modes
	3.3.1 Register-to-Register Instructions
	3.3.1.1 Monadic Register Addressing Mode
	3.3.1.2 Dyadic Register Addressing Mode
	3.3.1.3 Register with 5-Bit Immediate Mode
	3.3.1.4 Register with 5-Bit Offset Immediate Mode
	3.3.1.5 Register with 7-Bit Immediate Mode
	3.3.1.6 Control Register Addressing Mode

	3.3.2 Data Memory Access Instructions
	3.3.2.1 Scaled 4-Bit Immediate Addressing Mode
	3.3.2.2 Load/Store Register Quadrant Mode
	3.3.2.3 Load/Store Multiple Register Mode
	3.3.2.4 Load Relative Word Mode

	3.3.3 Flow Control Instructions
	3.3.3.1 Scaled 11-Bit Displacement Mode
	3.3.3.2 Register Addressing Mode
	3.3.3.3 Indirect Mode
	3.3.3.4 Register with 4-Bit Negative Displacement Mode

	3.4 Opcode Map
	3.5 Instruction Set

	Section 4. Exception Processing
	4.1 Contents
	4.2 Introduction
	4.3 Exception Processing Overview
	4.4 Stages of Exception Processing
	4.5 Exception Vectors
	4.6 Exception Types
	4.6.1 Reset Exception (Vector Offset 0x0)
	4.6.2 Misaligned Access Exception (Vector Offset 0x4)
	4.6.3 Access Error Exception (Vector Offset 0x8)
	4.6.4 Divide-by-Zero Exception (Vector Offset 0x0C)
	4.6.5 Illegal Instruction Exception (Vector Offset 0x10)
	4.6.6 Privilege Violation Exception (Vector Offset 0x14)
	4.6.7 Trace Exception (Vector Offset 0x18)
	4.6.8 Breakpoint Exception (Vector Offset 0x1C)
	4.6.9 Unrecoverable Error Exception (Vector Offset 0x20)
	4.6.10 Soft Reset Exception (Vector Offset 0x24)
	4.6.11 Interrupt Exceptions
	4.6.11.1 Normal Interrupt (INT)
	4.6.11.2 Fast Interrupt (FINT)

	4.6.12 Hardware Accelerator Exception (Vector Offset 0x30)
	4.6.13 Instruction Trap Exception (Vector Offset 0x40-0x5C)

	4.7 Exception Priorities
	4.8 Returning from Exception Handlers

	Section 5. Core Interface
	5.1 Contents
	5.2 Introduction
	5.3 Signal Descriptions
	5.3.1 Address Bus (ADDR[31:0])
	5.3.2 Data Bus (DATA[31:0])
	5.3.3 Transfer Request (TREQ)
	5.3.4 Transfer Busy (TBUSY)
	5.3.5 Transfer Abort (ABORT)

	5.4 Transfer Attribute Signals
	5.4.1 Transfer Code (TC[2:0])
	5.4.2 Read/Write (R/W)
	5.4.3 Transfer Size (TSIZ[1:0])
	5.4.4 Sequential Access (SEQ)
	5.4.5 Data to Address (D2A)

	5.5 Transfer Control Signals
	5.5.1 Transfer Acknowledge (TA)
	5.5.2 Transfer Error Acknowledge (TEA)
	5.5.3 Breakpoint Request (BRKRQ)

	5.6 Memory Management Control Signals
	5.6.1 Translate Control (TE)
	5.6.2 Soft Reset (SRST)

	5.7 Interrupt Control Signals
	5.7.1 Normal Interrupt Request (INT)
	5.7.2 Fast Interrupt Request (FINT)
	5.7.3 Interrupt Pending Status (IPEND)
	5.7.4 Interrupt Vector Number (VEC[6:0])
	5.7.5 Autovector (AVEC)

	5.8 Power Management Control Signals
	5.9 Status and Clock Signals
	5.9.1 Processor Status (PSTAT[3:0])
	5.9.2 M•CORE Processor Clock (CLK)

	5.10 Global Status and Control Interface
	5.11 Hardware Accelerator Interface
	5.12 Debug/Emulation Support Signals
	5.12.1 Debug Request (DBGRQ)
	5.12.2 Debug Acknowledge (DBUG)

	5.13 Test Signals
	5.14 Power Supply Connections
	5.15 Signal Summary

	Section 6. Interface Operation
	6.1 Contents
	6.2 Introduction
	6.3 Bus Characteristics
	6.4 Data Transfer Mechanism
	6.5 Processor Instruction/Data Transfers
	6.5.1 Instruction and Data Read Transfer Cycles
	6.5.2 Read Transfer Cycles with Wait State(s)
	6.5.3 Write Transfer Cycles
	6.5.4 Write Transfer Cycles with Wait State(s)
	6.5.5 Data Bus Hand-Off Between Read and Write Cycles

	6.6 Exception Bus Control Cycles
	6.6.1 Bus Errors
	6.6.2 Breakpoint Requests

	6.7 ABORT Signal Operation
	6.8 D2A Signal Operation
	6.9 Reset Operation
	6.9.1 Hard Reset (Power-On Reset)
	6.9.2 Soft Reset

	6.10 Memory Management Interface Operation
	6.11 Interrupt Interface Operation
	6.12 Global Status and Control Interface Operation
	6.13 Power Management Interface Operation
	6.14 Emulation/Debug Interface Operation

	Section 7. Hardware Accelerator Interface (HAI)
	7.1 Contents
	7.2 Introduction
	7.3 Overview
	7.4 Register Snooping Mechanism
	7.5 Instruction Transfer Mechanism
	7.5.1 Control Handshake
	7.5.2 Driving the H_BUSY and H_EXCP Signals

	7.6 Data Transfer Mechanism
	7.6.1 Register Transfers
	7.6.2 Memory Transfers
	7.6.2.1 H_LD Transfer
	7.6.2.2 H_ST Transfer

	7.7 Instruction Primitives
	7.7.1 H_CALL Primitive
	7.7.2 H_RET Primitive
	7.7.3 H_LD Primitive
	7.7.4 H_ST Primitive
	7.7.5 H_EXEC Primitive

	7.8 Instruction Primitive Glossary

	Section 8. JTAG Test Access Port and OnCE
	8.1 Contents
	8.2 Introduction
	8.3 Top-Level Test Access Port (TAP)
	8.3.1 Test Clock (TCLK)
	8.3.2 Test Mode Select (TMS)
	8.3.3 Test Data Input (TDI)
	8.3.4 Test Data Output (TDO)
	8.3.5 Test Reset (TRST)
	8.3.6 Debug Event (DE)

	8.4 Top-Level TAP Controller
	8.5 Instruction Shift Register
	8.5.1 EXTEST Instruction
	8.5.2 IDCODE Instruction
	8.5.3 SAMPLE/PRELOAD Instruction
	8.5.4 ENABLE_MCU_ONCE Instruction
	8.5.5 HIGHZ Instruction
	8.5.6 CLAMP Instruction
	8.5.7 BYPASS Instruction

	8.6 IDCODE Register
	8.7 Bypass Register
	8.8 Boundary SCAN Register
	8.9 Restrictions
	8.10 Non-Scan Chain Operation
	8.11 Boundary Scan
	8.12 Low-Level TAP (OnCE) Module
	8.13 Signal Descriptions
	8.13.1 Debug Serial Input (TDI)
	8.13.2 Debug Serial Clock (TCLK)
	8.13.3 Debug Serial Output (TDO)
	8.13.4 Debug Mode Select (TMS)
	8.13.5 Test Reset (TRST)
	8.13.6 Debug Event (DE)

	8.14 Functional Description
	8.14.1 Operation
	8.14.2 OnCE Controller and Serial Interface
	8.14.3 OnCE Interface Signals
	8.14.3.1 Internal Debug Request Input (IDR)
	8.14.3.2 CPU Debug Request (DBGRQ)
	8.14.3.3 CPU Debug Acknowledge (DBGACK)
	8.14.3.4 CPU Breakpoint Request (BRKRQ)
	8.14.3.5 CPU Address, Attributes (ADDR, ATTR)
	8.14.3.6 CPU Status (PSTAT)
	8.14.3.7 OnCE Debug Output (DEBUG)

	8.14.4 OnCE Controller Registers
	8.14.4.1 OnCE Command Register
	8.14.4.2 OnCE Control Register
	8.14.4.3 OnCE Status Register

	8.14.5 OnCE Decoder (ODEC)
	8.14.6 Memory Breakpoint Logic
	8.14.6.1 Memory Address Latch (MAL)
	8.14.6.2 Breakpoint Address Base Registers

	8.14.7 Breakpoint Address Mask Registers
	8.14.7.1 Breakpoint Address Comparators
	8.14.7.2 Memory Breakpoint Counters

	8.14.8 OnCE Trace Logic
	8.14.8.1 OnCE Trace Counter
	8.14.8.2 Trace Operation

	8.14.9 Methods of Entering Debug Mode
	8.14.9.1 Debug Request During RESET
	8.14.9.2 Debug Request During Normal Activity
	8.14.9.3 Debug Request During Stop, Doze, or Wait Mode
	8.14.9.4 Software Request During Normal Activity

	8.14.10 Enabling OnCE Trace Mode
	8.14.11 Enabling OnCE Memory Breakpoints
	8.14.12 Pipeline Information and Write-Back Bus Register
	8.14.12.1 Program Counter Register
	8.14.12.2 Instruction Register
	8.14.12.3 Control State Register
	8.14.12.4 Writeback Bus Register
	8.14.12.5 Processor Status Register

	8.14.13 Instruction Address FIFO Buffer (PC FIFO)
	8.14.14 Reserved Test Control Registers
	8.14.15 Serial Protocol
	8.14.16 OnCE Commands
	8.14.17 Target Site Debug System Requirements
	8.14.18 Interface Connector for JTAG/OnCE Serial Port

	Appendix A. Nomenclature
	A.1 Contents
	A.2 Introduction
	A.3 References
	A.4 Units and Measures
	A.5 Symbology
	A.6 Terminology

	Appendix B. M210 and M210S Core Instruction Pipeline and Timing
	B.1 Contents
	B.2 Introduction
	B.3 Instruction Pipeline
	B.4 Instruction Execution Time

	Appendix C. M210/M210S Core Interface
	C.1 Contents
	C.2 Introduction
	C.3 M210 Core Interface Overview
	C.4 MLB Signal Descriptions
	C.4.1 Bus Signals
	C.4.1.1 Address Bus (ADDR[22:0])
	C.4.1.2 Data Bus (DATA[31:0])
	C.4.1.3 Input Data Bus (DATAIn[31:0])
	C.4.1.4 Output Data Bus (DATAOut[31:0])
	C.4.1.5 Data Bus Byte Output Enable (DATAEN[3:0])

	C.4.2 Transfer Control
	C.4.2.1 Transfer Acknowledge (TA)
	C.4.2.2 Transfer Error Acknowledge (TEA)
	C.4.2.3 Transfer Request (TREQ)
	C.4.2.4 Transfer Busy (TBUSY)
	C.4.2.5 Transfer Busy Output (TBUSYOUT)
	C.4.2.6 Transfer Busy Input (TBUSYIN)
	C.4.2.7 Transfer Abort (ABORT)

	C.4.3 Transfer Attribute Signals
	C.4.3.1 Transfer Code (TC[2:0])
	C.4.3.2 Read/Write (R/W)
	C.4.3.3 Transfer Size (TSIZ[1:0])
	C.4.3.4 Sequential Access (SEQ)

	C.4.4 Translate Control (TE)
	C.4.5 Data to Address Signal (D2A)
	C.4.6 Processor Status Signals
	C.4.6.1 Processor Status (PSTAT[3:0])

	C.5 Other Processor Signals
	C.5.1 Master Clock (MCLK)
	C.5.2 Reset Control Signals
	C.5.2.1 Master Reset (RST)
	C.5.2.2 Power-On Reset (POR)

	C.5.3 Bus Arbitration Control Signals
	C.5.3.1 Bus Request (BR)
	C.5.3.2 Bus Grant (BG)
	C.5.3.3 Three-State Control Address (TSCA)
	C.5.3.4 Three-State Control Data (TSCD)

	C.5.4 Power Management Control Signals
	C.5.4.1 Low-Power Mode (LPMD[1:0])
	C.5.4.2 Wakeup (WAKEUP)

	C.5.5 Global Status and Control Interface Signals
	C.5.5.1 Global Control (GCB[31:0])
	C.5.5.2 Global Status (GSB[31:0])

	C.5.6 Interrupt Control Signals
	C.5.6.1 Normal Interrupt Request (INT)
	C.5.6.2 Raw Normal Interrupt Request (INTRAW)
	C.5.6.3 Fast Interrupt Request (FINT)
	C.5.6.4 Raw Fast Interrupt Request (FINTRAW)
	C.5.6.5 Interrupt Pending (IPEND)
	C.5.6.6 Interrupt Vector Number (VEC[6:0])
	C.5.6.7 Autovector (AVEC)

	C.5.7 Power Supply Connections

	Appendix D. M210/M210S Interface Operation
	D.1 Contents
	D.2 Introduction
	D.3 Bus Characteristics
	D.4 Data Transfer Mechanism
	D.5 Processor Instruction/Data Transfers
	D.5.1 Instruction and Data Read Transfer Cycles
	D.5.2 Read Transfer Cycles with Wait State
	D.5.3 Write Transfer Cycles
	D.5.4 Write Transfer Cycles with Wait State
	D.5.5 Data Bus Hand-Off

	D.6 Bidirectional Three-State Data Bus
	D.7 Bus Exception Control Cycles
	D.8 Bus Errors
	D.9 Abort SIgnal Operation
	D.10 Data to Address Transfer Operation
	D.11 Breakpoint Request Operation
	D.12 Bus Arbitration Operation
	D.12.1 Operation Examples
	D.12.2 Interaction with Low-Power Modes and Debug Operation
	D.12.3 Bus Arbitration and Entry into Low-Power States

	D.13 Reset Operation
	D.13.1 System Issues
	D.13.2 Timing

	D.14 Interrupt Interface Operation
	D.15 Global Status and Control Interface Operation
	D.16 Power Management Interface Operation
	D.17 Emulation/Debug Interface Operation

	Index

