

Version 1.0

08

Creating Themes for the

KU990®

A beginner’s Flash guide

Joseph Earl

TABLE OF CONTENTS

Requirements ... 2

Introduction .. 2

Guide .. 5

1 Setting up the Document ... 5

2 Loading Files .. 7

3 Creating the Icon Reel .. 11

4 Creating the Launcher ... 14

5 Creating the Scrollbar Control for the Icon Reel .. 16

6 Creating the clock .. 18

7 Making the ‘Main’ Scene ... 19

8 Making the ‘Menu’ Scene .. 20

9 Publishing Your Theme .. 20

10 Comments .. 22

Reference .. 23

DEP and ID Codes.. 23

Code Snippets ... 25

Copyright Information .. 27

This Guide ... 27

The ‘MyTheme’ Example theme ... 27

REQUIREMENTS

SOFTWARE: Adobe Flash® CS3 Professional (or Flash® 8 Professional or later)

 A Text editor (such as Notepad®)

FILES: Download (Includes finished theme, source code and resources)

INTRODUCTION

Some previous experience with the Flash® CS3 interface is useful, though the guide does contain numerous

screenshots to guide you through (if you are using a previous version of Flash® professional, there may be

some differences between the program interface and the screenshots); and the guide comes with several

resources:

http://www.joeearl.co.uk/downloads/ku990/document/theme_guide.zip

 The completed FLA is included in Flash® CS3 format, and Flash® 8 format in the Resources/Source/

folder

 The completed published SWF and relevant external files are included in Resources/Publish/

 All images required for the task are included in Resources/Images/

 A sample external user image is included in Resources/User Image/

Developing a theme is no different to creating a standard Flash application, though there are some special

considerations that must be given as you are publishing to a mobile device (these are taken from the Adobe

Flash® CS3 reference:

 Keep the file and its code as simple as possible. Remove unused movie clips, delete

unnecessary frame and code loops, and avoid too many frames or extraneous frames.

 Using FOR loops can be expensive because of the overhead incurred while the condition is

checked with each iteration. When the costs of the iteration and the loop overhead are

comparable, execute multiple operations individually instead of using a loop. The code may be

longer, but performance will improve.

 Stop frame-based looping as soon as it is no longer needed.

 When possible, avoid string and array processing because it can be CPU-intensive.

 Always try to access properties directly rather than using ActionScript getter and setter

methods, which have more overhead than other method calls.

 Manage events wisely. Keep event listener arrays compact by using conditions to check

whether a listener exists (is not null) before calling it. Clear any active intervals by calling

clearInterval, and remove any active listeners by calling removeListener before

removing content using unloadapplication or removeapplicationClip. Flash does

not re-collect SWF data memory (for example, from intervals and listeners) if any ActionScript

functions are still referring to the SWF data when a movie clip is unloaded.

 When variables are no longer needed, delete them or set them to null, which marks them for

garbage collection. Deleting variables helps optimize memory use during run time, because

unneeded assets are removed from the SWF file. It is better to delete variables than to set

them to null.

 Explicitly remove listeners from objects by calling removeListener before garbage

collection.

 If a file consists of multiple SWF files that use the same ActionScript classes, exclude those

classes from select SWF files during compilation. This can help reduce file download time and

run-time memory requirements.

 Avoid using Object.watch and Object.unwatch, because every change to an object

property requires the player to determine whether a change notification must be sent.

 If ActionScript code that executes on a keyframe in the timeline requires more than 1 second

to complete, consider splitting up that code to execute over multiple keyframes.

 Remove trace statements from the code when publishing the SWF file. To do this, select the

Omit Trace Actions check box on the Flash tab in the Publish Settings dialog box.

 When one SWF file loads another SWF file that contains a custom ActionScript class (for

example, foo.bar.CustomClass) and then unloads the SWF file, the class definition remains in

memory. To save memory, explicitly delete any custom classes in unloaded SWF files. Use the

delete statement and specify the fully qualified class name, such as: delete

foo.bar.CustomClass.

 Limit the use of global variables, because they are not marked for garbage collection if the

movie clip that defined them is removed.

 Avoid using the standard user interface components (available in the Components panel in

Flash). These components are designed to run on desktop computers and are not optimized to

run on mobile devices.

 Whenever possible, avoid deeply nested functions.

 Avoid referencing nonexistent variables, objects, or functions. Compared to the desktop

version of Flash Player, Flash Lite 2 looks up references to nonexistent variables slowly, which

can significantly affect performance.

 Avoid defining functions using anonymous syntax. For example, myObj.eventName =

function{ ...}. Explicitly defined functions are more efficient, such as function

myFunc { ...}; my Obj.eventName = myFunc;.

 Minimize the use of Math functions and floating-point numbers. Calculating these values slows

performance. If you must use the Math routines, consider precalculating the values and storing

them in an array of variables. Retrieving the values from a data table is much faster than having

Flash calculate them at run time.

 Most devices that support Flash Lite play back content at about 15 to 20 frames per second

(fps). The frame rate can be as low as 6 fps. During development, set the document frame rate

to approximate the playback speed of the target device. This shows how the content will run

on a device with limited performance. Before publishing a final SWF file, set the document

frame rate to at least 20 fps or higher to avoid limiting performance in case the device supports

a higher frame rate.

 When using gotoAndPlay, remember that every frame between the current frame and the

requested frame needs to be initialized before Flash plays the requested frame. If many of

these frames contain different content, it could be more efficient to use different movie clips

rather than using the Timeline.

 Although preloading all content by putting it at the beginning of the file makes sense on the

desktop, preloading on a mobile device can delay file startup. Space content throughout the

file so that movie clips are initialized as they are used.

Themes may vary considerably in their complexity, and this guide is only an introduction, the rest you will

discover playing around for yourselves or talking to other people. However this guide does aim to touch on all

of the important aspects of theme creating. The theme you create using this guide will hide the main phone

launcher, feature different backgrounds which can be set by the user through an XML configuration file (where

we will also store the id and dep codes for the phones apps) and a user icon which is stored externally so it can

be changed by the end user.

Our theme (and most themes in fact) will consist of only a few main elements:

1. A launcher, with 3 buttons showing SMS count sand linking to the inbox,

drafts and sent folders, and another button which opens the normal phone

menu.

2. A reel of 12 icons, which the user will be able to scroll left or right. The user

will be able to press the icon in the center to launch it.

3. A horizontal scrollbar to control the reel of icons

4. A clock

5. A user image which will be loaded externally.

Here’s a quick idea of what the theme will look like. I drew this up quickly in

Fireworks before making this theme; it’s a good idea to do this so you can get a feel

for the size and positioning of the elements in your theme.

All that said, lets begin...

GUIDE

1 SETTING UP THE DOCUMENT

Select FILE -> NEW from the toolbar. When the New Document window appears select ‘Flash File (ActionScript

2.0)’ from the options. We choose this option rather than the Mobile one so we can use the default Flash

debugger rather than Device Central (which will probably give you lots of warnings and not work very well).

However when it comes to publishing for testing or use on the phone, you must remember to change the

publishing profile.

Now we have a new document we need to set it up with the

right properties. Double click on the FPS display below the

timeline to open the document properties window, or

select MODIFY -> DOCUMENT from the toolbar (CTRL+J).

In the Document Properties window,

enter a title for your theme, and set

the dimensions of the document to

240 x 400 pixels. Choose the

background color as black

(‘#000000’), and then set the frame

rate of the document to 15FPS, and

click ‘OK’.

Now create seven new layers using the insert layer

button and name them as shown opposite, these will be

used to hold our MovieClips for the corresponding

content. Now select the first frame of the ‘Labels’

layer and enter ‘LOADING’ for the frame label in the

properties inspector.

Now to create our XML configuration file: first create a new folder with the name of your theme in the same

directory as you are publishing your theme to, this will contain all of your external files for your theme. For the

purposes of this guide we will be using the ‘MyTheme’ folder. It is best practice to do this as it avoids

cluttering up a user’s /LGAPP/Media/swf/theme/ folder. Then open a new document in Notepad® or your

favourite text editor and enter the following XML code:

<root>

 <background num="1" />

 <icons>

 <icon0 str="Alarms" id="fid:0x10000ff7" dep="3,4" />

<icon1 str="Bluetooth" id="fid:0x10000ff1" dep="4,6" />

 <icon2 str="Browser" id="" dep="3,1,1" />

 <icon3 str="Calendar" id="fid:0x10000fff" dep="3,3,1" />

 <icon4 str="Games & Apps" id="" dep="2,8,1" />

 <icon5 str="Memo" id="fid:0x20000ffd" dep="3,5" />

 <icon6 str="Music" id="fid:0x20000f3c" dep="2,4" />

 <icon7 str="My Stuff" id="" dep="2,1,1" />

 <icon8 str="Settings" id="" dep="4,3,1" />

 <icon9 str="Tools" id="" dep="3,6,1" />

 <icon10 str="Video Playlists" id="fid:0x20000f09" dep="2,5" />

 <icon11 str="Voice Recorder" id="fid:0x20000f3d" dep="2,6" />

 </icons>

</root>

Save this as ‘config.xml’ inside the ‘MyTheme’ folder. Now to get started! Import all of the images from the

Resources/Images/ folder into the Flash library by dragging and dropping them into the library. You could

replace the icons or the other images with some of your own if you wish.

2 LOADING FILES

Create a new symbol in the Library, make it a MovieClip, and give it the name ‘User Image’. Return to

editing the main timeline by selecting ‘Scene 1’ from just below the timeline display. Now select the

‘UserImage’ MovieClip from the library and drag it onto the stage, then position it at x: 250px, y: 0px so that

is outside the drawing area of the stage; finally give it the instance name ‘userImage_mc’ in the properties

inspector.

Now create another new MovieClip in your library, and give it the name ‘Background’. Create a new layer

inside the ‘Background’ symbol, and name it ‘Script’, name the layer below it ‘Background Color’.

Select the first frame of the ‘Script’ layer, open the Actions editor and enter:

stop();

Now select the first frame of the ‘Background Color’ layer and create a Rectangle of width: 240px,

height: 400px and position it at x: 0px, y: 0px. Give the rectangle no outline, and a fill of ‘#000000’ (Black).

Create two new keyframes in the ‘Background

Color’ layer, and two new blank keyframes in the

‘Script’ layer, as shown in the screenshot opposite.

Select the second frame of the ‘Background Color’ layer, and change the fill of the rectangle to

‘#212121’ (Dark Gray), then select the third frame of the ‘Background Color’ layer and change the fill of
the rectangle to ‘#000033’ (Dark Blue). You can of course use whatever colors you like in place of these. Now
return to the main scene, select the first frame of the ‘Background’ layer and drag the ‘Background’
MovieClip from your library onto the stage, and position it at x: 0px, y:0px and give it the instance name
‘background_mc’.

Select the first frame of the ‘Errors’ layer, and create a dynamic text-box of width: 210px, height:230px and

position it at x: 15px, y:80px. Give the text-box the instance name ‘error_tf’, set the font-color to ‘#FFFFFF’

(white), set the font-size to 20pts and make the text center-aligned. Now select the first frame of the

‘Script’ layer, open the Actions editor and enter the following ActionScript code:

stop();//Stop the playhead from continuing

//Declare variables

var errorMessage:String = "";//For any errors loading XML or user icon

var thisDirectory:String = this._url.slice(0, this._url.lastIndexOf("/"))+"/";

/*Gets this file's current location, takes off anything at and after the last occurence of

the

forward slash "/" character, then re-adds the "/" to the end to give the directory of this

file.*/

var iconLinkArr:Array = new Array();//Array to hold dep and id values for our icons

var backgroundNum:Number = 1;//User-selected background number

var currentIconNum:Number = 0;//Currently selected icon in the reel

var maxIconNum:Number = 12;//Max. number of icons in the reel

//Hide the show/hide shortcut arrows

_root.idleChanger_mc.unloadMovie();

//Hide the normal phone menu

_root.mc_idle.idelLauncher.gotoAndStop(11);

//Hide the operator text

_root.cur_main = "shortCut";

platform.setIdleCondition();

//Hide the shortCut launcher

_root.mc_idle.shortCut_mc._y = 401;

//Function to load the configuration data from the XML file

function loadXML() {

 var configXML = new XML();//Create a new XML document

 configXML.ignoreWhite = true;//Ignore white-space

 configXML.onLoad = function(success:Boolean) {

 if (success) {

 //Import XML to variables

 var rootNode:Array = configXML.firstChild.childNodes;

 var backgroundNode:XMLNode = rootNode[0];

 var iconNode:Array = rootNode[1].childNodes;//Array type rather than

XML node

 //as it holds many XML nodes

 backgroundNum = Number(backgroundNode.attributes.num);//Get the

background number

 //Loop through iconNode and put all icon properties into iconLinkArr

 for (var i:Number = 0; i<maxIconNum; i++) {

 iconLinkArr[i] = new Object();

 iconLinkArr[i].__label = iconNode[i].attributes.str;

 iconLinkArr[i].__id = iconNode[i].attributes.id;

 iconLinkArr[i].__dep = iconNode[i].attributes.dep;

 }

//Now load user image

 loadUserImage();

} else {

 //Could not find XML file or it is not a valid XML file

 //Show an error message to the user so they know whats up.

 errorMessage += "Sorry we could not find your config.xml file,"

 + " it should be in the following place: "

+ “ thisDirectory + "MyTheme/"

+ "\n" //New line character

 + "Please put it in the right place.";

 //Now load user image

 loadUserImage();

}

 };

 configXML.load(thisDirectory+"MyTheme/"+"config.xml");

}

function loadUserImage() {

 //Create our MovieClipLoader, we use this instead of the straight

MovieClip.loadMovie()

 //method so we know whether the icon was loaded successfully

 var imageLoader:MovieClipLoader = new MovieClipLoader();

 //Create our listener for MovieClipLoader

 var imageListener:Object = new Object();

 //Occurs when file has loaded and is ready to be used

 imageListener.onLoadInit = function() {

 checkErrors();

 };

 //Occurs when file cannot be found or is an invalid type

 imageListener.onLoadError = function() {

 //Add a couple of new line characters to error message if it already has some

 //text in it (from errors loading the XML)

 if (errorMessage != "") {

 errorMessage += "\n\n";

 }

 errorMessage += "Sorry we could not find your user_image.jpg file,"

 + " it should be in the following place: "

 + thisDirectory + "MyTheme/"

 + "\n" //New line character

 + "Please put it in the right place.";

 checkErrors();

 };

 imageLoader.addListener(imageListener);

 imageLoader.loadClip(thisDirectory+"MyTheme/"+"user_image.jpg",userImage_mc);

}

function checkErrors() {

 if (errorMessage == "") {

 //No errors, we're fine to continue

 gotoAndStop("INIT");

 } else {

 //Oops something's up, output the error to the text box

 error_tf.text = errorMessage;

 }

}

//Function is called when user exits the phone NYX menu

function effectIn() {

 //We need to hide the normal launcher again

 //Hide the show/hide shortcut arrows

 _root.idleChanger_mc.unloadMovie();

 //Hide the normal phone menu

 _root.mc_idle.idelLauncher.gotoAndStop(11);

 //Hide the operator text

 _root.cur_main = "shortCut";

 platform.setIdleCondition();

 //Hide the shortCut launcher

 _root.mc_idle.shortCut_mc._y = 401;

 gotoAndStop("MAIN");

}

//Function is called when user opens the phone NYX menu

function effectOut() {

 gotoAndStop("MENU");

}

//Event call function

function eventCall(dep:String, id:String) {

 if (!platform) {

 return undefined;

 //Don't do anything when you test it on the Computer

 //because the apps aren't there

 }

 if (id == undefined || id == "") {

 //No id means it's not an application,

 //so open the NYX menu at the page

 //specified by the dep

 platform.setMenuOn();

 _root.idleQuick = true;

 _root.QuickSet(dep);

 return; //Stop going any further in this function

 }

 //If we got this far it must be an application

 //Use the id to launch the correct application

 platform.launch_module(id);

}

//Start loading XML

loadXML();

So what does this ActionScript actually do? In the first section we declare some variables we’re going to need

to keep track of what’s going. The function loadXML() loads the ‘config.xml’ file and extracts the

information into some of the variables we declared. After it’s done loading, it calls the loadUserImage()

function. This function tries to load the ‘user_image.jpg’ file from the ‘MyTheme’ directory.

After it has tried to load the image, the ActionScript then calls checkErrors() to see if we had any

problems loading the XML file or user image. If there are no errors, we continue on to the ‘INIT’ frame (don’t

worry, we haven’t created that yet), otherwise we show the user an error message. If you test the file now

(CONTROL -> TEST MOVIE from the toolbar, or press CTRL+ENTER) you will get an error message saying it

could not find the ‘user_image.jpg’ file. To solve that, copy the ‘user_image.jpg’ file from the ‘Resources/User

Image/’ folder included in this guide to the ‘MyTheme’ folder.

The effectIn() function is called by the NYX menu when it is exited, and the effectOut() function is

called when the NYX menu is opened. The effectIn() function hides the normal phone interface so we

can use our own and move the playhead to the ‘MAIN’ frame, which is where our theme will run; We do not

move the playhead to the ‘LOADING’ or ‘INIT’ frames, because we do not want to load anything more times

than is necessary. The effectOut() function will be used to move the playhead to a frame ‘MENU’ where

only the background will be visible, to stop our theme showing through underneath the NYX menu.

Now we’re really ready to get started on this theme!

Select the second frame of the ‘User Image’ layer and

create a new keyframe. Create a new frame for the

second frame of the ‘Background’ layer, and new

blank keyframes for the second frame of all the other

layers as shown. Select the second frame of the

‘labels’ layer and give the frame the name ‘INIT’ in

the properties inspector.

Select the second frame of the ‘User Image’ layer and select the ‘userImage_mc’ MovieClip. Move it to

x: 120px, y: 270px in the properties inspector.

3 CREATING THE ICON REEL

Create a new MovieClip named ‘Icon Reel’ in the Library,

and create four new layers inside this MovieClip, name them

as shown opposite.

Drag all of the large icon images (‘Alarms’, ‘Bluetooth’, ‘Browser’, ‘Calendar’, ‘Games

& Apps’, ‘Memo’, ‘Music’, ‘My Stuff’, ‘Settings’, ‘Tools’, ‘Video

Playlists’, ‘Voice Recorder’) from your library onto the first frame of the ‘Icon Clips’ layer,

it doesn’t really matter where. Flash may display some of them at different sizes because of their resolutions,

so make sure all the images are set to width: 64px, height: 84px.

Now select the ‘Alarms’ image

on the stage and press function

key F8 (or select MODIFY ->

CONVERT TO SYMBOL… from

the toolbar) to convert it to a

symbol. Give it the name ‘Icon

0’ and make the registration

point of the symbol top-center.

Give this symbol the instance name ‘icon0_mc’ and make sure it is positioned at y: 0px. The x position does

not matter at the moment, as we will be using ActionScript to order and manipulate all of the icons. You now

need to repeat this process for all of the icon images in alphabetic order (this is important otherwise your

icons will launch the wrong applications) except give the next image (‘Bluetooth’) the name ‘Icon 1’, and

give the ‘Icon 1’ symbol on the stage the instance name ‘icon1_mc’ and so on for all of the icons, taking you

up to the ‘Voice Recorder’ icon which should be ‘Icon 11’ in your library and have the instance name

‘icon11_mc’ on the stage. Make sure all of the icons have their y-position as 0px.

Now select the first frame of the ‘Icon Background’ layer and drag the ‘Icon Selected

Background’ image onto the stage, position it at x: -31px, y: 0px.

Select the first frame of the ‘Icon Text’ layer, and create a new dynamic text box. Give it the following

properties: width: 120px, height: 30px, x: -60px, y:64px, font-color: ‘#FFFFFF’, font-size: 16pts, text-align:

center; finally give it the instance name ‘label_tf’.

Create a new Button symbol in your library, and name it ‘Reel Button’. This will be used to launch the

currently selected icon. Leave all of the frames of the button blank except the ‘Hit’ frame, where you will

need to create a new keyframe. In the ‘Hit’ keyframe create a rectangle of width: 60px, height: 60px and

position it at x: -30px, y: -30px.

Return to editing your ‘Icon Reel’ and drag the ‘Reel Button’ button onto the ‘Icon Button’ layer.

Position it at x: 0px, y: 30px, and give it the instance name ‘icon_btn’.

Now enter the following ActionScript code in the first frame of the ‘Script’ layer

//Declare variables for the icon reel

var isReelMoving:Boolean = false; //Whether the icon reel is moving

var iconWidth:Number = 64; //Keep track of the size of our icons

var themeRoot:MovieClip = this._parent; //So we can access the root of our theme easily

function initReel() {

 for (var i:Number = 0; i < _parent.maxIconNum; i++) {

 var iconMc:MovieClip = this["icon" + i + "_mc"];

 //Only 5 or six icons are going to be visible at each time

 //put the first 6 starting in the center

 //then loop the next 6 around

 if (i < 6) {

 iconMc._x = 0 + (iconWidth * i);

 } else {

 iconMc._x = 0 - (iconWidth * (_parent.maxIconNum - i));

 }

 }

 //Update label

 updateIconLabel();

}

//Move reel to the left or right

//Can set speed to 0 or 1 (faster)

function moveReel(moveSpeed:Number, doReverseRotate:Boolean) {

 if (isReelMoving == false) {

 //Only move reel if it isn't already moving

 //Make sure function can't be called again until

 //the reel has stopped moving

 isReelMoving = true;

 var directionNum:Number = 1;

 if (doReverseRotate == true) {

 //Move icons left

 directionNum = -1;

 //Loop round and put the last icon to the left on the right

 //Get the number of the last icon to the left

 var lastMcNum:Number = _parent.currentIconNum + 6;

 if (lastMcNum > 11) {

 lastMcNum -= 12;

 }

 var lastMc:MovieClip = this["icon" + lastMcNum + "_mc"];

 lastMc._x = (iconWidth * 6);

 } else {

 //Move icons right

 //Get number of the last icon to the right

 var lastMcNum:Number = _parent.currentIconNum + 5;

 if (lastMcNum > 11) {

 lastMcNum -= 12;

 }

 var lastMc:MovieClip = this["icon" + lastMcNum + "_mc"];

 lastMc._x = -(iconWidth * 7);

 }

 //Animation variables

 var xIncrement:Number = 18;

 var maxFrameCount:Number = 3;

 if (moveSpeed == 1) {

 xIncrement = 27;

 maxFrameCount = 2;

 }

 var frameCount:Number = 0;

 this.onEnterFrame = function() {

 //Move icons

 for (var i:Number = 0; i < _parent.maxIconNum; i++) {

 var iconMc:MovieClip = this["icon" + i + "_mc"];

 if (frameCount < maxFrameCount) {

 iconMc._x += (directionNum * xIncrement);

 } else {

 iconMc._x += (directionNum * 10);

 }

 }

 if (frameCount == maxFrameCount) {

 //Adjust the currently selected icon

 _parent.currentIconNum -= directionNum;

 if (_parent.currentIconNum < 0) _parent.currentIconNum = 11;

 if (_parent.currentIconNum > 11) _parent.currentIconNum = 0;

 //Update the icon label

 updateIconLabel();

 //Finished moving the reel

 delete this.onEnterFrame;

 isReelMoving = false;

 } else frameCount++;

 }

 }

}

//Update label to current icon name

function updateIconLabel() {

 var iconLabel:String = _parent.iconLinkArr[_parent.currentIconNum].__label;

 if (iconLabel == undefined) {

 //Can happen if XML takes a while to load, if so

 //do it again and hopefully it'll be loaded

 updateIconLabel();

 } else {

 //Update the icon label

 label_tf.text = iconLabel;

 }

}

//When icon button is pressed

icon_btn.onPress = function() {

 //Show circle animation

 _root.show_pressAni(120, 110 + 25);

if (isReelMoving == false) {

 //Haptic vibration

 platform.touch_sound();

 }

}

//When icon button is released

icon_btn.onRelease = function() {

 //Hide circle animation

 _root.out_pressAni();

//Only call function if its no longer moving

 if (isReelMoving == false) {

 //Get id and dep of current icon

 var idCode:String = themeRoot.iconLinkArr[themeRoot.currentIconNum].__id;

 var depCode:String = themeRoot.iconLinkArr[themeRoot.currentIconNum].__dep;

 themeRoot.eventCall(depCode, idCode);

 }

}

icon_btn.onReleaseOutside = function() {

 //Hide circle animation

 _root.out_pressAni();

}

//Initialise the reel

initReel();

So, you’re probably wondering what all that math is about. It might look scary, but it’s not difficult really. The

initReel() function sets up the positions of all of the icons in the reel. To do this it puts the first icon in the

middle, and the next five after that to the right. Then to give the effect of the reel ‘wrapping round’, it places

the next six icons to the left, with the last icon (11) being the icon just to the left of the first icon (0).

The moveReel() function does what it says! Its good practice to name your functions like this – give all

functions descriptive names and give methods names that begin with verbs. How does it move the reel? First

notice the function takes a Number parameter moveSpeed, which can be either 0 or 1 and sets how quickly

the animation should occur, then there is Boolean parameter doReverseRotate; if this is true it rotates

the reel to the left, otherwise it rotates the reel to the right. Then it finds the furthest icon to the left or right

(depending on which direction it is rotating) and sticks it on at the opposite side of the reel. Then we use an

onEnterFrame function, which is called at the frame-rate of the document, to move all of the icons to the

left or right.

We also set up the handlers for the icon button – we show the built-in circular press animation by calling the

show_pressAni() function when the button is pressed using the onPress handler, and hide it when it is

let go using the out_pressAni() function with the onRelease handler. Notice we only do something if

the reel isn’t moving, this because otherwise we might call the wrong function as the currently selected icon

might have just changed.

Return to editing the main scene, select the frame 2 of the ‘Icons’ layer and drag the ‘Icon Reel’

MovieClip from your library onto the stage. Place it at x: 120px, y: 110px, and give it the instance name

‘iconReel_mc’ in the properties inspector.

4 CREATING THE LAUNCHER

Create a new MovieClip in your library and give it the

name ‘Launcher’. Create three new layers inside this

symbol, and give them names as shown opposite. Select

the first frame of the ‘Launcher Background

layer’, and drag the ‘Launcher Background’ image

onto the stage. Place it at x: -120px, y: 0px.

Now select the first frame of ‘Launcher Icons’ layer, and drag the small ‘Inbox’, ‘Sent’, ‘Draft’ and

‘Menu’ icons onto the stage. Place the ‘Inbox’ icon at x: -98px, y: 23px; the ‘Draft’ icon at x: -41px, y: 23px,

the ‘Sent’ icon at x: 15px, y: 23px and finally put the ‘Menu’ icon at x: 72px, y: 23px.

Select the first frame of the ‘Icon Labels’ layer, and create a new dynamic text box. Give it the following

properties: width: 50px, height: 20px, x: -111px, y: 46px, font-size: 12pts, font-color: ‘#FFFFFF’, text-align:

Center; and finally set the variable to ‘inboxCount’. Create

another three text-boxes with same properties, except give the

first: x:-54px, variable: ‘draftCount’; the second: x: 2px,

variable ‘sentCount’ and the last: x: 58px, no variable. Enter

the text ‘Menu’ into the last text-box on the right. Your stage

should look similar to the picture to the right.

Create a new symbol in your library, and make it a Button. Give it the name ‘Icon Button’. Select the

‘Down’ frame of the ‘Icon Button’ and insert a new keyframe. Drag the ‘Launcher Button’ image

onto the stage and place it at x: -27px, y: -25px. Now insert a new blank keyframe into the ‘Hit’ frame of the

button, and draw a rectangle of w: 50px, height: 50px; the style of the rectangle does not matter because it

will not be visible, it just serves as a hit area for the button. Place the rectangle at x: -25px, y: -25px.

Return to editing the ‘Launcher’ MovieClip, and place four of the ‘Launcher Button’ buttons onto the

first frame of the ‘Icon Buttons’ layer. Put the first at x: -85px, y: 41px and give it the instance name

‘inbox_btn’; the second at x: -29px, y: 41px and give the instance name ‘draft_btn’; the third at x: 27px,

y: 41px and give it the instance name ‘sent_btn’; place the last one at x: 83px, y: 41px and give it the

instance name ‘menu_btn’.

Select the first frame of the ‘Script’ layer in the ‘Launcher’ MovieClip, and enter the following

ActionScript code:

//Declare message counters

//Set the inboxCount, sentCount and draftCount variables

//to a number so they don't appear as undefined

var inboxCount:Number = 0;

var draftCount:Number = 0;

var sentCount:Number = 0;

//This will keep the id for stopping and starting

//a timer to check message counts through the

//setInterval and clearInterval functions

var intervalID:Number;

function updateMessageCounters() {

 //These come from the NYX

 inboxCount = _root.inboxCount;

 draftCount = _root.draftCount;

 sentCount = _root.sentCount;

 //Check for undefined if handset hasn't

 //yet loaded data to the NYX

 if (inboxCount == undefined) inboxCount = 0;

 if (draftCount == undefined) draftCount = 0;

 if (sentCount == undefined) sentCount = 0;

}

//Check messages every now and then

function startMessageCheck() {

 //Update the message count every 30 seconds

 //need to use intervalID so we can stop it later on

 intervalID = setInterval(updateMessageCounters, 30000);

 //Update counters now

 updateMessageCounters();

}

//Stop checking messages

//used for when menu is opened

function stopMessageCheck() {

 clearInterval(intervalID);

}

//Set up the buttons to launch applications

var themeRoot:MovieClip = this._parent; //So we can access the parent of this clip easily

inbox_btn.onPress = draft_btn.onPress = sent_btn.onPress = menu_btn.onPress = function() {

 platform.touch_sound(); //Make a haptic vibration

}

inbox_btn.onRelease = function() {

 themeRoot.eventCall("", "fid:0x27e00000");

}

draft_btn.onRelease = function() {

 themeRoot.eventCall("", "fid:0x27c00000");

}

sent_btn.onPress = function() {

 themeRoot.eventCall("", "fid:0x27a00000");

}

menu_btn.onPress = function() {

 themeRoot.eventCall();

}

Let’s take a quick look at that ActionScript. First we declare some variables to track the inbox, sent and draft

count and another to keep track of a timer so we can check messages at regular intervals.

The updateMessageCounters() function uses the _root keyword to get the message counts from the

NYX menu. The startMessageCheck() and stopMessageCheck() functions are quite self-

explanatory, they start and stop the regular checking of the messages.

We then set the handlers for the launcher buttons. They all have the same onPress handler, which causes a

haptic vibration. When the buttons are released we call the eventCall() function defined in the first

frame of the main scene our theme, don’t worry about those values in the eventCall() function and

where they come from, there is a list in the reference at the end of this guide with codes for all of the phone

functions.

Now return to the main scene and select the second frame of the ‘Launcher’ layer. Drag the ‘Launcher’

MovieClip symbol from your library onto the stage, give it the instance name ‘launcher_mc’, and place it

at x: 120px, y: 330px.

5 CREATING THE SCROLLBAR CONTROL FOR THE ICON REEL

Create a new MovieClip symbol in your library with the

name ‘Scrollbar’. Make two new layers inside this

MovieClip, and name them as shown opposite.

Then select the first frame of the ‘Background’ layer and

drag the ‘Scrollbar Background’ image from your

library onto the stage. Place it at x: -110px, y: -18px. Now drag the ‘Scrollbar Handle’ image onto the

first frame of the ‘Handle’ layer, and press F8 to convert it to a symbol. Set the registration point if the

symbol as middle-center, make it a button type, and name it ‘Handle Button’. Place it at x: 0px, y: 0px and

give it the instance name ‘handle_btn’.

Now select the first frame of the ‘Script’ layer, open the Actions editor and enter the following ActionScript

code:

//Some variables to keep track of what we're up to

//These are for tracking how fast we want to move the reel

var delayCount:Number = 0;

var scrollSpeed:Number = -1;

//So we can access the root of our theme easily

var themeRoot:MovieClip = this._parent;

//Scroll the reel at a regular interval if the scrollbar is

//over to one side far enough

function scrollIconReel() {

 var maxDelayCount:Number = 8;

 //Check how far the user has moved the scrollbar over

 if (Math.abs(handle_btn._x) < 10) {

 //Do nothing

 scrollSpeed = -1;

 } else {

 if (Math.abs(handle_btn._x) < 50) {

 //Scroll slowly

 scrollSpeed = 0;

 } else {

 //Scroll more quickly

 scrollSpeed = 1;

 maxDelayCount = 4;

 }

 }

 //Move reel if its time

 if (delayCount == 0 && scrollSpeed >= 0) {

 var doReverse:Boolean = false;

 //Check which side scrollbar is on

 if (handle_btn._x < 0) {

 doReverse = true;

 }

 //Move reel

 themeRoot.iconReel_mc.moveReel(scrollSpeed, doReverse);

 }

 delayCount++;

 if (delayCount >= maxDelayCount) {

 delayCount = 0;

 }

}

//Event handlers for our button

handle_btn.onPress = function() {

 platform.touch_sound(); //Haptic vibration

 //Maximun range of the handle

 var xLimit:Number = 110 - (this._width / 2);

 //Start dragging the handle

 //and keep its y-position constant

 startDrag(this, false, xLimit, this._y, -xLimit, this._y);

 //Stop moving handle back to center (if it is)

 delete this._parent.onEnterFrame;

 //Start scrolling icons

 this._parent.onEnterFrame = scrollIconReel;

}

handle_btn.onRelease = handle_btn.onReleaseOutside = handle_btn.onDragOut = function() {

 //Stop dragging our handle

 stopDrag();

 //Stop checking position of handle

 delete this._parent.onEnterFrame;

 //How far the handle has moved

 var xDisplacement:Number = handle_btn._x;

 //How much the handle will move each frame (rounded)

 var xIncrement:Number = Math.round(handle_btn._x / 3);

 var frameCount:Number = 0; //Number of animation frames

 //Return handle to center

 this._parent.onEnterFrame = function() {

 handle_btn._x -= xIncrement; //Change x position

 frameCount++; //Update frame counter

 if (frameCount == 3) {

 //Make sure handle is centered

 handle_btn._x = 0;

 //Stop animation

 delete this.onEnterFrame;

 }

 }

}

The function scrollIconReel() is called every frame once the handle button is selected, it checks how

far over the handle is, and then calls our moveReel() function we defined in the ‘Icon Reel’ symbol to

actually move the reel.

Then we set up the event handlers for our scrollbar button: when the user presses it, we give them some

haptic feedback, and then call the scrollReel() function to check the position of our handle.

When the user releases the button, we stop dragging it around and use an onEnterFrame function to

return the handle to its center position.

Now drag the ‘Scrollbar’ MovieClip onto the second frame of the ‘Errors’ layer (we may as well reuse it

as it’s no longer needed), position it at x: 120px, y: 230px, and give it the instance name ‘scrollbar_mc’.

6 CREATING THE CLOCK

There are many ways you can show the time, we’re just going for a simple 24 hour clock for this theme, but

you could make yours show the date, or show the time in a 12 hour format if you like.

Then insert a keyframe into the second frame of the ‘Clock’ layer in the main scene.

Now create a new MovieClip symbol in your library and

name it ‘Clock’. Now create a new layer inside this, and

name your layers as shown opposite.

Select the ‘Clock Text’ layer, and create a new dynamic text box. Give it the following properties: width:

100px, height: 40px, x: -50px, y: -20px, font-size: 30pts, font-color: ‘#FFFFFF’, and make it center-aligned. Set

the variable of the text-box to ‘timeText’.

Now enter the following ActionScript code into the first frame of the ‘Script’ layer:

var timeText:String = ""; //Time display

var intervalID:Number; //interval id for clearInterval function

//Update clock display

function updateClock() {

 //Get the current Date/Time

 var currentDateTime:Date = new Date();

 //Hours & minutes

 var hours:String = String(currentDateTime.getHours());

 var mins:String = String(currentDateTime.getMinutes());

 //Add zero onto the beginning if single digit

 if (length(hours) < 2) hours = "0" + hours;

 if (length(mins) < 2) mins = "0" + mins;

 //Update clock text

 timeText = hours + ":" + mins;

}

//Start checking time at regular intervals

function startClock() {

 updateClock();

 intervalID = setInterval(updateClock, 30000)

}

//Stop checking time at intervals

function stopClock() {

 clearInterval(intervalID);

}

The updateClock() function gets the current time and updates the ‘timeText’ variable. The

startClock() function makes our script check the time every 30 seconds (which is fine because we are

only showing hours and minutes) and the stopClock() function stops our script checking the time (to use

when the menu is opened).

Now return to editing the main scene and select the second keyframe of the ‘Clock’ layer. Drag your

‘Clock’ symbol onto this layer, and give it the instance name ‘clock_mc’, then position it on the stage at x:

120px, y: 72px.

Finally select the third frame of ‘Script’ layer in the main timeline, and enter the following ActionScript

code in the Actions editor:

//This function will center the user image horizontally,

//as we don't know exactly how wide it could be

function centerUserImage() {

 //Get the width of the image

 var imageWidth:Number = userImage_mc._width;

 //Calculate the center position

 var centerPosition:Number = 120 - (imageWidth / 2);

 userImage_mc._x = centerPosition; //Center the MovieClip

}

//Center user image now

centerUserImage();

//Set users chosen background

background_mc.gotoAndStop(backgroundNum)

//Finally go to main frame

gotoAndStop('MAIN');

The function centerUserImage() centers the ‘userImage_mc’ horizontally, since the user may make

their image wider or smaller than the original one. We call it straight away to center the image. Then we set

the background to the one the user chose in their XML configuration file, and finally we jump to the ‘MAIN’

frame.

7 MAKING THE ‘MAIN’ SCENE

Insert a new keyframe into the third frame of all of your

layers except the ‘Background’ layer, were you want

to insert just a normal frame instead. Your main

timeline display should now look like that opposite.

Select the third frame of the ‘Labels’ layer and give it

the frame name ‘MAIN’. Now select the third frame of

the ‘Script’ layer and enter the following

ActionScript code:

//Start Clock

clock_mc.startClock();

//Check SMS counters

launcher_mc.startMessageCheck();

//Make sure image is in right place

userImage_mc._y = 270;

//Update icon label

iconReel_mc.updateIconLabel();

This starts the clock and message counters using the functions we created earlier. We make sure the user

image is in the right place because we set its position programmatically, so making a keyframe and dragging it

off the stage won’t work for hiding it on the menu screen – we have to hide it with ActionScript as well.

8 MAKING THE ‘MENU’ SCENE

Insert a new keyframe into the fourth frame of all of

your layers except the background layer, where you just

want to insert a frame. Give the fourth frame of the

‘Labels’ layer the name ‘MENU’. Now drag the

scrollbar_mc, clock_mc, userImage_mc and

launcher_mc and background_mc MovieClips

off the visible area of the stage.

Now create a new MovieClip in your library named

‘Menu Background’. In this MovieClip create a

rectangle of width: 240px, height: 400px and fill it with a light color, I chose a light gray (‘#999999’). Then

position the rectangle at x: 0, y: 0. Return to editing the main scene, and drag the ‘Menu Background’

symbol onto the fourth frame of the ‘Clock’ layer. Then position it at x: 0, y: 0.

Enter the following ActionScript code in the fourth frame of the ‘Script’ layer:

//Stop Clock

clock_mc.stopClock();

//Stop checking SMS counters

launcher_mc.stopMessageCheck();

//Hide user image

userImage_mc._y = -1000;

This just stops the clock and message counters from updating while the menu is open because they won’t be

visible, and we want the CPU to have to do as little as possible. We also hide the user image.

9 PUBLISHING YOUR THEME

One more step to go and you’re done (you can try testing your theme by pressing CTRL+ENTER, although the

SMS counters will not work). Change the number of the background in the XML file and test again (it can set

from 1 – 3), to make sure that the background changes correctly.

Double-click on the frame-rate display to show the document properties and up the frame-rate of the

document to 20FPS, so things run as smoothly as possible on your mobile device.

Now select FILE -> PUBLISH

SETTINGS from the toolbar. Make

sure only the Flash (.swf) format is

selected in the Format tab, and

then in the Flash tab change the

Flash version to Flash Lite 2.1 (or

Flash 7 if you are using an older

version of Flash Professional). Now press publish and hey presto! You’re theme is done.

Now you’re going to want to test it on your phone, so rename the ‘MyTheme.swf’ file to ‘theme_bg2.swf’, and

use EFS explorer to copy that and the ‘MyTheme’ folder to /LGAPP/Media/swf/theme/.

 Then disconnect your phone, switch to the silver theme, and try it out!

It is good practice to test your theme with Theme Manager, as although it should work the same, sometimes it

may not. For instructions on how to install Theme Manager, and get your theme running on Theme Manager,

see the Theme Manager topic at http://ku990.co.uk/forum.

Have a play about changing the positions of objects and things such as font-sizes, to get the theme looking just

right once you have tested it on your handset.

http://ku990.co.uk/forum

10 COMMENTS

A nice effect would be to have the Icons fade out towards the edges of the real… So I did not include it because

it was too complex for this guide? Actually it wouldn’t have been too hard, and it’s possible in ActionScript 2.0,

but it requires objects to support runtime bitmap caching, which sadly is only supported in Flash Player 8 or

later or Flash Lite 3.0. You need to be careful about things like this: there are a couple of things that will work

fine when you debug them in a normal Flash format, but when you publish to Flash Lite it may not work.

Another thing to get comfortable with is the debugger (Press CTRL+SHIFT+ENTER to start debugging your

Movie). This will tell you all of the values of your variables, arrays, objects etc and the current properties of the

items on the stage. All this information is very useful, and can help you check things such as whether the data

you’re loading from your XML files is really getting imported.

Here are a few ideas you can add yourself to make the theme your own:

 Add a 12 hour mode to the clock, and let the user choose the clock mode in the XML. You’ll need a

new global variable to remember the clock mode, to edit the loadXML() function to get the value

from the XML, and add a second frame to the clock with an AM/PM dynamic text-box. You’ll also

need to edit the updateClock() function to give the correct time depending on the mode.

 Add a date display to the clock. This will need a new dynamic text-box, and a new set of functions to

update the date, and start and stop checking the date at regular intervals.

 Add more background colors. You could add images instead of just colors as well.

 Let the user load an animation instead of an image. (This is easy and just requires changing the ‘.jpg’

extension in the loadUserImage() function to ‘.swf’)

 Let the user drag the userImage_mc, iconReel_mc and clock_mc MovieClips around the screen so

they can swap the order of them.

 Let the user choose a menu background in the XML, to do this edit the ‘Menu Background’

MovieClip in a similar way to the ‘Background’ symbol and add a new line to XML file to hold the

information.

REFERENCE

DEP AND ID CODES

Note: These are taken from an open v10E firmware KU990®. Some codes may vary between operators. It is

always a good idea to load these from an external file, so the user can alter them if your values do not work.

For applications only the ID code is required, for menus only the DEP is required (when using the standard

eventCall() function, see the code snippets)

Description DEP ID Type
Main Menu Menu
Dialing 1,1 event:dialing Application
Contacts 1,2,1 Menu
Contacts – Search 1,2,1 fid:0x22e00000 Application
Contacts – Add New 1,2,2 fid:0x22f00000 Application
Contacts – Speed Dials 1,2,3 fid:0x22d00000 Application
Contacts – Groups 1,2,4 fid:0x22c00000 Application
Contacts – Settings 1,2,5 fid:0x22900000 Application
Contacts – Information 1,2,6 Menu
Contacts – Information – Service dial numbers fid:0x22b00000 Application
Contacts – Information – Own number fid:0x22a0000 Application
Contacts – Information – Memory info. fid:0x23000000 Application
Contacts – Information – My business card fid:0x22500000 Application
Call Logs 1,3,1 Menu
Call Logs – All calls 1,3,1 fid:0x2ce00000 Application
Call logs – Dialed calls 1,3,2 fid:0x2c500000 Application
Call logs – Received calls 1,3,3 fid:0x2c400000 Application
Call logs – Missed calls 1,3,4 fid:0x2c300000 Application
Call logs – Call charges 1,3,5 Menu
Call logs – Call charges – Call durations fid:0x2cd00000 Application
Call logs – Call charges – Call costs fid:0x2cc00000 Application
Call logs – Data volume 1,3,6 fid:0x2c200000 Application
Messaging 1,4,1 Menu
Messaging – Create new message 1,4,1 fid:0x27f00000 Application
Messaging – Inbox 1,4,2 fid:0x27e00000 Application
Messaging – Email 1,4,3 fid:0x27d00000 Application
Messaging – Drafts 1,4,4 fid:0x27c00000 Application
Messaging – Outbox 1,4,5 fid:0x27b00000 Application
Messaging – Sent items 1,4,6 fid:0x27a00000 Application
Messaging – Templates 1,4,7 Menu
Messaging – Templates – Text templates fid:0x27900000 Application
Messaging – Templates – Multimedia templates fid:0x27100000 Application
Messaging – Emoticons 1,4,8 fid:0x27800000 Application
Messaging – Settings 1,4,9 Menu
Messaging – Settings – Text message fid:0x16700000 Application
Messaging – Settings – Multimedia message fid:0x16600000 Application
Messaging – Settings – Email fid:0x16500000 Application
Messaging – Settings – Videomail fid:0x16400000 Application
Messaging – Settings – Voicemail fid:0x16300000 Application
Messaging – Settings – Service message fid:0x16200000 Application
Messaging – Settings – Info. Service fid:0x16100000 Application
My stuff 2,1,1 Menu
My stuff – My images 2,1,1 fid:0x20000f0f Application
My stuff – My sounds 2,1,2 fid:0x20000f0d Application

My stuff – My videos 2,1,3 fid:0x20000f0e Application
My stuff – My games & apps 2,1,4 fid:0x20000f0c Application
My stuff – Flash contents 2,1,5 fid:0x20000f07 Application
My Stuff – Documents 2,1,6 fid:0x20000f06 Application
My stuff – My memory card 2,1,7 fid:0x20000f0a Application
My stuff – Other files 2,1,8 fid:0x20000f08 Application
Camera 2,2 fid:0x20000f3e Application
Muvee studio 2,3 fid:0x10000f38 Application
Music 2,4 fid:0x20000f3c Application
Video playlists 2,5 fid:0x20000f09 Application
Voice recorder 2,6 fid:0x20000f3d Application
FM radio 2,7 fid:0x20000f3a Application
Games & Apps 2,8,1 Menu
Games & Apps – My games & apps 2,8,1 fid:0x20000fcf Application
Games & Apps – Settings 2,8,2 fid:0x20000fcd Application
Games & Apps – Space commando 2,8,3 fid:0x10000fc7 Application
Browser 3,1,1 Menu
Browser – Home 3,1,1 fid:0x20000fc6 Application
Browser – Enter address 3,1,2 fid:0x20000fc3 Application
Browser – Bookmarks 3,1,3 fid:0x20000fc5 Application
Browser – Saved pages 3,1,4 fid:0x20000fc4 Application
Browser – History 3,1,5 fid:0x20000fc7 Application
Browser – Settings 3,1,6 fid:0x20000fc1 Application
Google 3,2 fid:0x20000fc9 Application
Organiser 3,3,1 Menu
Organiser – Calendar 3,3,1 fid:0x10000fff Application
Organiser – To do 3,3,2 fid:0x10000ffe Application
Organiser – Date 3,3,3 fid:0x10000ffb Application
Organiser – Settings 3,3,4 fid:0x20000ff9 Application
Alarms 3,4 fid:0x10000ff7 Application
Memo 3,5 fid:0x20000ffd Application
Tools 3,6,1 Menu
Tools – Calculator 3,6,1 fid:0x10000ff5 Application
Tools – World clock 3,6,2 fid:0x10000ff4 Application
Tools – Converter 3,6,3 Menu
Tools – Converter – Currency fid:0x20000fed Application
Tools – Converter – Surface fid:0x20000fec Application
Tools – Converter – Length fid:0x20000feb Application
Tools – Converter – Weight fid:0x20000fea Application
Tools – Converter – Temperature fid:0x20000fe9 Application
Tools – Converter – Volume fid:0x20000fe8 Application
Tools – Converter – Velocity fid:0x20000fe7 Application
USIM services 3,7 fid:0x20000ff Application
Screen 4,1,1 Menu
Screen – Main screen theme 4,1,1 fid:0x20000f7f Application
Screen – Clock & Calendar 4,1,2 fid:0x20000f7d Application
Screen – Brightness 4,1,3 fid:0x20000f7c Application
Screen – Backlight 4,1,4 fid:0x20000f7e Application
Screen – Handset theme 4,1,5 fid:0x20000f7b Application
Screen – Font 4,1,6 fid:0x20000f7a Application
Profiles 4,2,1 Menu
Phone settings 4,3,1 Menu
Phone settings – Date & Time 4,3,1 fid:0x100ef000 Application
Phone settings – Power save 4,3,2 fid:0x100e4000 Application
Phone settings – Languages 4,3,3 fid:0x100eb000 Application
Phone settings – Security 4,3,4 Menu
Phone settings – Security – PIN code request fid:0x200e3000 Application

Phone settings – Security – Handset lock fid:0x200e2000 Application
Phone settings – Security – Auto key lock fid:0x100e6000 Application
Phone settings – Connectivity 4,3,5 Menu
Phone settings – Connectivity – Network settings fid:0x100ee000 Application
Phone settings – Connectivity – Access points fid:0x100ed000 Application
Phone settings – Connectivity – USB connection mode fid:0X10000fed Application
Phone settings – Connectivity – Synch service fid:0x10000ff0 Application
Phone settings – Connectivity – Streaming settings fid:0x100e3000 Application
Phone settings – Connectivity – TV out fid:0x100e2000 Application
Phone settings – Memory manager 4,3,6 fid:0x100ea000 Application
Phone settings – Touchpad calibration 4,3,7 fid:0x100e7000 Application
Phone settings – Reset settings 4,3,8 fid:0x100e8000 Application
Phone settings – Handset information 4,3,9 fid:0x100e9000 Application
Call settings 4,4,1 Menu
Call settings – Call divert 4,4,1 fid:0x2cb00000 Application
Call settings – Call barring 4,4,2 fid:0x2ca00000 Application
Call settings – Fixed dial numbers 4,4,3 fid:0x2c900000 Application
Call settings – Call waiting 4,4,5 fid:0x2c800000 Application
Call settings – Common setting 4,4,6 fid:0x2c700000 Application
Call settings – Video call setting 4,4,7 fid:0x1cf00000 Application
Flight mode 4,5 fid:0x100e5000 Application
Bluetooth 4,6 fid:0x10000ff1 Application

CODE SNIPPETS

LAUNCHING THE HANDSET MENU OR APPLICATIONS

//eventCall function

//used to launch handset apps and menus

function eventCall(dep:String, id:String) {

 if (!platform) {

 return undefined;

 //Don't do anything when you test it on the Computer

 //because the apps aren't there

 }

 if (id == undefined || id == "") {

 //No id means it's not an application,

 //so open the NYX menu at the page

 //specified by the dep

 platform.setMenuOn();

 _root.idleQuick = true;

 _root.QuickSet(dep);

 return; //Stop going any further in this function

 }

 //If we got this far it must be an application

 //Use the id to launch the correct application

 platform.launch_module(id);

}

USING HAPTIC FEEDBACK

//Cause haptic vibration

platform.touch_sound();

CHECKING MESSAGE COUNTS

//Get number of new messages in inbox

var newInboxCount:Number = _root.newInboxCount;

//Get number of messages in inbox

var inboxCount:Number = _root.inboxCount;

//Get number of messages in drafts folder

var draftCount:Number = _root.draftCount;

//Get number of messages in outbox

var outboxCount:Number = _root.outboxCount;

//Get number of sent messages

var sentCount:Number = _root.sentCount;

//You should check whether all these counts are undefined before

//you display them, as the phone can take up 30 seconds at start-up

//to get the required data

HIDING THE NORMAL PHONE INTERFACE

//Hide the show/hide shortcut arrows

_root.idleChanger_mc.unloadMovie();

//Hide the normal phone launcher

_root.mc_idle.idelLauncher.gotoAndStop(11);

//Hide the operator text

_root.cur_main = "shortCut";

platform.setIdleCondition();

//Hide the shortCut launcher menu

_root.mc_idle.shortCut_mc._y = 401;

USING THE BUILT-IN CIRCULAR PRESS ANIMATION

//Show press animation

//Circle is centered at xCoord, yCoord

_root.show_pressAni(xCoord:Number, yCoord:Number, scalePercentage:Number);

//Hide press animation

_root.out_pressAni();

COPYRIGHT INFORMATION

THIS GUIDE

VERSION: 1.0.0
PUBLISHED: 27/08/2008
COPYRIGHT: Joseph Earl ©2008

THE ‘MYTHEME’ EXAMPLE THEME

The ‘MyTheme’ example theme you can create using this guide, from here-on in referred to as ‘the theme’, is
released for public use without copyright. You are free to modify, reproduce, distribute or otherwise use the
theme, including its compiled source (FLA) and other resources, provided you do not claim copyright or
authorship of them.
You are free to release, sell or otherwise distribute a modification to the theme, provided: a) you do not claim
copyright rights for, or b) authorship of, the original portions of the theme, it’s design and associated files
(including the source). You may claim copyright control of your theme as a whole, and of your original
components, code, or resources as individuals.

	Requirements
	Introduction
	Guide
	1 Setting up the Document
	2 Loading Files
	3 Creating the Icon Reel
	4 Creating the Launcher
	5 Creating the Scrollbar Control for the Icon Reel
	6 Creating the clock
	7 Making the ‘Main’ Scene
	8 Making the ‘Menu’ Scene
	9 Publishing Your Theme
	10 Comments

	Reference
	DEP and ID Codes
	Code Snippets
	Launching the Handset Menu or Applications
	Using Haptic Feedback
	Checking Message Counts
	Hiding the normal phone interface
	Using the Built-In Circular press Animation

	Copyright Information
	This Guide
	The ‘MyTheme’ Example theme

