
MOTOROKR Z6
Java™ ME Developer Guide

Version 01.00

Copyright © 2007, Motorola, Inc. All rights reserved. This documentation may be printed and copied solely

for use in developing products for Motorola products. In addition, two (2) copies of this documentation may

be made for archival and backup purposes. Except for the foregoing, no part of this documentation may be

reproduced or transmitted in any form or by any means or used to make any derivative work (such as

translation, transformation, or adaptation) without express written consent from Motorola, Inc.

Motorola reserves the right to make changes without notice to any products or services described herein.

"Typical" parameters, which may be provided in Motorola Data sheets and/or specifications, can and do vary

in different applications and actual performance may vary. Customer's technical experts will validate all

"Typicals" for each customer application. No warranty is made as to coverage, availability, or grade of

service provided by the products or services, whether through a service provider or otherwise. No warranty

is made that the software will meet your requirements or will work in combination with any hardware or

application software products provided by third parties, that the operation of the software products will be

uninterrupted or error free, or that all defects in the software products will be corrected. In no event shall

Motorola be liable, whether in contract or tort (including negligence), for any damages resulting from use of

a product or service described herein, or for any indirect, incidental, special or consequential damages of any

kind, or loss of revenue or profits, loss of business, loss of information or data, or other financial loss arising

out of or in connection with the ability or inability to use the Products, to the full extent these damages may

be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incidental or consequential

damages, or limitation on the length of an implied warranty, therefore the above limitations or exclusions

may not apply to you. This warranty gives you specific legal rights, and you may also have other rights,

which vary from jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as components in systems

intended for surgical implant into the body, or other applications intended to support or sustain life, or for

any other application in which the failure of the Motorola product or service could create a situation where

personal injury or death may occur. Should the buyer purchase or use Motorola products or services for any

such unintended or unauthorized application, the buyer shall release, indemnify and hold Motorola and its

officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and

expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or

death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the designing or manufacturing of the product or service. Motorola recommends that if

you are not the author or creator of the graphics, video, or sound, you obtain sufficient license rights,

including the rights under all patents, trademarks, trade names, copyrights, and other third party proprietary

rights.

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent & Trademark Office. All other product or

service names are the property of their respective owners. Java and all other Java based marks are

trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. If this

documentation is provided on compact disc, the other software and documentation on the compact disc are

subject to the license agreement accompanying the compact disc.

MOTOROKR Z6 Developer Guide
Version 01.00
02-MAY-2007
For the latest version of this document, visit http://developer.motorola.com.
Motorola, Inc.
http://www.motorola.com

Page 2

http://developer.motorola.com
http://www.motorola.com

Table of Contents

TABLE OF CONTENTS ..2

1 Java™ ME Introduction..7
THE JAVA™ PLATFORM, MICRO EDITION (JAVA™ ME)...7
THE MOTOROLA JAVA™ ME PLATFORM ..8
RESOURCES AND APIS AVAILABLE ...9

2 Developing and Packaging Java™ ME Applications 10
GUIDE TO DEVELOPMENT IN JAVA™ ME... 10

RECOGNIZING THE PHONE CORE SPECIFICATIONS .. 12
3 Downloading Applications ... 13

METHODS OF DOWNLOADING... 13
ERROR LOGS .. 15

4 Application Management ... 17
DOWNLOADING A JAR FILE WITHOUT A JAD ... 17
MIDLET UPGRADE .. 18
INSTALLATION AND DELETION STATUS REPORTS .. 18

5 CommConnection Interface ... 20
COMMCONNECTION ... 20
ACCESSING.. 20
PARAMETERS .. 20
BNF FORMAT FOR CONNECTOR.OPEN () STRING .. 22
COMM SECURITY .. 23
PORT NAMING CONVENTION.. 24
METHOD SUMMARY ... 24

6 Downloading MIDlets.. 25
OVERVIEW... 25

DOWNLOADING A MIDLET FROM A PC .. 25
ESTABLISHING CONNECTION ... 25
DOWNLOADING A MIDLET USING BLUETOOTH .. 25
DOWNLOADING A MIDLET FROM A BROWSER ... 26
START ACTIVE BROWSER SESSION FROM THE MAIN MENU 26
FIND A LOCATION WITH JAVA™ ME APPLICATION .. 27
DOWNLOADING MIDLETS .. 27
DIFFERENT ERROR CHECKS .. 28
MEMORY FULL .. 28
MEMORY FULL DURING INSTALLATION PROCESS .. 30
APPLICATION VERSION ALREADY EXISTS .. 30
NEWER APPLICATION VERSION EXISTS... 31

Page 2

7 Gaming API/Multiple Key Press.. 32
GAMING API .. 32
MULTIPLE KEY PRESS SUPPORT .. 32

8 JAD Attributes.. 35
JAD / MANIFEST ATTRIBUTE IMPLEMENTATIONS .. 35

9 JSR-118: MIDP 2.0 Security Model .. 38
UNTRUSTED MIDLET SUITES ... 39
UNTRUSTED DOMAIN ... 40
TRUSTED MIDLET SUITES .. 40
PERMISSION TYPES CONCERNING THE HANDSET .. 41
USER PERMISSION INTERACTION MODE ... 41
IMPLEMENTATION BASED ON RECOMMENDED SECURITY POLICY 42
TRUSTED THIRD-PARTY DOMAIN ... 42
SECURITY POLICY FOR PROTECTION DOMAINS .. 43
DISPLAYING PERMISSIONS.. 46
TRUSTED MIDLET SUITES USING X.509 PKI ... 46
SIGNING A MIDLET SUITE ... 47
SIGNER OF MIDLET SUITES .. 47
MIDLET ATTRIBUTES USED IN SIGNING MIDLET SUITES....................................... 47
CREATING THE SIGNING CERTIFICATE ... 48
INSERTING CERTIFICATES INTO JAD... 48
CREATING THE RSA SHA-1 SIGNATURE OF THE JAR .. 49
AUTHENTICATING A MIDLET SUITE .. 49
VERIFYING THE SIGNER CERTIFICATE .. 50
VERIFYING THE MIDLET SUITE JAR ... 51
CARRIER SPECIFIC SECURITY MODEL .. 52

10 Network APIs... 53
NETWORK CONNECTIONS ... 53
USER PERMISSION .. 55
HTTPS CONNECTION ... 55
DNS IP ... 57
PUSH REGISTRY... 57
MECHANISMS FOR PUSH .. 57
PUSH REGISTRY DECLARATION ... 57
DELIVERY OF A PUSH MESSAGE .. 67
DELETING AN APPLICATION REGISTERED FOR PUSH... 68
SECURITY FOR PUSH REGISTRY .. 68
NETWORK ACCESS .. 68

11 Platform Request API.. 70
PLATFORM REQUEST API ... 70
MIDLET REQUEST OF A URL THAT INTERACTS WITH BROWSER................................ 71
MIDLET REQUEST OF A URL THAT INITIATES A VOICE CALL................................... 72

12 MIDlet Life Cycle .. 73
THE LIFE CYCLE OF A MIDLET ... 73

13 JSR-75: PIM API... 74

Page 3

OVERVIEW... 74
REQUIREMENTS ... 74
FIELDS AND ATTRIBUTES ... 77

CONTACT LIST.. 77
EVENT LIST ... 78
TODO LIST ... 79

14 JSR-75: FileConnection API.. 80
OVERVIEW... 80
REQUIREMENTS ... 80

INTERFACE .. 80
SECURITY ... 81
PERMISSIONS ... 83

15 JSR-135 - Mobile Media API ... 86
JSR-135.. 86
TONECONTROL .. 89
VOLUMECONTROL ... 90
STOPTIMECONTROL ... 90
MANAGER CLASS.. 91
SUPPORTED MULTIMEDIA FILE TYPES .. 91

AUDIO FORMAT ... 91
VIDEO FORMAT ... 92
AUDIO/VIDEO FORMAT ... 93
IMAGE FORMAT ... 93
AUDIO CAPTURE .. 93
VIDEO CAPTURE .. 93

MEDIA LOCATORS ... 94
RTSP LOCATOR .. 94
HTTP LOCATOR .. 94
FILE LOCATOR .. 95
LIVE MEDIA CAPTURE LOCATOR ... 95
DEVICE LOCATOR... 95

SECURITY ... 95
POLICY .. 96
PERMISSIONS ... 96

16 JSR-139: CLDC 1.1 .. 97
JSR-30 — CLDC 1.0 ... 97

NO FLOATING POINT SUPPORT .. 97
CLASSFILE FORMAT AND CLASS LOADING ... 97
SUPPORTED FILE FORMATS .. 98
PUBLIC REPRESENTATION OF JAVA APPLICATIONS AND RESOURCES 98
CLASSFILE LOOKUP ORDER .. 99

JSR-139 — CLDC 1.1.. 99
17 JSR-172: Java™ ME Web Services Specification 104

OVERVIEW..104
JAXP ...105

Page 4

JAX-RPC SUBSET OVERVIEW...106
18 JSR-184: Mobile 3D Graphics API.. 107

OVERVIEW..107
MOBILE 3D API ...107
MOBILE 3D FILE FORMAT SUPPORT...108
MOBILE 3D GRAPHICS — M3G API ...108

TYPICAL M3G APPLICATION ..108
SIMPLE MIDLETS..109
INITIALIZING THE WORLD...111
USING THE GRAPHICS3D OBJECT ..112
INTERROGATING AND INTERACTING WITH OBJECTS ..113
ANIMATIONS ...114
AUTHORING M3G FILES...116

19 JSR-185: Java Technology for the Wireless Industry 117
OVERVIEW..117
CLDC RELATED CONTENT FOR JTWI...118
MIDP 2.0 SPECIFIC INFORMATION FOR JTWI ...120
WIRELESS MESSAGING API 1.1 (JSR-120) SPECIFIC CONTENT FOR JTWI.................121
MOBILE MEDIA API 1.1 (JSR-135) SPECIFIC CONTENT FOR JTWI121

20 JSR-205: WMA 2.0 .. 122
WIRELESS MESSAGING API (WMA)..122
SMS CLIENT MODE AND SERVER MODE CONNECTION...123
SMS PORT NUMBERS..123
SMS STORING AND DELETING RECEIVED MESSAGES ..124
SMS MESSAGE TYPES ...124
SMS MESSAGE STRUCTURE ...124
SMS NOTIFICATION ...125
CELL BROADCAST SERVICE ..130
SECURITY POLICY ..131
JSR-205 SPECIFIC INFORMATION ..131

MESSAGING FUNCTIONALITY ..131
MMS MESSAGE STRUCTURE ..131
MMS MESSAGE ADDRESSING ..132
MMS MESSAGE TYPES ..132
MULTIPARTMESSAGE ..132
MESSAGEPART...133
MULTIMEDIA MESSAGE SERVICE CENTER ADDRESS ...133
APPLICATION ID...133
INITIAL SETUP ...134
HANDLING THE INCOMING MMS MESSAGE ..134
APPLICATION IS RUNNING/RESUMING ..134
APPLICATION IS RUNNING/BACKGROUND ..135
APPLICATION IS SUSPENDING...135
APPLICATION IS ENDING ..135
ANONYMOUS REJECTION FEATURE ..136

Page 5

COINCIDENTAL ADDRESSES IN THE NATIVE CLIENT AND JAVA CLIENTS ADDRESS FILTERS136
VMVM SUPPORT ..137
EXTERNAL EVENT INTERACTION...137

21 Motorola Get URL from Flex API ... 138
OVERVIEW..138
FLEXIBLE URL FOR DOWNLOADING FUNCTIONALITY..138
SECURITY POLICY ..139

APPENDIX A: Key Mapping ... 140
KEY MAPPING ..140

APPENDIX B: Memory Management Calculation 142
AVAILABLE MEMORY ...142

APPENDIX C: FAQ.. 143
ONLINE FAQ...143

APPENDIX D: HTTP Range .. 144
GRAPHIC DESCRIPTION ..144

Page 6

1
Java™ ME Introduction

The MOTOROKR Z6 handset includes the Java Micro Edition (Java™ ME) Platform,

Micro Edition, also known as the Java™ ME platform. The Java™ ME platform enables

developers to easily create a variety of Java applications ranging from business

applications to games. Prior to its inclusion, services or applications residing on small

consumer devices like cell phones could not be upgraded or added to without

significant effort. By implementing the Java™ ME platform on devices like the

MOTOROKR Z6 handset, service providers, as well as customers, can easily add and

remove applications allowing for quick and easy personalization of each device. This

chapter presents a quick overview of the Java™ ME environment and the tools that

can be used to develop applications for the MOTOROKR Z6 handset.

The Java™ Platform, Micro Edition
(Java™ ME)

The Java™ ME platform is a very small application environment. It is a framework for

the deployment and use of Java technology in small devices (such as cell phones and

pagers) and includes a set of APIs and a virtual machine that is designed in a

modular fashion, allowing for scalability among a wide range of devices.

The Java™ ME architecture contains three layers consisting of the Java Virtual

Machine, the Configuration Layer, and the Profile Layer. The Virtual Machine (VM)

supports the Configuration Layer by providing an interface to the host operating

system. Above the VM Layer is the Configuration Layer, which can be thought of as

the lowest common denominator of the Java Platform available across devices of the

same "horizontal market." Built upon this Configuration Layer is the Profile Layer,

Java™ ME Developer Guide
Chapter 1 - Java™ ME Introduction

Page 7

typically encompassing the presentation layer of the Java Platform.

Figure 1 Layer Architecture

The Configuration Layer used in the iDEN handsets is either the Connected Limited

Device Configuration 1.1 (CLDC 1.1) or the Connected Limited Device Configuration

1.0 (CLDC 1.0), depending on the phone model. The Profile Layer used is the Mobile

Information Device Profile 2.0 (MIDP 2.0). Together, the CLDC and MIDP provide

common APIs for I/O, simple math functionality, UI, and more.

For more information on Java™ ME see the Sun™ Java™ ME documentation

(http://java.sun.com/javame).

The Motorola Java™ ME Platform

Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to

implement and support. By adding to the standard APIs, manufacturers can allow

developers to access and take advantage of the unique functionality of their

handsets.

The MOTOROKR Z6 handset contains OEM APIs for extended functionality ranging

from enhanced UI to advanced data security. While the MOTOROKR Z6 handset can

run any application written in standard MIDP, it can also run applications that take

advantage of the unique functionality provided by these APIs. These OEM APIs are

described in this guide.

Java™ ME Developer Guide
Chapter 1 - Java™ ME Introduction

Page 8

http://java.sun.com/javame

Resources and APIs Available

MIDP 2.0 provides support to the following functional areas on the MOTOROKR Z6

handset:

• Application delivery and billing
• Application lifecycle
• Application signing model and privileged security model
• End-to-end transactional security (HTTPS)
• MIDlet push registration (server push model)
• Networking
• Persistent storage
• Sounds
• Timers
• User Interface
• File Image Support (.PNG, .JPEG, .GIF, .BMP)

Additional Functionality:

•••••••••••• JSR-118
• JSR-135
• JSR-139
• JSR-172
• JSR-184
• JSR-185
• JSR-205: WMA 2.0
• JSR-75 FileConnection API
• JSR-75 PIM API
• Motorola Get URL from Flex API

Java™ ME Developer Guide
Chapter 1 - Java™ ME Introduction

Page 9

2
Developing and

Packaging Java™ ME
Applications

Guide to Development in Java™ ME

Introduction to Development

This chapter assumes you have previous experience in Java™ ME development and

can appreciate the development process for Java MIDlets. This chapter provides

some information that a beginner in development can use to gain an understanding

of MIDlets for Java™ ME handsets.

There is a wealth of material on this subject on the following web sites maintained by

Motorola, Sun Microsystems, and others. Please refer to the following URLs for more

information:

• http://developer.motorola.com
• http://www.java.sun.com/javame
• http://www.corej2me.com
• http://www.javaworld.com

Java™ ME Developer Guide
Chapter 2 - Developing and Packaging Java™ ME Applications

Page 10

http://developer.motorola.com
http://www.java.sun.com/javame
http://www.corej2me.com
http://www.javaworld.com

As an introduction, brief details of Java™ ME are explained below.

The MIDlet consists of two core specifications, namely Connected Limited Device

Configuration (CLDC) and Mobile Information Device Profile (MIDP). Both of these

specifications (JSR - Java Specification Requests) are located at http://www.jcp.org/

site for reading.

• For MIDP 1.0; JSR-37 should be reviewed.
• For MIDP 2.0; JSR-118 should be reviewed.
• For CLDC 1.0.4; JSR-30 should be reviewed.
• For CLDC 1.1; JSR-139 should be reviewed.

For beginning development, key points to remember are memory size, processing

power, screen capabilities, and wireless network characteristics. These all play an

important part in the development of a MIDlet. The specifications listed above are

designed to work upon devices that have these characteristics.

Network conditions would only apply for networked applications such as streaming

tickers, email clients, etc.

In addition to the specifications, arrays of tools are available to assist the

development cycle. These range from the command line tools provided with by

Software Development Kit (SDK) from Sun to Integrated Development Environments

(IDEs) that are either free or purchased. These IDEs come from a range of sources

such as Sun, IBM, and Borland to name a few.

In addition to the IDEs and Sun SDK for development, Motorola offers access to our

own SDK that contains Motorola device emulators. From here, a MIDlet can be built

and then deployed onto an emulated target handset. This enables debugging and

validation of the MIDlet before deployment to a real, physical handset. The latest

Motorola SDK can be downloaded from the MOTODEV web site.

Please refer to the product specifications at the end of this guide for detailed

information on each handset.

Java™ ME Developer Guide
Chapter 2 - Developing and Packaging Java™ ME Applications

Page 11

http://www.jcp.org/

Recognizing the Phone Core Specifications

To determine what implementation of MIDP, CLDC, and Heap size is on a Motorola

handset, review the "Java System" details through the menu on the Motorola

handset (located under "Java Settings") as shown in Figure 2 .

Figure 2 Java System Menu

NOTE: This screenshot is only an example.

Java™ ME Developer Guide
Chapter 2 - Developing and Packaging Java™ ME Applications

Page 12

3
Downloading
Applications

Methods of Downloading

There are two options open to the developer for deploying the MIDlet to a physical

Motorola device. These are OTA (over-the-air) downloading or direct cable (Serial)

downloading through a PC to the target device.

Method 1 - OTA

To use the OTA method, the developer will have a connection through a wireless

network to a content server. This content server could be, for example, Apache

which is free to use, deployable on multiple operating systems, and has extensive

documentation on how to configure the platform.

The required file will be downloaded (either .jad and/or .jar) by issuing a direct URL

request to the file in question or it could be a URL request to a WAP page and a

hyperlink on that page to the target file. This request will be made through the

browser. In MIDP 2.0, the need for a JAD file before download is not required, so the

JAR file can be downloaded directly. The information about the MIDlet will be pulled

from the manifest file.

The transport mechanism used to download the file will be one of two depending on

the support from the network operators WAP Gateway and the size of the file

requested.

• HTTP Range - see specification RFC 2068 if content greater than 30k in size.
Below is a ladder diagram showing the flow through HTTP range transfer,

Java™ ME Developer Guide
Chapter 3 - Downloading Applications

Page 13

http://httpd.apache.org
http://www.rfc-editor.org/rfc.html

although recall use of the .JAD is optional.
• SAR (Segmentation & Reassembly) - see specification of wireless transaction

protocol if less than 30k in size.

During a download of the application, the user will see the Opera 8.5 displaying

'Downloading' followed by "x% completed" for either SAR or HTTP Byte Range type

downloads.

A basic Over the Air Server Configuration document can be found in our Technical

Articles section on the MOTODEV site. This includes details of configuring the server

and also example WAP pages.

In these handsets, the user is given an option of deleting any MIDlets that are on the

phone if an OTA download cannot be achieved due to lack of space.

The following error codes are supported:

• 900 Success
• 901 Insufficient Memory
• 902 User Cancelled
• 903 Loss Of Service
• 904 JAR Size Mismatch
• 905 Attribute Mismatch
• 906 Invalid Descriptor
• 907 Invalid JAR
• 908 Incompatible Configuration or Profile
• 909 Application Authentication Failure
• 910 Application Authorization Failure
• 911 Push Registration Failure
• 912 Deletion Notification

Please be aware that the method used by the handset, as per the specifications, is

POST. Using a GET (URL encoding) style for the URL will fail. This is not the correct

use of the MIDlets JAD parameters.

Possible Screen Messages Seen With Downloading:

• If JAR -file size does not match with specified size, it displays "Failed Invalid
File". Upon time-out, the handset goes back to browser.

• When downloading is done, the handset displays a transient notice "Download
Completed" and starts to install the application.

• Upon completing installation, the handset displays a transient notice "Installed"
and returns to Browser after time-out.

• If the MANIFEST file is wrong, the handset displays a transient notice "Failed
File Corrupt" and returns to Browser after time-out.

Java™ ME Developer Guide
Chapter 3 - Downloading Applications

Page 14

http://www.wapforum.org
http://www.wapforum.org
http://developer.motorola.com/

If JAD does not contain mandatory attributes, "Failed Invalid File" notice appears

The USER-AGENT String

Table 1 describes USER_AGENT strings associated with Motorola devices:

Motorola
Device

USER_AGENT STRING

MOTOROKR
Z6

User-Agent: MOT-Z6/xx.xx.xxR Opera/ 8.5 Profile/MIDP-2.0 Configur-
ation/CLDC-1.1

Table 1 USER_AGENT String

The USER_AGENT string can be used to identify a handset and render specific

content to it based on it information provided in this string (example CGI on a

content server). These strings can be found in the connection logs at the content

server.

1. WAP Browser Release, Opera 8.5
2. MIDP version 2.0
3. CLDC version 1.1

Error Logs

Table 2 represents the error logs associated with downloading applications.

Error Dia-
log

Scenario Possible Cause Install-Notify

Failed: Inval-
id File

JAD Down-
load

Missing or incorrectly formatted
mandatory JAD attributes
Mandatory:
MIDlet-Name
MIDlet-Version
MIDlet-Vendor
MIDlet-JAR-URL
MIDlet-JAR_Size

906 Invalid
descriptor

Download
Failed

OTA JAR
Download

The received JAR size does not
match the size indicated

904 JAR Size Mis-
match

Cancelled:
<Icon>
<Filename>

OTA JAR
Download

User cancelled download 902 User Cancelled

Download
Failed

OTA JAR
Download

Browser lost connection with serv-
er
Certification path cannot be valid-

903 Loss of Service

Java™ ME Developer Guide
Chapter 3 - Downloading Applications

Page 15

ated
JAD signature verification failed
Unknown error during JAD valida-
tion
See 'Details' field in the dialog for
information about specific error

Insufficient
Storage

OTA JAR
Download

Insufficient data space to tempor-
arily store the JAR file

901 Insufficient
Memory

Application
Already Ex-
ists

OTA JAR
Download

MIDlet version numbers are
identical

905 Attribute Mis-
match

Different
Version Ex-
ists

OTA JAR
Download

MIDlet version on handset super-
cedes version being downloaded

Failed File
Corrupt

Installation Attributes are not identical to re-
spective JAD attributes

Insufficient
Storage

Installation Insufficient Program Space or
Data Space to install suite

901 Insufficient
Memory

Application
Error

Installation Class references non-existent
class or method
Security Certificate verification
failure
Checksum of JAR file is not equal
to Checksum in MIDlet-JAR-SHA
attribute
Application not authorized

Application
Expired

MIDlet
Launching

Security Certificates expired or re-
moved

Application
Error

MIDlet Exe-
cution

Authorization failure during MIDlet
execution
Incorrect MIDlet

Table 2 Error Logs

Java™ ME Developer Guide
Chapter 3 - Downloading Applications

Page 16

4
Application

Management

The following sections describe the application management scheme for the

MOTOROKR Z6 handset. This chapter discusses the following:

• Downloading a JAR without a JAD
• MIDlet upgrade
• Installation and Deletion Status Reports

Downloading a JAR File Without a JAD

In Motorola's MIDP 2.0 implementation, a JAR file can be downloaded without a JAD.

In this case, the user clicks on a link for a JAR file, the file is downloaded, and

confirmation is obtained before the installation begins. The information presented is

obtained from the JAR manifest instead of the JAD.

Java™ ME Developer Guide
Chapter 4 - Application Management

Page 17

MIDlet Upgrade

Rules from the JSR-118 (MIDP 2.0) are followed to help determine if the data from

an old MIDlet should be preserved during a MIDlet upgrade. When these rules cannot

determine if the RMS should be preserved, the user is given an option to preserve

the data.

• The data is saved if the new MIDlet-version is the same or newer, and if the
new MIDlet-data-space requirements are the same or more than the current
MIDlet.

• The data is not saved if the new MIDlet-data-space requirement is smaller than
the current MIDlet requirement.

• The data is not saved if the new MIDlet-version is older than the current
version.

If the data cannot be saved, the user is warned about losing the data. If the user

proceeds, the application is downloaded. If the user decides to save the data from

the current MIDlet, the data is preserved during the upgrade and the data is made

available for the new application. In any case, an unsigned MIDlet is not allowed to

update a signed MIDlet.

Installation and Deletion Status
Reports

The status (success or failure) of an installation, upgrade, or deletion of a MIDlet

suite is sent to the server according to the JSR-118 specification. If the status report

cannot be sent, the MIDlet suite is still enabled and the user is allowed to use it. In

some instances, if the status report cannot be sent, the MIDlet is deleted by

operator's request. Upon successful deletion, the handset sends the status code 912

to the MIDlet-Delete-Notify URL. If this notification fails, the MIDlet suite is still

deleted. If this notification cannot be sent due to lack of network connectivity, the

notification is sent at the next available network connection.

Java™ ME Developer Guide
Chapter 4 - Application Management

Page 18

Table 3 lists the application management feature/class support for MIDP 2.0:

Feature/Class

Application upgrades performed directly through the AMS.

When removing a MIDlet suite, the user is prompted to confirm the entire MIDlet
suite is removed.

Application Descriptor included the attribute MIDlet-Delete-Confirm, its value is
included in the prompt.

Prompt for user approval when the user has chosen to download an application that
is identical to the application currently in the handset. An older version cannot be
installed.

Unauthorized MIDlets will not have access to any restricted function calls.

AMS checks the JAD for security indicated every time a download is initiated.

Application descriptor or MIDlet fails the security check, the AMS prevents the
installation of that application and notifies the user that the MIDlet could not be
installed.

Application descriptor and MIDlet pass the security check, the AMS installs the
MIDlet and grants it the permissions specified in the JAD.

A method for launching Java application that maintains the same look and feel as
other features on the device is provided.

User is informed of download and installation with a single progress indicator and is
given an opportunity to cancel the process.

User is prompted to launch the MIDlet after installation.

A method for creating shortcuts to Java applications are provided.

A no forward policy on DRM issues, included but not limited to transferring the
application over-the-air, IRDA, Bluetooth, I/O Cables, External storage devices, etc.,
until further guidance is provided.

Table 3 Application Management Feature

Java™ ME Developer Guide
Chapter 4 - Application Management

Page 19

5
CommConnection

Interface

CommConnection

The CommConnection interface defines a logical serial port connection. A logical

serial port connection is a logical connection through which bytes are transferred

serially. This serial port is defined within the underlying operating system and may

not correspond to a physical RS-232 serial port. For example, IrDA IRCOMM ports

can be configured as a logical serial port within the operating system so it can act as

a logical serial port.

Accessing

The Comm port is accessed using a Generic Connection Framework string with an

explicit port identifier and embedded configuration parameters, each separated with

a semi-colon (;). Only one application may be connected to a particular serial port at

a given time. A is thrown if an attempt is made to open the

serial port with Connector.open() if the connection is already open.

A URI with the type and parameters is used to open the connection. The scheme, as

defined in RFC 2396, is the following:

•

Java™ ME Developer Guide
Chapter 5 - CommConnection Interface

Page 20

Parameters

The first parameter is a port identifier, which is a logical device name. These port

identifiers are the valid identifiers for a particular device and OS can be queried

through the method using the key

. A list of ports, separated by commas, is returned that can

be combined with a comm: prefix as the URL string to open a serial port

connection.device specific and should be used with care.

The valid identifiers for a particular device and OS can be queried through the

method using the key . A list of

ports, separated by commas, is returned that can be combined with a comm: prefix

as the URL string to open a serial port connection.

Any additional parameters are separated by a semi-colon (;) without spaces. If a

particular parameter is not applicable to a particular port, the parameter is ignored.

The port identifier cannot contain a semi-colon (;).

Legal parameters are defined by the definition of the parameters below. Illegal or

unrecognized parameters cause an . If the value of a

parameter is supported by the device, it is honored. If the value of a parameter is

not supported, a is thrown. If a baudrate parameter is

requested, it is treated the same way that a method handles

baudrates. For example, if the baudrate requested is not supported, the system

substitutes a valid baudrate that can be discovered using the method.

Table 4 describes optional parameters.

Parameter Default Description

baudrate platform dependent The speed of the port.

bitsperchar 8 The number bits per character (7 or 8).

stopbits 1 The number of stop bits per character (1 or
2)

parity none The parity can be odd, even, or none.

blocking on If on, wait for a full buffer when reading.

autocts on If on, wait for the CTS line to be on before
writing.

Java™ ME Developer Guide
Chapter 5 - CommConnection Interface

Page 21

autorts on If on, turn on the RTS line when the input
buffer is not full. If off, the RTS line is always
on.

Table 4 Interface Commconncetion Optional Parameters

BNF Format for Connector.open ()
string

The URI must conform to the BNF syntax specified in Table 5. If the URI does not

conform to this syntax, an is thrown.

BNF Syntax

<comm_connection_string> ::= "comm:"<port_id>[<options_list>] ;

<port_id> ::= string of alphanumeric characters

<options_list> ::= *(<baud_rate_string>| <bitsperchar>|
<stopbits>| <parity>| <blocking>| <autocts>|
<autorts>) ;
; if an option duplicates a previous option in the
; option list, that option overrides the previous
; option

<baud_rate_string> ::= ";baudrate="<vbaud_rate>

<baud_rate> ::= string of digits

<bitsperchar> ::= ";bitsperchar="<bit_value>

<bit_value> ::= "7" | "8"

<stopbits> ::= ";stopbits="<stop_value>

<stop_value> ::= "1" | "2"

<parity> ::= ";parity="<parity_value>

<parity_value> ::= "even" | "odd" | "none"

<blocking> ::= ";blocking="<on_off>

<autocts> ::= ";autocts="<on_off>

<autorts> ::= ";autorts="<on_off>

<on_off> ::= "on" | "off"

Table 5 Interface Commconncetion BNF syntax

Java™ ME Developer Guide
Chapter 5 - CommConnection Interface

Page 22

Comm Security

Access to serial ports is restricted to prevent unauthorized transmission or reception

of data. The security model applied to the serial port connection is defined in the

implementing profile. The security model is applied on the invocation of the

method with a valid serial port connection string. Should the

application not be granted access to the serial port through the profile authorization

scheme, a is thrown from the

method. The security model is applied during execution, specifically when the

methods

are invoked.

Code Sample 1 shows the implementation of CommConnection:

Sample of a CommConnection accessing a simple loopback program

CommConnection cc = (CommConnection)
Connector.open("comm:com0;baudrate=19200");

int baudrate = cc.getBaudRate();
InputStream is = cc.openInputStream();
OutputStream os = cc.openOutputStream();
int ch = 0;
while(ch != 'Z') {

os.write(ch);
ch = is.read();
ch++;

}
is.close();
os.close();
cc.close();

Sample of a CommConnection discovering available comm Ports

String port1;
String ports = System.getProperty("microedition.commports");
int comma = ports.indexOf(',');
if (comma > 0) {

// Parse the first port from the available ports list.
port1 = ports.substring(0, comma);

} else {

Java™ ME Developer Guide
Chapter 5 - CommConnection Interface

Page 23

// Only one serial port available.
port1 =ports;

}

Code Sample 1 CommConnection Implementation

Port Naming Convention

Logical port names can be defined to match platform naming conventions using any

combination of alphanumeric characters. Ports are named consistently among the

implementations of this class according to a proposed convention. VM

implementations will follow the following convention:

• Port names contain a text abbreviation indicating port capabilities followed by a
sequential number for the port. The following device name types are used:
• COM# — COM is for RS-232 ports and # is a number assigned to the port
• IR# — IR is for IrDA IRCOMM ports and # is a number assigned to the port

The naming scheme allows API users to determine the type of port to use. For

example, if an application "beams" a piece of data, the application looks for IR#

ports for opening the connection.

Method Summary

Table 6 describe the CommConnection method summary for MIDP 2.0.

Method Summary

int
Gets the baudrate for the serial port connection.

int
Sets the baudrate for the serial port connection.

Table 6 Method Summary

Java™ ME Developer Guide
Chapter 5 - CommConnection Interface

Page 24

6
Downloading MIDlets

Overview

There are three possible ways to download a MIDlet to the handset:

• Over the air
• Bluetooth
• Mass storage

This chapter describes the processes involved in dowloading a MIDlet.

Downloading a MIDlet from a PC

To download MIDlets through a PC, make a connection to a PC through IrDA,

Bluetooth, USB, or Serial Cable (RS 232). This content considers only the RS232

connection using JAL.

Establishing Connection

When a successful connection to a PC has been made, an application can be

downloaded. A message should be displayed stating that a connection has been

made. Only one connection can be active at any given time.

Downloading a MIDlet using Bluetooth

To download a MIDlet using Bluetooth, the user must bond the Motorola MOTOROKR

Java™ ME Developer Guide
Chapter 6 - Downloading MIDlets

Page 25

Z6 to the device from which the application is to be downloaded.

Once a connection has been established and the device which is sending the MIDlet

has started the delivery process, the Motorola MOTOROKR Z6 displays the following

messages

• Device connection — To connect to the device the user selects "Accept"
• Incoming Transfer — To receive the MIDlet the user selects "Accept"
• Receipt succesful — The user is given the option to open the file. Select "Yes"

to open the file.
• Do you want to install the MIDlet — The user is prompted to begin the

installation by selecting "install"

Downloading a MIDlet from a Browser

Downloading a MIDlet from a Browser requires that the browser be connected before

performing any downloads on the handset.

The list below shows different ways of accessing the Browser application:

• Selecting 'Browser' from the Main Menu.
• Pressing a dedicated 'Browser' key on the keypad (if available on the handset).
• Pressing a 'Browser' soft key from the idle display (if assigned).
• Using 'Browser' shortcut (if assigned).
• Selecting URL from a message.
• Selecting GetJavaApps from the Main Menu or Java Settings.

Start Active Browser Session from the Main
Menu

An active Browser session can be started from the main menu.

GetJavaApps is a feature that allows an operator to insert a WAP designated URL that

links to a Java™ ME site with MIDlet suites. This feature can be found under Java

Settings or in the Main Menu as it is flexible for either menu item.

Java™ ME Developer Guide
Chapter 6 - Downloading MIDlets

Page 26

Find a Location with Java™ ME Application

Once connected to the WAP browser, different locations may be visited where Java™

ME Applications may be downloaded. From here, a MIDlet may be selected to

download to the handset.

Handset initially receives information from the Java Application Descriptor (JAD) file.

The JAD includes information about MIDlet-name, version, vendor, MIDlet-Jar-URL,

MIDlet-Jar-size, and MIDlet-Data-size. Two additional JAD attributes are

Mot-Data-Space-Requirements and Mot-Program-Space-Requirements. These

attributes help the KVM determine whether there is enough memory to download and

install the selected MIDlet suite. If there is not enough memory, 'Memory Full' dialog

is displayed before the download begins.

Downloading MIDlets

Once connected below are the steps to Download and Install Java™ ME Application:

• If the SELECT softkey is selected, the handset displays the application size,
time to install, and version. If an error occurs with the descriptor file, the
handset then displays the transient notice 'Failed Invalid File.' Upon Time-out,
the handset goes back to Browser.

• If the CANCEL softkey is selected, it shows the Browser Application Card from
where the application was selected.

• If the DOWNLD softkey is selected, the handset starts downloading the
application. The handset displays 'Downloading...% Complete' along with the
percentage of downloading completed at a time. 'Downloading...% Complete'
shall use static dots, not dynamic.

• Before downloading the MIDlet, handset checks for available memory.
Mot-Data-Space-Requirements and Mot-Program-Space-Requirements are two
JAD attributes that will help the KVM determine whether there is enough
memory to download and install the selected MIDlet suite. If there is not
enough memory, 'Insufficient storage' transient dialog is displayed before the
download begins. Upon time-out, the handset goes back to Browser.

• If an error occurs during download, such as a loss of service, then the transient
notice 'Download Failed' must be displayed. Upon time-out, the handset goes
back to idle state.

• A downloading application can be cancelled by pressing the END key. The

Java™ ME Developer Guide
Chapter 6 - Downloading MIDlets

Page 27

transient notice, 'Download Cancelled' displays. Upon time-out, handset goes
back to Browser.

• If JAR -file size does not match with specified size, it displays 'Failed Invalid
File.' Upon time-out, the handset goes back to Browser.

• When the downloading application is cancelled, handset cleans up all files,
including any partial JAR files and temporary files created during the download
process.

• When downloading is done, the handset displays a transient notice 'Download
Completed.' The handset then starts to install the application.

• The handset displays 'Installing....'
• After an application is successfully downloaded, a status message must be sent

back to the network server. This allows for charging of the downloaded
application.

• Charging is per the Over the Air User Initiated Provisioning specification. The
status of an install is reported by means of an HTTP POST request to the URL
contained in the MIDlet-Install-Notify attribute. The only protocol that MUST be
supported is 'http://'.

• If the browser connection is interrupted/ended during the download/installation
process, the device is unable to send the HTTP POST with the MIDlet-Install
Notify attribute. In this case, the MIDlet is deleted to ensure the user does not
get a free MIDlet. The use case can occur when a phone call is accepted and
terminated during the installation process, because then the browser is not in
the needed state to return the MIDlet Install Notify attribute.

• Upon completing Installation, the handset displays a transient notice 'Installed
to Games and Apps'.

• Upon time-out, the handset goes back to Browser.
• During Installation if the MANIFEST file is wrong, the handset displays a

transient notice 'Failed File Corrupt'. Upon time-out, the handset goes back to
Browser.

• During the installation process, if the flip is closed on a flip handset, the
installation process continues and the handset does not return to the idle
display. When the flip is opened, the 'Installing...' dialog should appear on the
screen and should be dynamic.

• During download or install of application, voice record, voice commands, voice
shortcuts, and volume control is not supported. However, during this time,
incoming calls and SMS messages are able to be received.

• The handset must support sending and receiving at least 30 kilobytes of data
using HTTP either from the server to the client or the client to the server, per
Over the Air User Initiated Provisioning specification.

• If JAD does not contain mandatory attributes, 'Failed Invalid File' notice
appears.

Different Error Checks

Java™ ME Developer Guide
Chapter 6 - Downloading MIDlets

Page 28

Memory Full

There are two distinct cases when a Memory Full error can occur during the download

process. Memory Full is displayed when the device does not have enough memory to

completely download the MIDlet. The JAD of the MIDlet has two attributes,

Mot-Data-Space-Requirements and Mot-Program-Space-Requirements. If an

application developer adds these attributes to their JAD file, a Motorola device can

determine if enough memory exists on the phone before the MIDlet is downloaded.

These attributes may or may not be provided in all MIDlets. Two separate prompts

are displayed, depending on whether these attributes are present.

In cases where there is not enough memory to download the application, the user

must be given a message to delete existing applications to free additional memory.

The following messages and screen flows are displayed depending on whether

specific JAD attributes are present or not.

Rules:

• If Mot-Data-Space-Requirements and Mot-Program-Space-Requirements
attributes are present in the JAD, the above noted prompt is displayed. This
value takes into account the memory requirements of the MIDlet and the
current memory usage on the phone to tell the user exactly how much memory
to free. The memory usage is based in kilobyte units.

• 'Data Space:' and the value of the data space should be on separate lines.
'Prog. Space:' and the value of the program space should be on separate lines.

• The download process is canceled when this error condition occurs.
• The Memory Full error is no longer a transient prompt. A dialog screen with a

Help softkey and a Back softkey is displayed instead.
• DETAILS will give the user the above detailed Help screen describing the

memory required to be able to download the MIDlet.
• The Help dialog includes a 'More' right softkey label (for those products in

which not all the help data can be displayed on a single screen). This label
should disappear when the user has scrolled to the bottom of the dialog.

• BACK from this message takes the user back to the browser page from which
the user selected the MIDlet to download.

• If Mot-Data-Space-Requirements and Mot-Program-Space-Requirements JAD
attributes are not present in the JAD file, the handset can not determine how
much memory to free and displays the above help dialog.

Java™ ME Developer Guide
Chapter 6 - Downloading MIDlets

Page 29

• The Help dialog includes a 'More' right softkey label (for those products in
which not all the help data can be displayed on a single screen). This label
should disappear when the user has scrolled to the bottom of the dialog.

• All rules stated in the previous figure must also be followed for the above
stated prompt.

Memory Full During Installation Process

Once the MIDlet is successfully downloaded, the installation process begins. During

the installation of the MIDlet, the phone may determine there is insufficient memory

to complete the installation. This error can occur whether the

Mot-Data-Space-Requirements and Mot-Program-Space-Requirements JAD attributes

are present or not.

• The installation process is canceled when this error condition occurs.
• The Memory Full error is no longer a transient prompt. A dialog screen with a

Help softkey and a Back softkey is displayed instead.
• DETAILS give the user the above Help screen explaining that additional

memory is required to be able to install the MIDlet.
• The Help dialog includes a 'More' right softkey label (for those products in

which not all the help data can be displayed on a single screen). This label
should disappear when the user has scrolled to the bottom of the dialog.

• BACK from this message takes the user back to the browser page from which
the user selected the MIDlet to download.

Application Version Already Exists

Compares the version number of the application with that already present on the

handset. If the versions are the same, the following message is displayed. The error

occurred can be queried by selecting DETAILS.

Rules:

• Handset checks for MIDlet-Name, MIDlet-vendor, and version number. If they
are the same, a dialog 'Application Already Exists' is displayed.

• To know more about this error, select the DETAILS softkey.
• Handset displays the new version of the application, as well as the existing

application.

Java™ ME Developer Guide
Chapter 6 - Downloading MIDlets

Page 30

Newer application version exists

If the application version on the handset is newer than the downloaded version of

application, the following message is displayed. The error occurred can be queried by

selecting DETAILS.

Rules:

• If the most recent version of application is already present on the handset, it
cannot be downloaded.

Java™ ME Developer Guide
Chapter 6 - Downloading MIDlets

Page 31

7
Gaming API/Multiple

Key Press

Gaming API

The Gaming API provides a series of classes that enable rich gaming content for the

handset. This API improves performance by minimizing the amount of work done in

Java, decreasing application size. The Gaming API is structured to provide freedom in

implementation, extensively using native code, hardware acceleration, and

device-specific image data formats as needed.

The API uses standard low-level graphic classes from MIDP so the high-level Gaming

API classes can be used in conjunction with graphics primitives. This allows for

rendering a complex background using the Gaming API while rendering something on

top of it using graphics primitives.

Methods that modify the state of Layer, LayerManager, Sprite, and TiledLayer objects

generally do not have any immediate visible side effects. Instead, this state is stored

within the object and is used during subsequent calls to the method. This

approach is suitable for gaming applications where there is a cycle within the objects'

states being updated and the entire screen is redrawn at the end of every game

cycle.

Java™ ME Developer Guide
Chapter 7 - Gaming API/Multiple Key Press

Page 32

Multiple Key Press Support

Multi-button press support enhances the gaming experience for the user.

Multi-button press support gives the user the ability to press two (2) keys

simultaneously and the corresponding actions of both keys occurs simultaneously. An

example of this action would include:

• Simultaneously moving to the right and firing at objects in a game.

The following sets of keys support multi-button press support on the MOTOROKR Z6

handset. Multi-button press within each set is supported, while multi-button press

across these sets or with other keys is not supported.

Set 1 — Nav (Up), Nav (Down), Nav (Right), Nav (Left), 9

Set 2 — 2, 4, 6, 8, 7

Set 3 — 0, #

Table 7 lists the gaming and keypad feature/class support for MIDP 2.0:

Feature/Class Implementation

lcdui.game package Supported

setBacklight as defined in
javax.microedition.lcdui.Display

Supported

setVibrator as defined in
javax.microedition.lcdui.Display

Supported

All constructors and inherited classes for the Illegal-
StateException in java.lang

Supported

All constructors, methods, and inherited classes for the
Timer class in java.util

Supported

All the constructors, methods, and inherited classes for
the TimerTask class in java.util

Supported

All fields, constructors, methods, inherited fields, and
inherited methods for the GameCanvas class in
javax.microedition.lcdui.game

Supported

GameCanvas size 9x larger than screen

Map the UP_PRESSED field in
javax.microedition.lcdui.game.GameCanvas to the top
position of the key

Supported

Map the DOWN_PRESSED field in
javax.microedition.lcdui.GameCanvas to the bottom po-

Supported

Java™ ME Developer Guide
Chapter 7 - Gaming API/Multiple Key Press

Page 33

sition of the key

Map the LEFT_PRESSED field in
javax.microedition.lcdui.GameCanvas to the left posi-
tion of the key

Supported

Map the RIGHT_PRESSED field in
javax.microedition.lcdui.GameCanvas to the right posi-
tion of the key

Supported

All methods and inherited methods for the Layer class
in javax.microedition.lcdui.game

Supported

All constructors, methods, and inherited methods for
the LayerManager class in
javax.microedition.lcdui.game.Layer

Supported

All fields, constructors, methods, and inherited methods
for the Sprite Class in javax.microedition.lcdui.game

Supported

Sprite Frame height is not allowed to exceed the height
of the view window in javax.microedition.lcdui.Layer

Any, limited by heap size
only

Sprite frame width is not allowed to exceed the width
view of the view window in
javax.microedition.lcdui.Layer

Any, limited by heap size
only

Sprite recommended size 16*16 or 32*32

All constructors, methods, and inherited methods for
the TiledLayer class in javax.microedition.lcdui.game

Supported

MIDlet Queries to keypad hardware Supported

Alpha Blending Supported

Table 7 Gaming and Keypad Feature/Class Support for MIDP

Java™ ME Developer Guide
Chapter 7 - Gaming API/Multiple Key Press

Page 34

8
JAD Attributes

JAD / Manifest Attribute
Implementations

The JAR manifest defines attributes to be used by the Application Manager Software

(AMS) to identify and install the MIDlet suite. These attributes may or may not be

found in the application descriptor.

The application descriptor is used, in conjunction with the JAR manifest, by the

Application Manager Software to manage the MIDlet. The application descriptor is

also used for the following:

• By the MIDlet, for configuration specific attributes.
• Allows the Application Manager Software on the handset to verify the MIDlet is

suited to the handset before loading the JAR file.
• Allows configuration-specific attributes (parameters) to be supplied to the

MIDlet(s) without modifying the JAR file.

Motorola has implemented the following support for the MIDP 2.0 Java Application

Descriptor attributes as outlined in the JSR-118. Table 8 lists all MIDlet attributes,

descriptions, and its location in the JAD and/or JAR manifest that are supported in

the Motorola implementation. Please note that the MIDlet does not install if the

MIDlet-Data-Size is greater than 512k.

Java™ ME Developer Guide
Chapter 8 - JAD Attributes

Page 35

Attribute Name Attribute Description JAR
Manifest

JAD

MIDlet-Name The name of the MIDlet suite that
identifies the MIDlets to the user.

Yes Yes

MIDlet-Version The version number of the MIDlet
suite.

Yes Yes

MIDlet-Vendor The organization that provides the
MIDlet suite.

Yes Yes

MIDlet-Icon The case-sensitive absolute name
of a PNG file within the JAR, used
to represent the MIDlet suite.

Yes Yes

MIDlet-Description The description of the MIDlet
suite.

No No

MIDlet-Info-URL A URL for information further de-
scribing the MIDlet suite.

Yes No

MIDlet-<n> The name, icon, and class of the
nth MIDlet in the JAR file. Name is
used to identify this MIDlet to the
user. Icon is as stated above.
Class is the name of the class ex-
tending the

.

Yes, or no if
included in
the JAD.

Yes, or no if
included in
the JAR
manifest.

MIDlet-Jar-URL The URL from which the JAR file is
loaded.

Yes

MIDlet-Jar-Size The number of bytes in the JAR
file.

Yes

MIDlet-Data-Size The minimum number of bytes of
persistent data required by the
MIDlet.

Yes Yes

MicroEdition-Profile The Java™ ME profiles required. If
any of the profiles are not imple-
mented the installation fails.

Yes, or no if
included in
the JAD.

Yes, or no if
included in
the JAR
manifest.

MicroEdition-Con-
figuration

The Java™ ME Configuration re-
quired, that is, CLDC.

Yes, or no if
included in
the JAD.

Yes, or no if
included in
the JAR
manifest.

MIDlet-Permissions Zero or more permissions that are
critical to the function of the MID-
let suite.

Yes Yes

MIDlet-Permis-
sions-Opt

Zero or more permissions that are
non-critical to the function of the
MIDlet suite.

Yes Yes

Java™ ME Developer Guide
Chapter 8 - JAD Attributes

Page 36

MIDlet-Push-<n> Register a MIDlet to handle in-
bound connections

Yes Yes

MIDlet-Install-Notify The URL to which a POST request
is sent to report installation status
of the MIDlet suite.

Yes Yes

MIDlet-De-
lete-Notify

The URL to which a POST request
is sent to report deletion of the
MIDlet suite.

Yes Yes

MIDlet-De-
lete-Confirm

A text message to be provided to
the user when prompted to con-
firm deletion of the MIDlet suite.

Yes Yes

Table 8 MIDlet Attributes, Descriptions, and its Location in the JAD and/or JAR
Manifest

Java™ ME Developer Guide
Chapter 8 - JAD Attributes

Page 37

9
JSR-118: MIDP 2.0

Security Model

Reference Link

Borland http://www.borland.com/

GSM 03.38 standard http://www.etsi.org

GSM 03.40 standard http://www.etsi.org

IBM http://www.ibm.com/

MOTODEV http://developer.motorola.com

Motorola http://www.motorola.com/

RFC 2068 http://www.ietf.org/rfc/rfc2068.txt

RFC 2396 http://www.ietf.org/rfc/rfc2396.txt

RFC 822 http://www.ietf.org/rfc/rfc822.txt

SAR http://www.wapforum.org

SSL protocol version 3.0 http://wp.netscape.com/eng/ssl3/ssl-toc.html

Sun Microsystems http://www.sun.com/

TLS protocol version 1.0 http://www.ietf.org/rfc/rfc2246.txt

This chapter describes the MIDP 2.0 Default Security Model for the MOTOROKR Z6

handset. The following topics are discussed:

• Untrusted MIDlet suites and domains
• Trusted MIDlet suites and domains
• Permissions
• Certificates

For a detailed MIDP 2.0 Security process diagram, refer to the MOTODEV web site

(http://developer.motorola.com).

Table 9 lists the default security feature/class support for MIDP 2.0:

Feature/Class Implementation

All methods for the Certificate interface in the Supported

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 38

http://developer.motorola.com

All fields, constructors, methods, and inherited methods for
the CertificateException class in the
package

Supported

A MIDlet suite is authenticated as stated in Trusted MIDlet-
Suites using X.509 of MIDP 2.0 minus all root certificates pro-
cesses and references

Supported

Verification of SHA-1 signatures with a SHA-1 message digest
algorithm

Supported

Only one signature in the MIDlet-Jar-RSA-SHA1 attribute Supported

All methods for the Certificate interface in the
package

Supported

All fields, constructors, methods, and inherited methods for
the CertificateException class in the
package

Supported

Preloading two self authorizing Certificates Supported

All constructors, methods, and inherited methods for the MID-
letStateChangeException class in the

package

Supported

All constructors and inherited methods for the MIDletState-
ChangeException class in the
package

Supported

Table 9 MIDP 2.0 Feature/Class

The domain configuration is selected upon agreement with the operator.

Untrusted MIDlet Suites

A MIDlet suite is untrusted when the device cannot trust the origin or integrity of the

JAR file.

The following are conditions of untrusted MIDlet suites:

• If one or more errors occur in the process of verifying if a MIDlet suite is
trusted, then the MIDlet suite is rejected.

• Untrusted MIDlet suites execute in the untrusted domain where access to
protected APIs or functions either is not allowed or is allowed with explicit
confirmation from the user.

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 39

Untrusted Domain

Any MIDlet suites that are unsigned belong to the untrusted domain. Untrusted

domain handsets allow, without explicit confirmation, untrusted MIDlet suites access

to the following APIs:

• — RMS APIs
• — MIDlet Lifecycle APIs
• — User Interface APIs
• — Gaming APIs
• — Multimedia APIs for sound playback
• — Multimedia APIs for sound playback

The untrusted domain allows, with explicit user confirmation, untrusted MIDlet suites

access to the following protected APIs or functions:

• — HTTP protocol
• — HTTPS protocol

Trusted MIDlet Suites

Trusted MIDlet suites are those in which the integrity of the JAR file can be

authenticated and trusted by the device, and bound to a protection domain. The

MOTOROKR Z6 uses x.509PKI for signing and verifying trusted MIDlet suites.

Security for trusted MIDlet suites uses protection domains. Protection domains define

permissions that are granted to the MIDlet suite. A MIDlet suite belongs to one

protection domain and its defined permissible actions. For implementation on the

MOTOROKR Z6, the following protection domains exist:

• Manufacturer — permissions are marked as "Allowed" (Full Access).
Downloaded and authenticated manufacturer MIDlet suites perform consistently
with MIDlet suites pre-installed by the manufacturer.

• Operator — permissions are marked as "Allowed" (Full Access). Downloaded
and authenticated operator MIDlet suites perform consistently with other
MIDlet suites installed by the operator.

• Third-Party — permissions are marked as "User." User interaction is required
for permission to be granted. MIDlets do not need to be aware of the security
policy except for security exceptions that occur when accessing APIs.

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 40

• Untrusted — all MIDlet suites that are unsigned belong to this domain.

Permissions within these domains authorize access to the protected APIs or

functions. These domains consist of a set of "Allowed" or "User" permissions that are

granted to the MIDlet suite.

Permission Types Concerning the
Handset

A protection domain consists of a set of permissions. Each permission is either

"Allowed" or "User":

• "Allowed" (Full Access) permissions explicitly allow access to a given protected
API or function from a protected domain. Allowed permissions do not require
any user interaction.

• "User" permissions require a prompt to be given to the user and explicit user
confirmation to allow the MIDlet suite access to the protected API or function.

User Permission Interaction Mode

User permission for the MOTOROKR Z6 handsets allows the user to either deny or

grant access to the protected API or function using the following interaction modes

(the prompt that appears in bold):

• blanket — grants access to the protected API or function every time it is
required by the MIDlet suite until the use uninstalsl the MIDlet suite or changes
the permission. (Ask Once Per App)

• session — grants access to the protected API or function every time it is
required by the MIDlet suite until the MIDlet suite is terminated. This mode
prompts the user on or before the final invocation of the protected API or
function. (Ask Once Per App)

• oneshot — prompts the user each time the protected API or function is
requested by the MIDlet suite. (Always Ask)

• No — does not allow the MIDlet suite access to the requested API or function
that is protected. (No Access)

The prompt No, Ask Later is displayed during run-time dialogs. It allows the user to

prohibit access to the protected function this time. However, the next time access is

requested, this function is called again.

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 41

Security policy and device implementation determine user permission interaction

modes. User permission has a default interaction mode. The user is presented with a

choice of available interaction modes, including the ability to deny access to the

protected API or function. The user makes a decision based on the user-friendly

description of the requested permissions provided.

The Permissions menu allows the user to configure permission settings for each

MIDlet when the VM is not running. This menu is synchronized with available

run-time options.

Implementation Based on
Recommended Security Policy

The default security policy of Motorola's implementation for MIDP 2.0 contains the

required trust model, the supported domain, and the corresponding structure.

Permissions are defined for MIDlets relating to their domain. User permission types,

as well as user prompts and notifications, are defined.

Trusted Third-Party Domain

A trusted third-party protection domain root certificate is used to verify third-party

MIDlet suites. These root certificates are mapped to a location on the handset that

the user cannot modify. The handset can store a maximum of 12 certificates,

consisting of trusted third-party protection domain root certificates and operator

protection domain root certificates.

A user can enable a disabled, trusted, third-party, protection domain root certificate.

If disabled, the third-party domain is no longer associated with this certificate.

Permissions for the trusted third-party domain are "User" permissions. The user

grants permissions by responding to a prompt.

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 42

Table 10 displays the specific wording for the first line of this prompt:

Protected Functionality Top Line of Prompt Right Softkey

Data Network Use data network? OK

Messaging Use messaging? OK

App Auto-Start Launch <MIDlet names>? OK

Connectivity Options Make a local connection? OK

User Data Read Capability Read phonebook data? OK

User Data Write Capability Modify phonebook data? OK

App Data Sharing Share data between apps? OK

Table 10 Trusted Third-Party Domain

The following radio button messages, mapped to their corresponding permission

types, appear (Table 11):

MIDP 2.0 Permission
Types

Run-time Dialogs UI Permission Prompts

Oneshot Yes, Always Ask Always Ask

Session Yes, Ask Once Ask Once per App

Blanket Yes, Always Grant Access Never Ask

no access No, Never Grant Access No Access

Table 11 MIDP 2.0 Permission Types

The run-time dialogs are not displayed if the corresponding permission type is an

option for the protected function according to the security policy table loaded into the

handset, or when the protected function is set to "Allowed" (or full access).

Security Policy for Protection Domains

Table 12 lists the security policy, by function group, for each domain. Under each

domain are the settings allowed for that function; the default setting is in bold. The

Function Group appears when the user requests access and when the user modifies

the permissions in the menu. The default setting is in effect at the time the MIDlet

suite is first invoked and remains in effect until the user changes it.

Permissions are implicitly granted or not granted to a MIDlet based on the

configuration of the domain the MIDlet is bound to. Specific permissions cannot be

defined for this closed class. A MIDlet either does or doesn't have this capability. The

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 43

user can change any of the remaining settings.

Function
Group

Trusted
Third Party

Untrusted Manufacturer Operator

Data Net-
work

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, No
Acess

Full Access Full Access

Messaging Always
Ask, No Ac-
cess

Always
Ask, No Ac-
cess

Full Access Full Access

App Auto-
Start

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, No
Acess

Full Access Full Access

Connectivity
Options

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Full Access Full Access

User Data
Read Capab-
ility

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always Ask Full Access Full Access

User Data
Read Capab-
ility

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always Ask Full Access Full Access

User Data
Write Capab-
ility

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

No Access Full Access Full Access

Multimedia
Recording

Ask once
Per

No Access Full Access Full Access

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 44

App, Always
Ask, Never
Ask, No
Access

Table 12 Security Policy for Protection Domains

Table 13 shows individual permissions assigned to the function groups in Table 13.

MIDP 2.0 Specific Functions

Permission Protocol Function Group

http Data Network

https Data Network

datagram Data Network

datagram server (w/o
host)

Data Network

socket Data Network

server socket (w/ o
host)

Data Network

ssl Data Network

comm Connectivity Op-
tions

All App Auto-Start

Wireless Messaging API - JSR-120

Messaging

Messaging

Messaging

Messaging

Multimedia Recording

Multimedia Re-
cording

Table 13 MIDP 2.0 Specific Functions

Each phone call or messaging action lets the user see the destination phone number

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 45

before approving the action. The handset ensures that I/O access from the Mobile

Media API follows the same security requirements as the Generic Connection

Framework.

Displaying Permissions

Permissions are divided into function groups, which the user can view. Each function

group falls into one of two categories: Network/Cost related and User/Privacy

related.

The Network/Cost related category includes net access, messaging, application auto

invocation, and local connectivity function groups.

The user/privacy related category includes multimedia recording, read user data

access, and the write user data access function groups. These function groups are

displayed in the settings of the MIDlet suite.

The user can access and modify only third-party and untrusted permissions. Operator

and manufacturer permissions are displayed for each MIDlet suite, but the user

cannot modify them.

Trusted MIDlet Suites Using x.509 PKI

Using the x.509 PKI (Public Key Infrastructure) mechanism, the handset can verify

the signer of the MIDlet suite and bind it to a protection domain that allows the

MIDlet suite access to the protected API or function. When the MIDlet suite is bound

to a protection domain, it uses the permission defined in the protection domain to

grant the MIDlet suite access to the defined protected APIs or functions.

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 46

The MIDlet suite is protected by itsvsigned JAR file. The signature and certificate

attributes are added to the application descriptor (JAD) and are used by the handset

to verify the signature. Authentication is complete when the handset uses the root

certificate (found on the handset) to bind the MIDlet suite to a protection domain

(found on the handset).

Signing a MIDlet Suite

The default security model involves the MIDlet suite, the signer, and public key

certificates. A set of root certificates are used to verify certificates generated by the

signer. Specially designed certificates for code signing can be obtained from the

manufacturer, operator, or certificate authority. The MOTOROKR Z6 handset

supports only those root certificates that are stored on the handset.

Signer of MIDlet Suites

The signer of a MIDlet suite can be the developer or an outside party that is

responsible for distributing, supporting, or billing for the MIDlet suite. The signer has

a public key infrastructure and the certificate is validated to one of the protection

domain root certificates on the handset. The public key, which is provided as an

x.509 certificate in the application descriptor (JAD), verifies the signature in the JAR

file.

MIDlet Attributes Used in Signing
MIDlet Suites

Attributes defined in the manifest of the JAR are protected by the signature.

Attributes defined in the JAD are not protected or secured. Attributes that appear in

the manifest (JAR file) are not overridden by a different value in the JAD for all

trusted MIDlets. If a MIDlet suite is to be trusted, the value in the JAD equals the

value of the corresponding attribute in the manifest (JAR file), if not, the MIDlet suite

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 47

is not installed.

The attributes MIDlet-Permissions (-OPT) are ignored for unsigned MIDlet suites. The

untrusted domain policy is consistently applied to the untrusted applications. It is

legal for these attributes to exist only in JAD, only in the manifest, or in both

locations. If these attributes are in both the JAD and the manifest, they are identical.

If the permissions requested in the JAD are different from those requested in the

manifest, the installation is rejected.

Methods:

• returns the attribute value, if present, from the
manifest (JAR). If an attribute value is not defined, the attribute value, if
present, is returned from the application descriptor (JAD).

Creating the Signing Certificate

The signer of the certificate is made aware of the authorization policy for the handset

and contacts the appropriate certificate authority (CA). The signer can then send its

distinguished name (DN) and public key in the form of a certificate request to the

certificate authority used by the handset. The CA creates a x.509 (version 3)

certificate and returns it to the signer. If multiple CAs are used, all signer certificates

in the JAD have the same public key.

Inserting Certificates into JAD

When inserting a certificate into a JAD, the certificate path includes the signer

certificate and any other necessary certificates. It omits the root certificate, which is

found on the device only.

Each certificate is encoded using base64 without line breaks, and inserted into the

application descriptor as outlined below per MIDP 2.0.

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 48

Note the following:

<n>:= a number equal to 1 for first certification path in the descriptor, or 1 greater

than the previous number for additional certification paths. This defines the sequence

in which the certificates are tested to see if the corresponding root certificate is on

the device.

<m>:= a number equal to 1 for the signer's certificate in a certification path or 1

greater than the previous number for any subsequent intermediate certificates.

Creating the RSA SHA-1 Signature of
the JAR

The signer's private key creates the JAR signature according to the EMSA-PKCS1

-v1_5 encoding method of PKCS #1 version 2.0 standard from RFC 2437. This

signature, which is inserted into the JAD, is base64 encoded and formatted as a

single MIDlet-Jar-RSA-SHA1 attribute without line breaks.

The signer of the MIDlet suite is responsible for its protection domain root certificate

owner for protecting the domain's APIs and protected functions; therefore, the signer

checks the MIDlet suite before signing it. Protection domain root certificate owners

can delegate the signing of MIDlet suites to a third party and in some instances, the

author of the MIDlet.

Authenticating a MIDlet Suite

When a MIDlet suite is downloaded, the handset checks for the JAD attribute

MIDlet-Jar-RSA-SHA1. If this attribute is present, the JAR is authenticated by

verifying the signer certificates and JAR signature as described. MIDlet suites with

application descriptors that do not have the attributes previously stated, are installed

and invoked as untrusted. For additional information, refer to the MIDP 2.0

specification.

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 49

Verifying the Signer Certificate

The signer certificate is found in the application descriptor of the MIDlet suite. The

process for verifying a signer certificate is as follows:

1. Get the certification path for the signer certificate from the JAD attributes
MIDlet-Certificate-1<m>, where <m> starts at 1 and is incremented by 1 until
there is no attribute with this name. The value of each attribute is a base64
encoded certificate that needs to be decoded and parsed.

2. Validate the certification path using the basic validation process as described in
RFC 2459 using the protection domains as the source of the protection domain
root certificates.

3. Bind the MIDlet suite to the corresponding protection domain that contains the
protection domain root certificate that validated the first chain from signer to
root.

4. Begin installation of MIDlet suite.
5. If attribute MIDlet-Certificate-<n>-<m> where <n> is greater than 1, is

present and full certification path is not established after verifying
MIDlet-Certificate-<1>-<m> certificates, then repeat steps 1 through 3 for the
value <n> greater by 1 than the previous value.

Table 14 describes actions performed upon completion of signer certificate

verification:

Result Action

Attempted to validate <n> paths.
However, issuer's public keys are missing
or certificate pathsa are invalid.

Authentication fails, JAR installation is not
allowed.

More than one full certification path is es-
tablished and validated.

Implementation proceeds with the signa-
ture verification using the first success-
fully verified certificate path for authen-
tication and authorization.

Only one certification path is established
and validated.

Implementation proceeds with the signa-
ture verification.

Table 14 Actions Performed of Signer Certificate Verification

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 50

Verifying the MIDlet Suite JAR

To verify the MIDlet suite JAR:

1. Get the public key from the verified signer certificate.
2. Get the MIDlet-JAR-RSA-SHA1 attribute from the JAD.
3. Decode the attribute value from base64 yielding a PKCS #1 signature; refer to

RFC 2437 for more detail.
4. Use the signer's public key, signature, and SHA-1 digest of JAR to verify the

signature. If signature verification fails, reject the JAD and MIDlet suite. Thus
the MIDlet suite is not installed.

5. After the certificate, signature, and JAR have been verified, the MIDlet suite is
known to be trusted and is installed (authentication process is performed
during installation).

Table 15 is a summary of MIDlet suite verification including messages:

Initial State Verification Result

JAD not present, JAR
downloaded

Authentication cannot be performed, install JAR. MIDlet
suite is treated as untrusted. The following error mes-
sage appears: "Application installed, but may have lim-
ited functionality."

JAD present, but JAR is un-
signed

Authentication cannot be performed, install JAR. MIDlet
suite is treated as untrusted. The following error mes-
sage appears: "Application installed, but may have lim-
ited functionality."

JAR signed but no root cer-
tificate present in the key-
store to validate the certi-
ficate chain

Authentication cannot be performed. JAR installation is
not allowed. The following error message appears:
"Root certificate missing. Application not installed."

JAR signed, a certificate on
the path is expired

Authentication cannot be completed. JAR installation is
not allowed. The following error message appears: "Ex-
pired Certificate. Application not installed."

JAR signed, a certificate re-
jected for reasons other
than expiration

JAD rejected, JAR installation is not allowed. The follow-
ing error message appears: "Authentication Error. Ap-
plication not installed."

JAR signed, certificate path
validated but signature
verification fails

JAD rejected, JAR installation is not allowed. The follow-
ing error message appears: "Authentication Error. Ap-
plication not installed."

Parsing of security attrib-
utes in JAD fails

JAD rejected, JAR installation is not allowed. The follow-
ing error message appears: "Failed Invalid File."

JAR signed, certificate path JAR is installed. The following message appears: "In-

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 51

validated, signature veri-
fied

stalled."

Table 15 Summary of MIDlet Suite Verification

Carrier Specific Security Model

The MIDP 2.0 security model varies based on carrier requests. Contact the carrier for

specifics.

Java™ ME Developer Guide
Chapter 9 - JSR-118: MIDP 2.0 Security Model

Page 52

10
Network APIs

Network Connections

The Motorola implementation of Networking APIs supports several network

connections. The network connections necessary for Motorola implementation are:

• CommConnection for serial interface
• HTTP connection
• HTTPS connection
• Push registry
• SSL (secure socket)
• SocketConnection
• Datagram (UDP)

Table 16 lists the Network API feature/class support for MIDP 2.0:

Feature/Class Implementation

All fields, methods, and inherited methods for the Connector
class in the javax.microedition.io package

Supported

Mode parameter for the open() method in the Connector class
the javax.microedition.io package

READ, WRITE,
READ_WRITE

The timeouts parameter for the open() method in the Connect-
or class of the javax.microedition.io package

HttpConnection interface in the javax.microedition.io package Supported

HttpsConnection interface in the javax.microedition.io package Supported

SecureConnection interface in the javax.microedition.io pack-
age

Supported

SecurityInfo interface in the javax.microedition.io package Supported

UDPDDatagramConnection interface in the
javax.microedition.io package

Supported

Connector class in the javax.microedition.io.package Supported

PushRegistry class in the javax.microedition.io package Supported

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 53

CommConnection interface in the javax.microedition.io pack-
age

Supported

Dynamic DNS allocation through DHCP Supported

Table 16 Network API Feature/Class Support for MIDP

Code Sample 2 shows the implementation of Socket Connection:

Socket Connection

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

...

try {
//open the connection and io streams

sc = (SocketConnection)Connector.open
("socket://www.myserver.com:8080", Connector.READ_WRITE, true);

is = sc[i].openInputStream();
os = sc[i].openOutputStream();

} catch (Exception ex) {
closeAllStreams();
System.out.println("Open Failed: " + ex.getMessage());

}
}
if (os != null && is != null)
{

try
{

os.write(someString.getBytes()); //write some data to server

int bytes_read = 0;
int offset = 0;
int bytes_left = BUFFER_SIZE;

//read data from server until done
do
{

bytes_read = is.read(buffer, offset, bytes_left);

if (bytes_read > 0)
{

offset += bytes_read;

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 54

bytes_left -= bytes_read;
}

}
while (bytes_read > 0);

} catch (Exception ex) {
System.out.println("IO failed: "+ ex.getMessage());

}
finally {

closeAllStreams(i); //clean up
}

}

Code Sample 2 Socket Connection

User Permission

The user of the handset explicitly grants permission to add additional network

connections.

HTTPS Connection

Motorola implementation supports a HTTPS connection on the MOTOROKR Z6

handset. Additional protocols that are supported are the following:

TLS protocol version 1.0 as defined in http://www.ietf.org/rfc/rfc2246.txt

SSL protocol version 3.0 as defined in http://wp.netscape.com/eng/ssl3/ssl-toc.html

Code Sample 3 shows the implementation of HTTPS:

HTTPS

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

try {
hc[i] = (HttpConnection)Connector.open("https://" + url[i] + "/");

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 55

http://www.ietf.org/rfc/rfc2246.txt
http://wp.netscape.com/eng/ssl3/ssl-toc.html

} catch (Exception ex) {
hc[i] = null;
System.out.println("Open Failed: " + ex.getMessage());

}

if (hc[i] != null)
{

try {
is[i] = hc[i].openInputStream();

byteCounts[i] = 0;
readLengths[i] = hc[i].getLength();

System.out.println("readLengths = " + readLengths[i]);

if (readLengths[i] == -1)
{

readLengths[i] = BUFFER_SIZE;
}

int bytes_read = 0;
int offset = 0;
int bytes_left = (int)readLengths[i];

do
{

bytes_read = is[i].read(buffer, offset, bytes_left);
offset += bytes_read;
bytes_left -= bytes_read;
byteCounts[i] += bytes_read;

}
while (bytes_read > 0);

System.out.println("byte read = " + byteCounts[i]);

} catch (Exception ex) {
System.out.println("Downloading Failed: "+ ex.getMessage());
numPassed = 0;

}
finally {

try {
is[i].close();
is[i] = null;

} catch (Exception ex) {}
}

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 56

}
/**
* close http connection
*/
if (hc[i] != null)
{

try {
hc[i].close();

} catch (Exception ex) { }
hc[i] = null;

}

Code Sample 3 HTTPS

DNS IP

The DNS IP is flexed on or off (per operator requirement) in the settings of the

network profile as read only or as user-editable. In some instances, it is flexed with

an operator-specified IP address.

Push Registry

The push registry mechanism allows an application to register for notification events

that are meant for the application. The push registry maintains a list of inbound

connections.

Mechanisms for Push

Motorola implementation for push requires the support of certain mechanisms. The

mechanisms that are supported for push are the following:

SMS push — an SMS with a port number associated with an application used to

deliver the push notification.

The formats for registering any of the above mechanisms follow those detailed in the

JSR-118 specification.

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 57

Push Registry Declaration

The application descriptor file includes information about static connections that are

needed by the MIDlet suite. If all static push declarations in the application descriptor

cannot be fulfilled during the installation, the MIDlet suite is not installed. The user is

notified of any push registration conflicts despite the mechanism. This notification

accurately reflects the error that has occurred.

Push registration can fail as a result of an Invalid Descriptor. Syntax errors in the

push attributes can cause a declaration error resulting in the MIDlet suite installation

being cancelled. A declaration referencing a MIDlet class not listed in the MIDlet-<n>

attributes of the same application descriptor also results in an error and cancellation

of the MIDlet installation.

Two types of registration mechanisms are supported. The registration mechanisms to

be supported are:

• Registration during installation through the JAD file entry using a fixed port
number

• Dynamically register using an assigned port number

If the port number is not available on the handset, an installation failure notification

is displayed to the user while the error code 911 push is sent to the server. This error

cancels the download of the application.

Applications that wish to register with a fixed port number use the JAD file to identify

the push parameters. The fixed port implementation processes the MIDlet-Push-n

parameter through the JAD file.

Code Sample 4 shows the implementation of Push Registry:

Push Registry Declaration

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;

public class PushTest_1 extends MIDlet implements CommandListener{

public Display display;

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 58

public static Form regForm;
public static Form unregForm;
public static Form mainForm;
public static Form messageForm;

public static Command exitCommand;
public static Command backCommand;
public static Command unregCommand;
public static Command regCommand;

public static TextField regConnection;
public static TextField regFilter;
public static ChoiceGroup registeredConnsCG;
public static String[] registeredConns;

public static Command mc;
public static Displayable ms;

public PushTest_1(){
regConnection = new TextField("Connection port:", "1000", 32, Text-

Field.PHONENUMBER);
regFilter = new TextField("Filter:", "*", 32, TextField.ANY);

display = Display.getDisplay(this);

regForm = new Form("Register");
unregForm = new Form("Unregister");
mainForm = new Form("PushTest_1");
messageForm = new Form("PushTest_1");

exitCommand = new Command("Exit", Command.EXIT, 0);
backCommand = new Command("Back", Command.BACK, 0);
unregCommand = new Command("Unreg", Command.ITEM, 1);
regCommand = new Command("Reg", Command.ITEM, 1);

mainForm.append("Press \"Reg\" softkey to register a new connection.\n" +
"Press \"Unreg\" softkey to unregister a connection.");

mainForm.addCommand(exitCommand);
mainForm.addCommand(unregCommand);
mainForm.addCommand(regCommand);
mainForm.setCommandListener(this);

regForm.append(regConnection);
regForm.append(regFilter);

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 59

regForm.addCommand(regCommand);
regForm.addCommand(backCommand);
regForm.setCommandListener(this);

unregForm.addCommand(backCommand);
unregForm.addCommand(unregCommand);
unregForm.setCommandListener(this);

messageForm.addCommand(backCommand);
messageForm.setCommandListener(this);

}
public void pauseApp(){}

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if(messageForm.size() != 0) messageForm.delete(0);
messageForm.append(s);
display.setCurrent(messageForm);

}

public void commandAction(Command c, Displayable s) {

if((c == unregCommand) && (s == mainForm)){
mc = c;
ms = s;
new runThread().start();

}

if((c == regCommand) && (s == mainForm)){
display.setCurrent(regForm);

}

if((c == regCommand) && (s == regForm)){
mc = c;
ms = s;

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 60

new runThread().start();
}

if((c == unregCommand) && (s == unregForm)){
mc = c;
ms = s;
new runThread().start();

}

if((c == backCommand) && (s == unregForm)){
display.setCurrent(mainForm);

}
if((c == backCommand) && (s == regForm)){

display.setCurrent(mainForm);
}

if((c == backCommand) && (s == messageForm)){
display.setCurrent(mainForm);

}

if((c == exitCommand) && (s == mainForm)){
destroyApp(false);

}

}

public class runThread extends Thread{
public void run(){

if((mc == unregCommand) && (ms == mainForm)){
try{

registeredConns = PushRegistry.listConnections(false);
if(unregForm.size() > 0) unregForm.delete(0);
registeredConnsCG = new ChoiceGroup("Connections", Choice-

Group.MULTIPLE, registeredConns, null);
if(registeredConnsCG.size() > 0) unreg-

Form.append(registeredConnsCG);
else unregForm.append("No registered connections found.");
display.setCurrent(unregForm);

} catch (Exception e) {
showMessage("Unexpected " + e.toString() + ": " +

e.getMessage());
}

}

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 61

if((mc == regCommand) && (ms == regForm)){
try{

PushRegistry.registerConnection("sms://:" + regConnec-
tion.getString(), "Receive", regFilter.getString());

showMessage("Connection successfully registered");
} catch (Exception e){

showMessage("Unexpected " + e.toString() + ": " +
e.getMessage());

}
}

if((mc == unregCommand) && (ms == unregForm)){
try{

if(registeredConnsCG.size() > 0){
for(int i=0; i<registeredConnsCG.size(); i++){

if(registeredConnsCG.isSelected(i)){
PushRegistry.unregisterConnection(registeredConnsCG.

getString(i));
registeredConnsCG.delete(i);
if(registeredConnsCG.size() == 0){

unregForm.delete(0);
unregForm.append("No registered connections found.");

}
}

}
}

} catch (Exception e) {
showMessage("Unexpected " + e.toString() + ": " +

e.getMessage());
}

}
}

}
}

WakeUp.java

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.PushRegistry;
import javax.microedition.rms.*;
import java.util.*;
import javax.microedition.io.*;

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 62

public class WakeUp extends MIDlet implements CommandListener{

public static Display display;
public static Form mainForm;
public static Command exitCommand;
public static TextField tf;
public static Command registerCommand;

public void startApp() {

display = Display.getDisplay(this);

mainForm = new Form("WakeUp");
exitCommand = new Command("Exit", Command.EXIT, 0);
registerCommand = new Command("Register", Command.SCREEN, 0);
tf = new TextField("Delay in seconds", "10", 10, TextField.NUMERIC);
mainForm.addCommand(exitCommand);
mainForm.addCommand(registerCommand);
mainForm.append(tf);
mainForm.setCommandListener(this);

display.setCurrent(mainForm);

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void commandAction(Command c, Displayable s) {
if((c == exitCommand) && (s == mainForm)){

destroyApp(false);
}
if(c == registerCommand){

new regThread().start();

}
}

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 63

public class regThread extends Thread{

public void run(){

try {
long delay = Integer.parseInt(tf.getString()) * 1000;

long curTime = (new Date()).getTime();

System.out.println(curTime + delay);

PushRegistry.registerAlarm("WakeUp", curTime + delay);
mainForm.append("Alarm registered successfully");

} catch (NumberFormatException nfe) {
mainForm.append("FAILED\nCan not decode delay " + nfe);

} catch (ClassNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe);

} catch (ConnectionNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe);

}

}
}

}

SMS_send.java

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;
import javax.wireless.messaging.*;
import javax.microedition.io.*;

public class SMS_send extends MIDlet implements CommandListener{

public Display display;

public static Form messageForm;
public static Form mainForm;

public static Command exitCommand;

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 64

public static Command backCommand;
public static Command sendCommand;

public static TextField address_tf;
public static TextField port_tf;
public static TextField message_text_tf;

String[] binary_str = {"Send BINARY message"};
public static ChoiceGroup binary_cg;

byte[] binary_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
String address;
String text;

MessageConnection conn = null;
TextMessage txt_message = null;
BinaryMessage bin_message = null;

public SMS_send(){
address_tf = new TextField("Address:", "", 32, TextField.PHONENUMBER);
port_tf = new TextField("Port:", "1000", 32, TextField.PHONENUMBER);

message_text_tf = new TextField("Message text:", "test message", 160,
TextField.ANY);

binary_cg = new ChoiceGroup(null, Choice.MULTIPLE, binary_str, null);

display = Display.getDisplay(this);

messageForm = new Form("SMS_send");
mainForm = new Form("SMS_send");

exitCommand = new Command("Exit", Command.EXIT, 0);
backCommand = new Command("Back", Command.BACK, 0);
sendCommand = new Command("Send", Command.ITEM, 1);

mainForm.append(address_tf);
mainForm.append(port_tf);
mainForm.append(message_text_tf);
mainForm.append(binary_cg);
mainForm.addCommand(exitCommand);
mainForm.addCommand(sendCommand);
mainForm.setCommandListener(this);

messageForm.addCommand(backCommand);

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 65

messageForm.setCommandListener(this);

}

public void pauseApp(){
}

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if(messageForm.size() != 0) messageForm.delete(0);
messageForm.append(s);
display.setCurrent(messageForm);

}

public void commandAction(Command c, Displayable s) {
if((c == backCommand) && (s == messageForm)){

display.setCurrent(mainForm);
}
if((c == exitCommand) && (s == mainForm)){

destroyApp(false);
}
if((c == sendCommand) && (s == mainForm)){

address = "sms://" + address_tf.getString();
if(port_tf.size() != 0) address += ":" + port_tf.getString();
text = message_text_tf.getString();
new send_thread().start();

}
}

public class send_thread extends Thread{
public void run(){

try{
conn = (MessageConnection) Connector.open(address);
if(!binary_cg.isSelected(0)){

txt_message = (TextMessage)
conn.newMessage(MessageConnection.TEXT_MESSAGE);

txt_message.setPayloadText(text);

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 66

conn.send(txt_message);
} else {

bin_message = (BinaryMessage)
conn.newMessage(MessageConnection.BINARY_MESSAGE);

bin_message.setPayloadData(binary_data);
conn.send(bin_message);

}
conn.close();
showMessage("Message sent");

} catch (Throwable t) {
showMessage("Unexpected " + t.toString() + ": " + t.getMessage());

}
}

}
}

Code Sample 4 Push Registry

Delivery of a Push Message

A push message intended for a MIDlet on the MOTOROKR Z6 handset handles the

following interactions:

• MIDlet running while receiving a push message — if the application receiving
the push message is currently running, the application consumes the push
message without user notification.

• No MIDlet suites running — if no MIDlets are running, the user is notified of the
incoming push message and is given the option to run the intended application.

• Push registry with Alarm/Wake-up time for application — push registry
supports one outstanding wake-up time per MIDlet in the current suite. An
application uses the TimerTask notification of time-based events while the
application is running.

• Another MIDlet suite is running during an incoming push — if another MIDlet is
running, the user is presented with an option to launch the application that had
registered for the push message. If the user selects the launch, the current
MIDlet is terminated.

• Stacked push messages — it is possible for the handset to receive multiple
push messages at one time while the user is running a MIDlet. The user is
given the option to allow the MIDlets to end and new MIDlets to begin. The
user is given the ability to read the messages in a stacked manner (stack of 3
supported), and if not read, the messages are discarded.

• No applications registered for push — if there are no applications registered to

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 67

handle this event, the incoming push message is ignored.

Deleting an Application Registered for
Push

If an application registered in the Push Registry is deleted, the corresponding push

entry is deleted, making the PORT number available for future Push Registrations.

Security for Push Registry

Push Registry is protected by the security framework. The MIDlet registered for the

push should have the necessary permissions. Details on permissions are outlined in

the Security chapter.

Network Access

Untrusted applications use the normal HttpConnection and HttpsConnection APIs to

access web and secure web services. There are no restrictions on web server port

numbers through these interfaces. The implementations augment the protocol so

that web servers can identify untrusted applications. The following are implemented:

• The implementation of HttpConnection and HttpsConnection includes a separate
User-Agent header with the Product-Token "UNTRUSTED/1.0".User-Agent
headers supplied by the application are not deleted.

• The implementation of SocketConnection using TCP sockets throws
java.lang.SecurityException when an untrusted MIDlet suite attempts to
connect on ports 80 and 8080 (http) and 443 (https).

• The implementation of SecureConnection using TCP sockets throws
java.lang.SecurityException when an untrusted MIDlet suites attempts to
connect on port 443 (https).

• The implementation of the method DatagramConnection.send throws
java.lang.SecurityException when an untrusted MIDlet suite attempts to send
datagrams to any of the ports 9200-9203 (WAP Gateway).

• The above requirements are applied regardless of the API used to access the
network. For example, the javax.microedition.io.Connector.open and
javax.microedition.media.Manager.createPlayer methods throw

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 68

java.lang.SecurityException if access is attempted to these port numbers
through a means other than the normal HttpConnection and HttpsConnection
APIs.

Java™ ME Developer Guide
Chapter 10 - Network APIs

Page 69

11
Platform Request API

Platform Request API

The Platform Request API MIDlet package defines MIDP applications and the

interactions between the application and the environment in which the application

runs.

Table 17 lists the Platform Request API feature/class support for MIDP 2.0:

Feature/Class Implementation

All constructors, methods, and inherited classes for the MIDlet
class

Supported

platformRequest() method in javax.microedition.midlet Supported

Does not support the "text/vnd.sun.j2me.app-descriptor" MIME
type in the URL for the platformRequest() support

Supported

Does not support the "application/java-archive" MIME type in
the URL for the platformRequest() method

Supported

Launching native apps with URLs Supported

URL compatible launch of the WAP Browser Supported

URL compatible launch of the phone dialer Supported

Does not require the MIDlet to exit in order to launch an applic-
ation from the platformRequest() method

Supported

Pauses the MIDlet when executing the platformRequest() meth-
od

Supported

Resumes the MIDlet after the user exits the application
launched by the platform Request() method

Supported, re-
sumes to Java
Service Menu

All constructors and inherited methods for the MIDletStateChan-
geException in javax.microedition.midlet

Supported

Table 17 Platform Request API Feature/Class Support for MIDP

Java™ ME Developer Guide
Chapter 11 - Platform Request API

Page 70

For MIDP 2.0, the javax.microedition.midlet.MIDlet.platformRequest() method is

used and called when the MIDlet is destroyed. The following code sample is an

example of the Platform Request API:

Start a Call

MIDlet.platformrequest("tel:88143593")

Start a Web Session

MIDlet.platformrequest("http://gonzaga.cesar.org.br/
~bam/triplets/tii/menu.wml")

MIDlet.platformrequest("http://gonzaga.cesar.org.br/
~bam/triplets/tii/Millionaire1.jad");

Code Sample 5 Plataform Request

MIDlet Request of a URL That
Interacts with Browser

When a MIDlet suite requests a URL, the browser comes to the foreground and

connects to that URL. The user has access to the browser and control over any

downloads or network connections. The initiating MIDlet suite continues running in

the background. If it cannot (upon exiting the requesting MIDlet suite) the handset

brings the browser to the foreground with the specified URL.

If the URL specified refers to a MIDlet suite, JAD, or JAR, the request is treated as a

request to install the named package. The user is able to control the download and

installation process, including cancellation. Note that the normal Java installation

process is used.

Refer to the JAD Attributes for more details.

Java™ ME Developer Guide
Chapter 11 - Platform Request API

Page 71

MIDlet Request of a URL That Initiates
a Voice Call

If the requested URL takes the form , the handset uses this request

to initiate a voice call as specified in RFC2806. If the MIDlet is exited to handle the

URL request, the handset only handles the last request made. If the MIDlet suite

continues to run in the background when the URL request is being made, all other

requests are handled in a timely manner.

The user is asked to acknowledge each request before any actions are taken by the

handset, and upon completion of the platform request, the Java Service Menu is

displayed to the user.

Java™ ME Developer Guide
Chapter 11 - Platform Request API

Page 72

12
MIDlet Life Cycle

The Life Cycle of a MIDlet

In Linux OS, MIDlets will not be suspended in the background. It operates as follows:

• When the MIDlet is running, the user can press the "END" key and select to run

the MIDlet in the background.

• When the MIDlet goes to the background, the method is

called.

• The MIDlet is still running in the background. The java bytecode is interpreted.

• When the user selects and launches the MIDlet icon in the mainmenu, the

running MIDlet will come to foreground. The method is

called.

An example of this is a MIDlet that plays an mp3. The user presses the "END" key to

send the MIDlet to the background. The method is called. If

the application does nothing in the method, the song will continue to play.

Java™ ME Developer Guide
Chapter 12 - MIDlet Life Cycle

Page 73

13
JSR-75: PIM API

This chapter defines the JSR-75 API implementation requirements that replace the

earlier implemented Phonebook and FileConnection APIs requirements, except for the

Recent Calls API that is still supported by RecentCallRecord, RecentCallDialed, and

RecentCallReceived classes.

NOTE: Java™ ME PIM API is implemented on Java ME platforms supporting CLDC 1.1
and MIDP 2.0 or higher.

Overview

The primary goal of the Personal Information Management (PIM) API is to provide

access to PIM data on Java ME enabled devices. PIM data is defined as information

included in the address book, calendar application, and to do list applications.

This chapter details requirements for implementing the PIM API specified in JSR-75

for Java ME enabled mobile devices.

This implementation provides the basic features available as part of the standard JSR

75 PIM implementation. It is available as the

Requirements

The implementation includes support of the following packages, classes, and

interfaces with appropriate methods and fields of PIM API described in JSR-75,

related to :

Java™ ME Developer Guide
Chapter 13 - JSR-75: PIM API

Page 74

•
•
•
•
•
•
•
•
•
•
•
•

The implementation includes support of the following packages, classes, and

interfaces with appropriate methods and fields of FileConnection API described in

JSR-75, related to :

•
•
•

Security Requirements Personal information read/write permissions are supported by

the device's native system:

• — enables reading the contact
information available on the device (hereinafter just "contact read
permission").

• — enables updating the contact
information available on the device (hereinafter just "contact write
permission").

• — enables reading the event
information available on the device (hereinafter just "event read permission").

• — enables updating the event
information available on the device (hereinafter just "event write permission").

The PIM permissions are mapped to the function groups "User Data Read Capability"

and "User Data Write Capability," depending on the read/write conditions. These two

groups and the permissions are in Table 18:

Java™ ME Developer Guide
Chapter 13 - JSR-75: PIM API

Page 75

Function
Group

Trusted Third
Party

Untrusted Manufacturer Operator

User Data
Read Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

Always Ask Full Access Full Access

User Data
Write Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

Table 18 Permissions and Groups

The PIM permissions prohibit granting to a MIDlet suite that does not request them

explicitly in the attributes MIDlet-Permissions or MIDlet-Permissions-Opt.

The PIM package allows the handling of two types of lists: events and contacts lists.

Both are stored in a specific database respectively: event database and contact

database. These databases have specific information of each list.

Table 19 Features x JSR-75 PIM

Feature JSR 75 PIM

Name Addition to a Contact Yes

Phone Number Addition to a Contact Yes

Email Addition to a Contact Yes (1)

Multiple Email and Phone number Addition No

ToDo List No

Table 19 Features x JSR-75 PIM

NOTE: Uses .

Java™ ME Developer Guide
Chapter 13 - JSR-75: PIM API

Page 76

Fields and Attributes

Contact List

The contact database contains data items representing personal contact information

(like name, address, etc). The following features are applied to the contact list:

• The implementation provides support for ContactList type of PIM list as defined
in JSR-75.

• The implementation provides a method to access an actual list of the PIM
ContactList type.

• The implementation provides interface to manipulate actual ContactList as
specified in ContactList class section of JSR-75.

• The implementation provides access to all available PIM lists for the ContactList
list type.

• At a minimum, the following fields are supported : ADDR, BIRTHDAY,
FORMATTED_NAME, NICKNAME, TELEPHONE, MOT_EMAIL, UID,
CONTACT_TYPE, MOT_PHOTO_URL, LIGHT_ID, LOCATION, MEMBER_IDS,
VOICE TAG, and RINGTONE.

• At a minimum, the following attributes are supported: ATTR_PAGER,
ATTR_MOBILE, ATTR_OTHER, ATTR_HOME, ATTR_WORK, ATTR_FAX,
ATTR_VIDEO, and ATTR_NONE.

• The location of the contact information (that is, SIM card or Phone Memory) is
defined by separate dedicated field content value.

Table 20 Supported Fields for the

Field Description JSR 75 PIM Field

Contact Address ADDR

Birthdate BIRTHDAY

Contact Name FORMATTED_NAME

Contact Nickname NICKNAME

Contact Telephone Number TELEPHONE

Contact Email MOT_EMAIL (Motorola Extended)

Contact Unique ID UID

Contact Type (Phone, SIM, Mailing List) CONTACT_TYPE (Motorola Extended)

Contact Photo URL MOT_PHOTO_URL (Motorola Extended)

Contact Light ID LIGHT_ID (Motorola Extended)

Contact Location LOCATION (Motorola Extended)

Mailing List Member IDs MEMBER_IDS (Motorola Extended)

Contact Voice Tag VOICE TAG (Motorola Extended)

Java™ ME Developer Guide
Chapter 13 - JSR-75: PIM API

Page 77

Contact Ringtone URL RINGTONE (Motorola Extended)

Table 20 Contact List - Fields - JSR-75 PIM

Table 21 Supported Attributes for some of fields of

Field Label Attributes in JSR 75 PIM

TELEPHONE ATTR_MOBIL, ATTR_WORK, ATTR_HOME, ATTR_FAX,
ATTR_PAGER, ATTR_NONE

EMAIL ATTR_NONE

ADDR ATTR_NONE

Table 21 Contact List - Attributes - JSR-75 PIM

Event List

The event database contains entries related to events (for example, birthday). The

following features are applied to the contact list:

• The implementation provides support for EventList type of PIM list as defined in
JSR-75.

• The implementation provides a method to access an actual list of the PIM
EventList type.

• The implementation provides an interface to manipulate the actual EventList as
specified in the EventList class section of JSR-75.

• The implementation provides access to all available actual PIM lists for the
EventList list type.

• At a minimum, the following Event fields are supported: SUMMARY, UID, END,
START, and ALARM.

• At a minimum, the following repeat rules fields are supported: FREQUENCY,
DAY_IN_WEEK, WEEK_IN_MONTH, and DAY_IN_MONTH.

• At a minimum, one attribute is supported: ATTR_NONE.

Java™ ME Developer Guide
Chapter 13 - JSR-75: PIM API

Page 78

Table 22 Fields supported for Event items.

Field Description JSR 75 PIM Field Data Type

Relative time for an alarm ALARM INT

End time of the event END DATE

Start time of the event START DATE

Summary/Subject of the event SUMMARY STRING

Unique ID for the event UID STRING

Table 22 Event List - JSR-75 PIM

ToDo List

ToDo is only supported by the JSR-75 PIM Enhacement 3G implementation.

Java™ ME Developer Guide
Chapter 13 - JSR-75: PIM API

Page 79

14
JSR-75: FileConnection

API

Overview

The primary goal of the FileConnection API is to provide access to file systems on

devices and/or mounted removable memory cards supported by Motorola devices.

This API is not meant to be a replacement for the Record Management System (RMS)

but rather a complement to it allowing MIDlets to interact with native applications.

NOTE: Java™ ME FileConnection API is implemented on Java ME platforms
supporting CLDC 1.1 and MIDP 2.0 or higher.

Requirements

FileConnection API requirements are replaced with the requirements below.

• The implementation provides a security model for accessing the FileConnection
API.

• The FileConnection API is accessible to manufacturer and operator domain
MIDlets, subject to security restrictions.

• Connection API prohibits the modification or removal of files and directories
marked with the system attribute.

• Call to with key
returns the implementation

version number, starting with 1.0.

Java™ ME Developer Guide
Chapter 14 - JSR-75: FileConnection API

Page 80

Interface

The FileConnection API contains one class, two interfaces, and two exceptions. The

most important one of these is the FileConnection interface, which extends the

Connection interface. This interface is intended to access files or directories that are

located on removable media and/or file systems on a device.

There are two ways to access the file system: through Generic Connection

Framework (GCF) or using FileConnection to write/read files.

When GCF is used, the format of the input string used to access a FileConnection

through must follow the format for a fully qualified, absolute file

name. This format has the following structure: "file://<host>/<path>".

Some examples of opening a FileConnection from a root value are in Table 23:

Po
ssible Root Value

Opening a
FileConnection to the Root

CFCard/

SDCard/

MemoryStick/

C:/

/

Table 23 Opening a FileConnection

Java™ ME Developer Guide
Chapter 14 - JSR-75: FileConnection API

Page 81

Security

File operations are restricted with the aim of protecting the user's private data and

the overall system security. File operations can be executed only if the required

permission has been acquired before. Implementations must not allow a

FileConnection to access MIDP RMS databases and should not allow access to files

and configuration files, device and OS specific files and directories. If the file, file

system, or directory is not allowed to be accessed, a

is thrown from the method.

Java™ ME Developer Guide
Chapter 14 - JSR-75: FileConnection API

Page 82

Permissions

Two permissions have been defined in relation to FileConnection API:

• — enables reading from the
file system (hereinafter just "read permission").

• — enables writing to the file
system (hereinafter just "write permission").

The "read permission" and "write permission" are mapped to the function groups

"User Data Read Capability" and "User Data Write Capability," respectively. These

two groups and permissions are in Table 24:

Function
Group

Trusted Third
Party

Untrusted Manufacturer Operator

User Data
Read Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

Always Ask Full Access Full Access

User Data
Write Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

Table 24 Groups and permissions for

The FileConnection permissions are prohibited for granting to a MIDlet suite that

doesn't request them explicitly in the attributes MIDlet-Permissions or

MIDlet-Permissions-Opt.

If the permission is not granted, a is thrown by the following

methods:

Java™ ME Developer Guide
Chapter 14 - JSR-75: FileConnection API

Page 83

The following methods check for the "read

permission":

•
•
•
•
•

The following methods check for the

"read permission":

• , when instance opened with READ;
• , when instance opened with READ_WRITE.

The following methods check for the "write

permission":

•
•
•
•
•
•

The following methods check for the

"write permission":

• , when instance opened with WRITE;
• , when instance opened with READ_WRITE.

The bottom line prompt in the permission request dialog includes the name of the file

or directory only for those protected API calls that have this information specified as

a parameter.

The prompt prefix is "<File Location>/<File Name>" for the following methods:

•
•
•
•
•

File Location represents either:

Java™ ME Developer Guide
Chapter 14 - JSR-75: FileConnection API

Page 84

• "Phone" (when the file is stored on the phone),
• For example:

• "Card" (when the file is stored on a MMC, SD, T-Flash, or other card-related
media)
• For example:

• "Phone" (when the file is stored on the phone)
• For example:

• "Card" (when the file is stored on a MMC, SD, T-Flash or other card-related
media)
• For example:

Java™ ME Developer Guide
Chapter 14 - JSR-75: FileConnection API

Page 85

15
JSR-135 - Mobile Media

API

JSR-135

The JSR-135 Mobile Media APIs feature sets are defined for different types of media.

Table 25 lists the supported methods along with a short description of each method.

Method Description

Manager

Creates a Player for a DataSource

Creates a Player to play back media from
an InputStream

Creates a Player from an input locator

Returns the list of supported content
types for the given protocol

Returns the list of supported protocols
given the content type

Gets the time-base object for the system

Plays back a tone as specified by a note
and its duration

Player

Adds a player listener for this player

Closes the Player and release its re-
sources

Releases the scarce or exclusive re-
sources like the audio device acquired by
the Player

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 86

Gets the content type of the media that's
being played back by this Player

Gets the duration of the media

Gets this Player's current media time

Gets the current state of this Player

Gets the TimeBase that this Player is us-
ing

Acquires the scarce and exclusive re-
sources and processes as much data as
necessary to reduce the start latency

Constructs portions of the Player without
acquiring the scarce and exclusive re-
sources

Removes a player listener for this player

Sets the number of times the Player will
loop and play the content

Sets the Player's media time

Sets the TimeBase for this Player

Starts the Player as soon as possible

Stops the Player

Player Events

This method is called to deliver an event
to a registered listener when a Player
event is observed

TimeBase

Gets the current time of this TimeBase

MetaDataControl

Returns the list of keys for the available
metadata values

Retrieves the value found in the
metadata associated with the given key

MIDIControl

Gets volume for the given channel

Sets volume for the given channel

Sets program of a channel

Sends a short MIDI event to the device

PitchControl

Gets the maximum playback pitch raise
supported by the Player

Gets the minimum playback pitch raise

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 87

supported by the Player

Gets the current playback pitch raise

Sets the relative pitch raise

RateControl

Gets the maximum playback rate suppor-
ted by the Player

Gets the minimum playback rate suppor-
ted by the Player

Gets the current playback rate

Sets the playback rate

TempoControl

Gets the current playback tempo

Sets the current playback tempo

RecordControl

Completes the current recording

Returns the content type of the recorded
media

Erases the current recording

Sets the output location where the data
will be recorded

Sets the record size limit

Sets the output stream where the data
will be recorded

Starts recording the media

Stops recording the media

StopTimeControl

Gets the last value successfully set by
setStopTime

Sets the media time to when you want
the Player to stop

ToneControl

Sets tone sequence

VideoControl

Returns the actual height of the current
render video

Returns the actual width of the current
render video

Returns the X-coordinate of the video
with respect to the GUI object where the
video is displayed

Returns the Y-coordinate of the video
with respective to the GUI object where
the video is displayed

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 88

Gets a snapshot of the displayed content

Returns the height of the source video

Returns the width of the source video

Initializes the mode on how the video is
displayed

Sets the size of the render region for the
video clip to be fullscreen

Sets the location of the video with re-
spect to the canvas where the video is
displayed

Resizes the video image

Shows or hides the video

VolumeControl

Gets the current volume level set

Get the mute state of the signal associ-
ated with this VolumeControl

Sets the volume using a linear point scale
with values between 0 and 100

Mutes or unmutes the Player associated
with this VolumeControl

Table 25 Supported methods for JSR 135

ToneControl

ToneControl is the interface to enable playback of a user-defined monotonic tone

sequence. Tone sequence is not allowed to be set in STARTED player. The inputted

sequence must follow the syntax of a tone sequence. If errors exist, an exception

with error code is thrown.

A tone sequence is specified as a list of tone duration pairs and user-defined

sequence blocks. The method is used to input the sequence to the

ToneControl.

The following is the available method for ToneControl:

Sets the tone sequence

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 89

VolumeControl

VolumeControl is an interface for manipulating the audio volume of a Player. The

JSR-135 Mobile Media API will implement public interface VolumeControl.

The following describes the different volume settings found within VolumeControl:

• Volume Settings - allows the output volume to be specified using an integer
value that varies between 0 and 100. Depending on the application, this will
need to be mapped to the volume level on the phone (0-7).

• Specifying Volume in the Level Scale - specifies volume in a linear scale. It
ranges from 0 - 100 where 0 represents silence and 100 represents the highest
volume available.

• Mute - setting mute on or off does not change the volume level returned by the
getLevel. If mute is on, no audio signal is produced by the Player. If mute is
off, an audio signal is produced and the volume is restored.

The following is a list of available methods with regards to VoumeControl:

Get the current volume setting.

Get the mute state of the signal associated with this VolumeControl.

Set the volume using a linear point scale with values

between 0 and 100.

Mute or unmute the Player associated with this

VolumeControl.

StopTimeControl

StopTimeControl is supported by all players for audio and video playback. It allows a

specific preset stop timer for a Player. It is guaranteed to stop within one second

past the preset stop-time. An event STOPPED_AT_TIME is posted.

The following is a list of available methods with regards to StopTimeControl:

Gets the last value successfully by setStopTime.

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 90

Sets the media time at which you want the Player

to stop.

Manager Class

Manager Class is the access point for obtaining system dependant resources such as

players for multimedia processing. A Player is an object used to control and render

media that is specific to the content type of the data. Manager provides access to a

specific mechanism for constructing Players. For convenience, Manager also provides

a simplified method to generate simple tones. Primarily, the Multimedia API will

provide a way to check available/supported content types.

Supported Multimedia File Types

In Linux OS, JSR 135 supports the following media formats. MIME types and suffix

are listed in parentheses.

Audio format

File type Description

Tone An easy way to playback monotonic sound comprised of single tone
and sequence. The basic unit is note-duration pairs, which is decoded
as ADSR model, and produces PCM data with 16 KHz sample rate.
(audio/x-tone-seq, .jts)

WAV linear PCM format is supported. The sample bit is 8 bit and 16 bit.
Both stereo and mono modes are supported. (audio/x-wav, .wav)
(Progressive download supported)

MP3 Supports the MP3 coding scheme for the compression of audio sig-
nals, as defined in the MPEG-1 and MPEG-2, Part 3 (audio), Layer 3
standard. MPEG-2.5, a non-standard format is also supported. The
supported bit rate is up to 320kbps. Supported sampling rate is up to
48 kHz (8, 11, 12, 16, 22.05, 24, 32, 44.1, 48 kHz). (audio/mpeg,
audio/mp3, audio/mpga, .mp3, .mpga) (Progressive download sup-
ported)

MIDI Both standard MIDI and XMF MIDI are supported. SMAF is not sup-
ported. For standard MIDI, type 0 (single track), type 1 (multiple

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 91

tracks) and SP types are supported. For XMF MIDI, type 0 and type 1
types are supported. Supported Polyphony Channels is 64. Supported
Instruments is 128 Melodic, 47 Percussion. The sample rate of produ-
cing PCM data is 22.05 KHz. (audio/midi, audio/mid, .mid, .midi,
.smf, .xmf, .mmf)

AMR-NB All bit rates defined by the 3GPP standards are supported, i.e. from
4.75 kbps to 12.20 kbps. The sample rate is 8 kHz. (audio/amr, .amr)
(Progressive download supported)

AMR-WB All bit rates defined by the 3GPP standards are supported, i.e. from
6.6 kbps to 23.85 Kbps. The sample rate is 16 kHz. (audio/awb,
.awb) (Progressive download supported)

AAC Bit rate is up to 192 kbps, and sample rate is up to 48 kHz (8, 11, 12,
16, 22.05, 24, 32, 44.1, 48 kHz) (audio/aac, .aac, .adts, .adif)

AAC+ Bit rate is from 16 to 128 kbps, and sample rate is up to 48 kHz (16,
22.05, 24, 32, 44.1, 48 kHz) (audio/aac, .aac, .adts, .adif)

WMA Supports WMA v3, v7, v8 and v9 L2. Bit rate is up to 192 kbps, and
sample rate is up to 48 kHz. (audio/wma, .wma) (Progressive down-
load supported)

M4A MP4 Audio (AAC LC, AAC+, enhanced AAC+): where "moov" atom is
ahead of "mdat" atom, and where samples in "mdat" are sorted by
playback time. (audio/m4a, .m4a) (Progressive download supported)

3GA 3GPP audio (AMR NB, AMR WB, AAC, AAC+ and enhanced AAC+):
where "moov" atom is ahead of "mdat" atom, and where samples in
"mdat" are sorted by playback time. (audio/3ga, .3ga) (Progressive
download supported)

RealAudio Supports RealAudio 8, 10, G2 format. Bit rate is up to 192 kbps, and
sample rate is up to 48 kHz. (audio/x-realaudio, audio/
x-pn-realaudio, .ra, .rm)

Video format

File type Description

MPEG-4 Supports SV profile, L2 level. Bit rate is up to 128 kbps, frame size is
320*240, and frame rate is 25 fps.

H.263 Supports Baseline, Wireless Profile (P3), L20 level. Bit rate is up to
128 kbps, frame size is 320*240, and frame rate is 15 fps.

Real Video Supports Real Video 8, 9 and G2. Bit rate is up to 296 kbps, frame
size is 320*240, and frame rate is 15 fps.

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 92

Audio/Video format

File type Description

Mp4 The combinations of MPEG4, H.263 + AMR-NB, AMR-WB, AAC are
supported. Total bit rate is up to 320 kbps for AMR and 350 kbps for
AAC. (video/mp4, .mp4)

3gp The combinations of MPEG4, H.263 + AMR-NB, AMR-WB, AAC are
supported. Total bit rate is up to 320 kbps for AMR and 350 kbps for
AAC. (video/3gpp, .3gp, .3gpp)

Real The combination of Real Audio + Real Video is supported. Total bit
rate is up to 350 kbps. (video/rm, video/rmvb, .rm, .rmvb)

Image format

File type Description

Gif Supports GIF 87a, 89a; Maximum decode size is QVGA; Maximum
display resolution is QVGA. (Image/gif, .gif)

Audio capture

File type Description

AMR-NB Bit rate is 12.2 kbps, sample rate is 8 kHz, and channel mode is
mono. (audio/amr, .amr)

WAV Sample rate is 8 kHz, bits per sample is 16, and channel mode is
mono. (audio/wav, .wav)

Video capture

File type Description

3gp The combination of H.263 + AMR-NB is supported. Total bit rate is up
to 128 kbps. Image size is QCIF. Frame rate is 15 fps. (video/3gpp,
.3gp)

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 93

Media Locators

The classes Manager, DataSource and RecordControl interface accepts media

locators. In addition to normal playback locators specified by JSR-135, the following

special locators need to be supported:

RTSP locator

RTSP is a public standard for streaming media on devices supporting real time

streaming. This support must be available for audio and video streaming through

Manager (for playback media stream).

The locator syntax for specifying RTSP sessions is:

Where

1. and defines the rtsp session

2. defines playing full filename

HTTP Locator

HTTP Locators must be supported for playing back media over network connections.

This support should be available through Manager implementation.

The locator syntax for specifying http connection is:

Where

1. and defines the http connection

2. defines playing full filename

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 94

File Locator

File locators must be supported for playback and capture of media. As it reads

contents from the local file system, only a signed MIDlet is allowed to use this

feature, from which the user can create a reference to Player object from an existing

local audio or video file.

The locator syntax for specifying a local file is:

Where

Where

1. defines the storage location in the phone, in the . The

path is

2. means that the file is stored on a storage card. The path is

Live Media Capture Locator

Audio and video recorder is created by capture protocol. The locators for capturing

live media are defined by the following syntax:

Where

Device Locator

A locator starting with "device" provides instant access to tone sequences.

— The locator creates a tone Player to

play back tone sequences with ToneContol.

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 95

Security

Mobile Media API shall follow MIDP 2.0 security model. Recording functionality APIs

need to be protected. Trusted third party and untrusted applications must utilize user

permissions. Specific permission settings are detailed below.

Policy

Table 32 security policy will be flexed in as per operator requirements at the time of

shipping.

Function
Group

Trusted
Third Party

Untrusted Manufacturer Operator

Multimedia
Record

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, Never
Ask, No
Acess

Full Access Full Access

Table 32 Security policy

Permissions

Table 33 lists individual permissions within Multimedia Record function group.

Permission Protocol Function Group

javax.microedition.
media.control.
RecordControl.re

RecordCon-
trol.startRecord()

MultimediaRecord

Table 33 Permissions within Multimedia Record

NOTE: The Audio/Media formats may differ or may not be avaliable, depending on
the Carrier or region.

Java™ ME Developer Guide
Chapter 15 - JSR-135 - Mobile Media API

Page 96

16
JSR-139: CLDC 1.1

CLDC 1.1 is an incremental release of CLDC version 1.0. CLDC 1.1 is fully backwards

compatible with CLDC 1.0. An explanation of CLDC 1.0 follows.

JSR-30 — CLDC 1.0

This CLDC Specification addresses the following areas:

• Java™ language and virtual machine features
• Core Java libraries
• Input/output
• Networking
• Security
• Internationalization

This CLDC Specification does not address the following features:

• Application life-cycle management (application installation, launching, deletion)
• User interface functionality
• Event handling
• High-level application model (the interaction between the user and the

application)

No Floating Point Support

The main language-level difference between the full Java™ Language Specification

and this CLDC Specification is that a JVM supporting CLDC does not have floating

point support.

This means that a JVM supporting CLDC does not allow the use of floating point

literals, floating point types and values, and floating point operations.

Java™ ME Developer Guide
Chapter 16 - JSR-139: CLDC 1.1

Page 97

Classfile Format and Class Loading

An essential requirement for the Connected, Limited Device Configuration is the

ability to support dynamic downloading of Java applications and Third party content.

The dynamic class loading mechanism of the Java platform plays a central role in

enabling this. This section discusses the application representation formats and class

loading practices required of a JVM supporting CLDC.

Supported File Formats

It is assumed that a CLDC implementation is able to read standard Java class files

with the pre-verification changes defined in the following section "Public

Representation of Java Applications and Resources." In addition, a CLDC

implementation supports compressed Java Archive (JAR) files. This requirement has

been added to maintain upward compatibility with larger Java environments and

existing Java tools, but with a smaller footprint than with regular class files. Detailed

information about JAR format is provided at

http://java.sun.com/developer/Books/javaprogramming/JAR/index.html.

Public representation of Java applications and resources

A Java application is considered to be "represented publicly" or "distributed publicly"

when the system it is stored on is open to the public, and the transport layers and

protocols it can be accessed with are open standards. In contrast, a device can be

part of a single, closed network system where the vendor controls all communication.

In this case, the application is no longer represented publicly once it enters and is

distributed via the closed network system. Whenever Java applications intended for a

CLDC device are represented publicly, the compressed JAR file representation format

must be used. The JAR file must contain regular Java class files with the following

restrictions and additional requirements:

• stack map attributes must be included in class files.
• the class file must not contain any of the following Java byte codes: jsr, jsr_w,

ret and wide ret.

Java™ ME Developer Guide
Chapter 16 - JSR-139: CLDC 1.1

Page 98

http://java.sun.com/developer/Books/javaprogramming/JAR/index.html

Sun's CLDC reference implementation includes a pre-verification tool for performing

the above modifications to a Java class file. The stack map attributes are

automatically ignored by the conventional class file verifier, that is, the format

specified here is fully upwards compatible with larger Java environments such as

Java SE or Java EE.

Additionally, the JAR file may contain application-specific resource files that can be

loaded into the virtual machine by calling on of the following methods:

•
•

Classfile Lookup Order

The Java™ Language Specification and Java™ Virtual Machine Specification do not

specify the order in which class files are searched when new class files are loaded

into the virtual machine. At the implementation level, a typical Java virtual machine

implementation utilizes a special environment variable classpath to define the lookup

order.

This CLDC Specification assumes class file lookup order to be

implementation-dependent, with the following restrictions. The lookup strategy is

typically defined as part of the application management implementation. A JVM

supporting CLDC is not required to support the notion of classpath, but may do so at

the implementation level. Two restrictions apply to class file lookup order.

• First, "Protecting system classes," a JVM supporting CLDC must guarantee that
the application programmer cannot override the system classes (classes
belonging to the CLDC or supported profiles) in any way.

• Second, it is required that the application programmer must not be able to
manipulate the class file lookup order in any way. Both of these restrictions are
important for security reasons.

JSR-139 — CLDC 1.1

The Implementation of CLDC 1.1 supports the following:

• Floating Point
• Data Types float and double

Java™ ME Developer Guide
Chapter 16 - JSR-139: CLDC 1.1

Page 99

• New Data Type classes Float and Double
• All floating point byte codes
• Library classes to handle floating point values

• Weak reference
• Classes Calender, Date, and TimeZone are Java SE compliant
• Thread objects are compliant with Java SE

The support of thread objects to be compliant with Java SE requires the addition of

and a few new constructors. The following table lists the additional

classes, fields, and methods supported for CLDC 1.1 compliance:

Classes Additional Fields/
Methods

Comments

System Classes Allocates a new Thread
object with the given
target and name.

Allocates a new Thread
object with the given
name.

Returns this thread's
name.

Interrupts this thread.

Compares this string
to another String, ig-
noring case considera-
tions.

Returns a canonical
representation for the
string object.

Returns the string rep-
resentation of the float
argument.

Returns the string rep-
resentation of the
double argument.

Data Type
Classes

New Class: Refer to
CLDC Spec for more
details.

New Class: Refer to
CLDC Spec for more
details.

Calendar and
Time Classes

The field values for the
currently set time for

Java™ ME Developer Guide
Chapter 16 - JSR-139: CLDC 1.1

Page 100

this calendar.

The flags that tell if a
specified time field for
the calendar is set.

The currently set time
for this calendar, ex-
pressed in milliseconds
after January 1, 1970,
0:00:00 GMT.

Converts the current
millisecond time value
to field values in fields
[].

Converts the current
field values in fields []
to the millisecond
value time.

Converts this date ob-
ject to a String of the
form: Dow mon dd
hh:mm:ss zzz yyyy.

Exception and
Error Classes

New Class: Refer to
CLDC Spec for more
details.

Weak References New Class: Refer to
CLDC Spec for more
details.

New Class: Refer to
CLDC Spec for more
details.

Additional Utility
Classes

Returns the next
pseudo-random,
uniformly distributed
double value between
0.0 and 1.0 from the
random number gener-
ator's sequence.

Returns the next
pseudo-random, uni-
formly distributed
double value between
0.0 and 1.0 from the
random number gener-
ator's sequence.

Returns a pseudo-

Java™ ME Developer Guide
Chapter 16 - JSR-139: CLDC 1.1

Page 101

random, uniformly
distributed int value
between 0 (inclusive)
and the specified value
(exclusive), drawn
from this random
number generator's
sequence.

The double value that
is closer than any oth-
er to e, the base of the
natural logarithms.

The double value that
is closer than any oth-
er to pi, the ratio of
the circumference of a
circle to its diameter.

Returns the absolute
value of a double.

Returns the absolute
value of a float value.

Returns the smallest
(closest to negative in-
finity) double value
that is not less than
the argument and is
equal to a mathemat-
ical integer.

Returns the trigono-
metric cosine of an
angle.

Returns the largest
double value that is
not greater than the
argument and is equal
to a mathematical in-
teger.

Returns the greater of
two double values.

)

Returns the greater of
two float values.

Returns the smaller of
two double values.

Java™ ME Developer Guide
Chapter 16 - JSR-139: CLDC 1.1

Page 102

Returns the smaller of
two float values.

Returns the trigono-
metric sine of an
angle.

)
Returns the correctly
rounded positive
square root of a double
value.

Returns the trigono-
metric tangent of
angle.

Converts an angle
measured in radians to
the equivalent angle
measured in degrees.

Converts an angle
measured in degrees
to the equivalent angle
measured in radians.

Table 34 Additional Classes, Fields, and Methods Supported for CLDC 1.1 Compliance

Java™ ME Developer Guide
Chapter 16 - JSR-139: CLDC 1.1

Page 103

17
JSR-172: Java™ ME

Web Services
Specification

This chapter describes the JSR-172, which uses the Web Services standards and

infrastructures to provide the programming model for the next generation of

enterprise services. Two new capabilities are provided here for the Java™ ME

plataform:

• Access to remote SOAP / XML based web services
• Parsing XML data

Overview

The main deliverables of the JSR-172 specification are two, independent, optimal

packages:

1. An optional package adding XML Parsing support to the platform. Structured
data sent to mobile devices from existing applications will likely be in the form
of XML. To avoid including code to process this data in each application, it is
desirable to define an optional package that can be included with the platform.

2. Create an optional package to facilitate access to XML based web services from
CDC and CLDC based profiles.

This optional package defines an API to allow mobile devices to access remote XML

based web services. Where possible, it avoids defining new network protocols and

formats and reuses existing standards.

Java™ ME Developer Guide
Chapter 17 - JSR-172: Java™ ME Web Services Specification

Page 104

NOTE: Java™ ME Optional Packages are described in JSR-68, Java™ ME Platform
Specification.

JAXP

The goal of this optional package is to define a strict subset wherever possible of the

XML parsing functionality (defined in JSR-063 JAXP 1.2) that can be used on the

Java™ Platform, Micro Edition (Java™ ME).

XML is becoming a standard means for clients to interact with backend servers, their

databases, and related services. With its platform neutrality and strong industry

support, XML is being used by developers to link networked clients with remote

enterprise data. An increasing number of these clients are based on the Java™ ME

platform, with a broad selection of mobile phones, PDAs, and other portable devices.

As developers utilize these mobile devices more to access remote enterprise data,

XML support on the Java™ ME platform is becoming a requirement.

An implementation may support validation of XML documents against a DTD. XML

validation is an expensive process in terms of processing power and memory usage

and would not likely be supported on most Java™ ME devices. However, if the

platform has the ability to support it, it may provide a validating parser (due to the

limited nature of most Java™ ME devices, it is expected that only one parser will be

supported, but it is allowable to support both).

There are three packages that comprise the JAXP API subset:

•
•
•

When inspecting the API set, one quickly notices that much of what exists in the

Java™ SE JAXP API set is missing from the Java™ ME JAXP API set. The size

requirements for the Java™ ME platform are strict, allowing only approximately 35Kb

for a complete JAXP implementation. However, although many of the classes are

gone, much of the functionality remains.

Java™ ME Developer Guide
Chapter 17 - JSR-172: Java™ ME Web Services Specification

Page 105

JAX-RPC Subset Overview

JAX-RPC is a Java API for interacting with SOAP based web services. This

specification defines a subset of the JAX-RPC 1.1 specification that is appropriate for

the Java™ ME platform.

The functionality provided in the subset reflects both the limitations of the platform:

memory size and processing power; as well as the limitations of the deployment

environment: low bandwidth and high latency.

Implementations must support WSDL documents, referencing the following data

types:

• boolean
• byte
• short
• int
• long
• float
• double
• String
• complex types
• arrays of primitive and complex types

The following classes and interfaces are included in the Java™ ME Web Services

Optional Package to satisfy dependencies of JAX-RPC on the CLDC based platforms:

•
•
•
•

An RMI Optional Package is available for CDC based platforms, and if the optional

package is present, the versions of , ,

, and included in the RMI

optional package must be used.

Java™ ME Developer Guide
Chapter 17 - JSR-172: Java™ ME Web Services Specification

Page 106

18
JSR-184: Mobile 3D

Graphics API

Overview

JSR-184 Mobile 3D API defines an API for rendering three-dimensional (3D) graphics

at interactive frame rates, including a scene graph structure and a corresponding file

format for efficient management and deployment of 3D content. Typical applications

that might make use of JSR-184 Mobile 3D API include games, map visualizations,

user interface, animated messages, and screen savers. JSR-184 requires a Java™ ME

device supporting MIDP 2.0 and CLDC 1.1 at a minimum.

Mobile 3D API

The MOTOROKR Z6 contains full implementation of JSR-184 Mobile 3D API

(http://jcp.org/en/jsr/detail?id=184). The MOTOROKR Z6 has also implemented the

following:

• Call to with key — returns
1.0, otherwise NULL is returned.

• Floating point format for input and output is the standard IEEE float, having an
8-bit exponent and a 24-bit mantissa normalized to 1.0, 2.0.

• Implementation ensures the Object3D instances are kept in reference to reduce
overhead and possible inconsistency.

• Thread safety.
• Necessary pixel format conversions for rendering output onto device.
• Support at least 10 animation tracks to be associated with an Object 3D

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 107

http://jcp.org/en/jsr/detail?id=184

instance (including animation controller), subject to dynamic memory
availability.

Mobile 3D File Format Support

The MOTOROKR Z6 supports both M3G and PNG file formats for loading 3D content.

The MOTOROKR Z6 supports the standard .m3g and .png extensions for its file

formats. MIME type and not extension is used for identifying file type. In the case

that the MIME type is not available, M3G files are identified using the file identifier

and PNG files using the signature.

Mobile 3D Graphics — M3G API

The M3G API lets you access the realtime 3D engine embedded on the device to

create console quality 3D applications, such as games and menu systems. The main

benefits of the M3G engine include:

• The whole 3D scene can be stored in a very small file size (typically 50-150K),
allowing you to create games and applications in under 256K;

• The application can change the properties (such as position, rotation, scale,
color, and textures) of objects in the scene based on user interaction with the
device;

• The application can switch between cameras to get different views in to the
scene;

• The rendered images have a very high photorealistic quality.

Typical M3G Application

An application consists of logic that uses the M3G, MIDP 2.0, and CDLC 1.1 classes.

The application is compiled into a Java MIDlet that can be embedded on the target

device. The MIDlet can also contain additional assets, such as one or more M3G files

that define the 3D scene graph for the objects in the scene, images, and sounds.

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 108

Figure 3 M3G Application Proccess

Most M3G applications use an M3G resource file that contains all the information

required to define the 3D resources, such as objects, their appearance, lights,

cameras, and animations in a scene graph. The file must be loaded into memory

where object properties can be interrogated and altered using the M3G API.

Alternatively, all objects can be created from code, although this is likely to be slower

and limits creativity for designers.

Simple MIDlets

The simplest application consists of an M3G file that is loaded into the application

using the M3G Loader class, which is then passed to a Graphics3D object that

renders the world to the Display.

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 109

Figure 4 M3G Application Methods

The World object contains the objects that define a complete 3D scene — geometry,

textures, lights, cameras, and animations. The World object mediates access to the

objects within the world. It can be passed as a block to the renderer, the Graphics3D

class.

The Loader object, populates a World by loading an M3G file from a URI or other

asset source, such as a buffer of bytes in M3G format. The Loader is not restricted to

loading just Worlds, each file can contain as little as a single object and multiple files

can be merged together on the device, or you can put everything into a single file.

The rendering Graphics3D class (by analogy to the MIDP Graphics class) takes a

whole scene (or part of a scene graph), and renders a view onto that scene using the

current camera and lighting setup. This view can be to the screen, to a MIDP image,

or to a texture in the scene for special effects. You can pass a whole world in one go

(retained mode) or you can pass individual objects (immediate mode). There is only

one Graphics3D object present at one time, so that hardware accelerators can be

used.

Figure 5 shows the structure of a more typical MIDlet.

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 110

Figure 5 Typical MIDlet Structure

Initializing the World

The Loader class is used to initialize the world. It has two static methods: one takes

in a byte array, while the other takes a named resource, such as a URI or an

individual file in the JAR package.

The load methods return an array of Object3Ds that are the root level objects in the

file.

The following example calls and passes it an M3G file from the JAR

file using a property in the JAD file. Alternatively, you could specify a URI. For

example:

;

The example assumes that there is only one root node in the scene, which is the

world object. If the M3G file has multiple root nodes, the code must be changed to

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 111

reflect this, but generally most M3G files have a single root node.

Initializing the World

public void startApp() throws MIDletStateChangeException
{

myDisplay.setCurrent(myCanvas);

try
{

// Load a file.
Objects3D[] roots = Loader.load(getAppProperty("Content-1"));

// Assume the world is the first root node loaded.
myWorld = (World) roots[0];

}
catch(Exception e)
{

e.printStackTrace();
}

// Force a repaint so the update loop is started.
myCanvas.repaint();

}

Code Sample 6 Initializing the World

Using the Graphics3D Object

Using the Graphics3D class is very straightforward. Get the Graphics3D instance,

bind a target to it, render everything, and release the target.

Using the Graphics3D Object

public class myCanvas extends Canvas
{

Graphics3D myG3D = Graphics3D.getInstance();

public void paint(Graphics g)
{

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 112

myG3D.bindTarget(g);

try
{

myG3D.render(myWorld);
}
finally
{

myG3D.releaseTarget();
}

}

}

Code Sample 7 Using the Graphics3D Object

The final block makes sure that the target is released and the Graphics3D object can

be reused. The call must be outside the try block, as it can throw

exceptions that cause to be called when a target has not been

bound.

Interrogating and Interacting with Objects

The World object is a container that sits at the top of the hierarchy of objects that

form the scene graph. You can find particular objects within the scene very simply by

calling with an ID. The method returns a reference to the object that

has been assigned that ID in the authoring tool (or manually assigned from code).

This is important because it makes the application logic independent of the detailed

structure of the scene.

Finding Objects by ID

final int PERSON_OBJECT_ID = 339929883;
Node personNode = (Node)theWorld.find(PERSON_OBJECT_ID);

Code Sample 8 Finding Objects by ID

If you need to find many objects, or you don't have a fixed ID, then you can follow

the hierarchy explicitly using the or

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 113

methods.

Using the Object3D.getReferences()

static void traverseDescendants(Object3D obj)
{

int numReferences = obj.getReferences(null);

if (numReferences > 0)
{

Object3D[] objArray = new Object3D[numReferences];

obj.getReferences(objArray);

for (int i = 0; i < numReferences; i++)
traverseDescendants(objArray[i]);

}

}

Code Sample 9 Using the Object3D.getReferences()

Once you have an object, most of the properties on it can be modified using the M3G

API. For example, you can change the position, size, orientation, color, brightness, or

whatever other attribute of the object is important. You can also create and delete

objects and insert them into the world, or link parts of other M3G files into the scene

graph.

Animations

As well as controlling objects from code, scene designers can specify how objects

should move under certain circumstances, and store this movement in 'canned' or

block animation sequences that can be triggered from code. Many object properties

are animatable, including position, scale, orientation, color and textures. Each of

these properties can be attached to a sequence of keyframes using an

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 114

AnimationTrack. The keyframe sequence can be looped, or just played once, and

they can be interpolated in several ways (stepwise, linear, spline).

A coherent action typically requires the simultaneous animation of several properties

on several objects, the tracks are grouped together using the AnimationController

object. This allows the application to control a whole animation from one place.

All the currently active animatable properties can be updated by calling

on the World. (You can also call this on individual objects if you need more control.)

The current time is passed through to and is used to determine the

interpolated value to assign to the properties.

The method returns a validity value that indicates how long the current

value of a property is valid. Generally, this is 0 which means that the object is still

being animated and the property value is no longer valid, or infinity when the object

is in a static state and does not need to be updated. If nothing is happening in the

scene, you do not have to continually redraw the screen, reducing the processor load

and extending battery life. Similarly, simple scenes on powerful hardware may run

very fast; by restricting the frame-rate to something reasonable, you can extend

battery life and are more friendly to background processes.

The animation subsystem has no memory, so time is completely arbitrary. This

means that there are no events reported (for example, animation finished). The

application is responsible for specifying when the animation is active and from which

position in the keyframe sequence the animated property is played.

Consider a world, myWorld, that contains an animation of 2000 ms that you want to

cycle. First, you need to set up the active interval for the animation and set the

position of the sequence to the start. Then call with the current

world time:

Setting animation interval

anim.setActiveInterval(worldTime, worldTime+2000);
anim.setPosition(0, worldTime);

int validity = myWorld.animate(worldTime);

Code Sample 10 Setting animation interval

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 115

Authoring M3G files

You can create all your M3G content from code if necessary but this is likely to be

very time consuming and does not allow 3D artists and scene designers to easily

create and rework visually compelling content with complex animations. You can use

professional, visual development tools such as Swerve™ Studio or Swerve™ M3G

exporter from Superscape Group, which exports content from 3ds max, the industry

standard 3D animation tool, in fully compliant M3G format. For more information,

please visit http://www.superscape.com

Java™ ME Developer Guide
Chapter 18 - JSR-184: Mobile 3D Graphics API

Page 116

http://www.superscape.com

19
JSR-185: Java

Technology for the
Wireless Industry

Java™ Technology for the Wireless Industry (JTWI) specifies a set of services to

develop highly portable, interoperable Java applications. JTWI reduces API

fragmentation and broadens the number of applications for mobile phones.

Overview

Any Motorola device implementing JTWI supports the following minimum hardware

requirements in addition to the minimum requirements specified in MIDP 2.0:

• Minimum screen size of 125 x 125 pixels screen size, as returned by full screen
mode and

• Minimum color depth of 4096 colors (12-bit), as returned by

• Pixel shape of 1:1 ratio
• Minimum Java Heap Size of 512 KB
• Sound mixer with at least 2 sounds
• Minimum JAD file size of 5 KB
• Minimum JAR file size of 64 KB
• Minimum RMS data size of 30 KB

Java™ ME Developer Guide
Chapter 19 - JSR-185: Java Technology for the Wireless Industry

Page 117

Any Motorola JTWI device implements the following and passes the corresponding

TCK:

• CLDC 1.0 or CLDC 1.1
• MIDP 2.0 (JSR-118)
• Wireless Messaging API 1.1 (JSR-120)
• Mobile Media API 1.1 (JSR-135)

CLDC Related Content for JTWI

JTWI is designed to be implemented on top of CLDC 1.0 or CLDC 1.1. The

configuration provides the VM and the basic APIs of the application environment. If

floating point capabilities are exposed to Java Applications, CLDC 1.1 is implemented.

The following CLDC requirements are supported:

• Minimum Application thread count allows a MIDlet suite to create a minimum of
10 simultaneous running threads

• Minimum Clock Resolution — The
method records the elapsed time in increments not to exceed 40 msec. At least
80% of test attempts will meet the time elapsed requirement to achieve
acceptable conformance.

• Names for Encodings support at least the preferred MIME name as defined by
IANA (http://www.iana.org/assignments/character-sets) for the supported
character encodings. If preferred name has not been defined, the registered
name is used (that is, UTF-16).

• Character Properties provide support for character properties and case
conversions for the characters in the Basic Latin and Latin-1 Supplement blocks
of Unicode 3.0. Other Unicode character blocks are supported as necessary.

• Unicode Version supports Unicode characters. Character information is based
on the Unicode Standard version 3.0. Since the full character tables required
for Unicode support can be excessively large for devices with tight memory
budgets, by default, the character property and case conversion facilities in
CLDC assume the presence of ISO Latin-1 range of characters only. Refer to
JSR-185 for more information.

• Custom Time Zone IDs permit the use of custom time zones that adhere to the
following time zone format:
• General Time Zone: For time zones representing a GMT offset value, the

following syntax is used:
• Custom ID:

• GMT Sign Hours: Minutes

Java™ ME Developer Guide
Chapter 19 - JSR-185: Java Technology for the Wireless Industry

Page 118

http://www.iana.org/assignments/character-sets

• GMT Sign Hours Minutes
• GMT Sign Hours Hours

• Sign: one of:
• + -

• Hours:
• Digit
• Digit Digit

• Minutes:
• Digit Digit

• Digit: one of:
• 0 1 2 3 4 5 6 7 8 9

NOTE: Hours are between 0 and 23, and minutes are between 00 and 59. For
example, GMT +10 and GMT +0010 equates to ten hours and ten minutes ahead of
GMT.

• When creating a TimeZone, the specified Custom Time Zone ID is
normalized in the following syntax:
• NormalizedCustomID:

• GMT Sign TwoDigitHours: Minutes

• Sign: one of:
• + -

• TwoDigitHours:
• Digit Digit

• Minutes:
• Digit Digit

• Digit: one of:
• 0 1 2 3 4 5 6 7 8 9

Java™ ME Developer Guide
Chapter 19 - JSR-185: Java Technology for the Wireless Industry

Page 119

MIDP 2.0 Specific Information for JTWI

MIDP 2.0 provides the library support for user interface, persistent storage,

networking, security, and push functions. MIDP 2.0 contains a number of optional

functions, some of which are implemented as outlined below. The JTWI requirements

for MIDP 2.0 supports the following points:

• Record Store Minimum permits a MIDlet suite to create at least 5 independent
RecordStores. This requirement does not intend to mandate that memory be
reserved for these Record Stores, but it is possible to create the RecordStores if
the required memory is available.

• HTTP Support for Media Content provides support for HTTP 1.1 for all supported
media types. HTTP 1.1 conformance matches the MIDP 2.0 specification. See

package for specific requirements.
• JPEG for Image Objects — ISO/IEC JPEG together with JFIF are supported. The

support for ISO/IEC JPEG only applies to baseline DCT, non-differential,
Huffman coding, as defined in JSR-185 JTWI specification, symbol 'SOF0'. This
support extends to the class, including the
methods outlined above. This mandate is voided in the event that the JPEG
image format becomes encumbered with licensing requirements.

• Timer Resolution permits an application to specify the values for the
, , and parameters of

methods with a distinguishable resolution of no more than 40 ms. Various
factors (such as garbage collection) affect the ability to achieve this
requirement. At least 80% of test attempts will meet the schedule resolution
requirement to achieve acceptable conformance.

• Minimum Number of Timers allows a MIDlet to create a minimum of 5
simultaneously running Timers. This requirement is independent of the
minimum specified by the Minimum Application Thread Count.

• Bitmap Minimums support the loading of PNG images with pixel color depths of
1, 2, 4, 8, 16, 24, and 32 bits per pixel, per the PNG format specification. For
each of these color depths, as well as for JFIF image formats, a compliant
implementation supports images up to 76800 total pixels.

• TextField and TextBox and Phonebook Coupling — when the center select key is
pressed while in a TextBox or TextField and the constraint of the TextBox or
TextField is , the names in the Phonebook are
displayed in the "Insert Phonenumber?" screen.

• Supported characters in TextField and TextBox — TextBox and TextField with
input constraint supports inputting all the characters listed in
JSR-185.

• Supported characters in EMAILADDR and URL Fields — Class
and

Java™ ME Developer Guide
Chapter 19 - JSR-185: Java Technology for the Wireless Industry

Page 120

with either of the constraints
or allows the same characters to be

input as are allowed for input constraint .
• Push Registry Alarm Events will implement alarm-based push registry entries.
• Identification of JTWI via system property — to identify a compliant device and

the implemented version of this specification, the value of the system property
is 1.0.

Wireless Messaging API 1.1 (JSR-120)
Specific Content for JTWI

WMA defines an API used to send and receive short messages. The API provides

access to network-specific short message services, such as GSM SMS or CDMA short

messaging. JTWI supports the following as it is outlined in the <link type="internal"

destination="JSR_120">JSR-120</link> chapter.

• Support for SMS in GSM devices
• Cell Broadcast Service in GSM devices
• SMS Push

Mobile Media API 1.1 (JSR-135)
Specific Content for JTWI

The following are supported for JTWI compliance:

• HTTP 1.1 Protocol is supported for media file download for all supported media
formats.

• MIDI feature set specified in MMAPI (JSR-135) is implemented. MIDI file
playback is supported.

• VolumeControl is implemented and is required for controlling the volume of
MIDI file playback.

• JPEG encoding in video snapshots is supported if the handset supports the
video feature set and video image capture.

• Tone sequence file format is supported. Tone sequences provide an additional
simple format for supporting the audio needs of many types of games and
other applications.

Java™ ME Developer Guide
Chapter 19 - JSR-185: Java Technology for the Wireless Industry

Page 121

20
JSR-205: WMA 2.0

Wireless Messaging API (WMA)

This chapter descirbes both the JSR-120 and JSR-205 as the JSR-205 is an extension

of the JSR-120.

Motorola has implemented certain features that are defined in the Wireless

Messaging API (WMA) 1.1 and 2.0. The complete specification documents are defined

in JSR-120 and JSR-205. This chapter describes the functionality that is implemented

for the WMA and highlights implementation details with respect to the messaging

API. This chapter also provides Motorola specific requirements for WMA in addition to

JSR-205. A MMS message can contain the following media types: text, image, audio,

video.

The JSR-120 specification states that developers send (MO - mobile originated) and

receive (MT - mobile terminated) SMS (Short Message Service) on the target device.

A simple example of the WMA is the ability of two Java™ ME applications using SMS

to communicate game moves running on the handset. This can take the form of

chess moves being passed between two players via the WMA.

Motorola in this implementation of the specification supports the following features:

• Creating an SMS
• Sending an SMS
• Receiving an SMS
• Viewing an SMS
• Deleting an SMS

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 122

SMS Client Mode and Server Mode
Connection

The Wireless Messaging API is based on the Generic Connection Framework (GCF),

which is defined in the CLDC specification 1.1. The use of the "Connection"

framework in Motorola's case is " ".

The can be opened in either server or client mode. A server

connection is opened by providing a URL that specifies an identifier (port number) for

an application on the local device for incoming messages.

Messages received with this identifier are then delivered to the application by this

connection. A server mode connection can be used for both sending and receiving

messages. A client mode connection is opened by providing a URL that points to

another device. A client mode connection can only be used for sending messages.

SMS Port Numbers

When a port number is present in the address, the TP-User-Data of the SMS contains

a User-Data-Header with the application port addressing scheme information

element. When the recipient address does not contain a port number, the

TP-User-Data does not contain the application port addressing header. The Java ME

MIDlet cannot receive this kind of message, but the SMS is handled in the usual

manner for a standard SMS to the device.

When a message identifying a port number is sent from a server type

, the originating port number in the message is set to the port

number of the . This allows the recipient to send a response to

the message that is received by this .

However, when a client type is used for sending a message with

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 123

a port number, the originating port number is set to an implementation specific value

and any possible messages received to this port number are not delivered to the

. Please refer to the sections A.4.0 and A.6.0 of the JSR-120.

When a MIDlet in server mode requests a port number (identifier) to use and it is the

first MIDlet to request this identifier, it is allocated. If other applications apply for the

same identifier, then an is thrown when an attempt to open

is made. If a system application is using this identifier, the

MIDlet is not allocated the identifier. The port numbers allowed for this request are

restricted to SMS messages. In addition, a MIDlet is not allowed to send messages to

certain restricted ports, a is thrown if this is attempted.

JSR-120 Section A.6.0 Restricted Ports: 2805, 2923, 2948, 2949, 5502, 5503, 5508,

5511, 5512, 9200, 9201, 9202, 9203, 9207, 49996, 49999.

If you intend to use SMSC numbers, then review A.3.0 in the JSR-120 specification.

The use of an SMSC is used if the MIDlet had to determine what recipient number to

use.

SMS Storing and Deleting Received
Messages

When SMS messages are received by the MIDlet, they are removed from the SIM

card memory where they were stored. The storage location (inbox) for the SMS

messages has a capacity of up to thirty messages. If any messages are older than

five days, then they are removed from the inbox by way of a FIFO stack.

SMS Message Types

The types of messages that can be sent are TEXT or BINARY. The method of

encoding the messages is defined in GSM 03.38 standard (Part 4 SMS Data Coding

Scheme). Refer to section A.5.0 of JSR-120 for more information.

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 124

SMS Message Structure

The message structure of SMS complies with GSM 03.40 v7.4.0 Digital cellular

telecommunications system (Phase 2+); Technical realization of the Short Message

Service (SMS) ETSI 2000.

Motorola's implementation uses the concatenation feature (specified in sections

9.2.3.24.1 and 9.2.3.24.8 of the GSM 03.40 standard) for messages that the Java

application sends that are too long to fit in a single SMS protocol message.

This implementation automatically concatenates the received SMS protocol messages

and passes the fully reassembled message to the application via the API. The

implementation supports at least three SMS messages to be received and

concatenated together. In addition, a minimum of three messages for sending is

supported. Motorola advises that developers should not send messages that take up

more than three SMS protocol messages unless the recipient's device is known to

support more.

SMS Notification

Examples of SMS interaction with a MIDlet include:

• A MIDlet handles an incoming SMS message if the MIDlet is registered to
receive messages on the port (identifier) and is running.

• When a MIDlet is paused and is registered to receive messages on the port
number of the incoming message, then the user is queried to launch the
MIDlet.

• If the MIDlet is not running and the Java Virtual Machine is not initialized, then
a Push Registry is used to initialize the Virtual Machine and launch the Java ME
MIDlet. This applies to trusted and untrusted Java applications.

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 125

• There is a messaging Access setting in the Java permissions Settings menu
option on the handset that allows the user to specify when and how often to
ask for authorization. Before the connection is made from the MIDlet, the
options available are:
• Always ask for user authorization
• Ask once per application
• Never ask
• No access

Table 35 is a list of Messaging features/Classes.

Feature/Class Implementation

JSR-120 API — APIs defined in the
javax.wireless.messaging package are
implemented with regards to the GSM
SMS Adaptor

Supported

All fields, methods, and inherited methods for the
Connector Class in the

package

Supported

All methods for the BinaryMessage interface in the
package

Supported

All methods for the Message interface in the
package

Supported

All fields, methods, and inherited methods for the
MessageConnection interface in the

package

Supported

Number of MessageConnection instances in the
package

5 maximum

All methods for the MessageListener interface in
the package

Supported

All methods and inherited methods for the
TextMessage interface in the

package

Supported

8-bit reference number in concatenated messages Supported

Number of concatenated messages 26 messages in inbox for SMS
and 10 for CBS, each can be
concatenated from 10 parts. No
limitation on outbox
(immediately transmitted)

Allow MIDlets to obtain the SMSC address with the
system property

Supported

Table 35 List of Messaging Features/Classes

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 126

Code Sample 11 shows implementation of the JSR-120 Wireless Messaging API.

Creation of client connection, creation of binary message, setting of
payload for binary message and calling of method 'numberOfSegments' for
Binary message

BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

/* Create connection for client mode */
connClient = (MessageConnection) Connector.open("sms://" + outAddr);

/* Create BinaryMessage for client mode */
binMsg = (BinaryMessage)connClient.newMessage(MessageConnection.

BINARY_MESSAGE);

/* Create BINARY of 'size' bytes for BinaryMsg */
public byte[] createBinary(int size) {

int nextByte = 0;
byte[] newBin = new byte[size];

for (int i = 0; i < size; i++) {
nextByte = (rand.nextInt());
newBin[i] = (byte)nextByte;
if ((size > 4) && (i == size / 2)) {

newBin[i-1] = 0x1b;
newBin[i] = 0x7f;

}
}
return newBin;

}

byte[] newBin = createBinary(msgLength);
binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

Creation of server connection

MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://:9532");

Creation of client connection with port number

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 127

MessageConnection messageConnection = (MessageConnection)
Connector.open("sms://+18473297274:9532");

Creation of client connection without port number

MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274");

Closing of connection

MessageConnection messageConnection.close();

Creation of SMS message

Message textMessage =
messageConnection.newMessage(MessageConnection.
TEXT_MESSAGE);

Setting of payload text for text message

((TextMessage)message).setPayloadText("Text Message");

Getting of payload text of received text message

receivedText = ((TextMessage)receivedMessage).getPayloadText();

Getting of payload data of received binary message

BinaryMessage binMsg;
byte[] payloadData = binMsg.getPayloadData();

Setting of address with port number

message.setAddress("sms://+18473297274:9532");

Setting of address without port number

message.setAddress("sms://+18473297274");

Sending of message

messageConnection.send(message);

Receiving of message

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 128

Message receivedMessage = messageConnection.receive();

Getting of address

String address = ((TextMessage)message).getAddress();

Getting of SMS service center address via calling of System.getProperty()

String addrSMSC = System.getProperty("wireless.messaging.sms.smsc");

Getting of timestamp for the message

Message message;
System.out.println("Timestamp: " + message.getTimestamp().getTime());

Setting of MessageListener and receiving of notifications about incoming
messages

public class JSR120Sample1 extends MIDlet implements CommandListener {

JSR120Sample1Listener listener = new JSR120Sample1Listener();

// open connection
messageConnection = (MessageConnection)Connector.open("sms://:9532");

// create message to send

listener.run();

// set payload for the message to send

// set address for the message to send
messageToSend.setAddress("sms://+18473297274:9532");

// send message (via invocation of 'send' method)

// set address for the message to receive
receivedMessage.setAddress("sms://:9532");

// receive message (via invocation of 'receive' method)

class JSR120Sample1Listener implements MessageListener, Runnable {
private int messages = 0;

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 129

public void notifyIncomingMessage(MessageConnection connection) {
System.out.println("Notification about incoming message arrived");

messages++;
}

public void run() {
try {
messageConnection.setMessageListener(listener);
} catch (IOException e) {

result = FAIL;
System.out.println("FAILED: exception while setting listener: " + e.toString());

}
}
}

Code Sample 11 JSR-120 WMA

Cell Broadcast Service

The Wireless Messaging API is used to receive mesages sent by Cell Broadcast

Service (CBS). This service allows the sending of messages to multiple handsets.

This service is one directional where the handset is the receiver. Hence, an

is thrown if the method is called.

NOTE: CBS push is also supported.

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 130

Security Policy

The WMA follows the security policy specified in the MIDP 2.0 chapter.

To send and receive messages using WMA, applications are granted permission to

perform the requested operation. The following table assigns individual permissions:

Permission Pro-
tocol

Function

mms

mms

mms

When opening a connection, if the permission is not granted, then the

method throws a .

When sending or receiving messages, if the permission is not granted, then the

and the methods throw a

.

JSR-205 Specific Information

Messaging Functionality

This section describes messaging functionality to be implemented by WMA.

MMS Message Structure

The MMS PDU structure is implemented as specified in the WAP-209-MMS

Encapsulation standard. The MMS PDU consists of headers and a multipart message

body. Some of the headers originate from standard RFC 822 headers and others are

specific to multimedia messaging. In addition to defined MMS headers, it also

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 131

contains header parameters as defined by JSR-205. The message body may contain

parts of any content type. The MIME multipart is used to represent and encode a

wide variety of media types for transmission via multimedia messaging.

MMS Message Addressing

The multipart message addressing model contains different types of addresses:

• global telephone number of recipient user, including telephone number, ipv4,
ipv6 addresses

• e-mail address as specified in RFC 822
• short-code of the service (not valid for MMS version 1.0)

The syntax of the URL connection strings follow the rules specified in the JSR-205

specification.

MMS Message Types

MMS messages can be sent using MULTIPART_MESSAGE type of this API. The default

type of message is multipart/related. If the content type header does not contain

start parameter, the message type is assumed to be multipart/mixed. This section

describes Multipart Message and its related classes. Messaging framework is

described in the JSR-120 chapter.

MultipartMessage

The WMA implements the MultipartMessage an interface representing a multipart

message. This is a subinterface of Message that contains methods to add, remove,

and manipulate message parts. The interface also specifies the subject of the

message.

Refer to the JSR-205 specification for more details.

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 132

MessagePart

The WMA implements the MessagePart class, representing a media part that can be

sent with the message. Instances of MessagePart class are added to the

MultipartMessage.

Each message part consists of part header and part body. The part headers include

Content ID, Content Location, Content type, and Encoding scheme. Content can be of

any MIME type.

Multimedia Message Service Center Address

The MMSC address used for sending the messages should be made available using

with property name " ".

Applications might need to obtain the Multimedia Message Service Center (MMSC)

address to decide which recipient to use. For example, the application might need to

do this because it is using service numbers for application servers that might not be

consistent in all networks and MMSCs.

Refer to the JSR-205 specification for more details.

Application ID

The WMA supports sending of MMS messages to concrete Java™ applications.

Messages can be sent using this API via client or server type Message Connections.

Refer to the JSR-205 specification for more details.

The application specifies Application ID when opening the server mode

MessageConnection. The receiving application running on a device is identified with

the Application ID included in the message.

The maximum number of Application IDs are limited by the implementation and

depends on phone RAM availability and carrier operators preloaded content memory

consumption.

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 133

The maximum number of simultaneously opened connections are limited by the

implementation and depends on phone RAM availability and carrier operators

preloaded content memory consumption.

The maximum number of MMS messages in the buffer at the same time are limited

by the implementation and depends on phone RAM availability and carrier operators

preloaded content memory consumption.

Initial Setup

The MMS initial setup parameters set by user is not accessible by WMA. The initial

MMS setup requirements are outside the scope of this document.

The Java Client uses the MMS Setup of the native client to send/receive messages.

So the Java client uses the same APN/Web-Sessions/mmsc etc. as the Native Client.

Handling the Incoming MMS Message

WMA is responsible for listening to the inbound connections for incoming MMS

messages with registered Application IDs.

The WMA launches the MMS application and suspends listening of incoming MMS

messages for this Application ID. Then the application is responsible for the handling

of inbound connections (open/close) for the MMS messages (receive/send).

Once the Application exits (terminated, or not successful launch, or user denied the

MMS application launch) then WMA resumes the listening of the inbound connections.

The incoming MMS messages are stored in a separate FIFO message Inbox that is

not visible to the user. The amount of memory allocated for this transparent inbox is

product specific. The MMS application Inbox is not accessible for native MMS

applications.

The WMA passes the received MMS messages to concrete Java applications

associated with the Application ID.

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 134

Application is Running/Resuming

The application startup and resume is implemented in accordance with requirements

outlined in the MIDP 2.0 chapter.

If an MMS application startup was denied by the user, then WMA removes all

buffered unread messages for this MMS application.

Application is Running/Background

The application receiving the incoming MMS message handles this MMS message.

When the MMS message is received by an application, it is removed from the

Phone/SIM memory where it may have been stored prior to being delivered to the

application.

An application is responsible to handle a corresponded (Application ID) received

message (store it more persistently if needed). An MMS message may get lost if an

application can not save it due to lack of space.

The application is responsible for the interpretation and representation of the MMS

MIME content including the SMIL (presentation) content, if any is attached.

In the case of full incoming message buffer, any new message for the application

with the same Application ID is discarded. WMA does not remove the first MMS

message in the buffer that was a cause of Push until:

• MMS message is handled by MMS application, or
• MMS application exits.

Application is Suspending

The application suspending is implemented in accordance with requirements outlined

in the MIDP 2.0 chapter.

If the user selects not to launch the new MMS application, then the incoming MMS

message is ignored and deleted from the handset.

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 135

Application is Ending

At application exit, WMA should remove all buffered messages that were not received

by the application.

If the MMS application needs to keep messages more persistently, it has to use other

APIs (File System API, RMS, etc.) to save incoming MMS messages on the handset

for later use. This is handled by the application and outside the of scope of this MRS.

Anonymous Rejection Feature

The Native MMS Client supports anonymous rejection feature.

When the MMS receives a Notification, if the is not present in the

notification, the message is not downloaded. A Notify Response is sent to the MMSC

with the status set to REJECTED.

Filtering of the is done at the Notification-Level.

(The impact of this scenario is that a message from an anonymous sender intended

for the Java client is not downloaded onto the handset.)

Coincidental Addresses in the Native Client and
Java Clients Address Filters

The Native MMS client maintains a black (Reject) list of address-filters.

Messages received with these addresses are rejected.

The Java client maintains an Acceptable list of address-filters: only Messages that

match this Address-filter are handled by the Java client.

Address-filtering is done at the Notification level. If a message's

matches both the Native client and Java client's address-filters, the message is not

downloaded and a Notify Response is sent to the MMSC with status set to REJECTED.

(So a message with this , intended for the Java client, is not

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 136

downloaded onto the handset.)

VMVM Support

WMA functionality is supported in VMVM environment.

External Event Interaction

The implementation follows external event interactions.

Java™ ME Developer Guide
Chapter 20 - JSR-205: WMA 2.0

Page 137

21
Motorola Get URL from

Flex API

Overview

The existing functionality allows current Java™ Applications to use a dedicated URL

to inform users about the location from which a new level of game can be

downloaded. This new functionality allows carriers to specify the URL for content

download. This feature allows accessing URLs stored in FLEX by a Java application.

Carriers flex the URL, which is used for content download, into the phone just like

any invisible net URL.

Flexible URL for Downloading
Functionality

The URL is flexed using RadioComm or using OTA provisioning. The following rules

apply:

• All URLs used follow the guidelines outlined in RFC 1738: Uniform Resource
Locators (URL). Refer to http://www.w3.org/addressing/rfc1738.txt for more
information.

• URLs are limited to 128 characters.

This feature enables Java applications to read the URL stored at the predefined

location in the flex table.

Java™ ME Developer Guide
Chapter 21 - Motorola Get URL from Flex API

Page 138

http://www.w3.org/addressing/rfc1738.txt

The Java Application is able to access the flexed URL by the

method. The key for accessing the URL is . The

method returns NULL if no URL is flexed.

Security Policy

Only trusted applications are granted permission to access this property.

Java™ ME Developer Guide
Chapter 21 - Motorola Get URL from Flex API

Page 139

Appendix A
Key Mapping

Key Mapping

Table 36 identifies key names and corresponding Java assignments. All other keys

are not processed by Java.

Key Assignment

0 NUM0

1 NUM1

2 NUM2

3 NUM3

4 NUM4

5 SELECT, followed by NUM5

6 NUM6

7 NUM7

8 NUM8

9 NUM9

STAR (*) ASTERISK

POUND (#) POUND

JOYSTICK LEFT LEFT

JOYSTICK RIGHT RIGHT

JOYSTICK UP UP

JOYSTICK DOWN DOWN

SCROLL UP UP

SCROLL DOWN DOWN

SOFTKEY 1 SOFT1

SOFTKEY 2 SOFT2

MENU SOFT3 (MENU)

SEND SELECT (Also, call placed if pressed on
lcdui.TextField or lcdui.TextBox with

PHONENUMBER constraint set).

Java™ ME Developer Guide
Appendix A - Key Mapping

Page 140

CENTER SELECT SELECT

END Handled according to Motorola specifica-
tion: Pause/End/Resume/Background
menu invoked.

Table 36 Key Mapping

Java™ ME Developer Guide
Appendix A - Key Mapping

Page 141

Appendix B
Memory Management

Calculation

Available Memory

The available memory on the MOTOROKR Z6 is the following:

• 64 MB shared memory for MIDlet storage
• 2 MB Heap size

Java™ ME Developer Guide
Appendix B - Memory Management Calculation

Page 142

Appendix C
FAQ

Online FAQ

The MOTODEV developer program is online and provides access to Frequently Asked

Questions about enabling technologies on Motorola products.

Access to dynamic content based on questions from the Motorola Java™ ME

developer community is available at the URL stated below.

http://developer.motorola.com

Java™ ME Developer Guide
Appendix C - FAQ

Page 143

http://developer.motorola.com

Appendix D
HTTP Range

Graphic Description

Figure 6 shows a graphic description of HTTP Range:

Figure 6 Graphic Description of HTTP Range

Java™ ME Developer Guide
Appendix D - HTTP Range

Page 144

	MOTOROKR Z6 Developer Guide
	Disclaimer
	Chapter 1 - Java™ ME Introduction
	Section 1.1 - The Java™ Platform, Micro Edition (Java™ ME)
	Section 1.2 - The Motorola Java™ ME Platform
	Section 1.3 - Resources and APIs Available

	Chapter 2 - Developing and Packaging Java™ ME Applications
	Section 2.1 - Guide to Development in Java™ ME
	Section 2.1.1 - Recognizing the Phone Core Specifications

	Chapter 3 - Downloading Applications
	Section 3.1 - Methods of Downloading
	Section 3.2 - Error Logs

	Chapter 4 - Application Management
	Section 4.1 - Downloading a JAR File Without a JAD
	Section 4.2 - MIDlet Upgrade
	Section 4.3 - Installation and Deletion Status Reports

	Chapter 5 - CommConnection Interface
	Section 5.1 - CommConnection
	Section 5.2 - Accessing
	Section 5.3 - Parameters
	Section 5.4 - BNF Format for Connector.open () string
	Section 5.5 - Comm Security
	Section 5.6 - Port Naming Convention
	Section 5.7 - Method Summary

	Chapter 6 - Downloading MIDlets
	Section 6.1 - Overview
	Section 6.1.1 - Downloading a MIDlet from a PC
	Establishing Connection

	Section 6.1.2 - Downloading a MIDlet using Bluetooth
	Section 6.1.3 - Downloading a MIDlet from a Browser
	Section 6.1.4 - Start Active Browser Session from the Main Menu
	Section 6.1.5 - Find a Location with Java™ ME Application
	Section 6.1.6 - Downloading MIDlets
	Section 6.1.7 - Different Error Checks
	Memory Full
	Memory Full During Installation Process
	Application Version Already Exists
	Newer application version exists

	Chapter 7 - Gaming API/Multiple Key Press
	Section 7.1 - Gaming API
	Section 7.2 - Multiple Key Press Support

	Chapter 8 - JAD Attributes
	Section 8.1 - JAD / Manifest Attribute Implementations

	Chapter 9 - JSR-118: MIDP 2.0 Security Model
	Section 9.1 - Untrusted MIDlet Suites
	Section 9.2 - Untrusted Domain
	Section 9.3 - Trusted MIDlet Suites
	Section 9.4 - Permission Types Concerning the Handset
	Section 9.5 - User Permission Interaction Mode
	Section 9.6 - Implementation Based on Recommended Security Policy
	Section 9.7 - Trusted Third-Party Domain
	Section 9.8 - Security Policy for Protection Domains
	Section 9.9 - Displaying Permissions
	Section 9.10 - Trusted MIDlet Suites Using x.509 PKI
	Section 9.11 - Signing a MIDlet Suite
	Section 9.12 - Signer of MIDlet Suites
	Section 9.13 - MIDlet Attributes Used in Signing MIDlet Suites
	Section 9.14 - Creating the Signing Certificate
	Section 9.15 - Inserting Certificates into JAD
	Section 9.16 - Creating the RSA SHA-1 Signature of the JAR
	Section 9.17 - Authenticating a MIDlet Suite
	Section 9.18 - Verifying the Signer Certificate
	Section 9.19 - Verifying the MIDlet Suite JAR
	Section 9.20 - Carrier Specific Security Model

	Chapter 10 - Network APIs
	Section 10.1 - Network Connections
	Section 10.2 - User Permission
	Section 10.3 - HTTPS Connection
	Section 10.4 - DNS IP
	Section 10.5 - Push Registry
	Section 10.6 - Mechanisms for Push
	Section 10.7 - Push Registry Declaration
	Section 10.8 - Delivery of a Push Message
	Section 10.9 - Deleting an Application Registered for Push
	Section 10.10 - Security for Push Registry
	Section 10.11 - Network Access

	Chapter 11 - Platform Request API
	Section 11.1 - Platform Request API
	Section 11.2 - MIDlet Request of a URL That Interacts with Browser
	Section 11.3 - MIDlet Request of a URL That Initiates a Voice Call

	Chapter 12 - MIDlet Life Cycle
	Section 12.1 - The Life Cycle of a MIDlet

	Chapter 13 - JSR-75: PIM API
	Section 13.1 - Overview
	Section 13.2 - Requirements
	Section 13.3 - Fields and Attributes
	Section 13.3.1 - Contact List
	Section 13.3.2 - Event List
	Section 13.3.3 - ToDo List

	Chapter 14 - JSR-75: FileConnection API
	Section 14.1 - Overview
	Section 14.2 - Requirements
	Section 14.2.1 - Interface
	Section 14.2.2 - Security
	Section 14.2.3 - Permissions

	Chapter 15 - JSR-135 - Mobile Media API
	Section 15.1 - JSR-135
	Section 15.2 - ToneControl
	Section 15.3 - VolumeControl
	Section 15.4 - StopTimeControl
	Section 15.5 - Manager Class
	Section 15.6 - Supported Multimedia File Types
	Section 15.6.1 - Audio format
	Section 15.6.2 - Video format
	Section 15.6.3 - Audio/Video format
	Section 15.6.4 - Image format
	Section 15.6.5 - Audio capture
	Section 15.6.6 - Video capture

	Section 15.7 - Media Locators
	Section 15.7.1 - RTSP locator
	Section 15.7.2 - HTTP Locator
	Section 15.7.3 - File Locator
	Section 15.7.4 - Live Media Capture Locator
	Section 15.7.5 - Device Locator

	Section 15.8 - Security
	Section 15.8.1 - Policy
	Section 15.8.2 - Permissions

	Chapter 16 - JSR-139: CLDC 1.1
	Section 16.1 - JSR-30 — CLDC 1.0
	Section 16.1.1 - No Floating Point Support
	Section 16.1.2 - Classfile Format and Class Loading
	Supported File Formats
	Public representation of Java applications and resources
	Classfile Lookup Order

	Section 16.2 - JSR-139 — CLDC 1.1

	Chapter 17 - JSR-172: Java™ ME Web Services Specification
	Section 17.1 - Overview
	Section 17.2 - JAXP
	Section 17.3 - JAX-RPC Subset Overview

	Chapter 18 - JSR-184: Mobile 3D Graphics API
	Section 18.1 - Overview
	Section 18.2 - Mobile 3D API
	Section 18.3 - Mobile 3D File Format Support
	Section 18.4 - Mobile 3D Graphics — M3G API
	Section 18.4.1 - Typical M3G Application
	Section 18.4.2 - Simple MIDlets
	Section 18.4.3 - Initializing the World
	Section 18.4.4 - Using the Graphics3D Object
	Section 18.4.5 - Interrogating and Interacting with Objects
	Section 18.4.6 - Animations
	Section 18.4.7 - Authoring M3G files

	Chapter 19 - JSR-185: Java Technology for the Wireless Industry
	Section 19.1 - Overview
	Section 19.2 - CLDC Related Content for JTWI
	Section 19.3 - MIDP 2.0 Specific Information for JTWI
	Section 19.4 - Wireless Messaging API 1.1 (JSR-120) Specific Content for JTWI
	Section 19.5 - Mobile Media API 1.1 (JSR-135) Specific Content for JTWI

	Chapter 20 - JSR-205: WMA 2.0
	Section 20.1 - Wireless Messaging API (WMA)
	Section 20.2 - SMS Client Mode and Server Mode Connection
	Section 20.3 - SMS Port Numbers
	Section 20.4 - SMS Storing and Deleting Received Messages
	Section 20.5 - SMS Message Types
	Section 20.6 - SMS Message Structure
	Section 20.7 - SMS Notification
	Section 20.8 - Cell Broadcast Service
	Section 20.9 - Security Policy
	Section 20.10 - JSR-205 Specific Information
	Section 20.10.1 - Messaging Functionality
	Section 20.10.2 - MMS Message Structure
	Section 20.10.3 - MMS Message Addressing
	Section 20.10.4 - MMS Message Types
	Section 20.10.5 - MultipartMessage
	Section 20.10.6 - MessagePart
	Section 20.10.7 - Multimedia Message Service Center Address
	Section 20.10.8 - Application ID
	Section 20.10.9 - Initial Setup
	Section 20.10.10 - Handling the Incoming MMS Message
	Application is Running/Resuming
	Application is Running/Background
	Application is Suspending
	Application is Ending

	Section 20.10.11 - Anonymous Rejection Feature
	Section 20.10.12 - Coincidental Addresses in the Native Client and Java Clients Address Filters
	Section 20.10.13 - VMVM Support
	Section 20.10.14 - External Event Interaction

	Chapter 21 - Motorola Get URL from Flex API
	Section 21.1 - Overview
	Section 21.2 - Flexible URL for Downloading Functionality
	Section 21.3 - Security Policy

	Appendix A - Key Mapping
	Key Mapping

	Appendix B - Memory Management Calculation
	Available Memory

	Appendix C - FAQ
	Online FAQ

	Appendix D - HTTP Range
	Graphic Description

