

andbook!
release.002

Android Programming

with Tutorials from the anddev.org-Community.

written by Nicolas Gramlich

Check for the latest version on

http://andbook.anddev.org

http://andbook.anddev.org/

andbook - Android Programming

2
powered by anddev.org

Content

Foreword / How to read this doc ... 5

Introduction.. 6

What is Android – a GPhone? .. 7

Android from above .. 8

Openness ... 8

All applications are created equal ... 9

Breaking down application boundaries ... 9

Fast & easy application development ... 9

The first weeks .. 12

Dalvik.equals(Java) == false ... 13

Differences to a normal JavaVM ... 13

The Android Code Challenge ... 14

Creating Android Applications .. 15

Anatomy of an Android Application ... 15

Activity ... 15

Intent Receiver .. 17

Service ... 17

Content Provider ... 18

Android User Interfaces ... 19

Hierarchy of Screen Elements ... 19

Comparing Android UI Elements to Swing UI Elements 22

The AndroidManifest.xml ... 23

General ... 24

<manifest> ... 25

<uses-permission> ... 25

<permission> ... 25

<instrumentation> ... 25

<application> ... 25

andbook - Android Programming

3
powered by anddev.org

<meta-data> .. 27

<receiver> .. 27

<service> .. 27

<provider> ... 28

Resources and the magic R.java .. 29

Resources ... 29

List of resources ... 29

Using resources in code ... 30

Referencing Resources .. 31

Alternate Resources & Localization .. 32

The magic R.java ... 33

Hello World – The Android way. .. 34

Installing the Android SDK ... 35

The Android Development Tools (ADT) ... 35

Installation done, let’s do some code ... 37

Creating a new Android Project .. 37

Running your first application ... 43

UIs the Java way ... 45

System.out.println(…) ? ... 46

The LogCat ... 46

Using Intents .. 49

Starting (Sub)Activities .. 49

Finding XML-defined Views in Java-Code .. 52

Handling Clicks to Views .. 53

Returning values from SubActivities ... 56

Passing Data to (Sub)Activities .. 58

Important Layouts and ViewGroups .. 60

The RelativeLayout .. 60

andbook - Android Programming

4
powered by anddev.org

Bibliography ... 61

Lost chapters .. 62

The communities .. 62

andbook - Android Programming

5
powered by anddev.org

Foreword / How to read this doc
This document was written for developers who have worked with Java™

before and want to start developing for the Android Platform. I tried to

make this as much “hands on” as possible, placing example codes

everywhere it fit. Also I tried to insert as many picture as possible,

because they liven up the learning process and relax the reader’s eyes.

But unfortunately coding is not everything; one has to learn about

some basic facts of the Android Platform to fully understand. That is

what is described on the first ~XXX pages. It is not necessary to read all

those describing pages, but it is preferable. You could decide to treat it as

a kind of reference. What you would read there is also explained when it

occurs during the “hands on”-process. So you could directly start at Hello

World – The Android Way.

All codes you see in this document (the whole workspace) will be

available on:

http://andbook.anddev.org/sources/

Have fun reading…

http://andbook.anddev.org/sources/

andbook - Android Programming

6
powered by anddev.org

Introduction
The Open Handset Alliance (1) released the Google Android SDK on

November 12th, 2007, having announced it about a week before. The

impact was unbelievable, almost every IT/programming-related news-

page dumped a news-post about the SDK release – the Google Groups (2)

was overwhelmed with over 2000 Messages within the first two Days.

The idea of the Android Platform was and still is amazing and is of course

attracting more and more programmers every day. Especially the open

architecture based on Intents and the possibility to replace even the

Home-application grant a really large amount of flexibility to the whole

platform.

“Android – Imagination is the limit”1

1
 Nicolas Gramlich – anddev.org Site-Admin

andbook - Android Programming

7
powered by anddev.org

What is Android – a GPhone?
The weeks and months before Google released the Android SDK there

had been a lot of rumors about a so called GPhone. It was said to be a

mobile device manufactured by Google providing free communication by

showing context-sensitive advertisements to the user on the device

itself.

Picture 1 Render of a potential GPhone

But on November 5th 2007 Andy Rubin2 announced:

“[The] Android [Platform] – is more significant and ambitious than a single

phone.”

Google within the Open Handset Alliance (OHA) delivers a complete set

of software for mobile devices: an operating system, middleware and key

mobile applications. What was released a week later was not a final

product, but a “First Look SDK” what many did not realize. Major news

sites grabbed the discomforts of some developers who said that Android

is full of bugs and heavily lacks of documentation. But the majority says

that Android is not buggier than any other software at this stage.

2
 Andy Rubin – Google Director of Mobile Platforms

andbook - Android Programming

8
powered by anddev.org

Android from above
Let’s take a look at what the OHA emphasizes on its Android Platform:

Openness

“Android was built from the ground-up to enable developers to create

compelling mobile applications that take full advantage of all a

handset has to offer. It is built to be truly open. For example, an

application could call upon any of the phone's core functionality such

as making calls, sending text messages, or using the camera, allowing

developers to create richer and more cohesive experiences for users.”

This is true, as a developer you can do everything, from sending short

messages with just 2 lines of code, up to replacing even the HOME-

Screen of your device. One could easily create a fully customized

operating system within weeks, providing no more of Google’s default

application to the user.

“Android is built on the open Linux Kernel. Furthermore, it utilizes a

custom virtual machine that has been designed to optimize memory

and hardware resources in a mobile environment. Android will be

open source; it can be liberally extended to incorporate new cutting

edge technologies as they emerge. The platform will continue to

evolve as the developer community works together to build innovative

mobile applications.”

Here Google is talking of the so called Dalvik virtual machine (DalvikVM),

which is a register based virtual machine, designed and written by Dan

Bornstein and some other Google engineers, to be an important part of

the Android platform. In the words “register based” we find the first

difference to normal Java virtual machines (JVM) which are stack based.

See the “Dalvik.equals(Java) == false”-chapter for more details on that

issue.

andbook - Android Programming

9
powered by anddev.org

All applications are created equal

“Android does not differentiate between the phone's core applications

and third-party applications. They can all be built to have equal access

to a phone's capabilities providing users with a broad spectrum of

applications and services. With devices built on the Android Platform,

users will be able to fully tailor the phone to their interests. They can

swap out the phone's home screen, the style of the dialer, or any of

the applications. They can even instruct their phones to use their

favorite photo viewing application to handle the viewing of all

photos.”

Once again this is all true. Developers can 100% customize their Android-

Device. The Android System Communication is based on so called Intents,

which are more or less just a String (with some data attached) which

defines an action that needs to be handled. An example for this is:

”android.provider.Telephony.SMS_RECEIVED”

One can simply listen on that Intent by writing about 5 lines of

definitions. The system would then recognize that there is more than one

application that wants to handle that Intent and ask the user to choose

which one he or she would like to handle the Intent.

Breaking down application boundaries

“Android breaks down the barriers to building new and innovative

applications. For example, a developer can combine information from

the web with data on an individual's mobile phone - such as the user's

contacts, calendar, or geographic location - to provide a more relevant

user experience. With Android, a developer could build an application

that enables users to view the location of their friends and be alerted

when they are in the vicinity giving them a chance to connect.”

Fast & easy application development

“Android provides access to a wide range of useful libraries and tools

that can be used to build rich applications. For example, Android

andbook - Android Programming

10
powered by anddev.org

enables developers to obtain the location of the device, and allows

devices to communicate with one another enabling rich peer-to-peer

social applications. In addition, Android includes a full set of tools that

have been built from the ground up alongside the platform providing

developers with high productivity and deep insight into their

applications.”

Since the Web 2.0 revolution, making content rich applications within

minutes is no more illusion. Android has brought developing to unknown

speeds. Let me provide an example:

Someday I stumbled over the Buzzword ‘DrivingDirections’ within the

Android-Documentation.

Thought – done.

Picture 2 Google DrivingDirections implementation in Android

The development process of the application in the picture above took

about 1½ hours! (Including the simple user interface and all images you

see). Could one create such a sophisticated application on any other

mobile-platform? – No.

andbook - Android Programming

11
powered by anddev.org

Additionally this application could be enriched with the current GPS-

position of the device within a handful of code-lines.

Google emphasizes Androids power of providing location-based-services.

Google Maps are so neat within Android as if it was just developed for

Android. One can integrate a fully zoom and drag enabled map by adding

just 3(!) characters in the Java-Code of the Android-Default-Application

and 3 lines of XML-Code.

Other nice features that are easy to use with Android are Animations and

media-playback. Since version m5, the Android SDK contains functions

for straight and reverse GeoCoding and in addition to mp3, playback of:

ogg-Vorbis, MIDI and a bunch of other formats.

andbook - Android Programming

12
powered by anddev.org

The first weeks
Unfortunately the developers had to deal with a not fully implemented

preview-SDK (initially released build: ‘m3-rc20’), where even some key-

parts of the SDK were poorly documented. The lack of documentation

leaded to an explosion of the Android-Developer-Group within the

Google-Groups. Sooner or later one had to respect the statement from

Google:

“If it is not documented it is not meant to work yet.“

Many developers did not realize that fact that the first SDK released were

first-looks or developer-previews, where changes in the API had to be

awaited.

Another annoying bug was the choppy emulator-sound, which was said

fixed with the release of build ‘m3-rc37a’ about 4 weeks later, but still

happened on some setups up to m5.

andbook - Android Programming

13
powered by anddev.org

Dalvik.equals(Java) == false
Why “Dalvik”? – The Dalvik virtual machine was named by Bornstein after

the fishing village of Dalvík in Eyjafjörður (Iceland), where some of his

ancestors lived.

As you may have heard of, Dalvik is the name of Android's virtual

machine. It is an interpreter-only virtual machine that executes files in

the Dalvik Executable (*.dex) format, a format that is optimized for

efficient storage and memory-mappable execution. The virtual machine

is register-based, and it can run classes compiled by a Java language

compiler that have been transformed into its native format using the

included "dx" tool. The VM runs on top of a Linux 2.6 kernel, which it

relies on for underlying functionality (such as threading and low level

memory management). The DalvikVM was also optimized to be running

in multiple instances with a very low memory-footprint. Several VMs

protect ones application from being dragged down by another crashed

Application.

Differences to a normal JavaVM

JavaVM’s one can find on almost any desktop computer nowadays are

Stack-based Virtual Machines (VM).The DalvikVM on the other hand is

register based, because on mobile-processors are optimized for register-

based execution. Also of register-based VMs allow faster execution times

at the expense of programs which are larger after compilation.

http://en.wikipedia.org/wiki/Dalv%C3%ADk

andbook - Android Programming

14
powered by anddev.org

The Android Code Challenge
The Android Code Challenge (ADC) is an idea of Google to encourage the

community to build cool applications for the Android Platform by

rewarding the 50 most promising applications submitted.

Picture 3 Android Developer Challenge Logo

Of course the Android Developers Challenge, with its overall 10 Million

Dollars of prize money, was attracting even more software-developers to

create a bunch of really useful applications. On the other side many

voices said, that this was no good choice from Google, because it would

lead to less code-sharing, as many would fear sharing their ideas with a

community, during the first important months after the SDK release.

There were two Challenges planned:

 Android Developer Challenge I: Submissions up to April 14, 2008

 Android Developer Challenge II: This part will launch after the

first handsets built on the platform become available in the

second half of 2008.

In the Android Developer Challenge I, the 50 most promising entries

submitted by April 14 will each receive a $25,000 award to fund further

development. Those selected will then be eligible for even greater

recognition via ten $275,000 awards and ten $100,000 awards.

Applications submitted to the Challenge were supposed to be innovative

and demonstrate all the capabilities of the Android platform, like location

based services, media consumption, gaming and social networking, to

enrich mobile experience.

andbook - Android Programming

15
powered by anddev.org

Creating Android Applications
In this chapter we will concentrate on the specialties in creating any

Android-Application.

Anatomy of an Android Application
There are four building blocks to an Android application:

 Activity

 Intent Receiver

 Service

 Content Provider

Not every application needs to have all four, but your application will be

written with some combination of these.

Once you have decided what components you need for your application,

you should list them in a file called AndroidManifest.xml. This is an

XML file where you declare the components of your application and what

their capabilities and requirements are. We will discuss soon, what the

AndroidManifest.xml is responsible for.

Activity

Activities are the most common of the four Android building blocks. An

activity is usually a single screen in your application. Each activity is

implemented as a single class that extends the Activity base class. Your

class will display a user interface composed of Views and respond to

events. Most applications consist of multiple screens. For example, a text

messaging application might have one screen that shows a list of

contacts to send messages to, a second screen to write the message to

the chosen contact, and other screens to review old messages or change

settings. Each of these screens would be implemented as an activity.

Moving to another screen is accomplished by a starting a new activity. In

some cases an Activity may return a value to the previous activity - for

andbook - Android Programming

16
powered by anddev.org

example an activity that lets the user pick a photo would return the

chosen photo to the caller.

When a new screen opens, the previous screen is paused and put onto a

history stack. The user can navigate backward through previously opened

screens in the history. Screens can also choose to be removed from the

history stack when it would be inappropriate for them to remain.

Android retains history stacks for each application launched from the

home screen.

Intent and Intent Filters

Android uses a special class called Intent to move from screen to

screen. Intent describe what an application wants done. The two most

important parts of the intent data structure are the action and the data

to act upon. Typical values for action are MAIN (the front door of the

application), VIEW, PICK, EDIT, etc. The data is expressed as a Uniform

Resource Indicator (URI). For example, to view a website in the browser,

you would create an Intent with the VIEW action and the data set to a

Website-URI.

new Intent(android.content.Intent.VIEW_ACTION,

ContentURI.create("http://anddev.org"));

There is a related class called an IntentFilter. While an intent is

effectively a request to do something, an intent filter is a description of

what intents an activity (or intent receiver, see below) is capable of

handling. An activity that is able to display contact information for a

person would publish an IntentFilter that said that it knows how to

handle the action VIEW when applied to data representing a person.

Activities publish their IntentFilters in the AndroidManifest.xml

file.

Navigating from screen to screen is accomplished by resolving intents. To

navigate forward, an activity calls startActivity(myIntent). The

system then looks at the intent filters for all installed applications and

andbook - Android Programming

17
powered by anddev.org

picks the activity whose intent filters best matches myIntent. The new

activity is informed of the intent, which causes it to be launched. The

process of resolving intents happens at run time when startActivity is

called, which offers two key benefits:

 Activities can reuse functionality from other components simply

by making a request in the form of an Intent

 Activities can be replaced at any time by a new Activity with an

equivalent IntentFilter

Intent Receiver

You can use an IntentReceiver when you want code in your

application to execute in reaction to an external event, for example,

when the phone rings, or when the data network is available, or when it's

midnight. Intent receivers do not display a UI, although they may display

Notifications to alert the user if something interesting has

happened. Intent receivers are also registered in

AndroidManifest.xml, but you can also register them from code

using Context.registerReceiver(). Your application does not

have to be running for its intent receivers to be called; the system will

start your application, if necessary, when an intent receiver is triggered.

Applications can also send their own intent broadcasts to others with

Context.broadcastIntent().

Service

A Service is code that is long-lived and runs without a UI. A good

example of this is a media player playing songs from a play list. In a

media player application, there would probably be one or more activities

that allow the user to choose songs and start playing them. However, the

music playback itself should not be handled by an activity because the

user will expect the music to keep playing even after navigating to a new

screen. In this case, the media player activity could start a service using

Context.startService() to run in the background to keep the

music going. The system will then keep the music playback service

andbook - Android Programming

18
powered by anddev.org

running until it has finished. (You can learn more about the priority given

to services in the system by reading Life Cycle of an Android Application.)

Note that you can connect to a service (and start it if it's not already

running) with the Context.bindService() method. When

connected to a service, you can communicate with it through an

interface exposed by the service. For the music service, this might allow

you to pause, rewind, etc.

Content Provider

Applications can store their data in files, a SQLite database, preferences

or any other mechanism that makes sense. A content provider, however,

is useful if you want your application's data to be shared with other

applications. A content provider is a class that implements a standard set

of methods to let other applications store and retrieve the type of data

that is handled by that content provider.

andbook - Android Programming

19
powered by anddev.org

Android User Interfaces
User Interfaces (UI) in Android can be built within two ways, by defining

XML-Code or by writing Java-Code. Defining the GUI structure in XML is

highly preferable, because as one knows from the Model-Viewer-Control

principle that the UI should always be separated from the program-logic.

Additionally adapting a program from one screen-resolution to another is

a lot easier.

Defining a UI in XML is very similar to creating a common HTML-

document, where you have i.e. such a simple file:

<html>

 <head>

 <title>Page Title</title>

 </head>

 <body>

 The content of the body element.

 </body>

</html>

Just the same as in Android’s XML-Layouts. Everything is well structured

and can be expressed by tree-structures:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <TextView

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Hello World"/>

</LinearLayout>

Hierarchy of Screen Elements

The basic functional unit of an Android application is the activity-an

object of the class android.app.Activity. An activity can do many

things, but by itself it does not have a presence on the screen. To give

your activity a screen presence and design its UI, you work with views

andbook - Android Programming

20
powered by anddev.org

and viewgroups - basic units of user interface expression on the Android

platform.

Views

A view is an object extending the base class android.view.View. It's

a data structure whose properties store the layout and content for a

specific rectangular area of the screen. A View object handles measuring,

its layout, drawing, focus changes, scrolling, and key/gestures for the

screen area it represents.

The View class serves as a base class for all widgets - a set of fully

implemented subclasses that draw interactive screen elements. Widgets

handle their own measuring and drawing, so you can use them to build

your UI more quickly. The list of widgets available includes i.e. TextView,

EditText, Button, RadioButton, Checkbox, ScrollView, …

Viewgroups

A viewgroup is an object of class android.view.Viewgroup. As its

name indicates, a viewgroup is a special type of view object whose

function is to contain and manage a subordinate set of views and other

viewgroups, Viewgroups let you add structure to your UI and build up

complex screen elements that can be addressed as a single entity.

The Viewgroup class serves as a base class for layouts - a set of fully

implemented subclasses that provide common types of screen layout.

The layouts give you a way to build a structure for a set of views.

A Tree-Structured UI

On the Android platform, you define an Activity's UI using a tree of view

and viewgroup nodes, as shown in the diagram below. The tree can be as

simple or complex as you need to make it, and you can build it up using

Android's set of predefined widgets and layouts or custom view types

that you create yourself.

andbook - Android Programming

21
powered by anddev.org

Picture 4 Android UI - Tree structure

To attach the tree to the screen for rendering, your Activity calls its

setContentView() method and passes a reference to the root node

object. Once the Android system has the reference to the root node

object, it can work directly with the node to invalidate, measure, and

draw the tree. When your Activity becomes active and receives focus, the

system notifies your activity and requests the root node to measure and

draw the tree. The root node then requests that its child nodes draw

themselves - in turn, each viewgroup node in the tree is responsible for

drawing its direct children.

As mentioned previously, each view group has the responsibility of

measuring its available space, laying out its children, and calling draw()

on each child to let it render itself. The children may request a size and

location in the parent, but the parent object has the final decision on

where how big each child can be.

andbook - Android Programming

22
powered by anddev.org

Comparing Android UI Elements to Swing UI Elements

As some developers who are reading this have probably coded UIs with

Swing before here are some similarities between Android and Swing.

 Activities in Android refers almost to a (J)Frame in Swing.

 Views in Android refers to (J)Components in Swing.

 TextViews in Android refers to a (J)Labels in Swing.

 EditTexts in Android refers to a (J)TextFields in Swing.

 Buttons in Android refers to a (J)Buttons in Swing.

Setting listeners to a View is nearly the same in Android than in Swing.

// Android

myView.setOnClickListener(new OnClickListener(){ ...

// Swing

myButton.addActionListener(new ActionListener() {...

andbook - Android Programming

23
powered by anddev.org

The AndroidManifest.xml
The AndroidManifest.xml is a required file for every Android

application. It is located in the root folder of the application, and

describes global values for your package, including the application

components (activities, services, etc) that the package exposes to the

‘outer world’, what kind of data each of our Activities and co. can handle,

and how they can be launched.

An important thing to mention of this file are its so called IntentFilters.

These filters describe where and when that activity can be started. When

an activity (or the operating system) wants to perform an action such as

open a Web page or open a contact picker screen, it creates an Intent

object. This Intent-object can hold several information describing what

you want to do, what data is needed to accomplish it and other bits of

information. Android compares the information in an Intent object with

the intent filter exposed by every application and finds the activity most

appropriate to handle the data or action specified by the caller. If there it

more than one application capable of handling that Intent, the user gets

asked, which app he would prefer handling it.

Besides declaring your application's Activities, Content Providers,

Services, and Intent Receivers, you can also specify permissions in

AndroidManifest.xml.

andbook - Android Programming

24
powered by anddev.org

General
A very simple AndroidManifest.xml looks like this:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.anddev.android.hello_android">

 <application android:icon="@drawable/icon">

 <activity android:name=".Hello_Android"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

 Almost every AndroidManifest.xml (as well as many other

Android XML files) will include the namespace declaration
(xmlns:android=http://schemas.android.com/apk/res/android)

in its first element. This makes a variety of standard Android

attributes available in the file, which will be used to supply most

of the data for elements in that file.

 Almost every manifest includes a single <application> tag,

which itself contains several tags describing Applications,

IntentReceivers, etc… that are available in this application.

 If you want to make an Activity launchable directly through the

user, you will need to make it support the MAIN action and

LAUNCHER category, what result as shown here:

Picture 5 Directly launchable Activity

andbook - Android Programming

25
powered by anddev.org

What follows is a detailed list of the structure of an

AndroidManifest file, describing all available <tags>, with an

Example for each:

<manifest>

This is the root node of each AndroisManifest.xml. It contains the

package-attribute, which points to any package in out Activity. Other

Activities-path will base relative to its value.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.anddev.android.smstretcher">

<uses-permission>

Describes a security permission, which your package must be

granted in order for it to operate correctly (i.e. when you want to send

SMS or use the Phone-Contacts). The permissions get granted by the user

during installation of your application. Quantity: 0+

<uses-permission android:name=" android.permission.RECEIVE_SMS"/>

<permission>

Declares a security permission that can be used to restrict which

applications can access components or features in your (or another)

package. Quantity: 0+

<instrumentation>

Declares the code of an instrumentation component that is

available to test the functionality of this or another package. See

Instrumentation for more details. Quantity: 0+

<application>

Root element containing declarations of the application-level

components contained in the package. This element can also include

global and/or default attributes for the application, such as a label, icon,

theme, required permission, etc. Quantity: 0 or 1.

<application android:icon="@drawable/icon">

andbook - Android Programming

26
powered by anddev.org

You can place 0+of each of the following children:

<activity>

An Activity is the primary thing for an application to

interact with the user. The initial screen the user sees when

launching an application is an activity, and most other screens

they use will be implemented as separate activities declared with

additional activity tags.

<activity android:name=".Welcome" android:label="@string/app_name">

 Note: Every Activity must have an <activity> tag in the

manifest whether it is exposed to the world or intended for use

only within its own package. If an Activity has no matching tag

in the manifest, you won't be able to launch it.

Optionally, to support late runtime lookup, you can

include 1+ <intent-filter> elements to describe the actions the

activity supports.

<intent-filter>

Declares what kind of Intents a component

supports. In addition to the various kinds of values that

can be specified under this element, attributes can be

given here to supply a unique label, icon, and other

information for the action being described.

<intent-filter>

<action>

An action-type that the component

supports. Example:

<action android:name="android.intent.action.MAIN" />

andbook - Android Programming

27
powered by anddev.org

<category>

A category-type that the component

supports. Example:

<category android:name="android.intent.category.LAUNCHER" />

<data>

An MIME type, URI scheme, URI

authority, or URI path that the component

supports.

You can also associate 1+ pieces of meta-

data with your activity:

<meta-data>

Adds a new piece of meta data to the activity,

which clients can retrieve through

ComponentInfo.metaData.

<receiver>

An IntentReceiver allows an application to be told

about changes to data or actions that happen, even if it is not

currently running. As with the activity tag, you can optionally

include 1+ <intent-filter> elements that the receiver

supports or <meta-data> values, just all the same as with

<activity>.

<receiver android:name=".SMSReceiver">

<service>

A Service is a component that can run in the background

for an arbitrary amount of time. As with the activity tag, you can

optionally include one or more <intent-filter> elements that the

service supports or <meta-data> values; see the activity's

<intent-filter> and <meta-data> descriptions for more

information.

andbook - Android Programming

28
powered by anddev.org

<provider>

A ContentProvider is a component that manages

persistent data and publishes it for access by other applications.

You can also optionally attach one or more <meta-data> values,

as described in the activity's <meta-data> description.

Of course all <tags> have to be </closed> or closed

<directly/>.

andbook - Android Programming

29
powered by anddev.org

Resources and the magic R.java
The resources of a project and the R.java are very close related.

Resources
Resources are external files (non-code files) that are used by your code

and compiled into your application at build time. Android supports a

number of different kinds of resource files, including XML, PNG, and JPEG

files. The XML files have very different formats depending on what they

describe.

Resources are externalized from source code, and XML files are compiled

into a binary, fast loading format for efficiency reasons. Strings are

compressed into a more efficient storage form.

List of resources

Resource-types and where to place them:

 layout-files  “/res/layout/”

 images  “/res/drawable/”

 animations  “/res/anim/”

 styles, strings and arrays  “/res/values/”

o Names do not have to be exactly like:

o ‘arrays.xml’ to define arrays

o ‘colors.xml’ to define colors

 #RGB, #ARGB, #RRGGBB, #AARRGGBB

o ‘dimens.xml’ to define dimensions

o ‘strings.xml’ to define strings

o ‘styles.xml’ to define style objects

 raw files like mp3s or videos  “/res/raw/”

andbook - Android Programming

30
powered by anddev.org

Using resources in code

Using resources in code is just a matter of knowing the full resource ID

and what type of object your resource has been compiled into. Here is

the syntax for referring to a resource:

R.resource_type.resource_name

or

android.R.resource_type.resource_name

Where resource_type is the R subclass that holds a specific type of

resource.resource_name is the name attribute for resources

defined in XML files, or the file name (without the extension) for

resources defined by other file types. Each type of resource will be added

to a specific R subclass, depending on the type of resource it is.

Resources compiled by your own application can be referred to without a

package name (simply as R.resource_type.resource_name).

Android contains a number of standard resources, such as screen styles

and button backgrounds. To refer to these in code, you must qualify

them with android, as for example in:

android.R.drawable.button_background.

andbook - Android Programming

31
powered by anddev.org

Referencing Resources

A value supplied in an attribute (or resource) can also be a reference to

another resource. This is often used in layout files to supply strings (so

they can be localized) and images (which exist in another file), though a

reference can be any resource type including colors and integers.

For example, if we have color resources, we can write a layout file that

sets the text color size to be the value contained in one of those

resources:

<EditText

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:textColor="@color/opaque_red"

 android:text="Hello, World!" />

Note here the use of the '@' prefix to introduce a resource reference --

the text following that is the name of a resource in the form of

@[package:]type/name. In this case we didn't need to specify the

package because we are referencing a resource in our own package. To

reference a system resource, you would need to write:

<EditText

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:textColor="@android:color/opaque_red"

 android:text="Hello, World!" />

As another example, you should always use resource references when

supplying strings in a layout file so that they can be localized:

<EditText

 android:layout_width="fill_parent"

 android:layout_height="fill_parent"

 android:textColor="@android:color/opaque_red"

 android:text="@string/hello_world" />

andbook - Android Programming

32
powered by anddev.org

Alternate Resources & Localization
Alternate Resources and Localization is a very useful issue you will love

Android for. Expect you would have to design a GUI that fits landscape

and portrait screen-orientation well at the same time – that is almost

impossible.

You can supply different resources for your application according to the

UI language or hardware configuration of the device. Note that

eventhough you can include different string, layout, and all other

resources, the SDK does not expose methods to let you specify which

alternate resource set to be used. Android detects the proper set for the

hardware and location, and loads them as appropriate. Only the user can

select alternate language settings using the settings panel on the device.

To include alternate resources, create parallel resource folders with

dash-separated qualifiers appended to the folder names, indicating the

configuration it applies to (language, screen orientation, dpi, resolution,

…).

For example, here is a project differs between differs between English

and German value-resources (here only strings):

MyApp/

 res/

 values-en/

 strings.xml

 values-de/

 strings.xml

Android supports several types of qualifiers, with various values for each.

Append these to the end of the resource folder name, separated by

dashes. You can add multiple qualifiers to each folder name, but they

must appear in the order they are listed here. For example, a folder

containing drawable resources for a fully specified configuration would

look like:

andbook - Android Programming

33
powered by anddev.org

MyApp/

 res/

 drawable-en-rUS-port-92dpi-finger-keyshidden-12key-dpad-480x320/

More typically, you will only specify a few specific configuration options

that a resource is defined for. You may drop any of the values from the

complete list, as long as the remaining values are still in the same order:

MyApp/

 res/

 drawable-en-rUS-finger/

 drawable-port/

 drawable-port-160dpi/

 drawable-qwerty/

Android will pick which of the various underlying resource files fits best

during runtime, depending on the current device-configuration.

The magic R.java
A project's R.java is an auto-generated file indexing all the resources of

your project. You use this class in your source code as a sort of short-

hand way to refer to resources you've included in your project. This is

particularly powerful with the code-completion features of IDEs like

Eclipse because it lets you quickly and interactively locate the specific

reference you're looking for.

Additionally you gain compile-time safety that the resource you want to

use really exists.

andbook - Android Programming

34
powered by anddev.org

Hello World – The Android way.
In this very first tutorial one will learn how to create an Android

Application using a XML layout. Keep in mind that, using XML-Layouts is

highly preferable!

What it will finally look like:

Picture 6 First Android Application - Final look (sdk-version: m5)

But before all that one needs to download and install the Android SDK…

andbook - Android Programming

35
powered by anddev.org

Installing the Android SDK
The latest Android SDK for Windows, Mac and Linux can always be

obtained from the following URI:

http://code.google.com/android/download.html

It only needs to be downloaded and unzipped to your preferred hdd-

location.

The Android Development Tools (ADT)

Android provides an Eclipse plugin called ‘ADT’ to make programming
and debugging easier.

The ADT provides easy access to the LogCat, the Android-
Manifest/Resource-Editor, File, Thread, and Heap Control, incoming
call/sms simulation, etc… – since SDK-version m5 all for multiple
emulator instances at the same time.

Installing the Eclipse Plugin (ADT)

To download and install the ADT plugin, follow the steps Google provides
to developers:

1. Start Eclipse, then select Help > Software Updates > Find and
Install....

2. In the dialog that appears, select Search for new features to
install and press Next.

3. Press New Remote Site.
4. In the resulting dialog box, enter a name for the remote site (e.g.

Android Plugin) and enter this as its URL:

https://dl-ssl.google.com/android/eclipse/

Press OK.

5. You should now see the new site added to the search list (and
checked). Press Finish.

http://code.google.com/android/download.html

andbook - Android Programming

36
powered by anddev.org

6. In the subsequent Search Results dialog box, select the checkbox
for Android Plugin > Developer Tools. This will check both
features: "Android Developer Tools", and "Android Editors". The
Android Editors feature is optional, but recommended. If you
choose to install it, you need the WST plugin mentioned earlier in
this page.

Now press Next.

7. Read the license agreement and then select Accept terms of the
license agreement, if appropriate. Press Next.

8. Press Finish.
9. The ADT plugin is not signed; you can accept the installation

anyway by pressing Install All.
10. Restart Eclipse.
11. After restart, update your Eclipse preferences to point to the

SDK directory:
a. Select Window > Preferences... to open the Preferences

panel. (Mac OS X: Eclipse > Preferences)
b. Select Android from the left panel.
c. For the SDK Location in the main panel, press Browse...

and locate the SDK directory.
d. Press Apply, then OK.

Updating the ADT Plugin

Updating the ADT Plugin follows the standard procedure of upgrading a

common Eclipse plugin:

1. Select Help > Software Updates > Find and Install....
2. Select Search for updates of the currently installed features and

press Finish.
3. If any update for ADT is available, select and install.

andbook - Android Programming

37
powered by anddev.org

Installation done, let’s do some code
Before we can start coding we obviously have to create a new Android

Project.

Creating a new Android Project

1. The first thing that needs to be for every Android Application is

to create a new Android Project. To do that, simply open

the Package Exlporer in Eclipse right-click on some blank space

and choose:

New > Project…

Picture 7 First Android Application - Step 1

2. Select:

Android > Android Project

andbook - Android Programming

38
powered by anddev.org

Picture 8 First Android Application - Step 2

3. Fill out the form with values fitting your applications purpose...

Picture 9 First Android Application - Step 3

andbook - Android Programming

39
powered by anddev.org

4. This are all the files for your first Android-Application (don't

panic, mostly all of them are resource-files)

Picture 10 First Android Application - Step 4

Huh, what are all that files supposed to do ?

As you now have created your first Android Project you will see a bunch

of files appear in that new project.

The Main Activity

 You’ll see some default code like the following, when you now navigate

to:

“/src/your_package_Structure/Hello_Android.java”

package org.anddev.android.Hello_Android;

import android.app.Activity;

import android.os.Bundle;

public class Hello_Android extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 /* Make this application use

 * the main.xml-layout-file. */

 this.setContentView(R.layout.main);

 }

}

andbook - Android Programming

40
powered by anddev.org

We could now immediately our Application but let me explain of the

other files too.

The XML-Layout (main.xml)

The ADT created this very basic Activity for you. As we know Activities

are somehow like JFrames in Swing. In Android we extend from Activity

and need to overwrite a single function, called onCreate(…). Within

this function we have to call i.e.

setContentView(R.layout.main)which makes our Activity use

the main.xml which was also created by the ADT:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent">

 <TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Hello World, Hello_Android"/>

</LinearLayout>

We have a ‘fullscreen’ vertical LinearLayout, that contains a single

TextView showing a pre-defined String.

The AndroidManifest.xml

So let’s face the AndroidManifest.xml:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.anddev.android.hello_android">

 <application android:icon="@drawable/icon">

 <activity android:name=".Hello_Android"

 android:label="@string/app_name">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

andbook - Android Programming

41
powered by anddev.org

Let’s split that up…

Every xml-file starts with the following line, it defines the xml-version and

encoding-type of the xml-text. Just copy-paste it to every new file.

<?xml version="1.0" encoding="utf-8"?>

As we know the outermost tag in every xml-file should contain this
attribute:
xmlns:android="http://schemas.android.com/apk/res/android"

Because it makes a variety of general Android attributes available in the

file.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="org.anddev.android.hello_android">

</manifest>

The <application> tag is the root element containing declarations of

all application-level components contained in the package. This element

can also include global and/or default attributes for the application, such

as a label, icon, theme, required permission, etc…

Here we define just the icon, by making a ‘@-refer’ to a image placed

under "/res/drawable/".

 <application android:icon="@drawable/icon">

 </application>

Inside of the <application> tag we need to define all

Activities/IntentReceivers that need to be started via Intents. In this case

we have only one simple Activity.

 <activity android:name=".Hello_Android"

 android:label="@string/app_name">

 </activity>

andbook - Android Programming

42
powered by anddev.org

You probably have recognizes that the package-attribute from the

<manifest> tag together with the android:name attribute from

the <activity> tag always result in the complete package-path to the

Activity described.

The innermost tag is the <intent-filter> tag which defines on

which Intents we want to listen. Here we want the Hello_Android Activity

launchable from within the emulator by clicking the icon (that was

defined in the <application> tag).

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 Note: The debugging-process with a Android Application is

exactly the same than with a normal Java Application.

andbook - Android Programming

43
powered by anddev.org

Running your first application

Now we need to create a ‘ -Configuration’. Open the -DropDown in

the Eclipses upper menu and Click "Open Run Dialog..."

Picture 11 Opening the run-dialog

Picture 12 Creating a run-configuration

andbook - Android Programming

44
powered by anddev.org

From now on you can run your application by clicking the button.

Having done that you’ll see this:

Picture 13 First Android Application - The result (sdk-version m5)

After the first deploy you can also see your application being listed in the

quick-menu, displayed with the default icon:

Picture 14 First Android Application - Added to QuickMenu (sdk-version m5)

andbook - Android Programming

45
powered by anddev.org

UIs the Java way
The same thing as we have just done with XML-Code can be achieved by

hacking some lines of Java-Code.

Remember how we set our main.xml as the ContentView in the xml-

example. We accomplished that by doing the following:

 /* Make this application use

 * the main.xml-layout-file. */

 this.setContentView(R.layout.main);

Activity.setContentView(…) also accepts a View as the

parameter. We will use that to set a simple TextView as our

ContentView.

package org.anddev.android.Hello_Android;

import android.app.Activity;

import android.os.Bundle;

import android.widget.TextView;

public class Hello_Android extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 /* We want to view some very simple text,

 * so we need a TextView associated with this Activity. */

 TextView tv = new TextView(this);

 /* Put some text to the newly created TextView */

 tv.setText("Hello Android - by: anddev.org \n" +

 "This is soooo simple =D ");

 /* Tell our Activity to display that TextView */

 this.setContentView(tv);

 }

}

andbook - Android Programming

46
powered by anddev.org

System.out.println(…) ?
Debugging in Android cannot be done using

System.out.println(…) because as we know Android is not

running on a normal VM but inside of emulated hardware on the

DalvikVM. (To be honest, it can be done but is should definitely be not

your choice)

But don’t worry, Android provides a much more powerful debugging

feature – The LogCat.

The LogCat

The LogCat is a part of the DDMS (Dalvik Debug Monitor service) that

provides a mechanism for collecting and viewing system debug output.

Logs from various applications and portions of the system are collected in

the LogCat, which then can be viewed and filtered.

If you cannot see A, do it the B way.

Picture 15 Opening the DDMS View

Using the LogCat

Every Android log message has a tag and a priority associated with it.

andbook - Android Programming

47
powered by anddev.org

The tag of a log message is a short string indicating the system

component from which the message originates (for example, "View" for

the view system).

The priority is one of the following character values, ordered from lowest

to highest priority:

 V — Verbose (lowest priority)

 D — Debug

 I — Info

 W — Warning

 E — Error (highest priority)

As we are using Eclipse we can simply filter by priority clicking the “V-D-I-

W-E” Buttons in the LogCat View one can also see below. You’ll love the

ADT plugin for that feature, because, in the masses of output the whole

system generates, it is really hard to find anything without filters.

Picture 16 The LogCat

The usage in the code is pretty simple. You need to make a single import:

import android.util.Log;

Then you are able to use debugging statements, like this:

Log.d("DEBUGTAG", "My debug-message.");

andbook - Android Programming

48
powered by anddev.org

When some critical things happened you can pass the

Throwable/Exception to Log.e(…),to get the StackTrace printed

to the LogCat:

try{

 throw new Exception();

}catch(Exception e){

 Log.e("DEBUGTAG","Error occured", e);

}

Note:

andbook - Android Programming

49
powered by anddev.org

Using Intents
As we know things needed to be done are expressed by Intents. Intents

can i.e. be used to start other Activities.

Starting (Sub)Activities
An essential thing in the lifetime of an application, that is more

sophisticated than a HelloWorld Application, is to start other Activities,

especially SubActivitites. Let’s assume the following scenario:

We want to have something like an InputDialog where the user can write

a keyword he wants to search on Google for.

So we will create a new Android Project as we already did it before. The

first thing we will do is to add a second Activity we will name

“MySecondActivity”.

In the beginning the code shall look like this:

package org.anddev.andbook.startingsubactivities;

import android.app.Activity;

import android.os.Bundle;

public class MySecondActivity extends Activity {

 /** Called when the activity is first created. */

 @Override

 public void onCreate(Bundle icicle) {

 super.onCreate(icicle);

 setContentView(R.layout.main);

 }

}

andbook - Android Programming

50
powered by anddev.org

We now will add a Button to the first Activity. We do that by altering the

main.xml, of course, and not by switching to a Java UI.

Browse to “/res/layout/main.xml” and you will see code similar

to this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

<TextView

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Hello World, StartingSubactivities" />

</LinearLayout>

Note: maybe Eclipse opened the main.xml with its default xml-Editor which is
not of any use for us. Since SDK-version m5 the ADT plugin provides a
Resource-Editor with Syntax-Highlighting.

Picture 17 Opening the Resource Editor

If we would start the Application right now it would look like this:

Picture 18 Layout default (sdk-version m5)

andbook - Android Programming

51
powered by anddev.org

As we want to have a Button in our application, we will have to come up

with some xml-code:

<Button

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Open Search-Dialog" />

As one can imagine, “fill_parent” makes a View us all space the

parent View provides and “wrap_content” uses just as much layout

space as it needs to display its content correctly.

So our button will fill the whole screen in width and wrap around the

“Open Search-Dialog” we typed for the android:text attribute.

Our application now looks like this:

Picture 19 Layout with Button (sdk-version m5)

When we now click the button – nothing happens, of course. We will

have to apply a Listener to be specific an OnClickListener to Handle clicks

to this Buttons.

But wait… how can we refer to that Button in Java Code ?

andbook - Android Programming

52
powered by anddev.org

Finding XML-defined Views in Java-Code

To find a View that was defined in XML we first have to add one single

line to the XML-definition of that View, an android:id attribute. In

this case we will give it the id “btn_open_search”:

<Button

 android:id="@+id/btn_open_search"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Open Search-Dialog" />

Finding that View in Java Code is same easy. Within an Activity you can

use the findViewById(int resourceID) method, to get a

reference to a View using the android:id that has been defined in

XML.

The same can be done with any other class that extends View, i.e.

EditText, TextView, MapView, etc…

 But findViewById(…) can only be used with Views that are

placed within the Layout that was loaded to that Activity using

setContentView(…)!

Coming back to our example, we add the following in Code to

onCreate(…), right after the setContentView(…):

 /* Find the Button from our XML-layout. */

 Button b = (Button)this.findViewById(R.id.btn_open_search);

If Eclipse cannot find i.e. the Button-Class, just hit ‘CTRL+SHIFT+O’

what will organize the imports and automatically add (in this case):

import android.widget.Button;

andbook - Android Programming

53
powered by anddev.org

Handling Clicks to Views

We now remember that we once wanted to make our button

clickable. Therefore we simply set an anonymous OnClickListener

to our Button:

 b.setOnClickListener(new OnClickListener(){

 public void onClick(View arg0) {

 // Place code to handle Button-Click here.

 }

 });

Note: Eclipse might not recognize the following import by itself:

import android.view.View.OnClickListener;

Now we will add an Intent to the onClick-Event that will start our

SubActivity:

 /* Create an Intent to start

 * MySecondActivity. */

 Intent i = new Intent(

 StartingSubactivities.this,

 MySecondActivity.class);

 /* Send intent to the OS to make

 * it aware that we want to start

 * MySecondActivity as a SubActivity. */

 startSubActivity(i, 0x1337);

The second parameter of startSubActivity can be any unique

Integer. It will get useful later on (then we will be placing it declared as

final to our Activity), when we want to retrieve a result from the

SubActivity.

andbook - Android Programming

54
powered by anddev.org

If we would now run our code and click our button we would receive the

following error-message:

Picture 20 Activity not defined in AndroidManifest.xml

 Note: Some of the messages shown are really helpful, read them.

So we need to define our “MySecondActivity” in the

AndroidManiufest.xml too. Just after the first </activity> tag

we write:

 <activity android:name=".MySecondActivity"

 android:label="@string/app_name">

 <intent-filter>

 <action

 android:name="android.intent.action.VIEW" />

 <category

 android:name="android.intent.category.DEFAULT" />

 </intent-filter>

 </activity>

This time we did not choose “…MAIN” for <action> and

“…LAUNCHER” for <category> because there is no need to get

“MySecondActivity” launched from outside of our Application.

andbook - Android Programming

55
powered by anddev.org

“MySecondActivity” is now reachable through a click to the button,

but it also refers to our main.xml:

 setContentView(R.layout.main);

So we have to create an additional layout file for

“MySecondActivity”. It will contain a so called EditText what in

Swing jargon would be a TextField and another Button to return to

our “Main”-Activity:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:orientation="vertical"

 android:layout_width="fill_parent"

 android:layout_height="fill_parent" >

<EditText

 android:id="@+id/et_keyword"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"/>

<Button

 android:id="@+id/btn_return"

 android:layout_width="fill_parent"

 android:layout_height="wrap_content"

 android:text="Submit" />

</LinearLayout>

Of course both need an android:id that we can use the in our

JavaCode. Now we can change the setContentView of

“MySecondActivity” to:

 /* Get the EditText from the XML-file. */

 this.et_keyword = (EditText)this.findViewById(R.id.et_keyword);

 /* Get the return-Button from the XML-file. */

 Button b = (Button)this.findViewById(R.id.btn_return);

 /* Make that Button handle clicks to itself. */

 b.setOnClickListener(new OnClickListener(){

 public void onClick(View arg0) {

 /* Place code to handle Button-Click here. */

 }

 });

andbook - Android Programming

56
powered by anddev.org

Returning values from SubActivities

Returning values from SubActivities to the caller is also very simple:

 /* Retrieve the Text from the EditText. */

 String keyword =

 MySecondActivity.this.et_keyword.getText().toString();

 /* The parameters passed to this function

 * will be available to the caller. */

 MySecondActivity.this.setResult(1, keyword);

 /* Our Activity is done and shall be closed. */

 MySecondActivity.this.finish();

One could additionally pass a so called Bundle back to the caller (what

is more or less a HashMap), but I’ll tell you more of that soon.

Obviously the caller has to react on the fact that the SubActivity decided

to return. To accomplish that, we have to override a single method

coming from the Activity class. It is called onActivityResult(…):

 @Override

 protected void onActivityResult(int requestCode, int resultCode,

 String data, Bundle extras) {

 /* Place out code to react on Activity-Result here. */

 super.onActivityResult(requestCode, resultCode, data, extras);

 }

You probably recognized that the first parameter is called

requestCode – yes it is the same requestCode that we passed to

startSubActivity earlier. So if we have more than one SubActivity,

we can use requestCode to differentiate which SubActivity has just

returned.

Tipp: Eclipse provides a very useful function that you’ll learn to love,

especially if you are extending a base-class and search for methods to

override:

andbook - Android Programming

57
powered by anddev.org

Picture 21 Using Eclipse to find methods to override

So now we can simply switch on the requestCode and create another

Intent to do the Google-search.

 /* Check which SubActivity returned.

 * (Here we have only one.) */

 switch(requestCode){

 case MYSECONDACTIVITY_REQUESTCODE:

 /* Create a new Intent to

 * show the Google-Search Page

 * with the keyword returned. */

 Intent webIntent = new Intent(

 android.content.Intent.VIEW_ACTION,

 Uri.parse("http://www.google.com/search?q=" + data));

 startActivity(webIntent);

 break;

 }

As you probably have recognized this time we are creating the Intent

another way. Last time we said like: “We want to start XYZ.class“,

but this time we describe what we want to get done. We want to VIEW a

URI (Uniform Resource Indicator), which can be constructed by using i.e.

Uri.fromParts(…).

Our Application is now capable of starting a (Sub)Activity, grabbing its

results and launching the Browser using an Intent.

But how to pass data to a (Sub)Activity?

andbook - Android Programming

58
powered by anddev.org

Passing Data to (Sub)Activities
Passing data to (Sub)Activities is, once again, not hard to manage. One

can use so called Bundles, which are more or less ordinary HashMap’s

that can take only trivial data types, to carry information from one

Activity to another. Just remember where we started our SubActivity in

the last chapter:

 /* Create an Intent to start

 * MySecondActivity. */

 Intent i = new Intent(

 StartingSubactivities.this,

 MySecondActivity.class);

 /* Send intent to the OS to make

 * it aware that we want to start

 * MySecondActivity as a SubActivity. */

 startSubActivity(i, 0x1337);

Right between these two lines, we will put the following:

 /* Create a bundle which will be

 * attached to the Intent, to carry

 * information to our SubActivity. */

 Bundle b = new Bundle();

 b.putString(MY_DEFAULTSTRING_ID, "anddev.org");

 /* Attach Bundle to our Intent. */

 i.putExtras(b);

Where MY_DEFAULTSTRING_ID can be any identifying String you can

imagine. There is also a method Intent.putExtra(…,…) which takes only

one information each call, which we could have used also.

andbook - Android Programming

59
powered by anddev.org

Now we have to extract that information within our SubActivity. Every

Activity can access the original Intent it was started with, by calling

getIntent(). If there was a Bundle attached to the Intent we can

grab that by using getIntent().getExtras(). In this case we, we

will fill the EditText, where the user would type the keyword(s) with

the DefaultString we passed over the Intent :

 //…

 setContentView(R.layout.second);

 /* Get the Bundle from the Intent

 * this Activity was started with.*/

 Bundle bundle = getIntent().getExtras();

 /* Extract the default keyword

 * by using the public ID we

 * defined in the caller. */

 String default_keyword = bundle.getString(

 StartingSubactivities.MY_DEFAULTSTRING_ID);

 /* Get the EditText from the XML-file. */

 this.et_keyword = (EditText)this.findViewById(R.id.et_keyword);

 /* Set the default keyword to the EditText. */

 this.et_keyword.setText(default_keyword);

 /* Get the return-Button from the XML-file. */

 //…

So let’s resume what you have learned up to here:

 Create an simple Application using a XML Layout

 Do the same with a Java-based Layout

 Run Android Applications

 Using the LogCat for debugging purpose

 Use Intents to start (Sub)Activities

 Find Views defined in XML to use them in Java Code

 Handle Clicks to Views

 Return values from SubActivities

 Pass data to SubActivities using Bundles

Not bad for now .

andbook - Android Programming

60
powered by anddev.org

Important Layouts and ViewGroups
Android provides many more Layouts than just the LinearLayout we used

up to here. The most important Layouts, except LinearLayout, you will

get to know closer here are:

 RelativeLayout (Views are placed relative to each other)

 TableLayout (Uses tables like in HTML)

Additionally to that I will introduce to you the following really often used

ViewGroups:

 GridView (similar to TableLayout, supports ‘Adapters’)

 ScrollView (If your content exceeds the screen-size, you’ll need

to scroll)

 TabHost (Displays content in tabs)

The RelativeLayout
According to its name, when using RelativeLayouts one defines the

position of Views relative to other ‘neighbors-Views’.

andbook - Android Programming

61
powered by anddev.org

Bibliography
1. Open Hanset Alliance. Open Hanset Alliance. [Online]

http://www.openhandsetalliance.com/.

2. GoogleGroups. Android Discussion Groups. [Online]

http://code.google.com/android/groups.html.

3. Alexa Webstats. The Web Information Company. alexa.com. [Online]

http://www.alexa.com.

4. Gramlich, Nicolas. Android Development Community | Android

Tutorials. [Online] http://anddev.org.

5. Hobbs, Zach. Hello Android. [Online] http://helloandroid.com/.

6. Nguyen, Vincent. Android Community. [Online]

http://androidcommunity.com/.

7. Srinivas, Davanum. Show me the code! [Online]

http://davanum.wordpress.com/.

andbook - Android Programming

62
powered by anddev.org

Lost chapters

The communities
From the first day on, a couple of communities arose from the depth of

the internet. The most important community-website to mention

(depending on Alexa-stats (3)) is anddev.org (4) , which is the most

viewed Tutorial/Community-Board for Google Android up to date. Also

well known are the Community-Boards: helloandroid.com (5) and

androidcommunity.com (6). Last but definitely not least to mention is the

davanum.wordpress.com-Blog (7), which provided some very early

sample code where many programmers found a good first source.

Some sites were more, some less promising, so sooner or later the

viewers pointed their focus to the more-important sites listed above.

http://anddev.org/
http://helloandroid.com/
http://androidcommunity.com/
http://davanum.wordpress.com/

