
Silva
Android Gam

es
Pro

Companion
eBook
Available

	 COMPANION	eBOOK	 SEE	LAST	PAGE	FOR	DETAILS	ON	$10	eBOOK	VERSION

US $39.99

Shelve in
Mobile Computing

User level:
Intermediate-Advancedwww.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

ISBN 978-1-4302-2647-5

9 781430 226475

53999

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

 SPOT MATTE

Do you remember landmark games like Wolfenstein™ 3D, Doom, and As-
teroids™? Well, here’s an exciting opportunity to build and/or port these

games to one of the hottest mobile and netbook platforms today: Google’s
Android. Pro Android Games teaches you how to build cool games like Space
Blaster and the classic Asteroids™ from scratch on the latest Android plat-
form. This book also shows you how to port other classic freeware/shareware
games like Doom and Wolfenstein™ 3D from C using the Java Native Interface
(JNI) for Android.

This book is all about a unique perspective in Android game development:
a well-balanced, powerful combination of pure pure Java and hybrid game
development, mixing Java and C. I believe that in the world of gaming, per-
formance is critical, and that by combining the elegant object-oriented fea-
tures of Java and the raw power of C, there is no limit to the types of games
that you can build for the platform. With actionable real-world source code
in hand, this book dives you right into Games development on Android. In
this book you’ll learn how to:

•	 setup	a	Linux	system	for	hybrid	game	compilation

•	 combine	Java	and	C	code	in	an	elegant	manner	by	building	a	simple	
Java	application	on	top	of	a	native	library

•	 tackle	pure	Java	gaming	with	two	practical	games:	Space Blaster	and	
the	arcade	classic	Asteroids™

•	 mix	OpenGL	API	calls	in	Java	and	C	for	high	performance	3D	graphics	
using	the	3D	cubes	sample	by	Google

•	 bring	two	of	the	greatest	PC	3D	shooters	to	the	Android	platform:	
Wolfenstein™ 3D and Doom	using	Java	and	C

By the end of this book, you will have learned how easy it is to bring native
PC games alive on the Android platform, which is now growing in popularity
at an amazing rate. Pro Android Games is the ultimate helper tool for your
hybrid game development needs, so you’ll be developing games quickly on
Google’s Android. Pro

Android Games

Trim: 7.5 x 9.25 spine = 0.875" 320 page count

Create and port cool games like Space Blaster, classic Asteroids™,
Doom and Wolfenstein™ 3D using Android

Vladimir Silva

Silva
Android Gam

es
Pro

Companion
eBook
Available

	 COMPANION	eBOOK	 SEE	LAST	PAGE	FOR	DETAILS	ON	$10	eBOOK	VERSION

US $39.99

Shelve in
Mobile Computing

User level:
Intermediate-Advancedwww.apress.com

SOURCE CODE ONLINE

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

ISBN 978-1-4302-2647-5

9 781430 226475

53999

this print for content only—size & color not accurate

 CYAN
 MAGENTA

 YELLOW
 BLACK
 PANTONE 123 C

 SPOT MATTE

Do you remember landmark games like Wolfenstein™ 3D, Doom, and As-
teroids™? Well, here’s an exciting opportunity to build and/or port these

games to one of the hottest mobile and netbook platforms today: Google’s
Android. Pro Android Games teaches you how to build cool games like Space
Blaster and the classic Asteroids™ from scratch on the latest Android plat-
form. This book also shows you how to port other classic freeware/shareware
games like Doom and Wolfenstein™ 3D from C using the Java Native Interface
(JNI) for Android.

This book is all about a unique perspective in Android game development:
a well-balanced, powerful combination of pure pure Java and hybrid game
development, mixing Java and C. I believe that in the world of gaming, per-
formance is critical, and that by combining the elegant object-oriented fea-
tures of Java and the raw power of C, there is no limit to the types of games
that you can build for the platform. With actionable real-world source code
in hand, this book dives you right into Games development on Android. In
this book you’ll learn how to:

•	 setup	a	Linux	system	for	hybrid	game	compilation

•	 combine	Java	and	C	code	in	an	elegant	manner	by	building	a	simple	
Java	application	on	top	of	a	native	library

•	 tackle	pure	Java	gaming	with	two	practical	games:	Space Blaster	and	
the	arcade	classic	Asteroids™

•	 mix	OpenGL	API	calls	in	Java	and	C	for	high	performance	3D	graphics	
using	the	3D	cubes	sample	by	Google

•	 bring	two	of	the	greatest	PC	3D	shooters	to	the	Android	platform:	
Wolfenstein™ 3D and Doom	using	Java	and	C

By the end of this book, you will have learned how easy it is to bring native
PC games alive on the Android platform, which is now growing in popularity
at an amazing rate. Pro Android Games is the ultimate helper tool for your
hybrid game development needs, so you’ll be developing games quickly on
Google’s Android. Pro

Android Games

Trim: 7.5 x 9.25 spine = 0.875" 320 page count

Create and port cool games like Space Blaster, classic Asteroids™,
Doom and Wolfenstein™ 3D using Android

Vladimir Silva

Pro Android Games

■ ■ ■

Vladimir Silva

Pro Android Games
Copyright © 2009 by Vladimir Silva

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (pbk): 978-1-4302-2647-5

ISBN-13 (electronic): 978-1-4302-2648-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin, Douglas Pundick
Technical Reviewer: Kunal Mittal and Vikram Goyal
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell,

Jonathan Gennick, Jonathan Hassell, Michelle Lowman, Matthew Moodie, Duncan Parkes,
Jeffrey Pepper, Frank Pohlmann, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Matt Wade, Tom Welsh

Coordinating Editor: Fran Parnell
Copy Editors: Heather Lang and Marilyn Smith
Formatter: Nancy Wright
Compositor: LaurelTech
Indexer: BIM Indexing and Proofreading Services
Artist: April Milne
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail
orders-ny@springer-sbm.com, or visit http://www.springeronline.com.

For information on translations, please e-mail info@apress.com, or visit http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to
answer questions pertaining to this book in order to successfully download the code.

iii

Contents at a Glance

Contents... iv

About the Author .. x

About the Technical Reviewer ... xi

Introduction .. xii

■ Chapter 1: Welcome to Android Gaming...1

■ Chapter 2: Compiling Native Code in Android ..27

■ Chapter 3: Building a Java Game from Scratch ...55

■ Chapter 4: Java Games Continued: Fun with Polygons ..81

■ Chapter 5: Hybrid 3D Graphics with OpenGL and JNI ...117

■ Chapter 6: 3D Shooters Episode I: Wolfenstein 3D for Android161

■ Chapter 7: 3D Shooters Episode II: Doom for Android..221

■ Appendix: Deployment and Compilation Tips...271

■ Index: ...287

■ CONTENTS

iv

Contents

Contents at a Glance.. iii

About the Author .. x

About the Technical Reviewer ... xi

Introduction .. xii

■ Chapter 1: Welcome to Android Gaming...1

What Skills Do You Need? ...1

A Solid Foundation of Android ... 1

A Basic Knowledge of Linux and Shell Scripting ... 3

What Software Tools Do You Need? ..4

Setting Up Your Machine ...4

Getting the Android Source ... 5

Extracting Native Android Libraries ... 7

Installing the GNU Toolchain for ARM Processors ... 8

Writing Custom Compilation Scripts.. 11

Setting Up Your Development Environment...18

You Have Taken the First Step...26

■ Chapter 2: Compiling Native Code in Android ..27

Your First Native Android App..27

Creating an AVD... 27

■ CONTENTS

v

Creating the Android Project ... 30

Application Architecture .. 32

Compiling and Testing the Shared Library...45

Troubleshooting Missing Symbols... 48

Testing the Dynamic Library on the Device ... 49

Debugging with strace .. 50

Compiling Statically... 51

Testing the Native Application...52

What’s Next?..54

■ Chapter 3: Building a Java Game from Scratch ...55

Android Gaming vs. Java ME Gaming ..55

Creating Space Blaster, Your First Java Game ..56

Understanding Game Architecture .. 57

Creating the Project... 59

Creating the Game’s Activity Class.. 60

Creating the Game Layout ... 61

Implementing the Game .. 66

Handling Key and Touch Events .. 76

Testing on the Emulator...79

What’s Next?..80

■ Chapter 4: Java Games Continued: Fun with Polygons ..81

About the Chapter Layout ..81

Understanding the Caveats of Drawing Polygons in Android...81

Understanding the Caveats of Drawing Rectangles ..83

Creating a Polygon Class for Asteroids..85

Creating a PolygonSprite Class for Asteroids ..91

■ CONTENTS

vi

Understanding the Game’s Architecture..95

Creating the Project ...95

Creating the Game Layout ... 97

Looking at the Resources .. 97

Understanding the Game Life Cycle .. 99

Responding to Key Press and Touch Events.. 110

Testing Asteroids on the Emulator...113

What’s Next?..115

■ Chapter 5: Hybrid 3D Graphics with OpenGL and JNI ...117

The Power of Mobile Devices ..118

OpenGL the Java Way..119

Java Main Activity ... 123

Surface View ... 124

GL Thread .. 127

Cube Renderer... 130

Cube Class... 134

OpenGL the Native Way ...136

Main Activity .. 138

Native Interface Class.. 140

Changes to the Original Sample .. 142

Native Cube Renderer.. 143

Native Cube ... 151

Compiling and Running the Sample .. 152

Caveats of Porting OpenGL Games to Android...158

The Veil Has Been Lifted..159

■ CONTENTS

vii

■ Chapter 6: 3D Shooters Episode I: Wolfenstein 3D for Android161

Gathering Your Tools ...161

Downloading the Chapter Source Code... 161

Introducing Wolf 3D ...162

Understanding the Game Architecture...165

Understanding the Java Classes for Wolf 3D...167

Creating the Main WolfLauncher Class.. 168

Creating the Wolf 3D Main Menu... 172

Handling Key and Touch Events .. 174

Creating the Game Loop .. 175

Making Native Callbacks ... 177

Creating Sound and Music Handlers ... 179

Creating Movement Controller Handlers ... 180

Creating the Movement Controller... 182

Sound Classes ... 190

Native Interface Class.. 200

Coding the Native Layer...203

Initializing the Game Loop ... 204

Cascading Messages with C to Java Callbacks... 206

Compiling the Native Library ...213

Writing the Makefile .. 213

Generating JNI Headers... 215

Testing Wolf 3D in the Emulator ..215

What’s Next?..218

■ Chapter 7: 3D Shooters Episode II: Doom for Android..221

The Sky Is the Limit with the Java/C Power Combo ..221

Bringing Doom to a Mobile Device...223

■ CONTENTS

viii

Game Architecture for Doom ...225

Java Main Activity..227

Creation Handler.. 227

Game Layout.. 228

Menu and Selection Handlers.. 231

Key and Touch Event Handlers .. 233

Native Callback Handlers... 234

Navigation Controls ... 238

Audio Classes ..240

Native Interface Class..241

Callback Listener ... 241

Native Methods.. 242

C to Java Callbacks ... 243

Native Layer...245

Native Method Implementations.. 246

Original Game Changes ... 258

Doom Library (DSO) Compilation ...264

Testing Doom for Android in the Emulator...266

You Have Done It..269

■ Appendix: Deployment and Compilation Tips...271

Signing Your Application..271

Creating a Key Store.. 271

Signing the Application.. 272

Using the Android NDK to Compile Libraries from Chapters 6 and 7.............................276

Compiling Wolf 3D with the NDK 1.5 ... 277

Compiling the Shared Library .. 279

■ CONTENTS

ix

Adding Support for OpenGL to the NDK 1.5 ... 280

Compiling Doom with NDK 1.6 .. 282

Final Thoughts ...284

■ Index:..287

■ CONTENTS

x

About the Author

■ Vladimir Silva holds a master’s degree in computer science from Middle Tennessee State University.
He worked for four years for IBM as a research engineer, where he acquired extensive experience in
distributed and grid computing research. Vladimir is a highly technical, focus-based individual and team
player. He belongs to two National Honor Societies and has published many computer science articles
for IBM. He is the author of Grid Computing for Developers (Charles River Media, 2005) and Practical
Eclipse RCP Projects (Apress, February 2009).

xi

About the Technical Reviewer

■ Kunal Mittal serves as executive director of technology at Sony Pictures
Entertainment, where he is responsible for the SOA and Identity Management
programs. He provides a centralized engineering service to different lines of
business and consults on the open-source technologies, content management,
collaboration, and mobile strategies.

Kunal is an entrepreneur who helps startups define their technology strategy,
product roadmap and development plans. With strong relations with several
development partners worldwide, he is able to help startups and even large
companies to build appropriate development partnerships. He generally works in
an advisor or consulting CTO capacity, and serves actively in the project
management and technical architect functions.

He has authored and edited several books and articles on J2EE, cloud computing, and mobile
technologies. He holds a master’s degree in software engineering and is an instrument-rated private
pilot.

■ CONTENTS

xii

Introduction

Pro Android Games will help you to create the best games for the Android platform. There are plenty of
books out there that tackle this subject, but only this book gives you a unique perspective by showing
you how easy it is to bring native PC games to the platform with minimum effort. This is done using real-
world examples and source code on each chapter. Keep in mind that, before you dig into this book, you
will need a solid foundation in Java and ANSI C. I have made a great effort to explain the most
complicated concepts as clearly and as simply as possible with a combination of graphics and sample
code. The source code provided for each chapter will help you understand the concepts in detail and
make the most of your time as a mobile game developer.

What Software Will You Need?
To make the most of this book, you will need the following tools:

A Windows or Linux PC with a Java SDK Properly Installed
I guess this is kind of obvious, as most development for Android is done in Java. Note that I mentioned a
Java SDK, not JRE. The SDK is required because of the JNI header files and command line tools used
throughout the latter chapters.

Eclipse IDE and Android SDK Properly Installed
Eclipse is the de facto IDE for Android development. I have used Eclipse Galileo to create the workspace
for the book; nevertheless, Eclipse Ganymede should work as well.

Need a Development IDE?

Even though Eclipse Galileo has been used to create the code workspace, you can use your favorite IDE. Of
course, that will require a bit of extra setup. You can get Eclipse Galileo from

http://www.eclipse.org/.

■ INTRODUCTION

xiii

For instructions on how to set up the Android SDK with other IDEs, such as IntelliJ or a basic editor, see

http://developer.android.com/guide/developing/other-ide.html.

Android SDK properly installed means two things:

1. You must install the Android SDK plug-ins for Eclipse:

a. From the IDE main menu click Help Install New Software.

b. Click the Add button to add a new Site and enter:

• A name: Android SDK

• A location: https://dl-ssl.google.com/android/eclipse/. Click OK.

c. Select the Android SK from the Available Software dialog and follow the
easy installation instructions from the wizard.

2. You must install the Android SDK: It can be downloaded from the Android
site above. Keep in mind that Eclipse must be told about the location of
the Android SDK. From the main IDE menu click Window Preferences.
On the left navigation menu select Android and enter the SDK location
(see Figure 1). I have used SDK 1.5 because that was the latest available by
the time of this writing; however, the code in this book has been tested
with SDK 1.6 and 2.0 (see the SDK compatibility section for details).

Figure 1. Android SDK configuration dialog in Eclipse Galileo

■ INTRODUCTION

xiv

GNU C Compiler for ARM Processors
A GNU C compiler is required for the hybrid games in the book. These games combine Java code with a
native core library, hence the need for a C compiler that targets the mobile ARM processor. The compiler
used in this book and detailed in Chapter 1 is the Code Sourcery GNU G++ Toolkit. You are not bound,
however, to use this compiler; as a matter of fact, you can use any C compiler capable of generating ARM
code, including the Android Native Development Kit (NDK).

Chapter Source
This is an optional tool but it will help you greatly to understand the concepts as you move along. I have
made my best effort to describe each chapter as simply as possible. Nevertheless, some of the games
(especially Wolf 3D and Doom) have very large core engines written in C (100K lines for Doom), which
are poorly commented and very hard to understand. All in all you will see how easily these great
languages (Java and C) can be combined with minimal effort. Get the companion source for the book
from the publisher at http://www.apress.com. It was built using Eclipse Galileo.

What Makes This Book Unique?
I think it is important for the reader to understand my goal with this manuscript and what I believe sets
this book apart. Even though Java is the primary development language for Android, Google has realized
the need for hybrid Java/C development if Android is to succeed as a gaming platform, so much so that
they released the Native Development Kit (NDK). Google is realizing the need to support C development
to catch up with the overwhelming number of native games written for other mobile platforms like the
iPhone. PC games have been around for decades (mostly written in C), and by using a simple ARM C
compiler, you could potentially bring thousands of PC games to the Android Platform. This is what
makes this book unique. Why translate 100k lines of painfully complicated code from C to Java if you can
just combine both languages in an elegant manner with significant savings on time and money? My
book will help you to do just that. This is my goal and what makes this book stand out. In the other hand,
this book also includes chapters of pure Java games in a well-balanced layout to satisfy both the Java
purist and the C lover in you.

Android SDK Compatibility
As a developer you may ask yourself about the SDK compatibility of the code in this book. This is an
important question as new versions of the Android SDK come out frequently. By the time of this writing,
Google released the Android SDK version 2.0. The code in this chapter has been tested with the following
versions of the Android SDK:

• SDK version 2.0

• SDK version 1.6

• SDK version 1.5

• SDK version 1.0

■ INTRODUCTION

xv

The bottom line is that the code in this book will run in any version of the SDK from 2.0 to 1.0, and that
was my intention all along.

SDK Changes for Version 1.6

Virtually nothing has changed from versions 1.5 to 1.6 of the platform when it comes to game
development. For a detailed list of API changes in version 1.6, see

http://developer.android.com/sdk/RELEASENOTES.html.

This book has a well-balanced layout of pure Java and hybrid games, divided as follows:

Chapter 1
This chapter provides the first step to set up a Linux system for hybrid game compilation, including
fetching the Android source, extracting device system libraries, setting up a custom compilation
toolchain, custom compilation scripts, plus details on setting up the Eclipse IDE for use throughout the
rest of the book.

Chapter 2
In this chapter you will learn how to combine Java and C code in an elegant manner by building a simple
Java application on top of a native library. You will learn exciting concepts about the Java Native
Interface (JNI) and the API used to combine Java and C in a single unit, including how to load native
libraries, how to use the native keyword, how to generate the JNI headers, plus all about method
signatures, Java arrays vs. C arrays, invoking Java methods, compiling and packing the product, and
more.

Chapter 3
This chapter is the first in a series to explore pure Java gaming with a real-world game dubbed Space
Blaster. The goal of this game is to maneuver (using your finger tips or the keyboard) a space ship
through a field of meteors. This chapter will teach you how to build custom XML-based linear layout,
how to use an abstract class and timer tasks to simulate a simple game loop, how to invalidate views
within a non-UI thread, how to load sprites and sounds from the project resources, plus drawing
techniques such as sprite animations, drawing simple objects, and setting style and color using the Paint
object.

Chapter 4
Pure Java games continue in Chapter 4 with the arcade classic Asteroids. This chapter will teach you all
about drawing polygon sprites on the Android canvas. This is a somewhat difficult technique due to the
lack of polygon support in the Android API. The chapter relies on the high portability of the Java
language to bring polygon code from the J2SE API into the Android API to ultimately create Asteroids. As

■ INTRODUCTION

xvi

you may have noticed, this is a mostly Polygon-based game. Other interesting topics include game life
cycle steps, initialization, draw, and update physics, responding to key and touch events, plus testing on
the device emulator.

Chapter 5
This chapter deals with 3D graphics with OpenGL. It presents a neat trick I stumbled on by coincidence
that allows for mixing OpenGL API calls in both Java and C. This concept is illustrated by using the 3D
cubes sample provided by Google to demonstrate OpenGL in pure Java and hybrid modes. This trick
could open a new frontier of 3D development for Android with the potential to bring a large number of
3D PC games to the platform with enormous savings in development costs and time.

Chapter 6
This is the first chapter in a series of two, which are my personal favorites of this book. Here it brings the
godfather of all PC 3D shooters to the Android platform—Wolfenstein 3D. Who would have thought that
a PC game like this one could be brought to an Android mobile device with minimal effort? This chapter
demonstrates how Java and C can coexist harmoniously and includes topics such as the basic game
architecture (showing how the Java and C components fit together), resource handlers for sound, music,
key and touch events, how to use JNI to cascade graphics information, video buffers, and sound/music
requests back to Java, plus compilation and testing.

Chapter 7
Chapter 7 takes things to the next level with the ground-breaking game for the PC—Doom. Doom is
arguably the greatest 3D game ever created and opened new frontiers in 3D graphics. The ultimate goal
of this chapter is not to describe the game itself, but to show you how easy it is to bring a complex PC
game like Doom to the Android platform. The proof? Doom is 100+K lines of C code and brought to
Android with less than 200 lines of extra JNI API calls, plus the Java code required to build the mobile UI.
This chapter shows that you don’t have to translate 100K lines of C into Java but simply marry these two
powerful languages in an elegant application. Consider the potential savings in development time and
costs! This chapter is a must-read.

C H A P T E R 1

■ ■ ■

1

Welcome to Android Gaming

Welcome to the world of Android Games! The goal of this book is to help you build the best games for the
platform. As you work your way through the chapters, you will learn how to create two kinds of games:
pure Java, and perhaps most interestingly, hybrid games that combine the elegant design of Java with
the raw power of C for maximum performance. The ability to combine both Java and C in this way is
what makes the games in this book unique, as Google does not support this kind of development. But
you may ask, “Why even bother with hybrid games?” After all, Java provides all the APIs you need to
build any kind of game. This is certainly true. However, there are thousands of games out there written
in C that can be brought to Android by compiling the C core and wrapping a Java graphical user
interface (GUI) using the Java Native Interface (JNI). In this book, you’ll learn how to bring to the
platform two of the great 3D shooter games for the PC: Wolfenstein 3D and Doom.

The bottom line? My goal is to bring to you the latest documented and undocumented secrets to
building games for Android. Furthermore, if your plan is to port a PC game, this book will provide you
with invaluable expertise to do so. But before we get started, there are some things you need to know to
get the most from this book.

What Skills Do You Need?
In this book, I am targeting seasoned game developers, not only in Java, but also in C. This makes sense,
as performance is critical in game development. Java provides elegant object-oriented capabilities, but
only C gives you the power boost that game development needs. This is the best of both worlds in the
palm of your hand. This book assumes you are familiar with Android, as well as Linux and shell scripting.

A Solid Foundation of Android
This book assumes that you already know the basics of Android development. For example, you need to
know what activities, views, and layouts are. Consider the following fragment. If you understand what it
does just by looking at it, then you are in good shape.

public class MainActivity extends Activity
{
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

2

 }
}

This fragment defines the main activity or class that controls the life cycle of the application. The

onCreate method will be called once when the application starts, and its job is to set the content layout
or GUI for the application.

You should also have a basic understanding of how GUIs are created using XML. Look at the next
fragment. Can you tell what it does?

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<ImageView android:id="@+id/doom_iv"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/doom"
 android:focusableInTouchMode="true" android:focusable="true"/>

 <ImageButton android:id="@+id/btn_upleft"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:src="@drawable/img1" />
</RelativeLayout>

This code defines a relative layout. In a relative layout, widgets are placed relative to each other

(sometimes overlapping). In this case, there is an image view that fills the entire screen. This image will
display as the background the file called doom.png stored in the res/drawable folder of the project, and
receive key and touch events. In the lower left of the screen, overlapping the image view, an image
button with the ID btn_upleft will be displayed.

Need an Android Tutorial?

There are a lot of concepts related to Android development, and it is impossible to remember every detail
about activities, views, and layouts. A handy place to access this information quickly is the Android tutorial:

http://developer.android.com/

The ultimate guide for Android developers—the latest releases, downloads, SDK Quick Start, version
notes, native development tools, and previous releases—can be found here:

http://developer.android.com/sdk/1.6_r1/index.html

Throughout this book (especially in the chapters dealing with native code), I make extensive use of

the Android Software Development Kit (SDK) command tools (for system administrator tasks). Thus,

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

3

you should have a clear understanding of these tools, especially the Android Debug Bridge (adb). You
should know how to do the following:

• Create an Android Virtual Device (AVD). An AVD encapsulates settings for a
specific device configuration, such as firmware version and SD card path. Creating
an AVD is really simple and can be done from the integrated development
environment (IDE) by using the AVD Manager (accessed by clicking the black
phone icon in the toolbar).

• Create an SD card file. Some of the games in later chapters have big files (5MB or
more). To save space, the code stores all game files in the device SD card, and you
should know how to create one. For example, to create a 100MB SD card file called
sdcard.iso in your home directory, use this command:

$ mksdcard 100M $HOME/sdcard.iso

• Connect to the emulator. You need to do this for miscellaneous system
administration, such as library extraction. To open a shell to the device, use this
command:

$ adb shell

• Upload and pull files from the emulator. These tasks are helpful for storing and
extracting game files to and from the device. Use these commands:

$ adb push <LOCAL_FILE> <DEVICE_FILE>
$ adb pull <DEVICE_FILE> <LOCAL_FILE>

■ Note Make sure the SDK_HOME/tools directory is added to your system PATH variable before running the
commands to create an SD card file, connect to the emulator, or upload and pull files.

A Basic Knowledge of Linux and Shell Scripting
For the chapters dealing with the hybrid games, you will do the work within Ubuntu Linux, so dust off all
those old Unix skills.

You should know the basic shell commands, such as those for listing files, installing software
components (this can be tricky, depending on your Linux distribution), and basic system
administration.

There are a few very simple shell scripts in this book. A basic knowledge of the bash shell is always
helpful.

■ Tip If you need a refresher on your Linux and shell scripting, check out the following tutorial by Ashley J.S Mills:
http://supportweb.cs.bham.ac.uk/documentation/tutorials/docsystem/build/tutorials/

unixscripting/unixscripting.html.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

4

What Software Tools Do You Need?
This chapter kicks things off by explaining how to set up your environment to compile hybrid (C/Java)
games. This includes the development IDE (Eclipse) and the Android SDK, which are the tools required
to build any basic Android application. This information is critical if you wish to learn how to combine
the elegant object-oriented features of Java with the raw power of C for maximum performance, and it is
required when we build Doom and Wolfenstein 3D in later chapters.

The following software is assumed to be already installed on your desktop:

• VMware Player or Workstation: This is required to run a Linux virtual machine
(VM). VMware is available for free from the VMware download site
(http://www.vmware.com/products/player/).

• Ubuntu Linux VMware appliance: This is the actual Linux operating system (OS),
where all development will take place. If you don’t have it, appliances are available
for download for free from the VMware Virtual Appliance Marketplace
(http://www.vmware.com/appliances/). Note that the appliance can be quite large
(600+MB).

• Eclipse: This is the development IDE used to create your projects. Version 3.3
(Europa), 3.4 (Ganymende), or 3.5 (Galileo) will do.

• Android SDK, properly configured: At the time of this writing, the latest version of
the SDK is 1.6. You’ll use the Android Debug Bridge to connect to the device.
Unzip the SDK to your favorite folder. Make sure you add the command-line tools
to the PATH of your system. Edit the file .bashrc in your home directory, and
modify the PATH environment variable: PATH=[PATH_TO_SDK]/tools:$PATH. Now you
should be able to start and connect to the emulator from the command line. For a
simple test, open a terminal and type adb. You should see the tool’s help text on
your screen.

• Java JDK 5.0 or later: This is required to run Eclipse and the Android SDK itself.

We’ll begin by setting up the Ubuntu VM with the required software. Log in, and let’s get started.

Setting Up Your Machine
To set up for building Android games, you need to install three software components on your Linux
desktop:

• Android source: This contains the entire Android source code, plus C/C++/JNI
header files used to build custom shared libraries.

• Android native libraries: These include things like the C runtime, math, XML,
sound, and other libraries.

• GNU C/C++ Toolchain for ARM processors: This toolchain provides a C/C++
compiler and linker required to build native libraries, plus other useful tools, such
as debuggers and profilers to aid in the debugging process.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

5

You will also write two custom shell scripts that will save you a lot of headaches in the process of
compiling a hybrid game.

Getting the Android Source
To store the source, Google uses a software versioning tool dubbed Gittool (available from
http://git-scm.com/). Depending on your Ubuntu version, you may need to install some required
packages to use it. To make sure everything is present, open a console and type the following
command (all on one line):

$ sudo apt-get install git-core gnupg
 sun-java5-jdk flex bison gperf
 libsdl-dev libesd0-dev libwxgtk2.6-dev
 build-essential zip curl libncurses5-dev zlib1g-dev

This command will install the required packages to run Git. It requires system administrator

(sysadmin) access.

■ Tip For more details on setting the Android source, see the Android Open Source Project at
http://source.android.com/download .

You also need to install and configure a tool called repo, which is provided by Google to facilitate
working with Git. Create a folder called bin in your home directory and download repo:

$ cd ~
$ mkdir bin
$ curl http://android.git.kernel.org/repo >~/bin/repo
$ chmod a+x ~/bin/repo

Add the bin folder to your search path with the following command:

$ export PATH=$HOME/bin:$PATH

Add this command to the file $HOME/.bashrc if you want to make it available every time you log in to

your system.
Next, create a folder called mydroid in your home directory to store the source, and then change to it:

$ mkdir mydroid
$ cd mydroid

Finally, download the code:

$ repo init -u git://android.git.kernel.org/platform/manifest.git
$ repo sync

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

6

■ Tip The repo init command will download the master branch. To download other branches, use repo
init -u git://android.git.kernel.org/platform/manifest.git -b [BRANCH_NAME].

Now fetch some coffee, sit down, and wait. Depending on your network speed, the download can
take up to one hour.

Once the source download completes, the folder tree should look as shown in Figure 1-1. The most
important folder is called bionic. Bionic is the C library that supports the ARM and x86 instruction sets,
and it is meant to run on an Android device. Bionic is part BSD and part Linux—its source code is a mix
of BSD C library with custom Linux-specific bits used to deal with threads, processes, signals, and other
things. This folder will provide most of the C header files used to build your shared libraries.

Figure 1-1. Android source tree

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

7

Extracting Native Android Libraries
The header libraries from the previous section provide the required files to compile the code. However,
you also need the system image shared libraries for the linking process; that is, you need the *.so files
stored in /system/lib in your device. For example, using the emulator shell, you can take a look at device
file systems and some of the system libraries. Using the Android Debug Bridge (adb), connect to the
device, and then run the df command to inspect the device file systems, as shown in the next fragment:

user@ubuntu:~$ adb shell
df

/dev: 47284K total, 0K used, 47284K available (block size 4096)
/sqlite_stmt_journals: 4096K total, 0K used, 4096K available (block size 4096)
/system: 65536K total, 43496K used, 22040K available (block size 4096)
/data: 65536K total, 43004K used, 22532K available (block size 4096)
/cache: 65536K total, 1156K used, 64380K available (block size 4096)
/sdcard: 40309K total, 34114K used, 6195K available (block size 512)

ls -l /system/lib

-rw-r--r-- root root 9076 2008-11-20 00:10 libdl.so
-rw-r--r-- root root 227480 2008-11-20 00:10 libc.so
-rw-r--r-- root root 13368 2008-11-20 00:10 libthread_db.so
-rw-r--r-- root root 9220 2008-11-20 00:10 libstdc++.so
-rw-r--r-- root root 140244 2008-11-20 00:10 libm.so
-rw-r--r-- root root 79192 2008-11-20 00:10 libz.so
-rw-r--r-- root root 92572 2008-11-20 00:10 libexpat.so
-rw-r--r-- root root 767020 2008-11-20 00:10 libcrypto.so
-rw-r--r-- root root 155760 2008-11-20 00:10 libssl.so
[Other files...]

The df command displays information about the device file systems. From there, you can inspect
the libraries stored in the device /system/lib folder. The ls command shows the most important
libraries: C runtime (libc.so), Math runtime (libm.so), Gzip (libz.so), XML (libexpat.so), and others.
These are the files you need to extract to the local system for the linking step. To extract them, you can
create a simple script and use the emulator tool adb pull command to pull a file from the device to the
local file system.

First, create a folder in your home directory to store these libraries:

$ mkdir -p $HOME/tmp/android/system/lib
$ cd $HOME/tmp/android/system/lib

Next, create a simple script to fetch the files from the device to the $HOME/tmp/android/system/lib

folder. The bash script in Listing 1-1 loops through the library names and pulls the file from the
device /system/lib folder to the local file system current directory.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

8

Listing 1-1. Script to Fetch Device Libraries from /system/lib into the Local File System

#!/bin/bash

Device libraries for Emulator 1.5+
These are located in/system/lib
libs="browsertestplugin.so libEGL.so libFFTEm.so
 libGLESv1_CM.so libaes.so libagl.so libandroid_runtime.so
 libandroid_servers.so libaudioflinger.so libc.so libc_debug.so
 libcameraservice.so libcorecg.so libcrypto.so
 libctest.so libcutils.so libdl.so libdrm1.so
 libdrm1_jni.so libdvm.so libemoji.so
 libexif.so libexpat.so libhardware.so libhardware_legacy.so
 libicudata.so libicui18n.so libicuuc.so libjni_latinime.so
 libjni_pinyinime.so liblog.so libm.so libmedia.so libmedia_jni.so
 libmediaplayerservice.so libnativehelper.so libnetutils.so
 libopencoreauthor.so libopencorecommon.so libopencoredownload.so
 libopencoredownloadreg.so libopencoremp4.so libopencoremp4reg.so
 libopencorenet_support.so libopencoreplayer.so libopencorertsp.so
 libopencorertspreg.so libpagemap.so libpixelflinger.so
 libpvasf.so libpvasfreg.so libreference-ril.so libril.so libsgl.so
 libskiagl.so libsonivox.so libsoundpool.so libsqlite.so
 libsrec_jni.so libssl.so libstdc++.so libsurfaceflinger.so
 libsystem_server.so libthread_db.so libui.so
 libutils.so libvorbisidec.so libwbxml.so libwbxml_jni.so
 libwebcore.so libwpa_client.so libxml2wbxml.so libz.so"

Loop thru lib names
for lib in $libs
do
 # Pull the library into the local file system
 adb pull /system/lib/$lib ./
done

Installing the GNU Toolchain for ARM Processors
So far, so good. You have the Android source and the libraries for the device. The final software you need
is a C compiler. This tool provides the C library, binary utilities, preprocessor, compiler, debugger,
profiler, and linker required to build software for the ARM hardware used by the Android device. You will
use the toolchain provided by the Sourcery G++ Lite Edition for ARM (http://www.codesourcery.com/
sgpp/lite/arm/portal/subscription?@template=lite).

You have two choices:

• Download the easy installer (see Figure 1-2).

• Get the tool in tar format and simply unzip it in your system. (I prefer to do it this
way, as it is much faster).

If you choose to install from the tarball, you can unzip the archive on your desktop using the
following command:

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

9

$ cd $HOME/Desktop
$ tar zxvf arm-2008q3-72-arm-none-linux-gnueabi.tar.gz

Either way you choose to install the toolchain, you must add the bin folder to your system path so

the toolchain can be invoked from the console. Add the following text to your $HOME/.bashrc file:

ARM_HOME=$HOME/Desktop/arm-2008q3
export PATH=$PATH:$ARM_HOME/bin

Figure 1-2. Sourcery G++ Lite installer

Now you should have the toolchain ready for use. Perform a quick test by typing the following:

user@ubuntu:~$ arm-none-linux-gnueabi-gcc --version

arm-none-linux-gnueabi-gcc (Sourcery G++ Lite 2008q3-72) 4.3.2
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.
There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

10

Let’s take a quick look at some of the most useful commands provided by the toolchain:

• arm-none-linux-gnueabi-gcc: This is the C compiler and is equivalent to the Linux
gcc command. Most of the options are very close to those provided by its Linux
counterpart.

• arm-none-linux-gnueabi-g++: This is the C++ compiler, which wraps the gcc
command with extra options for C++.

• arm-none-linux-gnueabi-ld: This is the linker used to build a final binary, either as
a monolithic file (statically) or as a shared library (dynamically).

• arm-none-linux-gnueabi-objdump: This displays information about binary files.

• arm-none-linux-gnueabi-strip: This removes symbols and sections from binary
files, including symbol and relocation information, debugging symbols and
sections, nonglobal symbols, and others. This can help to reduce the size of the
final executable.

For example, arm-none-linux-gnueabi-objdump is a very useful tool for peeking into your binaries. It
shows you information such as the following:

• Archive header information

• Contents of the overall file header

• Assembler contents of executable sections

• Intermix source code with disassembly

• Contents of the dynamic symbol table

• Relocation entries in the file

So, to display symbol table information about the device C runtime (libc.so) pulled from the device
into $HOME/tmp/android/system/lib, use this command:

$ arm-none-linux-gnueabi-objdump -T ~/tmp/android/system/lib/libc.so

DYNAMIC SYMBOL TABLE:
00008560 l d .text 00000000 .text
0002c638 l d .rodata 00000000 .rodata
00032264 l d .ARM.extab 00000000 .ARM.extab
00035004 l d .data.rel.ro 00000000 .data.rel.ro
00035e58 l d .data 00000000 .data
000370e4 l d .bss 00000000 .bss
000195ec g DF .text 00000034 getwchar
0000d134 g DF .text 00000000 longjmp
...

A command like this can help you detect symbols used by your program but missing from the
device standard libraries.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

11

As you can see, the toolchain mirrors the GNU GCC toolchain. In fact, the only noticeable difference
is that all the commands start with the prefix arm-none-linux-gnueabi.

With the toolchain in place, the last piece is a set of custom scripts to invoke the preceding
commands.

Writing Custom Compilation Scripts
Why do you need a set of custom compilation scripts? Because they will make the original Linux
compilation process as painless and transparent as possible when moving from the x86 to the ARM
platform. Ideally, you shouldn’t need to change anything in the original Makefile to compile code for
ARM. However, as you’ll see, this step can be incredibly painful, even for the seasoned C/C++ Linux
developer.

This section presents two custom compilation scripts:

• agcc: This is a bash script meant to replace the GNU GCC compiler and wrap all
dependencies for an Android device.

• ald: This is a bash script used in the linking process to create a final executable.

These scripts are critical and must be fully understood. But before we look at them, let’s take a look
at the x86 compilation process and how it differs for an ARM device.

The Traditional Linux Compilation Process
In the traditional x86 Linux compilation process, a developer has a set of C/C++ programs and a
Makefile to build a final executable. The basic skeleton of a Makefile looks like this:

Makefile Skeleton

Object files
OBJS = file1.o file2.o....

Header files
INC = -Ifolder1 –Ifolder2 ...

Libraries and paths (used when linking)
LIB = -lc -lm -Lpath1 -Lpath2 ...

Main target
all: $(OBJS)
 @echo Linking..
 gcc -o myapp $(OBJ) $(LIB)

Compile C files
%o:%.c
 @echo Compiling $<...
 gcc -c $< $(INC)

The values OBJS, INC, and LIB (for objects, includes/headers, and libraries, respectively) are called

variables. The all and %o entries are called targets. Variables have a value separated by an equal sign (=).

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

12

Targets have dependencies separated by a colon (:). Below each target is a list of commands, preceded
by a tab character.

To compile the application, type the command $ make. This will trigger the execution of the main
target all (this is a built-in name). The target is followed by a colon, then a series of dependencies—in
this case, all: $(OBJ). Thus, when the main target kicks in, it will trigger the execution of the $(OBJ)
dependencies, which define the application object files. These object files will, in turn, start the
compilation process, defined by the target %o:%c, which essentially says, “process all .c files whenever
an .o dependency is found.” So. when a .c source file is read from the current directory, the following
will be displayed in the console:

Compiling file1.c ...
gcc -c file1.c -Ifolder1 -Ifolder2 ...

Compiling file2c ...
gcc -c file2c -Ifolder1 -Ifolder2 ...

Note the following lines in the Makefile:

@echo Compiling $<...
gcc -c $< $(INC)

The instruction @echo tells GNU make to display a message to the console, and the value $< is a built-

in variable that tells make to use the second argument from the target %o:%c as an argument to the
command (in this case, a .c file read from the file system). Note that the % character is equivalent to the
DOS * character, thus %.c means “all .c files in the current directory,” The next line, gcc -c $< $(INC),
will expand to gcc -c file1.c -Ifolder1 -Ifolder2

The process will continue for all object files defined in the variable OBJ. Execution will then resume
for the all target (provided there are no errors in the compilation process) with the linking step, and
with the following line displayed on the console:

Linking...

The line gcc -o myapp $(OBJ) $(LIB) will be expanded as follows:

gcc -o myapp file1.o file2.o ... -lc -lm -Lpath1 -Lpath2

This will produce the final binary myapp, which can then be run from the console.
This works fine for a x86 PC system. However, it will not work in an Android device for several

reasons. One is that the GCC produces binary files for an x86 architecture; desktop binaries will not run
in an ARM processor. (This could be easily fixed by replacing gcc with arm-none-linux-gnueabi-gcc.)

Another problem is that commands such as arm-none-linux-gnueabi-gcc -c file1.c -Ifolder1 -
Ifolder2 ... will compile the source code using standard header files (for the C runtime and others)
bundled with the toolchain. Depending on the version you are using, this could cause undesired side
effects, such as missing symbols at linkage time. For example, the following error is thrown when trying
to compile a file from the 3D game Doom for ARM:

arm-none-linux-gnueabi-gcc -Werror -Dstricmp=strcasecmp
-msoft-float -mcpu=arm9

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

13

-g -Wall -DX11 -fpic -o sys_linux.o -c
/home/user/workspace/Android.Quake/native/Doom/sys_linux.c

cc1: warnings being treated as errors
/home/user/workspace/Android.Quake.Preview/native/Quake/sys_linux.c:
In function 'floating_point_exception_handler':
/home/user/workspace/Android.Quake.Preview/native/Quake/sys_linux.c:350:
error: implicit declaration of function 'sysv_signal'

This error is thrown because of a difference in the naming convention of the C system call signal

(used to bind a user-defined function to an OS signal) between the toolchain (which implements the
system call as signal), and the Android implementation (sysv_signal).

Regarding missing symbols, if you build a shared library, the compiler will not choke when there are
missing subroutines or variables within your code. This will ultimately cause the library not to load once
the program starts. I found this difficult to deal with, as the tools to work with native code are
cumbersome and difficult to use, especially for the newcomer. I have used a simple solution, which is to
build a mini main program to invoke the shared library, as demonstrated in Chapter 2.

An Android Compilation Script
Listing 1-2 shows the bash script to aid in Android compilation, called agcc.

Listing 1-2. Compilation Helper Script (agcc)

#!/bin/bash

Android Compilation helper script
Uses the CodeSourcery G++ Toolchain for ARM

Root folder where files are installed
Update this to match your system

HOME=/home/user

JVM location. Set to your location
JAVA_HOME=/usr/lib/jvm/java-6-sun

Device system image
SYS_ROOT=$HOME/tmp/android/system

Android source code
SYS_DEV=$HOME/mydroid

Code Sourcery Toolchain location
TOOLCHAIN_ROOT=$HOME/Desktop/android/arm-2008q3

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

14

Include locations
No need to change this

BASE=$SYS_DEV/frameworks/base

C - Runtime
LIBC=$SYS_DEV/bionic/libc

Math library
LIBM=${SYS_DEV}/bionic/libm

Location of some required GCC compiler libraries
TC=${SYS_DEV}/prebuilt/linux-x86/toolchain/arm-eabi-4.3.1/lib/gcc/arm-eabi/4.3.1

Kernel headers
KERNEL=${SYS_DEV}/kernel

GNU GZIP
LIBZ=${SYS_DEV}/external/zlib

XML Expat parser
EXPAT=${SYS_DEV}/external/expat/lib

Includes
AND_INC="-I$JAVA_HOME/include"
AND_INC+=" -I${JAVA_HOME}/include/linux"
AND_INC+=" -I${LIBC}/include "
AND_INC+=" -I${LIBC}/arch-arm/include"
AND_INC+=" -I${LIBC}/kernel/arch-arm/include "
AND_INC+=" -I${LIBM}/include"
AND_INC+=" -I${BASE}/include"
AND_INC+=" -I${TC}/include"
AND_INC+=" -I${KERNEL}/include"
AND_INC+=" -I${KERNEL}/arch/arm/include -I${KERNEL}/arch/arm/mach-ebsa110/include"
AND_INC+=" -I${SYS_DEV}/system/core/include"
AND_INC+=" -I${LIBZ}"
AND_INC+=" -I${EXPAT}"

Toolchain compiler command

CROSS=arm-none-linux-gnueabi-
GCC=${CROSS}gcc

Uncomment for debugging
echo ${GCC} -nostdinc $AND_INC $@

Go!
${GCC} -nostdinc ${AND_INC} "$@"

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

15

The agcc script defines a series of variables that can be adjusted to match your system (if you choose
to install the G++ toolchain and Android source in different locations):

• HOME: This is the root location where all the software components reside (in this
case, /user/home). This variable is used within other variables.

• JAVA_HOME: This is the location of the Java SDK. You need a Java SDK for building
the hybrid games that mix Java and C code, which talk to each other using JNI.
From the SDK, you’ll use JNI header files and JNI libraries.

• SYS_ROOT: This is the location of the device’s system libraries extracted from the
device in the previous section. The default value is $HOME/tmp/android/system.

• SYS_DEV: This is the location of the Android source you downloaded earlier. From
this code, you will use header files and shared libraries. The default value is
$HOME/mydroid.

• TOOLCHAIN_ROOT: This is the location where the CodeSourcery toolchain is installed
($HOME/Desktop/android/arm-2008q3 in this case).

Next, the script defines the locations of the basic libraries used in the compilation step. The
following are the most important:

• C runtime (LIBC): This is the location of the C runtime header files, located under
$SYS_DEV/bionic/libc.

• Math library (LIBM): This is a commonly used library. It contains system functions
such as pow, trigonometric functions, and others. It is located under
${SYS_DEV}/bionic/libm.

• Kernel headers (KERNEL): Kernel headers are likely to be used by your games,
especially high-performance 3D games. It is located under ${SYS_DEV}/kernel.

• GNU Gzip (LIBZ): If your game manipulates zip files, you’ll need this library. It is
located under ${SYS_DEV}/external/zlib.

• XML parser (EXPAT): Most of today’s modern games use XML files to store game
and configuration information. Thus, this library is required. By default, it is
located under ${SYS_DEV}/external/expat/lib.

The following are other variables that are used to include extra compile-time dependencies:

BASE=$SYS_DEV/frameworks/base
TC=${SYS_DEV}/prebuilt/linux-x86/toolchain/arm-eabi-4.3.1/lib/gcc/arm-eabi/4.3.1

Next, the script defines the paths to the required header locations (with AND_INC) as a sequence of

includes: -Ipath1, -Ipath2, and so on. And, finally, the critical step is to call the toolchain gcc command,
as follows:

${GCC} -nostdinc ${AND_INC} "$@"

${GCC} will expand to arm-none-linux-gnueabi-gcc, ${AND_INC} will expand to the previously defined

includes, and "$@" indicates that all arguments sent by the user should be passed along. Note the
parameter -nostdinc. This is a critical argument that tells the compiler not to include the standard

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

16

include files (that is, the header files bundled with the toolchain itself). You do not wish to use the
toolchain’s headers, but instead use the headers provided by the Android source, as you will be linking
against Android’s system libraries as well.

That takes care of the compilation step, but you also need to link against the device system libraries,
which is the purpose of the next script.

An Android Linker Script
Listing 1-3 shows the Android linker helper script, called ald.

Listing 1-3. Linker Helper Script (ald)

#!/bin/bash

Android Linker helper script
Set these values to match your system

HOME=/home/user
JAVA_HOME=/usr/lib/jvm/java-6-sun

System image location
SYS_ROOT=$HOME/tmp/android/system

Toolchain location
TOOLCHAIN_ROOT=$HOME/Desktop/android/arm-2008q3

Android Toolchain libgcc.a
LIBGCC=${SYS_DEV}/prebuilt/darwin-x86/toolchain/arm-eabi-4.2.1/lib/gcc/
arm-eabi/4.2.1/libgcc.a

CodeSourcery libgcc.a
#LIBGCC=${TOOLCHAIN_ROOT}/lib/gcc/arm-none-linux-gnueabi/4.3.2/libgcc.a

Linker libraries: C runtime, Math, and extra symbols
LIBRARIES="-lc -lm ${LIBGCC}"

Library locations
LIB_PATHS="-rpath /system/lib \
 -rpath ${SYS_ROOT}/lib \
 -L${SYS_ROOT}/lib \
 -L${JAVA_HOME}/jre/lib/i386 -L."

Linker flags
LD_FLAGS="--dynamic-linker=/system/bin/linker -nostdlib"

Linker command

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

17

CROSS=arm-none-linux-gnueabi-
GCC=${CROSS}ld

Uncomment for debugging
#echo "${GCC} $LD_FLAGS $LIB_PATHS $@ $LIBRARIES"

Go!
${GCC} $LD_FLAGS $LIB_PATHS $@ $LIBRARIES

The ald script defines variables similar to those use used by the agcc script, which specify the

location of the required software components, plus some extra linker variables:

• LIBRARIES: This variable defines the basic libraries against which the final binary
should be linked. These are the C runtime (-lc), the Math library (-lm), and
libgcc.a, which contains extra symbols required at link time. Note that the linker
will expand -lc to the name libc.so when reading the library from the file system.

• LIB_PATHS: Besides the library names defined in the previous step, the linker needs
to be able to find the libraries on the file system. Thus, you need to tell it where to
look. The -Lpath1, -Lpath2, and so on tell the compiler where to look for libraries.
Also, -rpath sets the runtime shared library search path. You need to define two
runtime search paths:

• -rpath /system/lib is the location of the runtime libraries in the device. It
must be defined so the program will be able to run properly in the device
itself.

• -rpath ${SYS_ROOT}/lib is the location of the same libraries on the desktop
system. It is required so the binary can compile properly.

• LD_FLAGS: This variable defines linker flags. Two flags are used by the script:

• --dynamic-linker=/system/bin/linker sets a program to use as the dynamic
linker. In this case, /system/bin/linker is the device.

• -nostdlib tells the linker not to use the standard libraries (C runtime, Math
library, and so on) defined by the toolchain, but instead use the libraries
defined by the user at link time.

And, finally, the command ${GCC} $LD_FLAGS $LIB_PATHS $@ $LIBRARIES will expand to the
following:

$ arm-none-linux-gnueabi-ld --dynamic-linker=/system/bin/linker
 –nostdlib -rpath /system/lib
 -rpath /user/home/tmp/android/system/lib
 -L/user/home/tmp/android/system /lib
 -L/usr/lib/jvm/java-6-sun/jre/lib/i386
 -L. [USER_ARGUMENTS] -lc -lm
 /user/home/Desktop/android/arm-2008q3/lib/gcc/
 arm-none-linux-gnueabi/4.3.2${LIBDIR}/libgcc.a

Note that $@ in the script will expand to all arguments sent by the user in the command line.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

18

Testing the Scripts
Save the scripts in Listings 1-2 and 1-3 as agcc and ald in your $HOME/bin directory. Then issue the
following commands to test them:

user@ubuntu:~$ agcc --version

arm-none-linux-gnueabi-gcc (Sourcery G++ Lite 2008q3-72) 4.3.2
Copyright (C) 2008 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

user@ubuntu:~$ ald --version

arm-none-linux-gnueabi-ld: warning: library search path
"/usr/lib/jvm/java-6-sun/jre/lib/i386" is unsafe
for cross-compilation
GNU ld (Sourcery G++ Lite 2008q3-72) 2.18.50.20080215
Copyright 2007 Free Software Foundation, Inc.
This program is free software; you may redistribute it under the terms of
the GNU General Public License version 3 or (at your option) a later version.
This program has absolutely no warranty.

■ Caution Do not edit the scripts with your Windows host using Notepad or WordPad. That will insert invalid
characters in the file and give strange results when you run the script. I made the mistake of doing just that, and
wasted a lot of time when the compiler started giving some funky output.

Setting Up Your Development Environment
Now you are ready to get your IDE up and running with the Android development kit. Let’s go through
the installation of the latest available Android SDK (1.6 at the time of this writing; available from
http://developer.android.com/sdk/index.html) over Eclipse 3.5 (Galileo, available from
http://www.eclipse.org).

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

19

1. Start Eclipse Galileo and select Help ➤ Check for Updates, as shown in
Figure 1-3.

Figure 1-3. Choosing Check for Updates from the Eclipse 3.5 (Galileo) workbench’s Help menu

2. In the Available Software window, shown in Figure 1-4, click the Add button to
install new software.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

20

Figure 1-4. Choosing to add software

3. In the Add Site dialog box, enter Android for the name and https://dl-ssl.
google.com/android/eclipse for the location, as shown in Figure 1-5.

Figure 1-5. Adding the Android site

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

21

4. From the Available Software window (Figure 1-4), select the Android site you
just added from the Work with combo box. If the name is not shown in the list,
click the Available Software Sites preferences link, and then click Add to insert
the site into the list (see Figure 1-6).

Figure 1-6. The Available Software Sites Preferences window shows the recently added Android site.

5. Check the Developer Tools check box in the details section, as shown in
Figure 1-7, and then click Next.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

22

Figure 1-7. Available Software window with the Android plug-in selected

6. Follow the wizard installation instructions, accept the license agreement, as
shown in Figure 1-8, and then complete the installation. At the end, the
workbench should ask for a restart.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

23

Figure 1-8. Software license agreement from the installation wizard

7. After the workbench restarts, select Window ➤ Preferences to open the
workbench Preferences window, and select the Android option from the left
navigation tree. In the Preferences section, set the location of your SDK, as
shown in Figure 1-9. Make sure all the build targets are shown. Then click
Apply

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

24

Figure 1-9. Workbench Preferences window showing Android options

8. Click OK, and then open the New Project wizard to make sure the Android
plug-in has been successfully installed. If so, you should see a folder to create
an Android project, as shown in Figure 1-10.

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

25

Figure 1-10. New Project wizard showing the Android options after final configuration

At this point, your environment should be configured and ready for development.

About the Android Native Development Kit

With version 1.5 of the SDK, Google has released a new tool called the Native Development Kit (NDK),
available from http://developer.android.com/sdk/ndk/1.5_r1/index.html. According to Google, this
is a companion tool to the SDK for building native portions of your code. It provides a set of system
headers, such as the following:

• libc (C library) headers

• libm (math library) headers

• JNI interface headers

CHAPTER 1 ■ WELCOME TO ANDROID GAMING

26

• libz (Zlib compression) headers

• liblog (Android logging) header

• Headers for C++ support

The NDK also includes cross-toolchains to generate native ARM binaries, documentation, and samples.

Unfortunately, Google claims that the NDK can be used only on devices running the Android 1.5 platform
version or later, due to toolchain changes that make the native libraries incompatible with SDK versions
1.0 and 1.1. This makes the NDK hard to use for the goal of this book, which is to support all versions of
the platform. However, the appendix will show you how to compile the examples in Chapters 6 and 7 with
the NDK.

You Have Taken the First Step
Congratulations! You have taken the first step toward your mastery of Android game development. In
this chapter, you learned how to set up your Linux system to compile hybrid games, which included the
following tasks:

• Obtaining the Android source

• Extracting device system libraries for compilation

• Setting up the CodeSourcery G++ toolchain

• Writing custom compilation scripts

• Setting up your Eclipse IDE

This chapter provided the foundation to compile the 3D shooter games, Doom and Wolfenstein 3D, as
well as the pure Java games. In the next chapter, you will learn how to write and compile a basic native
program—a simple shared library—and call the shared library within a Java application.

C H A P T E R 2

■ ■ ■

27

Compiling Native Code in Android

In this chapter, we will explore the basics of a simple native program, also known as static binary, to be
run in the device. You will also learn how to build a shared library (dynamic binary), and finally how to
call that shared library within a simple Android project. Let’s get started.

Your First Native Android App
You will need an Android project to host your native application, but before you create that, you must
create an Android Virtual Device (AVD).

Creating an AVD
With version 1.5 of the SDK, Google introduced the concept of virtual devices (AVDs). An AVD is simply a
set of configuration attributes applied to an emulator image that allows the developer to target a specific
version of the SDK. The following are the basic versions of the SDK targeted by AVDs:

• Android 1.1: This target maps to the Android SDK version 1.1 R2.

• Android 1.5: This target maps to the Android SDK version 1.5 R2.

• Android 1.6: This target maps to the Android SDK versions 1.6 and 2.0.

• Google APIs - 1.5 or 1.6: This target must be used if you are building an application
that uses Google APIs such as Maps and Search.

■ Caution In Android 1.5 and later, an AVD does not include the Google Maps API. Keep this in mind if you are
building a maps-enabled app. Your map application will not start in an Android 1.5 AVD.

Let’s create an AVD to target an SDK 1.5 for the sample application.

1. In Eclipse Galileo, click the black phone icon on the Android toolbar (see
Figure 2-1). This opens the Android Virtual Devices Manager dialog box.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

28

Figure 2-1. Android toolbar within Eclipse

2. In the dialog box, enter a name for the AVD (droid1.5 in this example).

3. Select a target SDK (Android 1.5 in this example).

4. Optionally, enter an SD card absolute path (if you already have one), such as
/home/user/sdcard.iso, or a size, such as 128MB. Figure 2-2 shows the
Android Virtual Devices Manager dialog box for this example.

5. Click Create AVD.

■ Tip You should create an SD card for the AVD, and use it for the examples in later chapters to store large game
files (for Doom and Wolfenstein 3D). Game files should not be saved in the device main file system, unless you
want to run out of space after installing one game.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

29

Figure 2-2. Android Virtual Device Manager dialog box settings for SDK 1.5

Note that in Android 1.6 and later, the GUI has changed a little, as shown in Figure 2-3. To create an
AVD, click New to open the Create New AVD dialog box, enter a name, select a firmware target plus SD
card size, and then click Create AVD.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

30

Figure 2-3. Creating a new AVD in Android SDK 1.6

Creating the Android Project
With the AVD in place, the next task is to create the project for this chapter, as follows:

1. Click the New Android Project icon on the main toolbar (see Figure 2-1). This
opens the New Android Project dialog box.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

31

2. In the dialog box, enter a project name (ch02.Project in this example).

3. Enter an application name (Chapter2 in this example).

4. Enter a package name (ch02.project in this example).

5. Enter an activity name (MainActivity in this example).

6. Specify a minimum SDK version (3 in this example). Figure 2-4 shows the
completed New Android Project dialog box for this example.

7. Click Finish.

Figure 2-4. New Android Project dialog box for this chapter’s example

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

32

Application Architecture
Let’s consider what we wish to accomplish with this application:

• We want to create the basic Android application. When run in the emulator, the
app will create a default view with the text “Hello Chapter2!”.

• Within the project, we will create a native folder with files to accomplish the
following:

• Create a native library with a main subroutine that will be called from the
Android main activity using JNI.

• The main library subroutine will invoke a Java method (using JNI) within the
Android project, sending a text message back to the Android Java layer.

• The library will be loaded at runtime within Java using a System.load(path).

Figure 2-5 shows the file system layout of the project.

■ Tip It would be helpful to import the project source (ch02.Project) into your workspace to go along with this
chapter.

The following Java files describe the project:

• ch02.project.MainActivity.java: This file is created by the wizard and should
already exist in the project.

• jni.Natives.java: This is a new file that contains native methods to be invoked
within the native library and callbacks that the C library will perform within Java.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

33

Figure 2-5. Project layout

You must create the following files within the native folder (see Figure 2-5):

• lib.c: This is the main library code. It contains all the necessary JNI system calls
to cascade information back and forth between Android and C.

• testlib.c: This is a test program for the library. Its main function is to make sure
there are no symbols missing from the native library.

• main.c: This is a static program used to demonstrate how to compile a static native
program that can be run in the device.

• Makefile: This is the project’s native build file. It has targets for the following:

• Build the native library

• Build the library test program

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

34

• Generate JNI header files required to cascade information back and forth
between Java and C

• Build the static test program

• Deploy the files to the device for testing

Let’s look at the files in more detail to understand what they do. We’ll start with the Java layer.

Main Activity
The 8.70ch02.project.MainActivity.java file is created by the wizard, and it is the entry point to the
phone application. Listing 2-1 shows the code for this file. There are some remarkable things to note
about this file.

As you should know, when the application starts, the method onCreate(Bundle
savedInstanceState) will be invoked by Android. This method performs three critical steps:

• It installs (simply copies) the native library (libch02.so) from the assets folder of
the application package to the project’s files folder (located in /data/data/
PACKAGE_NAME/files; the name of the package is ch02.project). This step is
required before the library can be loaded by JNI.

• It loads the native library using System.load(path).

• Finally, it runs the main library sub by invoking the native method
Natives.LibMain(String[] argv).

Native libraries cannot be loaded within the application package; thus, they must be copied
somewhere in the file system before invoking System.load(). The obvious place would be the
application’s file folder (located in /data/data/Package_Name/files), but the library can be saved
anywhere where permissions allow it.

■ Caution Shared libraries should not be saved on the SD card, as Android does not allow you to run executable
code from the SD card. Developers that have large shared libraries might be tempted to do so to save some space.
Save yourself some trouble and don’t do it.

Note the way the library is installed:

writeToStream(
getAssets().open(LIB),
openFileOutput(LIB, 0)
);

The getAssets().open() method will open a stream from the package assets folder (where the

library will be stored). The writeToStream method will then write the stream using openFileOutput(LIB,
0), which will open an output stream to the default application folder (/data/data/ch02.project/files).
getAssets and openFileOutput are Android system calls, and LIB is the name of the shared library

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

35

(libch02.so). The second argument to openFileOutput (zero) tells Android to assign private permissions
to the file (that means it can be read by only the application itself).

Listing 2-1. Main Activity for This Chapter’s Example

package ch02.project;

import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;

import jni.Natives;

import android.app.Activity;
import android.os.Bundle;

public class MainActivity extends Activity {
 private static final String LIB = "libch02.so";
 private static final String LIB_PATH =
 "/data/data/ch02.project/files/" + LIB;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 try {
 // Install lib
 System.out.println("Installing LIB: " + LIB);

 // Copy lib from assests folder to files folder:
 // /data/data/PKG_NAME/files
 writeToStream(getAssets().open(LIB), openFileOutput(LIB, 0));

 // Load Lib
 System.load(LIB_PATH);

 // Run it
 String[] argv = { "MyLib", "arg1", "arg2" };

 Natives.LibMain(argv);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 /**
 * Write to a stream
 *

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

36

 * @param in
 * @param out
 * @throws IOException
 */
 public static void writeToStream(InputStream in, OutputStream out)
 throws IOException {
 byte[] bytes = new byte[2048];

 for (int c = in.read(bytes); c != -1; c = in.read(bytes)) {
 out.write(bytes, 0, c);
 }
 in.close();
 out.close();
 }
}

In Android 1.5 and later, native libraries can be stored within the project under a folder named

libs/armeabi, then loaded using the system call System.loadLibrary(LIB_NAME). Thus, Listing 2-1 can be
simplified by removing the library installation step:

public class MainActivity extends Activity
{
 private static final String LIB = "ch02";

 // Load library: Note that the prefix (lib) and the extension (.so) must be stripped.
 static {
 System.loadLibrary(LIB);
 }

 public void onCreate(Bundle savedInstanceState) {
 // ...
 Natives.LibMain(argv);
 }
}

Native Interface
The native interface is defined in the Java class jni.Natives.java. It has two important methods that
deal with the C library (see Listing 2-2):

• static native int LibMain(String[] argv): This is the native library main
subroutine. It will be called within the Android main activity. The method also
takes a list of argument strings to be passed along. Notice the keyword native,
which tells the Java compiler it is implemented natively.

• private static void OnMessage(String text, int level): This method is meant
to be called from the C library, with a string message and integer value (level). This
method will simply print the message to the console.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

37

■ Note As you should know, with JNI, you can invoke subroutines both ways: from Java to C (using the native
keyword) or from C to Java, as you’ll see once we get to the native stuff.

Listing 2-2. Native Interface Class

package jni;

public class Natives
{

 /**
 * Native Main Loop
 *
 * @param argv
 * @return
 */
 public static native int LibMain(String[] argv);

 /**
 * This fires on messages from the C layer
 *
 * @param text
 */
 @SuppressWarnings("unused")
 private static void OnMessage(String text, int level) {
 System.out.println("OnMessage text:" + text + " level=" + level);
 }

}

Natives.LibMain requires a native implementation. On the other hand, OnMessage (which is invoked

from C) simply prints the message to standard output. With this in mind, let’s take a look at the native
code.

Native Library
Here 11.330is where all the work should take place. We start with the implementation of the actual
library lib.c (see Listing 2-3). This file lives in the native folder within the project folder.

■ Note Native libraries in Linux (also known as shared objects) are the equivalents of dynamic link libraries (DLLs)
in Windows. By convention, shared objects are named as lib<NAME><VERSION>.so.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

38

Listing 2-3. Native Library Implementation

#include <stdio.h>
#include <stdlib.h>

/* JNI Includes */
#include <jni.h>

#include "include/jni_Natives.h"

#define CB_CLASS "jni/Natives"

/**
 * OnMessage callback
 */
#define CB_CLASS_MSG_CB "OnMessage"
#define CB_CLASS_MSG_SIG "(Ljava/lang/String;I)V"

// prototypes

// Lib main Sub
int lib_main(int argc, char **argv) ;

// Used to get the len of a Java Array
const int getArrayLen(JNIEnv * env, jobjectArray jarray);

// printf str messages back to java
void jni_printf(char *format, ...);

// Global env ref (for callbacks)
static JavaVM *g_VM;

// Global Reference to the native Java class jni.Natives.java
static jclass jNativesCls;

/*
 * Class: jni_Natives
 * Method: LibMain
 * Signature: ([Ljava/lang/String;)V
 */
JNIEXPORT jint JNICALL Java_jni_Natives_LibMain
 (JNIEnv * env, jclass class, jobjectArray jargv)
{
 // Obtain a global ref to the caller jclass
 (*env)->GetJavaVM(env, &g_VM);

 // Extract char ** args from Java array
 jsize clen = getArrayLen(env, jargv);

 char * args[(int)clen];

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

39

 int i;
 jstring jrow;
 for (i = 0; i < clen; i++)
 {
 // Get C string from Java String[i]
 jrow = (jstring)(*env)->GetObjectArrayElement(env, jargv, i);
 const char *row = (*env)->GetStringUTFChars(env, jrow, 0);

 args[i] = malloc(strlen(row) + 1);
 strcpy (args[i], row);

 // Print args
 jni_printf("Main argv[%d]=%s", i, args[i]);

 // Free Java string jrow
 (*env)->ReleaseStringUTFChars(env, jrow, row);
 }

 /*
 * Load the jni.Natives class
 */
 jNativesCls = (*env)->FindClass(env, CB_CLASS);

 if (jNativesCls == 0) {
 jni_printf("Unable to find class: %s", CB_CLASS);
 return -1;
 }

 // Invoke the Lib main sub. This will loop forever
 // Program args come from Java
 lib_main (clen, args);
 return 0;
}

/**
 * Send a string back to Java
 */
jmethodID mSendStr;

static void jni_send_str(const char * text, int level) {
 JNIEnv *env;

 if (!g_VM) {
 printf("I_JNI-NOVM: %s\n", text);
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 // Load jni.Natives if missing

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

40

 if (!jNativesCls) {
 jNativesCls = (*env)->FindClass(env, CB_CLASS);

 if (jNativesCls == 0) {
 printf("Unable to find class: %s", CB_CLASS);
 return;
 }
 }

 // Call jni.Natives.OnMessage(String, int)
 if (! mSendStr) {
 // Get aref to the static method: jni.Natives.OnMessage
 mSendStr = (*env)->GetStaticMethodID(env, jNativesCls
 , CB_CLASS_MSG_CB
 , CB_CLASS_MSG_SIG);
 }
 if (mSendStr) {
 // Call method
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , mSendStr
 , (*env)->NewStringUTF(env, text)
 , (jint) level);
 }
 else {
 printf("Unable to find method: %s, signature: %s\n"
 , CB_CLASS_MSG_CB, CB_CLASS_MSG_SIG);
 }
}

/**
 * Printf into the Java layer
 * does a varargs printf into a temp buffer
 * and calls jni_sebd_str
 */
void jni_printf(char *format, ...)
{
 va_list argptr;
 static char string[1024];

 va_start (argptr, format);
 vsprintf (string, format,argptr);
 va_end (argptr);

 jni_send_str (string, 0);
}

/**
 * Get Java array length
 */
const int getArrayLen(JNIEnv * env, jobjectArray jarray)
{

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

41

 return (*env)->GetArrayLength(env, jarray);
}

/**
 * Library main sub
 */
int lib_main(int argc, char **argv)
{
 int i;

 jni_printf("Entering LIB MAIN");

 for (i = 0 ; i < argc ; i++) {
 jni_printf("Lib Main argv[%d]=%s", i, argv[i]);
 }
 return 0;
}

Let’s dissect this file to understand what it does. Any C/C++ program that plans to do JNI calls must

include the header file:

#include <jni.h>

This header file has the prototypes for all the JNI system calls to be used by your library. It can be

found in your system’s Java home under JAVA_HOME/include, with extra Linux dependencies under
JAVA_HOME/include/linux. At compile time, these paths must be included using -I$JAVA_HOME/include
and -I$JAVA_HOME/include/linux in the Makefile (The agcc script you created in Chapter 1 will take care
of all this).

Next, it includes the jni_Natives header file:

#include "include/jni_Natives.h"

This file contains the user-defined JNI prototypes for all native methods defined in the jni.Natives

class. It is machine-generated and must not be edited by the user. The actual generation will be set up in
the Makefile. To generate this file manually, the following command can be used:

javah -cp ../bin -d include jni.Natives

Here, javah is the Java Virtual Machine (JVM) command to generate native header files from Java

classes, -cp defines the class path search path, -d include tells javah to save the file in the include folder
(creating it if required), and jni.Natives is the Java class name from which you wish to extract the
headers.

Next, the following constants are defined:

#define CB_CLASS "jni/Natives"
#define CB_CLASS_MSG_CB "OnMessage"
#define CB_CLASS_MSG_SIG "(Ljava/lang/String;I)V"

CB_CLASS is the name of the Java class that will be invoked within C (note that the period separating

path names is replaced by /). CB_CLASS_MSG_CB is the name of the Java method (OnMessage) that will be

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

42

invoked (see Listing 2-2). CB_CLASS_MSG_SIG is a critical constant that defines the Java signature of the
OnMessage Java method. Let’s take a closer look at this signature:

(Ljava/lang/String;I)V

A Java method signature has the format (ARGUMENTS)RETURN_TYPE, where the arguments can be

encoded as follows:

I = Integer

B = Byte

S = Short

C = Char

LJava_Class; = For Java classes enclosed by : L and ;

In our case, the first argument is a Java string (Ljava/lang/String;), and the second is an integer (I).

Note that all arguments are defined by a single character (except for classes that are enclosed by L;), and
there are no separators between them. Finally, V is the return type defined as void.

■ Caution Method signatures are a major pain when coding in JNI. Any mistake in this string, and the library will
not be able to find the method at runtime.

Next, the file defines the prototypes for the functions within the library:

• int lib_main(int argc, char **argv): This is the entry point to the library. It
receives the number of arguments (argc) and a list of arguments (argv), similar to
the standard C main() function.

• int getArrayLen(JNIEnv * env, jobjectArray jarray): This function is used to
get the length of a Java array, which will be translated into a C array for use by the
library.

• void jni_printf(char *format, ...): This function is used by the library to send
a text message back to Java. Note that ... indicates that the function will receive a
vector of arguments.

Finally, we need two global references:

static JavaVM *g_VM;
static jclass jNativesCls;

g_VM is a reference to the JVM, and it will be used make JNI system calls. jNativesCls is a reference to

the jni.Natives Java class used to invoke the Java method OnMessage. Note that the static keyword tells
the compiler that these variables should be visible only within code in lib.c.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

43

Converting a Java Array to a C Array
Converting a Java string array to a C char array is a very useful tool to send arguments to a native library.
As you can see from Listing 2-4, this can be a tricky situation. The following are the key steps:

• Get the size of the Java array, and for each element of the array:

• Get the Java String[i] element using GetObjectArrayElement(JNIEnv * env,
jobjectArray jarray, int pos).

• Convert the retrieved element into a C string (char *) using
GetStringUTFChars(JNIEnv * env, jstring jrow, 0).

• Allocate space for the C array using malloc(length of string + 1). Note that an
extra space is allocated for the terminator character.

• Copy the characters using strcpy (char ** target , char * source).

• Release Java String[i] using ReleaseStringUTFChars(JNIEnv * env, jstring
jrow, char * row).

Listing 2-4. Converting a Java String Array into a C Char Array

// Extract char ** args from Java array
jsize clen = getArrayLen(env, jargv);

char * args[(int)clen];

int i;
jstring jrow;

// Loop thru Java array
for (i = 0; i < clen; i++)
{
 // Get String[i]
 jrow = (jstring)(*env)->GetObjectArrayElement(env, jargv, i);

 // Convert String[i] to char *
 const char *row = (*env)->GetStringUTFChars(env, jrow, 0);

 // Allocate space
 args[i] = malloc(strlen(row) + 1);

 // Copy
 strcpy (args[i], row);

 // Free java string jrow
 (*env)->ReleaseStringUTFChars(env, jrow, row);
}

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

44

Getting the Size of a Java Array
To get the size of a Java array, use the JNI function (*env)->GetArrayLength(env, jobjectArray jarray),
where env is a pointer to the JNI environment, and jarray is a reference to the Java array. For example, to
get the size of the array jargs using environment env, use the following:

(*env)->GetArrayLength(env, jargs)

Invoking a Java Static Void Method
To invoke the static void jni.Natives.OnMessage method. you must perform the following steps:

1. Load the jni.Natives class with the following:

(*env)->FindClass(env, "jni/Natives")

2. Get the ID of the method to be invoked using a reference to the jni.Natives
class, the name of the method (OnMessage), and the signature
(Ljava/lang/String;I)V.

jmethodID mSendStr = (*env)->GetStaticMethodID(env
 , jNativesCls
 , "OnMessage"
 , "(Ljava/lang/String;I)V");

3. Call the static void method, passing the class, method ID, and the method
arguments: a Java string and integer in this case.

(*env)->CallStaticVoidMethod(env, jNativesCls
 , mSendStr
 , (*env)->NewStringUTF(env, text)
 , (jint) level);

Defining a Variable-Arguments Function in C
The final piece of the puzzle is a function to perform the actual invocation of the Java method described
in the previous section, as shown in Listing 2-5. This function is meant to be called anywhere within the
library after jni.Natives.LibMain() is invoked. It is called jni_printf and works pretty much as printf
does, using the very useful variable-arguments technique.

Listing 2-5. Sending a String to Java Using Variable Arguments

void jni_printf(char *format, ...)
{
 va_list argptr;
 static char string[1024];

 va_start (argptr, format);
 vsprintf (string, format, argptr);
 va_end (argptr);

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

45

 jni_send_str (string, 0);
}

va_list, va_start, and va_end are used to build an output string using a C string format and a

sequence of arguments. This allows the developer to mimic a printf-style function for a specific need.
Thus, for example, to print an arbitrary message to the Java console within the library, use the following
command:

jni_printf("This is a message %d, %p, %x, %s", 10, somePointer, 0xFF, "Hello Java")

"This is a message %d, %p, %x, %s" is called a character format. The rest are variable arguments

sent to the function. Also note that you should add the header #include <stdarg.h> to use variable
arguments.

Compiling and Testing the Shared Library
We can now proceed to compile the native library. Listing 2-6 shows the Makefile for this purpose. This
file defines the following targets:

• default (all): This target will build both the library and the test static binary
a.out.

• lib: This target will build only the shared library.

• testlib: This target will build a simple program to test the library and make sure
there are no missing symbols.

• jni: This target will generate the C header for the native Java class jni.Natives.
The output will be stored in the include folder under the current directory.

• pushbin: This target will push the static test binary (a.out) to the device /data
folder using the adb push command.

• pushlib: This target will push the library and the test program to the device /data
folder.

■ Caution Commands within a target of a Makefile must use the tab separator, which has been replaced by
spaces in Listing 2-6. Do not copy and paste this listing into a Makefile, as it will not run properly. Instead, refer to
the source code for the chapter.

Listing 2-6. Makefile for This Chapter’s Example

#####################################
Makefile
#####################################

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

46

Compiler and loader
CC = agcc
LD = ald

Flags
CFLAGS = -Werror
MACROS =
INCLUDES =

Static objects
OBJ = main.o

Shared library ob
LIBOBJ = lib.o

Test shared lib
TESTLIBOBJ = testlib.o

Default make target
all: testlib $(OBJ)
 @echo
 @echo "Linking..."
 $(LD) -static -o a.out $(OBJ)

Build lib
lib: $(LIBOBJ)
 @echo
 @echo "Linking Shared library..."
 $(LD) -shared -o libch02.so $(LIBOBJ)
 @echo
 @echo "Copying Shared library to assets folder"
 cp libch02.so ../assets

Build test program for lib
testlib: lib $(TESTLIBOBJ)
 @echo
 @echo "Linking Test for Shared library"
 $(LD) -o testlib $(TESTLIBOBJ) -L. -lch02

Build JNI Headers (for lib)
jni:
 @echo "Creating JNI C headers..."
 javah -jni -classpath ../bin -d include jni.Natives

Compile
.c.o:
 @echo
 @echo "Compiling $<..."
 $(CC) -c $(FLAGS) $(MACROS) $(INCLUDES) $<

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

47

Cleanup
clean:
 rm *.o

Push binary into device

pushbin:
 adb push a.out /data

Push lib & test program to the device
pushlib:
 adb push testlib /data
 adb push libch02.so /data

Type make lib to compile the library (see Listing 2-7). Note that the Makefile uses the agcc and ald

scripts created in the previous chapter. Other interesting aspects of the process include the following:

• CFLAGS=-Werror: This tells the compiler to abort whenever there is a warning in the
compilation process. This can be a powerful debugging tool to find programming
errors within your code.

• javah -jni -classpath ../bin -d include jni.Natives: This creates the C
header file for the native methods in the jni.Natives class. Output is saved in the
include folder.

• adb push FILENAME DEVICE_DEST: This is the Android SDK command to upload a
file to a specific location in the device.

Listing 2-7. Makefile Output

user@ubuntu:~/ ch02.Project/native$ make lib

Compiling lib.c...
agcc -c lib.c

Linking Shared library...
ald -shared -o libch02.so lib.o
arm-none-linux-gnueabi-ld: warning: library search path "/usr/lib/jvm/java-6-
sun/jre/lib/i386" is unsafe for cross-compilation

Copying Shared library to assets folder
cp libch02.so ../assets

Compiling testlib.c...
agcc -c testlib.c

Linking Test for Shared library
ald -o testlib testlib.o -L. -lch02

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

48

arm-none-linux-gnueabi-ld: warning: library search path "/usr/lib/jvm/java-6-
sun/jre/lib/i386" is unsafe for cross-compilation
arm-none-linux-gnueabi-ld: warning: cannot find entry symbol _start; defaulting to 00008340

Notice the warnings in Listing 2-7:

Library search path "/usr/lib/jvm/java-6-sun/jre/lib/i386" is unsafe for cross-compilation.

Here, the compiler is letting you know that the local system Java JNI libraries in this folder are not

safe (which makes sense, since you are compiling for a different architecture). However, you do need to
link against JNI, thus you have no choice.

Cannot find entry symbol start; defaulting to 00008340

This indicates that the loader cannot find an entry point for the library test program. By default, it

will call the first function in the file—main(int argc, char **argv) in this case.

■ Note Google does not provide support for JNI, or native development for that matter, as it wishes to push
development in Java. I think this is a mistake, as there is a lot of native code that can be ported into the device
(such as games). Sadly, native development has been neglected, although new tools such as the Native
Development Kit (NDK), described in Chapter 1, are trying to fix the problem.

Troubleshooting Missing Symbols
Before you run the project, you should make sure there are no missing symbols in the native library. This
can be a tricky process, as the successful compilation of a shared library will not tell you about missing
symbols. Even worse, if symbols are missing, and you try to run the program, the library will fail to load
at runtime, leaving you with the headache of figuring out what went wrong.

An easy solution is to write a simple C program that will invoke the library (see Listing 2-8). Then,
when linked, the compiler will tell you about missing symbols, which can then be fixed. This program
can be also useful in testing the library from the command line before testing from the application itself.

Listing 2-8. Simple Test Program for the Library

#include <stdio.h>

extern int lib_main(int argc, char **argv);

//void _start(int argc, char **argv)
int main(int argc, char **argv)
{

 int i;
 printf("Argc=%d Argv=%p\n", argc, argv);

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

49

 for (i = 0 ; i < argc ; i++) {
 printf("Main argv[%d]=%s\n", i, argv[i]);
 }

 printf("Starting Lib main sub\n");
 lib_main(argc, argv) ;

 exit (0);
}

Compile the program with make testlib, or manually using the helper scripts, as follows:

agcc -c testlib.c
ald -o testlib testlib.o -L. -lch02

Note that you must link with -L. -lch02, which tells the compiler to link against libch02.so and

search for the library in the current folder.
Now, start your emulator and let’s test the library.

Testing the Dynamic Library on the Device
To test the library, upload the files to the device using make pushlib, which expands to the following
commands:

adb push libcg02.so /data
adb push testlib /data

Then log in to the device, change to the /data folder, and execute the test program:

$ adb shell
cd /data
chmod 777 lib * test*
./testlib

bionic/linker/linker.c:1581| ERROR: 833 could not load 'libch02.so'
bionic/linker/linker.c:1641| ERROR: failed to link ./testlib
bionic/linker/linker.c:1741| ERROR: CANNOT LINK EXECUTABLE './testlib'

Here, you have run the program in the version 1.5 of the emulator. As you see, the library fails to
load. The next section provides tips to figure out what is going on. If you try this process in the SDK
version 1.0 R2, it will work.

Note that this doesn’t mean the library will fail to load from the Java app. It simply tells you there is
a problem with the native linker /system/bin/linker.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

50

Debugging with strace
For some reason, the native test program for the library runs in version 1.0 R2 of the SDK, but fails to
load in 1.5 R2. The output gives a clue: the file bionic/linker/linker.c:1581 fails to load the library.
There is a simple Linux tool called strace that can help in this situation.

The strace tool runs the specified command until it exits. It intercepts and records the system calls
that are called by a process and the signals that are received by a process. The name of each system call,
its arguments, and its return value are printed. This is a useful diagnostic and debugging tool for solving
problems with programs for which the source is not readily available. You will find that a great deal can
be learned about a system and its system calls by tracing even ordinary programs.

The book source provides an Android version of strace. (strace is now a built into versions 1.5 and
later of the Android SDK.) Let’s push it and see what is going on, as shown in Listing 2-9.

Listing 2-9. strace Tool Output

$ adb push strace /data
$ adb shell
cd /data

./strace ./testlib

execve("./testlib", ["./testlib"], [/* 10 vars */]) = 0
getpid() = 835
gettid() = 835
sigaction(SIGILL, {0xb0001a99, [], SA_RESTART}, {SIG_DFL}, 0) = 0
sigaction(SIGABRT, {0xb0001a99, [], SA_RESTART}, {SIG_DFL}, 0) = 0
sigaction(SIGBUS, {0xb0001a99, [], SA_RESTART}, {SIG_DFL}, 0) = 0
stat64("/system/lib/libch02.so", 0xbef9ea58) = -1 ENOENT (No such file or directory)
stat64("/lib/libch02.so", 0xbef9ea58) = -1 ENOENT (No such file or directory)
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40000000
mprotect(0x40000000, 4096, PROT_READ) = 0
fstat64(1, {st_mode=S_IFCHR|0600, st_rdev=makedev(136, 1), ...}) = 0
brk(0) = 0x11000
brk(0x11000) = 0x11000
brk(0x12000) = 0x12000
mprotect(0x40000000, 4096, PROT_READ|PROT_WRITE) = 0
mprotect(0x40000000, 4096, PROT_READ) = 0
ioctl(1, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo ...}) = 0
write(1, "bionic/linker/linker.c:1581| ERR"..., 70bionic/linker/linker.c:1581| ERROR: 835
could not load 'libch02.so'
) = 70
write(1, "bionic/linker/linker.c:1641| ERR"..., 61bionic/linker/linker.c:1641| ERROR: failed
to link ./testlib
) = 61
write(1, "bionic/linker/linker.c:1741| ERR"..., 71bionic/linker/linker.c:1741| ERROR: CANNOT
LINK EXECUTABLE './testlib'
) = 71
exit_group(-1) = ?
Process 835 detached

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

51

The following lines give a clue to the source of the problem:

stat64("/system/lib/libch02.so", 0xbef9ea58) = -1 ENOENT (No such file or directory)
stat64("/lib/libch02.so", 0xbef9ea58) = -1 ENOENT (No such file or directory)

The linker first tries to open the library from the device /system/lib folder. This is a read-only file

system, and user-defined libraries cannot be saved there. Next, the linker searches the /lib folder, which
doesn’t exist, thus the link fails. The linker is not searching in the current directory—that is the problem!

The good news is that this will not prevent the library from loading within the Java application, as
long as there are no missing symbols.

If you run the same sequence in a version 1.0 R2 of the SDK, you will see that the second line
becomes the following:

stat64("./libch02.so", 0xbef9ea58) = 0 OK

Thus, the program runs successfully.

■ Note It is hard to say what has changed from version 1.0 to 1.5 in the file bionic/linker/linker.c, as Google
provides no support in this matter. I can only speculate, but my guess is that either the developers forgot to search
in the current folder or some new compilation option can be used to tell the linker where to search.

Compiling Statically
Finally, if you wish to write a command-line tool to run in the device, you must do so statically. Consider
the simple program in Listing 2-10 to print the command-line arguments to stdout.

Listing 2-10. Simple Command-Line Program

#include <stdio.h>

int main(int argc, char **argv)
{
 int i;

 for (i = 0 ; i < argc ; i++) {
 printf("Main argv[%d]=%s\n", i, argv[i]);
 }

 printf("Hello World\n");
 exit(0);
}

If you compile the program with -static using the helper scripts, you get the following error:

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

52

agcc -c main.c
ald -static -o a.out main.o
arm-none-linux-gnueabi-ld: cannot find -lc

The linker cannot find the C runtime libc.so, even though the path to the library is correct.

Remember that ald uses -nostdlib to bypass linking against standard libraries.
When compiling statically (using -static), you must remove -nostdlib from the loader. Thus, the

correct linking command should be as follows:

user@ubuntu:~/ch02.Project/native$ arm-none-linux-gnueabi-ld
 --dynamic-linker=/system/bin/linker
 -rpath /system/lib
 -rpath /home/user/tmp/android/system/lib
 -L/home/user/tmp/android/system/lib
 -static -o a.out main.o -lc -lm

/home/user/mydroid/prebuilt/darwin-x86/toolchain/
 arm-eabi-4.2.1/lib/gcc/arm-eabi/4.2.1/libgcc.a
 arm-none-linux-gnueabi-ld: warning: cannot find entry symbol _start;
 defaulting to 000080e0

Now you can test a.out in the device:

$ make pushbin
$ adb shell
./a.out test
Main[0]=test
Hello World

Testing the Native Application
With the compiled library, you can test the phone application and see if the library is loaded by JNI.
From the command line, run the make command:

$ make lib

It will compile the library and also copy it to the assets folder in the Java project, so it can be

installed when the application runs. Don’t forget to refresh the project folder (press F5 on the main
folder), so the IDE will pack it before running it.

Now let’s create a run configuration and start the application. Here is how:

1. Select Run Run Configurations from the main menu.

2. In the Run Configurations dialog box, right-click Android Application in the
left tree and choose New.

3. Enter a configuration name (ch02) and select a project (ch02.Project), as
shown in Figure 2-6. Then click Run.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

53

Figure 2-6. Run Configurations dialog box for the project

The application will run in the emulator and display the text “Hello Chapter2!”. There is nothing out
of the ordinary here. We must look at the logcat view to see the messages from the native layer. Figure 2-7
shows the output of the device log.

CHAPTER 2 ■ COMPILING NATIVE CODE IN ANDROID

54

Figure 2-7. logcat output for the project

In the output, notice the following lines:

Trying to load lib /data/data/ch02.project/files/libch02.so ...
Added shared lib /data/data/c69+h02.project/files/libch02.so ...

These are JNI messages that tell us the library loaded successfully and the native methods can now

be invoked within Java. The lines in green represent the callbacks performed by the native library calling
the jni.Natives.OnMessage() method. Success! You have taken the first and most difficult step in
building hybrid games for Android.

What’s Next?
In this chapter, you have taken the first steps for building a hybrid game using JNI by learning how to create
the main Java activity and loading a native library within it. Next, you learned about Java native methods using
the native keyword plus the C header file required to implement them. You also learned some useful C tricks,
such as converting Java arrays to C arrays, getting the size of a Java array, and invoking Java methods within C.

You then learned how to troubleshoot common mistakes and test the native library in the emulator.
Things are getting more exciting by the minute.

This and the previous chapter provide the basic foundation if you are planning to port a game that
has significant Linux C code to the Android platform. In the next chapter, you will learn how easy to use
and powerful Android can be if you plan to build a Java-only game.

C H A P T E R 3

■ ■ ■

55

Building a Java Game from Scratch

If you don’t like C and want to stay as far away from it as possible, the next two chapters will show you
how simple and fun writing a Java-only game can be. We start by taking a look at the differences between
Android and the Java Micro Edition (Java ME), which is the standard for mobile development. Next, we
take a look at some basic gaming techniques such as sprite rendering and sound manipulation, as an
appetizer to the main course—building a real game called Space Blaster. In this fun game, you must
shoot or duck incoming asteroids that threaten to destroy your space ship. A shield will also help you in
your quest for a high score. Let’s get started.

Android Gaming vs. Java ME Gaming
If you have written many Android applications, perhaps you have noticed how different the Android Java
API is from the Java SE and Java ME APIs, the standards for Java and mobile development respectively.
As a matter of fact, according to Wikipedia, this is a major source of criticism about Android
(http://en.wikipedia.org/wiki/Android_(operating_system)).

• Android does not use a conventional Linux kernel. It does not have a native X
Window system, nor does it support the standard GNU libraries, making reusing
existing Linux applications or libraries difficult.

• Android does not use established Java standards (Java SE and Java ME). This
prevents compatibility among Java applications. It does not provide the full set of
Java SE or ME classes, libraries, and APIs.

• Android does not officially allow applications to be installed on or run from an SD
card. This is a serious mistake as many advanced 3D games use big files to store
graphics and sound. Storing these files in the main file system will quickly drain
precious disk space.

These shortcomings are evident just by looking at the Android library within your IDE. Consider
Figure 3-1, which displays the classes for the android.jar library. On the right side, you will notice that
most of the packages of Java SE are included, which is good. However, some useful classes for games,
such as java.awt.Polygon and java.awt.Dimension, are still missing. Although in version 1.5 of the SDK
Google has added the important Java Bean property change support (see the java.beans package). The
middle of the figure shows where Android and Java SE are two different animals—none of the classes in
the Android package are part of the Java SE and ME standards. Finally, in the left view, you can see that

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

56

Google is reusing some neat libraries from the Apache Software Foundation (Commons HTTP and HTTP
client) and the W3C XML APIs (under org.xml).

Figure 3-1. The packages of the Android API (android.jar)

The Android API breaks compatibility with Java SE/ME and makes it tough, but not impossible, to
reuse Java code from standard Java games or applets. You’ll find out how to reuse your Java code
throughout this chapter.

Creating Space Blaster, Your First Java Game
It’s time for the real thing. This section presents the pure Java game Space Blaster. Even though this is an
Android game, some code has been reused from a Java applet.

Figure 3-2 shows the game in action. The objective of the game is to navigate a space ship through a
field of meteors, shooting them up as you go. The ship has a laser weapon and a defensive shield. You
can choose to shoot the meteor, dodge it by dragging the ship with your fingertips, or let the shield
protect you, but whatever you choose, the power diminishes. As time passes, the power will replenish
itself, and you will get points the longer you stay in the game. You can maneuver the ship with the
keypad arrows or drag it across the field with your fingers. Tapping the background will fire the laser,
pressing E will end the game, and pressing Q will terminate the application.

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

57

Figure 3-2. Space Blaster running on the emulator

Let’s take a look at the class hierarchy for this application.

Understanding Game Architecture
Space Blaster is a relatively simple game. It has three main classes:

• SpaceBlaster.java: This is the main activity that bonds the game code with the
Android platform. Its job is to load the game layout and process Activity events.

• SpaceBlasterGame.java: This is where all the meat resides. This class has all the
game logic, and it processes key and touch events. SpaceBlasterGame extends
ArcadeGame.

• ArcadeGame.java: This abstract class encapsulates common functionality. It also
uses a standard Java TimerTask to define a game loop, which will repeat itself
infinitely until the user quits the application.

These classes interact with each other and local resources as shown in Figure 3-3.

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

58

Figure 3-3. The Space Blaster architecture

The main activity class loads the XML UI from the file main.xml. The XML UI defines a basic Android
LinearLayout that draws all the sprites on the game. The position of a sprite is controlled using X and Y
coordinates within the LinearLayout::onDraw() method. Note that SpaceBlasterGame extends
ArcadeGame, which in turn extends LinearLayout. This inheritance hierarchy allows you to define your
own class to use as a LinearLayout, where you can draw by simply overloading the onDraw() method
(see Listing 3-1).

Listing 3-1. User-Defined LinearLayout (main.xml)

<?xml version="1.0" encoding="utf-8"?>

<!-- User Defined Linear Layout -->
<ch03.game.sb.SpaceBlasterGame
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/ll_absolute"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FF000000">

</ch03.game.sb.SpaceBlasterGame>

The XML in Listing 3-1 creates a LinearLayout with the ID ll_absolute whose width and height will

fill the screen (fill_parent). It has a vertical orientation, so child controls will be aligned vertically.
Other utility classes in the project follow:

• AudioClip.java: This sound handler class deals with the device’s media player.

• Tools.java: This simple class has utility methods to display messages to the user.

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

59

To get started, you will need the chapter source that comes along with this book, which contains all
the resources for the next sections.

Creating the Project
Create a project to host the game. Here is how:

1. Click New Android Project from the toolbar, and enter the following
information (see Figure 3-4):

• Name: ch03.SpaceBlaster

• Build Target: Android 1.1 or Android 1.5

• Application Name: Space Blaster

• Package Name: ch03.game.sb

• Activity: SpaceBlaster

• Min SDK version: 3 for 1.5, 2 for 1.1

2. Click Finish.

Figure 3-4. The Space Blaster New Adroid Project dialog

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

60

Now, let’s work on the main activity and layout classes.

Creating the Game’s Activity Class
Listing 3-2 shows the game activity class, ch03.game.sb.SpaceBlaster. This is the core class that will be
executed when the game starts. When an instance of the game is created, the onCreate() method will be
called once. This method loads the user-defined layout described in Listing 3-1.

Listing 3-2. Space Blaster’s Main Activity Class

package ch03.game.sb;

import android.app.Activity;
import android.os.Bundle;
import android.view.LayoutInflater;
import android.view.View;

public class SpaceBlaster extends Activity {
 private View view;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 LayoutInflater factory = LayoutInflater.from(this);

 // Set game layout
 view = factory.inflate(R.layout.main, null);
 setContentView(view);

 // Enable view key events
 view.setFocusable(true);
 view.setFocusableInTouchMode(true);

 }

 @Override
 protected void onStop() {
 super.onStop();
 ((ArcadeGame) view).halt();
 }

 @Override
 protected void onPause() {
 super.onPause();
 onStop();
 }

 @Override
 protected void onRestart() {

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

61

 super.onRestart();
 ((ArcadeGame) view).resume();
 }
}

The class keeps a reference to the layout (using the view class variable). This variable is used to halt

the game when the user exists or restart it, as shown in the onStop and onRestart methods. To manually
load the user-defined layout, we use the LayoutInfalter class:

 LayoutInflater factory = LayoutInflater.from(this);

 // Set game layout
 view = factory.inflate(R.layout.main, null);
setContentView(view);

Two important lines are used to cascade key and touch events to the inner layout:

view.setFocusable(true);
view.setFocusableInTouchMode(true);

setFocusable tells the view (the user-defined layout) that it can receive focus and thus events in key

or touch modes. These two lines are critical; if they are commented out, the game will not receive events.

Creating the Game Layout
As mentioned before, the class SpaceBlasterGame extends ArcadeGame, which in turn extends the Android
layout LinearLayout. In this way, we can define a game thread to update the state of the game and simply
draw sprites in the onDraw method of LinearLayout, thus gaining a finer control over the drawing process.
SpaceBlasterGame performs the drawing, and it has all the game logic. This class is relatively complex
compared to the others, but before we take a look at it, let’s see how the game thread is handled by
ArcadeGame.

ArcadeGame is the abstract base class for SpaceBlasterGame, and it deals with the game loop. This
loop is infinite and invalidates the view to force a redraw of the display (see Listing 3-3).

Listing 3-3. Abstract Class ArcadeGame

package ch03.game.sb;

import java.util.Timer;
import java.util.TimerTask;

import ch03.common.AudioClip;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.util.AttributeSet;
import android.widget.LinearLayout;

/**

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

62

 * Base class for all games. Extends {@link LinearLayout} and uses a
 * {@link TimerTask} to invalidate the view
 *
 * @author V. Silva
 *
 */
public abstract class ArcadeGame extends LinearLayout {
 // App context
 private Context mContex;

 // Update timer used to invalidate the view
 private Timer mUpdateTimer;

 // Timer period
 private long mPeriod = 1000;

 /**
 * C
 *
 * @param context
 */
 public ArcadeGame(Context context) {
 super(context);
 mContex = context;
 }

 public ArcadeGame(Context context, AttributeSet attrs) {
 super(context, attrs);
 mContex = context;
 }

 /**
 * Fires on layout
 */
 protected void onLayout(boolean changed, int l, int t, int r, int b) {
 super.onLayout(changed, l, t, r, b);
 try {
 // Init game
 initialize();

 /**
 * start update task. Which will fire onDraw in the future
 */
 startUpdateTimer();
 } catch (Exception e) {
 // bug
 e.printStackTrace();
 }
 }

 /**

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

63

 * Set the update period
 *
 * @param period
 */
 public void setUpdatePeriod(long period) {
 mPeriod = period;
 }

 /**
 * A timer is used to move the sprite around
 */
 protected void startUpdateTimer() {
 mUpdateTimer = new Timer();
 mUpdateTimer.schedule(new UpdateTask(), 0, mPeriod);
 }

 protected void stopUpdateTimer() {
 if (mUpdateTimer != null) {
 mUpdateTimer.cancel();
 }
 }

 public Context getContex() {
 return mContex;
 }

 /**
 * Load an image
 *
 * @param id
 * @return
 */
 protected Bitmap getImage(int id) {
 return BitmapFactory.decodeResource(mContex.getResources(), id);
 }

 /**
 * Get AudioClip
 *
 * @param id
 * @return
 */
 protected AudioClip getAudioClip(int id) {
 return new AudioClip(mContex, id);
 }

 /**
 * Overload this to update the sprites on the game
 */
 abstract protected void updatePhysics();

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

64

 /**
 * Overload to initialize the game
 */
 abstract protected void initialize();

 abstract protected boolean gameOver();

 abstract protected long getScore();

 /**
 * Canvas update task
 *
 * @author vsilva
 *
 */
 private class UpdateTask extends TimerTask {

 @Override
 public void run() {
 updatePhysics();

 /**
 * Cause an invalidate to happen on a subsequent cycle
 * through the event loop. Use this to invalidate the View
 * from a non-UI thread. onDraw will be called sometime
 * in the future.
 */
 postInvalidate();
 }

 }

 /**
 * Halt game. Stops the update task. Called by a parent activity to halt
 *
 */
 public void halt() {
 stopUpdateTimer();
 }

 /**
 * Resume Game
 */
 public void resume() {
 initialize();
 startUpdateTimer();
 }
}

Any user-defined layout must define constructors with an Android Context and set of attributes for

being able to be processed properly by the system:

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

65

 public ArcadeGame(Context context) {
 super(context);
 mContex = context;
 }

 public ArcadeGame(Context context, AttributeSet attrs) {
 super(context, attrs);
 mContex = context;
 }

Note that ArcadeGame extends LinearLayout and sends its arguments to the parent via

super(context) and super(context, attrs). This class also overloads the parent’s method onLayout(),
which fires when the view should assign a size and position to each of its children:

 /**
 * Fires on layout
 */
 protected void onLayout(boolean changed, int l, int t, int r, int b) {
 super.onLayout(changed, l, t, r, b);
 try {
 // Init game
 initialize();

 /**
 * start update task. Which will fire onDraw in the future
 */
 startUpdateTimer();
 } catch (Exception e) {
 // bug
 e.printStackTrace();
 }
 }

onLayout is in charge of initializing the game and starting the update timer. Note that initialize()

is an abstract method that must be overloaded by the child class (SpaceBlasterGame) to perform
initialization. The update timer, on the other hand, will be defined within AbstractGame. To define a
game loop, we can use a simple TimerTask that will update itself using a period, as shown in Listing 3-4.

Listing 3-4. Defining a Game Loop Using a Timer Task

 // Timer period
 private long mPeriod = 1000;

 /**
 * Canvas update task
 *
 * @author vsilva
 *
 */
 private class UpdateTask extends TimerTask {
 @Override

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

66

 public void run() {
 updatePhysics();

 /**
 * Cause an invalidate to happen on a subsequent cycle
 * through the event loop. Use this to invalidate the View
 * from a non-UI thread. onDraw will be called sometime
 * in the future.
 */
 postInvalidate();
 }

 }

 /**
 * A timer is used to move the sprite around
 */
 protected void startUpdateTimer() {
 mUpdateTimer = new Timer();
 mUpdateTimer.schedule(new UpdateTask(), 0, mPeriod);
 }

 protected void stopUpdateTimer() {
 if (mUpdateTimer != null) {
 mUpdateTimer.cancel();
 }
 }

 /**
 * Set the update period
 *
 * @param period
 */
 public void setUpdatePeriod(long period) {
 mPeriod = period;
 }

When the layout initializes, the onLayout() method will fire and call initialize() and

startUpdateTimer(). These methods will start the Timertask:run() method, which updates the physics
of the child class and invalidates the view by calling postInvalidate(). Invalidating the view will, in turn,
tell the system UI thread to refresh the display. This cycle will repeat itself until the value of the update
period (mPeriod) is reached, and this value can be set by the main class (SpaceBlaster) using the
setUpdatePeriod method. In this way, we have created a simple refresh loop for the game.

Implementing the Game
The previous sections showed you the foundation for the main class, SpaceBlasterGame. Here is where all
the meat resides. Let’s take a closer look at the most important sections of SpaceBlaster.java. Note that
the class has been stripped for simplicity in Listing 3-5, but the chapter source contains the full
implementation.

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

67

Listing 3-5. The Main Game Class

package ch03.game.sb;

import ch03.common.AudioClip;
import ch03.common.Tools;
import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.RectF;
import android.util.AttributeSet;
import android.view.KeyEvent;
import android.view.MotionEvent;

public class SpaceBlasterGame extends ArcadeGame
{
 // Game name
 public static final String NAME = "SpaceBlaster";

 // Refresh rate (ms)
 private static final long UPDATE_DELAY = 40;

 private Context mContext;

 // For text
 private Paint mTextPaint = new Paint();

 // For Bitmaps
 private Paint mBitmapPaint = new Paint();

 private Paint mLaserBarPaint = new Paint();
 private Paint mShieldBarPaint = new Paint();
 private Paint mShieldPaint = new Paint();

 /**
 * Constructor
 *
 * @param context
 */
 public SpaceBlasterGame(Context context) {
 super(context);
 mContext = context;
 super.setUpdatePeriod(UPDATE_DELAY);
 }

 public SpaceBlasterGame(Context context, AttributeSet attrs) {
 super(context, attrs);
 mContext = context;
 super.setUpdatePeriod(UPDATE_DELAY);
 }

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

68

 // Code removed for simplicity
 // See chapter source
 // ...
}

The class constructor SpaceBlasterGame starts by initializing the Android context by calling

super(context) and setting the game update delay to 40 milliseconds. Note that the context is critical for
all the UI thread operations. A series of Paint objects is also defined to hold the style and color
information about how to draw geometries, text, and bitmaps:

• mTextPaint holds style and color information for the text. It will be initialized as
white.

• mBitmapPaint holds style and color information for all bitmaps.

• mLaserBarPaint holds style and color information for the laser bar at the bottom of
the screen.

• mShieldBarPaint holds style and color information for the shield bar at the bottom
of the screen.

• mShieldPaint holds style and color information for the ship’s shield. It will be used
to draw an oval filled with a semitransparent light blue color around the ship.

Initializing Sprites and Sounds
Game initialization occurs in the initialize method overloaded from the parent abstract class
ArcadeGame (see Listing 3-6). The call sequence goes as follows: LinearLayout.onLayout calls
ArcadeGame.initilize, which calls SpaceBlasterGame.initilize. This last method performs the
following tasks:

• Set the screen size.

• Set the style and color attributes for the Paint objects: text, laser bar, and shield
bar.

• Load the game bitmap sprites: ship, meteor, laser bullet, and explosion sequence.

• Load the audio clips.

Listing 3-6. Game Initialization

 public void initialize() {
 int n;

 // Screen size
 int width = getWidth();
 int height = getHeight();

// Text Paints
 mTextPaint.setARGB(255, 255, 255, 255);
 mShieldPaint.setARGB(125, 0, 255, 255);

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

69

 // Laser Bar Energy
 mLaserBarPaint.setARGB(255, 0, 255, 96);
 mLaserBarPaint.setStyle(Paint.Style.FILL);

 // Shield Bar Energy
 mShieldBarPaint.setARGB(255, 0, 255, 255);
 mShieldBarPaint.setStyle(Paint.Style.FILL);

 ship = getImage(R.drawable.sb_ship);
 bullet = getImage(R.drawable.sb_bullet);
 fire = new Bitmap[fireframe];

 // Load fire image sprites
 int[] ids = new int[] { R.drawable.sb_fire0, R.drawable.sb_fire1 };

 for (n = 0; n < fireframe; n++) {
 fire[n] = getImage(ids[n]);
 }

 // Load meteor explosion sequence sprites
 ids = new int[] { R.drawable.sb_boom0, R.drawable.sb_boom1,
 R.drawable.sb_boom2, R.drawable.sb_boom3,
 R.drawable.sb_boom4 };

 boom = new Bitmap[bframes + 1];

 for (n = 0; n <= bframes; n++) {
 boom[n] = getImage(ids[n]);
 }

 // ...

 // Meteor initialize
 meteor = getImage(R.drawable.sb_meteor);

 // ...

 // Load Audio clips
 try {
 blast = getAudioClip(R.raw.sb_blast);
 crash = getAudioClip(R.raw.sb_collisn);
 kill = getAudioClip(R.raw.sb_mdestr);
 } catch (Exception e) {
 Tools.MessageBox(mContext, "Audio Error: " + e.toString());
 }

 initStars();
 // ...

 }

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

70

Loading Bitmap Sprites
Bitmap sprites are loaded by SpaceBlasterGame.initialize from the drawables section of the project
using the getImage(RESOURCEID) method. getImage is defined in the base class ArcadeGame, so it’ll be easy
for child classes to reuse. For example, the game’s explosion is simply an array of bitmaps loaded from
the drawables folder (shown in Figure 3-5). To create an explosion, the game manipulates the explosion
frame number when the display is drawn. The tricky part is keeping track of many explosions and their X
and Y coordinates. Consider the next fragment, which loads bitmaps for the ship, laser bullet and
explosion frames:

 // Ship
 ship = getImage(R.drawable.sb_ship);

 // Laser Bullet
 bullet = getImage(R.drawable.sb_bullet);

 // Load meteor explosion sequence sprites
 ids = new int[] { R.drawable.sb_boom0, R.drawable.sb_boom1,
 R.drawable.sb_boom2, R.drawable.sb_boom3,
 R.drawable.sb_boom4 };

 boom = new Bitmap[bframes + 1];

 for (n = 0; n <= bframes; n++) {
 boom[n] = getImage(ids[n]);
 }

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

71

Figure 3-5. Game sprites in the drawables folder

Creating the Star Field
Another neat trick is to create a random star field in the background (see Figure 3-6). We can do this by
using arrays of X and Y coordinates for each star. But we must also set style and colors using Paint
objects. Listing 3-7 demonstrates how to create the random star field and styles for SpaceBlaster.

Listing 3-7. A Random Star Field

 /**
 * create the star field in the background
 */
 public void initStars() {
 starsX = new int[numStars];
 starsY = new int[numStars];
 starsC = new Paint[numStars];
 for (int i = 0; i < numStars; i++) {
 starsX[i] = (int) ((Math.random() * xSize - 1) + 1);
 starsY[i] = (int) ((Math.random() * ySize - 1) + 1);
 starsC[i] = newColor();
 }
 }

 public Paint newColor() {

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

72

 int r = Math.random() * 255;
 int g = Math.random() * 255;
 int b = Math.random() * 255;
 Paint p = new Paint();
 p.setARGB(255, r, g, b);
 return p;
 }

Figure 3-6. The star field with game sprites

Playing Audio Clips
A good sound implementation is critical for any successful game. Android gives you two choices when
dealing with game sound:

• Implement the sound logic in Java using Android’s MediaPlayer API.

• Implement the sound natively (in C or C++). This could be an option if you have
native code and wish to reuse it. This can be though as, by the time of this writing,
Google provides no support for native development.

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

73

Java sound must be implemented using the MediaPlayer API. This is a powerful media tool, but it
has some drawbacks when dealing with game sound:

• The MediaPlayer can only open raw resources (sound files within your project) or
files located in the file system. This is a serious caveat if the game packs sprites
and sounds in a single file. 3D games like Doom and Wolf 3D use a single file for
sprites and sounds, and they use a mixer device to combine streams of bytes
simultaneously. This solution is not possible with the MediaPlayer.

• The MediaPlayer API has some annoying idiosyncrasies when developing. For
example, playing a resource sound is easy:

MediaPlayer mPlayer = MediaPlayer.create(Context, RESOURCEID);
mPlayer.start();

• However if you attempt to pause a sound before it plays or issue two simultaneous
play commands, the MediaPlayer throws an IllegalState exception. The same thing
happens if you try to replay a sound before preparing or making sure the player
has been paused. These limitations make dealing with the player annoying and
difficult for a game where multiple sounds must be replayed continuously.

• The MediaPlayer consumes significant resources and can slow things down quite a
bit, especially if you have lots of sounds.

Listing 3-8 shows the AudioClip sound class. It is designed to mirror the Java SE class of the same
name by wrapping an instance of the MediaPlayer and dealing with the media events behind the scenes.

Listing 3-8. An Audio Helper Class

package ch03.common;

import android.content.Context;
import android.media.MediaPlayer;

public class AudioClip {
 private MediaPlayer mPlayer;
 private String name;

 private boolean mPlaying = false;
 private boolean mLoop = false;

 public AudioClip(Context ctx, int resID)
 {
 // clip name
 name = ctx.getResources().getResourceName(resID);

 // Create a media player
 mPlayer = MediaPlayer.create(ctx, resID);

 // Listen for completion events
 mPlayer.setOnCompletionListener(
 new MediaPlayer.OnCompletionListener() {

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

74

 @Override
 public void onCompletion(MediaPlayer mp) {
 mPlaying = false;

 if (mLoop) {
 mp.start();
 }
 }

 });
 }

 public synchronized void play() {
 if (mPlaying)
 return;

 if (mPlayer != null) {
 mPlaying = true;
 mPlayer.start();
 }
 }

 public synchronized void stop() {
 try {
 mLoop = false;
 if (mPlaying) {
 mPlaying = false;
 mPlayer.pause();
 }

 } catch (Exception e) {
 System.err.println("AduioClip::stop " + name + " "
 + e.toString());
 }
 }

 public synchronized void loop() {
 mLoop = true;
 mPlaying = true;
 mPlayer.start();

 }

 public void release() {
 if (mPlayer != null) {
 mPlayer.release();
 mPlayer = null;
 }
 }
}

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

75

AudioClip wraps and instance of MediaPlayer and is aware of the state of the sound: paying, paused,
or looping. This awareness is necessary for dealing with IllegalState exceptions explained previously.
AudioClip also listens for completion events via setOnCompletionListener(OnCompletionListener), and if
the loop flag is set, it will replay the sound. Space Blaster has three sounds that can be loaded with the
code:

 blast = getAudioClip(R.raw.sb_blast); // Laser shot
 crash = getAudioClip(R.raw.sb_collisn); // Ship collision
 kill = getAudioClip(R.raw.sb_mdestr); // meteor destruction

getAudioClip takes a sound resource ID as argument, and it is defined in the abstract class

ArcadeGame as follows:

protected AudioClip getAudioClip(int id) {
return new AudioClip(mContex, id);
}

■ Tip Audio resources must be saved in the res/raw folder within the project.

About Native Sound
Native games like Doom and Wolf 3D, shown in later chapters, pack sound resources in their own
formats and manipulate the sound device at the operating system level. Even though Android runs a
Linux kernel behind the scenes, it is not a standard Linux distribution, especially with dealing with low-
level devices, for example:

• The standard Linux sound device (/dev/dsp) and mixer (/dev/mixer) are not
supported, making reusing sound logic very difficult for native games. For some
reason, Google decided to use the Sonivox Enhanced Audio System (EAS) via the
/dev/eac device. This caveat is compounded by the fact that Google provides no
support for native development. Nevertheless, a solution is to cascade the sound
name back to Java via JNI and play it using AudioClip. This technique is explained
in detail in Chapters 6 and 7.

• If you have native code that uses OpenAL/OpenGL for accelerated sound and
graphics, you are in trouble. Google wants all development done in its Java-based
version of OpenGL and doesn’t support OpenAL. This leaves you with the painful
task of translating OpenGL logic line by line from C to Java. Nevertheless, all is not
lost. I found a neat trick to leave your C-based OpenGL code intact and still be
able to run it from Java, and I explain my trick in 21.330Chapter 5.

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

76

Handling Key and Touch Events
Key and touch events can be handled by overloading the following methods (as shown in Listing 3-9):

• onKeyDown: This event fires when a key is pressed. The event receives two
arguments: an integer representing the key code and a KeyEvent. Note that the key
code is an integer value defined by Android not related to the standard ASCII keys.
To test for a specific key, simply compare the value with the static key constants in
KeyEvent.

• onKeyUp: This event fires when a key is released, and it receives the same
arguments as onKeUp. Furthermore, you can also check the status of the Shift or Alt
keys using event.isShiftPressed() or event.isAltPressed() respectively.

• onTouchEvent: This event fires when you tap the screen, and it receives a
MotionEvent. Tap events have two states: DOWN and UP just like key events. You can
check the tap state by comparing event.getAction() with
MotionEvent.ACTION_DOWN or MotionEvent.ACTION_UP. You can also get the X and Y
coordinates relative to the upper-left corner of the screen.

Listing 3-9. Handling Touch and Key Events

/**
 * Android Key events
 */
@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {
 keyUp(keyCode);
 return true;
}

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 keyDown(keyCode);
 return true;
}

public boolean onTouchEvent(MotionEvent event) {
 int tx = (int)event.getX();
 int ty = (int)event.getY();

 // Has the ship been touched. if so move it
 if (tx >= x && tx <= x + ship.getWidth()
 && ty >= y && ty <= y + ship.getHeight()){
 x = tx - (ship.getWidth()/2);
 y = ty - (ship.getHeight()/2);

 }
 // else handle tap
 else if (event.getAction() == MotionEvent.ACTION_UP)
 {

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

77

 // if not in game, start
 if (!ingame) {
 ingame = true;
 GameStart();
 }
 else {
 // fire gun
 keyDown(KeyEvent.KEYCODE_SPACE);
 }
 }
 return true;
}

/**
 * Process key down event
 * @param key Android Key code
 * @return
 */
public boolean keyDown(int key) {
 if (ingame) {
 mousex = -1;
 if (key == KeyEvent.KEYCODE_DPAD_LEFT
 || key == KeyEvent.KEYCODE_Q)
 dx = -1;
 if (key == KeyEvent.KEYCODE_DPAD_RIGHT
 || key == KeyEvent.KEYCODE_W)
 dx = 1;
 if (key == KeyEvent.KEYCODE_DPAD_UP
 || key == KeyEvent.KEYCODE_O)
 dy = -1;
 if (key == KeyEvent.KEYCODE_DPAD_DOWN
 || key == KeyEvent.KEYCODE_L)
 dy = 1;
 if ((key == KeyEvent.KEYCODE_SPACE)) {
 if (bcur > 0) {
 fireGun();
 }
 }
 } else {
 if (key == KeyEvent.KEYCODE_S) {
 ingame = true;
 GameStart();
 }
 }
 if (key == KeyEvent.KEYCODE_E){
 ingame = false;
 }

 if (key == KeyEvent.KEYCODE_Q){
 // Arggg!! There should be a better wayt to quit!
 System.exit(0);

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

78

 }
 return true;
}

/**
 * Process key up event
 * @param e Key event
 * @param key key code
 * @return
 */
public boolean keyUp(int key) {
 if (key == KeyEvent.KEYCODE_DPAD_LEFT
 || key == KeyEvent.KEYCODE_DPAD_RIGHT
 || key == KeyEvent.KEYCODE_Q
 || key == KeyEvent.KEYCODE_W)
 dx = 0;
 if (key == KeyEvent.KEYCODE_DPAD_UP
 || key == KeyEvent.KEYCODE_DPAD_DOWN
 || key == KeyEvent.KEYCODE_O
 || key == KeyEvent.KEYCODE_L)
 dy = 0;
 return true;
}

In SpaceBlaster, when the pad arrows are pressed, the position of the ship is shifted by 1 unit in the

corresponding direction. S stars the game; E ends it, and Q terminates the application. The onTouchEvent
allows the ship to be dragged around the device screen using your fingertips. When the game is running,
tapping anywhere on the device screen (other than the ship) will start the game if it’s not already started
or fire the laser gun if the game is already running.

At this point, the project, including all files and resources, should look as shown 24.251in Figure 3-7.

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

79

Figure 3-7. Resources for Space Blaster

Testing on the Emulator
We can finally start gaming! Start your emulator, and run the game like so:

1. From the Eclipse main menu, click Run Run Configurations.

2. On the left side, right-click Android Application New.

3. Enter a name (SpaceBlaster), and select the project ch03.SpaceBlaster
(see Figure 3-8).

4. Click Run.

CHAPTER 3 ■ BUILDING A JAVA GAME FROM SCRATCH

80

Figure 3-6 shows how the game should look on the emulator. To play, tap the screen and use the
arrows to move the ship around. Press the space bar to fire the gun.

Figure 3-8. The Run Configurations dialog for SpaceBlaster

What’s Next?
In this chapter, you have taken the first steps in writing a simple Java game and looked at the different
issues that affect Java game development for Android, such as the significant differences between the
Android API and the Java ME standard and how that influences code reuse and multiplatform support.
You also learned gaming tricks, including creating an XML user-defined linear layout, using a timer task
to simulate a game loop, invalidating a view layout within a user-defined (non-UI) thread, loading
sprites and sounds, and dealing with the idiosyncrasies of the media player. You also saw some drawing
techniques for creating sprite animations and simple objects and setting text styles and colors using the
Paint object. Finally, I showed you how to deal with key and touch events.

In the next chapter, we take things further to create an arcade classic—Asteroids, a game that
presents a new set of challenges when dealing with drawing techniques.

C H A P T E R 4

■ ■ ■

81

Java Games Continued:
Fun with Polygons

In this chapter, we take things to the next level with an arcade classic: Asteroids. The goal of this chapter
is to illustrate a polygon-based game (Asteroids), as opposed to the previous chapter’s sprite-based
game (Space Blaster). Using polygons presents a new set of challenges due to the limited polygon
capabilities of Android, as you’ll see in the next section. Nevertheless, Asteroids is a relatively simple
game that takes advantage of the high portability of the Java language by reusing code from the standard
Java SE Abstract Windowing Toolkit (AWT). Let’s get started.

About the Chapter Layout
This chapter has a different layout than previous chapters, as it doesn’t start with a description of the
game implementation but a series of caveats I found when trying to create Asteroids:

• Caveats of drawing polygons and rectangles: It turns out that, at the time of this
writing, there is no polygon support in Android. This made creating this game
tougher than the previous chapter’s, as I found the need to create three brand new
classes: Rectangle, Polygon, and PolygonSripte. Lucky for me, I was able to take
advantage of the high portability of the Java language and reuse most of the code
of the Rectangle and Polygon classes of Java SE (this is one of the reasons I like the
Java language). PolygonSprite is a class I created from the ground up.

• Game architecture and implementation: In this section, the actual game
implementation starts. I chose to do this because the game cannot be described
without the previous foundation classes. Here you will learn about resource
description, game life cycle, processing key press and touch events plus Testing in
the emulator. Let’s get started.

Understanding the Caveats of Drawing Polygons in Android
Before starting work on Asteroids, let’s take a look at the caveats of drawing polygons in Android. This
section represents the foundation over which the game itself will be built. There is a little problem when
thinking of building a polygon-based game in Android—the API has no polygons. This would be like
designing a house just to find out there is no land to build on. In the previous chapter, we used the
onDraw method of the LinearLayout class to render bitmaps. Asteroids will use the same technique to

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

82

draw polygons instead of bitmaps. To illustrate this concept, consider the following code snippet to
draw the Android canvas:

class MyLayout extends Linearlayout {
 // ...
 protected void onDraw(Canvas canvas)
 {
 // draw a point
 canvas.drawPoint(x, y, aPaint);

 // Draw lines
 canvas.drawLines(float[] points, aPaint);
 }
}

The Canvas class holds many draw calls. To draw something, you need four basic components: a

bitmap to hold the pixels, a Canvas to host the draw calls, a drawing primitive (e.g., Rect, Path, Text, or
Bitmap), and a Paint to describe the colors and styles for the drawing. The basic primitives that could
help when drawing polygons follow:

• drawPoint(float x, float y, Paint paint) draws a single point given X and Y
coordinates and a paint style.

• drawArc (RectF oval, float startAngle, float sweepAngle, boolean
useCenter, Paint paint) draws the specified arc, which will be scaled to fit inside
the specified rectangle. oval defines the bounds of the rectangle used to define the
shape and size of the arc. startAngle is the starting angle (in degrees) where the
arc begins. sweepAngle is the sweep angle (in degrees) measured clockwise.
useCenter, if true, includes the center of the oval in the arc and closes it if it is
being stroked drawing a wedge.

• drawCircle (float cx, float cy, float radius, Paint paint) draws a circle
using the specified paint. cx and cy define the X and Y coordinates of the center.
The circle will be filled or framed based on the Style in the paint.

• drawLine (float startX, float startY, float stopX, float stopY, Paint
paint) draws a line segment with the specified start and stop coordinates, using
the specified paint. The style paint is ignored because a line is always framed.

• drawLines (float[] pts, int offset, int count, Paint paint) draws a series of
lines. Each line is taken from four consecutive values in the pts array. Thus to
draw one line, the array must contain at least four values. These are the X and Y
coordinates of each point: X0, Y0, X1, Y1,...,Xn,Yn.

• drawRect (Rect r, Paint paint) draws the specified Rect using the specified
Paint. The rectangle will be filled or framed based on the style in the paint.

• drawRoundRect (RectF rect, float rx, float ry, Paint paint) draws the
specified rounded rectangle using the specified paint. The rounded rectangle will
be filled or framed based on the style in the paint. rx and ry define the xy radius of
the oval used to round the corners.

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

83

These are the most important methods for drawing shapes in the Canvas class, but we need more.
For example, for a polygon-based game, a basic technique is to inscribe shapes within rectangles. In this
way, operations such as collision detection and rendering can be applied. Thus, we need three basic
shapes for our Asteroids game that are missing from the Android API: a rectangle, a polygon, and a
polygon sprite.

■ Tip The Android API defines the classes Rect and RectF for rectangles, but it does not define polygons or
polygon sprites.

Understanding the Caveats of Drawing Rectangles
From the drawing methods in the previous section, we could use Canvas.drawLines to draw our polygons
directly. However, we also need extra functionally:

• A way to detect if a polygon is inside another in the (X, Y) coordinate system,
which is necessary to detect collisions within the game

• A way to assign style and color to the polygon

Thus, using Canvas.drawLines is insufficient to manipulate polygons directly. We need a more
elegant solution; we need to create Rectangle, Polygon, and PolygonSprite classes.

Android already has the classes Rect and RectF that could be reused. Nevertheless these classes lack
the functionality to check if the rectangle is inscribed within another (a critical requirement for
Asteroids).

Listing 4-1 shows the class Rectangle capable of remembering its (X, Y) coordinates plus width and
height. It can also check if its bounds contain or are inside another rectangle. As a matter of fact this
code is taken from the Java SE java.awt.Rectangle class (taking advantage of the high portability of
Java).

The Rectangle class in Listing 4-1 is the basis for the polygon sprite we need for Asteroids.

Listing 4-1. The Rectangle Class Used by Polygon

package ch04.common;

public class Rectangle {

 public int x;
 public int y;
 public int width;
 public int height;

 public Rectangle() {
 this(0, 0, 0, 0);
 }

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

84

 /**
 * Constructs a new <code>Rectangle</code> whose top-left corner is
 * specified as (<code>x</code>, <code>y</code>) and whose width
 * and height are specified by the arguments of the same name.
 *
 * @param x
 * the specified x coordinate
 * @param y
 * the specified y coordinate
 * @param width
 * the width of the <code>Rectangle</code>
 * @param height
 * the height of the <code>Rectangle</code>
 */
 public Rectangle(int x, int y, int width, int height) {
 this.x = x;
 this.y = y;
 this.width = width;
 this.height = height;
 }

 public boolean contains(int X, int Y, int W, int H) {
 int w = this.width;
 int h = this.height;

 if ((w | h | W | H) < 0) {
 // At least one of the dimensions is negative...
 return false;
 }
 // Note: if any dimension is zero, tests below must return false...
 int x = this.x;
 int y = this.y;
 if (X < x || Y < y) {
 return false;
 }
 w += x;
 W += X;
 if (W <= X) {
 // X+W overflowed or W was zero, return false if...
 // either original w or W was zero or
 // x+w did not overflow or
 // the overflowed x+w is smaller than the overflowed X+W
 if (w >= x || W > w) {
 return false;
 }
 } else {
 // X+W did not overflow and W was not zero, return false if...
 // original w was zero or

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

85

 // x+w did not overflow and x+w is smaller than X+W
 if (w >= x && W > w) {
 return false;
 }
 }
 h += y;
 H += Y;
 if (H <= Y) {
 if (h >= y || H > h) {
 return false;
 }
 } else {
 if (h >= y && H > h) {
 return false;
 }
 }
 return true;
 }

 public boolean contains(int x, int y) {
 return inside(x, y);
 }

 public boolean inside(int X, int Y) {
 int w = this.width;
 int h = this.height;
 if ((w | h) < 0) {
 // At least one of the dimensions is negative...
 return false;
 }
 // Note: if either dimension is zero, tests below must return false...
 int x = this.x;
 int y = this.y;
 if (X < x || Y < y) {
 return false;
 }
 w += x;
 h += y;
 // overflow || intersect
 return ((w < x || w > X) && (h < y || h > Y));
 }
}

Creating a Polygon Class for Asteroids
The standard J2SE API has the neat class Polygon that we can reuse for Asteroids. It is hard to understand
why Google has not included such useful classes from java.awt into the Android API. Listing 4-2 shows
the modified Polygon class (it is the same as the Java SE Polygon stripped for running in Android and
Asteroids). Some of the most interesting methods of this class follow:

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

86

• Constructors: The default constructor will create a four-sided polygon. You can
also define an N-sided polygon by giving two arrays representing the X0,X1,. . .Xn
and Y0,Y1,. . .Yn coordinates of the vertices where (X0,Y0) represents the
coordinates of the first vertex and so forth, The constructor also takes the number
of sides.

• calculateBounds(int xpoints[], int ypoints[], int npoints): This method
calculates the bounds of the polygon given a set of X and Y coordinates and
number of points with respect to maximum integer values.

• addPoint(int x, int y): This one adds a point to the polygon given its X and Y
coordinates.

• updateBounds(int x, int y): This method updates the bounds of the polygon to
include a new point (X,Y).

• getBoundingBox(): This returns the rectangular bounds of the polygon.

• contains(int x, int y): This one checks if the polygon contains a given point
(X,Y).

• float[] getPoints(): This method returns the X and Y coordinates of the vertices
of the polygon.

Both the Polygon and Rectangle classes are used by the next class, PolygonSprite, to define all game
objects.

Listing 4-2. The Polygon Class for Asteroids

package ch04.common;

public class Polygon {

 public int npoints;
 public int[] ypoints;
 public int[] xpoints;

 protected Rectangle bounds;

 public Polygon() {
 xpoints = new int[4];
 ypoints = new int[4];
 }

 public Polygon(int xpoints[], int ypoints[], int npoints) {
 // Fix 4489009: should throw IndexOutofBoundsException instead
 // of OutofMemoryException if npoints is huge
 // and > {x,y}points.length
 if (npoints > xpoints.length || npoints > ypoints.length) {
 throw new IndexOutOfBoundsException(
 "npoints > xpoints.length || npoints > ypoints.length");
 }

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

87

 this.npoints = npoints;
 this.xpoints = new int[npoints];
 this.ypoints = new int[npoints];
 System.arraycopy(xpoints, 0, this.xpoints, 0, npoints);
 System.arraycopy(ypoints, 0, this.ypoints, 0, npoints);
 }

 void calculateBounds(int xpoints[], int ypoints[], int npoints) {
 int boundsMinX = Integer.MAX_VALUE;
 int boundsMinY = Integer.MAX_VALUE;
 int boundsMaxX = Integer.MIN_VALUE;
 int boundsMaxY = Integer.MIN_VALUE;

 for (int i = 0; i < npoints; i++) {
 int x = xpoints[i];
 boundsMinX = Math.min(boundsMinX, x);
 boundsMaxX = Math.max(boundsMaxX, x);
 int y = ypoints[i];
 boundsMinY = Math.min(boundsMinY, y);
 boundsMaxY = Math.max(boundsMaxY, y);
 }

 bounds = new Rectangle(boundsMinX, boundsMinY, boundsMaxX
 - boundsMinX, boundsMaxY - boundsMinY);
 }

 public void reset() {
 npoints = 0;
 bounds = null;
 }

 /**
 * Appends the specified coordinates to this <code>Polygon</code>.
 *
 * @param x
 * @param y
 */
 public void addPoint(int x, int y) {
 if (npoints == xpoints.length) {
 int tmp[];

 tmp = new int[npoints * 2];
 System.arraycopy(xpoints, 0, tmp, 0, npoints);
 xpoints = tmp;

 tmp = new int[npoints * 2];
 System.arraycopy(ypoints, 0, tmp, 0, npoints);
 ypoints = tmp;
 }
 xpoints[npoints] = x;
 ypoints[npoints] = y;

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

88

 npoints++;
 if (bounds != null) {
 updateBounds(x, y);
 }
 }

 void updateBounds(int x, int y) {
 if (x < bounds.x) {
 bounds.width = bounds.width + (bounds.x - x);
 bounds.x = x;
 } else {
 bounds.width = Math.max(bounds.width, x - bounds.x);
 }

 if (y < bounds.y) {
 bounds.height = bounds.height + (bounds.y - y);
 bounds.y = y;
 } else {
 bounds.height = Math.max(bounds.height, y - bounds.y);
 }
 }

 public Rectangle getBoundingBox() {
 if (npoints == 0) {
 return new Rectangle();
 }
 if (bounds == null) {
 calculateBounds(xpoints, ypoints, npoints);
 }
 return bounds;
 }

 /**
 * Determines if the specified coordinates are inside this
 * <code>Polygon</code>.
 *
 * @param x
 * @param y
 * @return
 */
 public boolean contains(int x, int y) {
 if (npoints <= 2 || !getBoundingBox().contains(x, y)) {
 return false;
 }
 int hits = 0;

 int lastx = xpoints[npoints - 1];
 int lasty = ypoints[npoints - 1];
 int curx, cury;

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

89

 // Walk the edges of the polygon
 for (int i = 0; i < npoints; lastx = curx, lasty = cury, i++) {
 curx = xpoints[i];
 cury = ypoints[i];

 if (cury == lasty) {
 continue;
 }

 int leftx;
 if (curx < lastx) {
 if (x >= lastx) {
 continue;
 }
 leftx = curx;
 } else {
 if (x >= curx) {
 continue;
 }
 leftx = lastx;
 }

 double test1, test2;
 if (cury < lasty) {
 if (y < cury || y >= lasty) {
 continue;
 }
 if (x < leftx) {
 hits++;
 continue;
 }
 test1 = x - curx;
 test2 = y - cury;
 } else {
 if (y < lasty || y >= cury) {
 continue;
 }
 if (x < leftx) {
 hits++;
 continue;
 }
 test1 = x - lastx;
 test2 = y - lasty;
 }

 if (test1 < (test2 / (lasty - cury) * (lastx - curx))) {
 hits++;
 }
 }

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

90

 return ((hits & 1) != 0);
 }

 @Override
 public String toString() {
 if (npoints == 0)
 return null;
 String s = ""; //

 for (int i = 0; i < xpoints.length; i++) {
 s += "(" + xpoints[i] + "," + ypoints[i] + ") ";
 }
 return s;
 }

 /**
 * Get polygon points (x0y0, x1y1,.....) for rendering Each point pair will
 * render 1 line so the total # of points must be num sides * 4
 *
 * @return
 */
 public float[] getPoints() {
 int size = npoints * 4;
 float[] points = new float[size];
 int j = 1;

 if (size == 0 || xpoints == null || ypoints == null)
 return null;

 points[0] = xpoints[0];
 points[1] = ypoints[0];

 for (int i = 2; i < points.length - 2; i += 4) {

 points[i] = xpoints[j];
 points[i + 1] = ypoints[j];
 points[i + 2] = xpoints[j];
 points[i + 3] = ypoints[j];
 j++;
 }
 points[size - 2] = xpoints[0];
 points[size - 1] = ypoints[0];

 return points;
 }
}

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

91

Creating a PolygonSprite Class for Asteroids
PolygonSprite is the final foundation class of the game (see Listing 4-3). It is used to describe all game
objects including the ship, asteroids, and flying saucer. Furthermore, it tracks information such as
the following for all of these game objects:

• X and Y coordinates

• Angle of rotation

• Position in the screen

In this class, two polygons are used: one to keep the basic shape, and the other to apply the final
translation and rotation and to paint on screen.

Listing 4-3. The PolygonSprite Class Used by Asteroids

package ch04.game;

import ch04.common.Polygon;
import android.graphics.Canvas;
import android.graphics.Paint;

/**
 * The PolygonSprite class defines a game object, including it's shape,
 * position, movement and rotation. It also can determine if two objects
 * collide.
 **/

public class PolygonSprite
{

 // Base sprite shape, centered at the origin (0,0).
 public Polygon shape;

 // Final location and shape of sprite after
 // applying rotation and translation to get screen
 // position. Used for drawing on the screen and in
 // detecting collisions.
 public Polygon sprite;

 boolean active; // Active flag.
 double angle; // Current angle of rotation.
 double deltaAngle; // Amount to change the rotation angle.
 double deltaX, deltaY; // Amount to change the screen position.

 // coords
 int x;
 int y;

 // Constructors:

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

92

 public PolygonSprite() {

 this.shape = new Polygon();
 this.active = false;
 this.angle = 0.0;
 this.deltaAngle = 0.0;
 this.x = 0;
 this.y = 0;
 this.deltaX = 0.0;
 this.deltaY = 0.0;
 this.sprite = new Polygon();
 }

 public void render(int width, int height) {

 int i;

 // Render the sprite's shape and location by rotating it's
 // base shape and moving it to its proper screen position.

 this.sprite = new Polygon();
 for (i = 0; i < this.shape.npoints; i++) {
 this.sprite.addPoint((int) Math.round(this.shape.xpoints[i]
 * Math.cos(this.angle) + this.shape.ypoints[i]
 * Math.sin(this.angle))
 + (int) Math.round(this.x) + width / 2,
 (int) Math.round(this.shape.ypoints[i]
 * Math.cos(this.angle) - this.shape.xpoints[i]
 * Math.sin(this.angle))
 + (int) Math.round(this.y) + height / 2);
 }
 }

 public boolean isColliding(PolygonSprite s) {

 int i;

 // Determine if one sprite overlaps with another, i.e., if any vertice
 // of one sprite lands inside the other.

 for (i = 0; i < s.sprite.npoints; i++) {
 if (this.sprite.contains(s.sprite.xpoints[i],
 s.sprite.ypoints[i])) {
 return true;
 }
 }
 for (i = 0; i < this.sprite.npoints; i++) {
 if (s.sprite.contains(this.sprite.xpoints[i],
 this.sprite.ypoints[i])) {
 return true;
 }

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

93

 }

 return false;
 }

 /**
 * Advance Sprite
 *
 * @param width screen width
 * @param height screen height
 * @return
 */
 public boolean advance(int width, int height) {

 boolean wrapped;

 // Update the rotation and position of the sprite based on the delta
 // values. If the sprite moves off the edge of the screen, it is wrapped
 // around to the other side and TRUE is returned.

 this.angle += this.deltaAngle;
 if (this.angle < 0)
 this.angle += 2 * Math.PI;
 if (this.angle > 2 * Math.PI)
 this.angle -= 2 * Math.PI;
 wrapped = false;
 this.x += this.deltaX;
 if (this.x < -width / 2) {
 this.x += width;
 wrapped = true;
 }
 if (this.x > width / 2) {
 this.x -= width;
 wrapped = true;
 }
 this.y -= this.deltaY;
 if (this.y < -height / 2) {
 this.y += height;
 wrapped = true;
 }
 if (this.y > height / 2) {
 this.y -= height;
 wrapped = true;
 }
 return wrapped;
 }

 @Override
 public String toString() {
 return "Sprite: " + sprite + " Shape:" + shape;
 }

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

94

 /**
 * Draw Sprite using polygon points
 *
 * @param canvas
 * @param paint
 */
 void draw(Canvas canvas, Paint paint) {
 float[] points = sprite.getPoints();

 if (points != null) {
 canvas.drawLines(points, paint);
 }
 }
}

PolygonSprite defines the following methods:

• render(int width, int height) computes the shape of the sprite given the width
and height of the screen. It also translates the polygon to the proper screen
position and applies rotation. Note that this method has nothing to do with the
actual screen painting (so perhaps “render” was not the best name choice).

• isColliding(PolygonSprite s) checks if the sprite is colliding with another by
checking if the vertices of the sprite are inside the other (see Figure 4-1).

• advance(int width, int height) moves the sprite around based on the delta X
and Y values. It also updates the sprites rotation values. The width and height
arguments represent the size of the screen. Note that the sprite will be wrapped
around if it moves off the screen.

• draw(Canvas canvas, Paint paint) does the actual drawing of the sprite in the
Android layout. Its arguments are a Canvas object where the points will be drawn
and a Paint object for style and color information.

Figure 4-1. Polygon sprites about to collide

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

95

We have discussed the caveats of using polygons in Android. The goal of this section has been to
illustrate the missing pieces we need to start building the game itself. We now have the foundation
classes for Asteroids, so let’s look at the actual game architecture.

Understanding the Game’s Architecture
The architecture of Asteroids is almost identical to Space Blaster from the last chapter. When the
program starts, the main class AsteroidsActivity will be loaded by Android. This activity will load the
user-defined layout in the Asteroids class. This class, in turn, inherits from the abstract class ArcadeGame,
which extends LinearLayout. Note that the user-defined layout is bound with the system by the XML file
asteroids.xml (see Figure 4-2).

Here, you realize why ArcadeGame has been defined as Abstract. By incorporating common
functionality in this class, we can implement multiple arcade games in the same project. As a matter of
fact, you can merge SpaceBlaster and Asteroids into the same project and build your own arcade
system.

Figure 4-2. The Asteroids game architecture

Let’s take a closer look at the actual project.

Creating the Project
We’ll start by creating an Android project called Asteroids. Here is how:

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

96

1. Click the New Android Project button from the Eclipse toolbar.

2. Enter the project information:

• Name: ch04.Asteroids

• Build Target: Android 1.5

• Application Name: Asteroids

• Package name: ch04.game

• Create Activity: AsteroidsActivity

• Min SDK Version: 3

3. Click Finish (see Figure 4-3).

Figure 4-3. The Asteroids project information

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

97

Creating the Game Layout
We must create the user-defined layout using XML and the Asteroids class. Rename the main.xml file
created by the wizard as asteroids.xml and insert the code in Listing 4-4.

Listing 4-4. The XML Layout of Asteroids

<?xml version="1.0" encoding="utf-8"?>

<ch04.game.Asteroids
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/ll_asteroids"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="#FF000000">
</ch04.game.Asteroids>

Note that ch04.game.Asteroids is a required Java class that extends ArcadeGame, which in turn

extends LinearLayout. A detailed list of files and resources is shown in the next section.

Looking at the Resources
Besides code, we need resources such as sounds, XML string messages, and a game icon (see Figure 4-4).
Here is a list of resources used by Asteroids and what they do:

• Java classes

• AsteroidsActivity: This is the master class called by Android when the user
starts the game. It contains life cycle events such as onCreate, onResume, and
onStop.

• Asteroids: This class contains all game code. It extends ArcadeGame.

• ArcadeGame: This is an abstract class with the game loop and game life cycle
events initialize, updatePhysics, getScore, halt, and resume.

• Constants: This class contains many game constants such as game delay,
frames per second, number of ships, and sprite speeds.

• Polygon classes

• PolygonSprite: This class represents any game sprite. It has methods to
detect collisions using the classes Polygon and Rectangle.

• Polygon: This class represents an N-sided polygon. It code is taken from the
Java SE java.awt.Polygon class with most of the code stripped for simplicity.

• Rectangle: This is also a stripped version of the Java SE java.awt.Rectangle
class. It describes a rectangle by X and Y coordinates, as well as width and
height. It can also check if the rectangle contains or is inside another.

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

98

• Other classes

• AudioClip: This class deals with the Android MediaPlayer and is capable of
playing, stopping, or looping a sound clip.

• Tools: This class contains miscellaneous help methods such as message
boxes, dialogs, and a browser launcher.

• Other resources

• Asteroids.xml: This is the user-defined layout of the game. It points to the
ch04.game.Asteroids class.

• Asteroids.png: This is the game icon that you will see in your phone
window. Clicking this icon will start the game.

• Strings.xml: This file contains game strings, such as the game name and
other messages.

• Raw sounds

• a_crash.mp3: Played when an asteroid explodes

• a_explosion.mp3: Played when the ship explodes

• a_fire.mp3: Played when the ship fires the gun

• a_missile.mp3: Played when the ship fires the missile

• a_saucer.mp3: Played when the UFO shows up on screen

• a_thrusters.mp3: Played when the ship moves around

• a_warp.mp3: Played when the ship jumps into hyperspace (To avoid a
collision, a ship vanishes from one point and reappears in another.)

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

99

Figure 4-4. The Asteroids resources

Understanding the Game Life Cycle
As mentioned earlier, we use a LinerLayout to paint sprites on screen using a continuous game loop. The
layout and loop—both controlled using Timers—are described by the abstract class ArcadeGame (see
Listing 4-5). This class also defines the life cycle of the game using abstract methods that must be
overridden by the child class Asteroids. This life cycle contains the following methods:

• void initialize() fires on game initialization. This is where sounds are loaded
and sprites are created.

• void onDraw() must be overridden to paint sprites on screen. All painting is done
using a Canvas and one or more Paint objects for font, color, and style
information.

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

100

• void updatePhysics() fires once on every step of the loop. Use this method to
update the sprites on the game.

• boolean gameOver() can be used to check if the user has terminated the game and
perhaps get a final score. Its implementation is mostly optional.

• long getScore() can be used to get the user’s final score.

Listing 4-5. The Game Loop Using Timer Tasks

public abstract class ArcadeGame extends LinearLayout
{
 // Update timer used to invalidate the view
 private Timer mUpdateTimer;

 // Timer period
 private long mPeriod = 1000;

 //

 protected void onLayout(boolean changed, int l, int t, int r, int b) {
 super.onLayout(changed, l, t, r, b);
 try {
 // Init game
 initialize();

 /**
 * start update task. Which will fire onDraw in the future
 */
 startUpdateTimer();
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 // ...

 /**
 * A timer is used to move the sprite around
 */
 protected void startUpdateTimer() {
 mUpdateTimer = new Timer();
 mUpdateTimer.schedule(new UpdateTask(), 0, mPeriod);
 }

 private class UpdateTask extends TimerTask {
 @Override
 public void run() {
 updatePhysics();

 /**
 * Cause an invalidate to happen on a subsequent cycle through

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

101

 * the event loop. Use this to invalidate the View from
 * a non-UI thread. onDraw will be called sometime
 * in the future.
 */
 postInvalidate();
 }
 }

 /**
 * Overridden these to process game events (life-cycle)
 */

 // Update sprites here
 abstract protected void updatePhysics();

 // Init game
 abstract protected void initialize();

 // Game over
 abstract protected boolean gameOver();

 // Get score
 abstract protected long getScore();

}

Let’s take a closer look at the game life cycle of Asteroids.

Initializing the Game
Game initialization occurs by overriding the initialize method in the Asteroids class (see Listing 4-6).
It starts by loading sounds from the res/raw folder as follows:

Context ctx = getContext();
crashSound = new AudioClip(ctx, R.raw.a_crash);
clipTotal++;
explosionSound = new AudioClip(ctx, R.raw.a_explosion);
clipTotal++;

Here is where we use the AudioClip class to quickly load the raw resource using its ID. Note that we

also need the application Context. The game also keeps track of the total number of clips in the game.
Next, we create the star background using an array of Points and the size of the screen:

void createStarts() {
 int width = getWidth();
 int height = getHeight();

 // Generate the starry background.
 numStars = width * height / 5000;
 stars = new Point[numStars];

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

102

 for (i = 0; i < numStars; i++) {
 // random XY Point
 stars[i] = new Point((int) (Math.random() * width)
 , (int) (Math.random() * height));
 }
}

The stars are created using random Points with X and Y coordinates defined using the getWidth and

getHeight methods. Note that getWidth and getHeight are built-in methods provided by the LinerLayout
class.

Next, we create all polygon sprites in the game:

• The ship

• The ship’s thrusters

• Photons (the ship’s bullets)

• The flying saucer

• Asteroids and asteroid explosions

Note that all elements in the game are polygons, even the tiny photons and asteroid explosions.
Finally, miscellaneous data is initialized and the game is put in Game Over mode.

Listing 4-6. Game Initialization

protected void initialize() {

 // Load sounds
 try {
 loadSounds();
 loaded = true;
 } catch (Exception e) {
 Tools.MessageBox(mContex, "Sound Error: " + e.toString());
 }

 // create star background
 createStarts();

 // Create shape for the ship sprite.
 ship = new PolygonSprite();
 ship.shape.addPoint(0, -10);
 ship.shape.addPoint(7, 10);
 ship.shape.addPoint(-7, 10);

 // Create thruster shapes
 createThrusters();

 // Create shape for each photon sprites.
 for (i = 0; i < Constants.MAX_SHOTS; i++) {

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

103

 photons[i] = new PolygonSprite();
 photons[i].shape.addPoint(1, 1);
 photons[i].shape.addPoint(1, -1);
 photons[i].shape.addPoint(-1, 1);
 photons[i].shape.addPoint(-1, -1);
 }

 // Create shape for the flying saucer.
 ufo = new PolygonSprite();
 ufo.shape.addPoint(-15, 0);
 ufo.shape.addPoint(-10, -5);
 ufo.shape.addPoint(-5, -5);
 ufo.shape.addPoint(-5, -8);
 ufo.shape.addPoint(5, -8);
 ufo.shape.addPoint(5, -5);
 ufo.shape.addPoint(10, -5);
 ufo.shape.addPoint(15, 0);
 ufo.shape.addPoint(10, 5);
 ufo.shape.addPoint(-10, 5);

 // Create shape for the guided missile.
 missile = new PolygonSprite();
 missile.shape.addPoint(0, -4);
 missile.shape.addPoint(1, -3);
 missile.shape.addPoint(1, 3);
 missile.shape.addPoint(2, 4);
 missile.shape.addPoint(-2, 4);
 missile.shape.addPoint(-1, 3);
 missile.shape.addPoint(-1, -3);

 // Create asteroid sprites.
 for (i = 0; i < Constants.MAX_ROCKS; i++)
 asteroids[i] = new PolygonSprite();

 // Create explosion sprites.
 for (i = 0; i < Constants.MAX_SCRAP; i++)
 explosions[i] = new PolygonSprite();
 // Initialize game data and put it in 'game over' mode.
 highScore = 0;
 sound = true;
 detail = true;
 initGame();
 endGame();
}

Drawing Sprites
Drawing 23.70the sprites is the next step in the game life cycle and the most important too. Here is
where all polygon sprites are drawn (see Listing 4-7). The most important steps are as follows:

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

104

1. The size of the screen is queried using the layout’s getWidth and getHeight
methods. The size is required to render elements on screen

2. The stars are drawn using an array of star sprites and calling canvas.drawPoint.
Each sprite is drawn using its X and Y coordinates and a Paint object for style
information.

3. Photons are drawn only if they are active. A photon becomes active when the
user presses the space bar to fire the gun. Each photon is aware of its position
on the canvas.

4. Missiles, a UFO, and the user’s ship are drawn if they are active. When the user
reaches a score threshold, the UFO will show up. Users must watch out for the
missiles fired against them by the UFO. Note that the ship’s thrusters must be
drawn when the user presses the arrow keys to move the ship around.

5. Asteroids and explosion debris are drawn. Note that each bit of debris is an
independent sprite.

6. Status messages are drawn. Messages include the score in the upper-left
corner, the number of ships left in the lower-left, and the high score in the
upper-right.

7. Other messages are displayed depending on the state of the game, including
Game Over, Game Paused, or Sound Muted.

■ Tip Remember that each sprite is aware of its X and Y coordinates on screen and angle of rotation? The key
method that performs all the magic is PolygonSprite.draw(Canvas canvas, Paint paint). Within this method,
the polygon lines are drawn using canvas.drawLines(float[] points, Paint paint).

Listing 4-7. The Drawing Subroutine for Asteroids

protected void onDraw(Canvas canvas)
{
 // get screen size
 int width = getWidth();
 int height = getHeight();

 // draw stars
 for (i = 0; i < numStars; i++) {
 canvas.drawPoint(stars[i].x, stars[i].y, mPaint);
 }

 // Draw photon bullets.
 for (i = 0; i < Constants.MAX_SHOTS; i++) {
 if (photons[i].active) {
 photons[i].draw(canvas, mPaint);

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

105

 }
 }

 // Draw the guided missile,
 if (missile.active) {
 missile.draw(canvas, mPaint);
 }

 // Draw the flying saucer.
 if (ufo.active) {
 ufo.draw(canvas, mRedPaint);
 }

 // Draw the ship
 if (ship.active) {
 // draw ship
 ship.draw(canvas, mPaint);

 // Draw thruster exhaust if thrusters are on. Do it randomly to get
 // a flicker effect.

 if (!paused && Math.random() < 0.5) {
 if (up) {
 fwdThruster.draw(canvas, mPaint);
 }
 if (down) {
 revThruster.draw(canvas, mPaint);
 }
 }
 }

 // Draw the asteroids.
 for (i = 0; i < Constants.MAX_ROCKS; i++) {
 if (asteroids[i].active) {
 asteroids[i].draw(canvas, mGreenPaint);
 }
 }
 // Draw any explosion debris.
 for (i = 0; i < Constants.MAX_SCRAP; i++) {
 if (explosions[i].active) {
 explosions[i].draw(canvas, mGreenPaint);
 }
 }

 // Display status messages.
 float fontSize = mPaint.getTextSize();

 // upper left
 canvas.drawText("Score: " + score, fontSize, mPaint.getTextSize(),
 mPaint);

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

106

 // Lower Left
 canvas.drawText("Ships: " + shipsLeft, fontSize, height - fontSize,
 mPaint);

 // Upper right
 String str = "High: " + highScore;

 canvas.drawText("High: " + highScore, width
 - (fontSize / 1.2f * str.length()), fontSize, mPaint);

 if (!sound) {
 str = "Mute";
 canvas.drawText(str, width - (fontSize * str.length()), height
 - fontSize, mPaint);
 }

 if (! playing) {
 if (loaded) {
 str = "Game Over";
 final float x = (width - (str.length() * fontSize / 2)) / 2;

 canvas.drawText(str, x, height / 4, mPaint);

 }
 }
 else if (paused) {
 str = "Game Paused";

 final float x = (width - (str.length() * fontSize / 2)) / 2;
 canvas.drawText(str, x, height / 4, mPaint);
 }
}

Updating Game Physics
The third step in the game life cycle is to update the game physics. This simply means updating the
positions of all sprites in the game. Listing 4-8 shows the implementation for Asteroids. Let’s take a
closer look at this method:

1. First, update the game sprites including the ship, photons, UFO, missile,
asteroids, and explosions.

2. Update the scores.

3. Start the UFO if the score reaches the UFO score threshold.

4. Create a new batch of asteroids if all have been destroyed.

Listing 4-8 also shows the method used to update the ship: updateShip() (note that sections have
been stripped from Listing 4-8 for simplicity). This method performs the following tasks:

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

107

1. Rotate or move the ship on screen depending on the value of the class
variables: left, right, up, or down. These variables are updated depending on
the key pressed by the user. The actual movement or rotation is performed by
updating the delta values of the ship’s X and Y coordinates and its angle of
rotation.

2. Update other sprites, like the thrusters (which are independent sprites), as the
ship moves around.

3. Perform other physics checks:

• Do not let the ship exceed a speed limit.

• If the ship has exploded, update the ship counter, and create a new ship or
end the game depending on the number of ships left.

Listing 4-8. Updating the Game Physics

protected void updatePhysics() {
 // Update Sprites
 updateShip();
 updatePhotons();
 updateUfo();
 updateMissile();
 updateAsteroids();
 updateExplosions();

 // Check the score and advance high score,
 if (score > highScore)
 highScore = score;

 // add a new ship if score reaches Constants.NEW_SHIP_POINTS
 if (score > newShipScore) {
 newShipScore += Constants.NEW_SHIP_POINTS;
 shipsLeft++;
 }

 // start the flying saucer as necessary.
 if (playing && score > newUfoScore && ! ufo.active) {
 newUfoScore += Constants.NEW_UFO_POINTS;
 ufoPassesLeft = Constants.UFO_PASSES;
 initUfo();
 }

 // If all asteroids have been destroyed create a new batch.
 if (asteroidsLeft <= 0)
 if (--asteroidsCounter <= 0)
 initAsteroids();

}

// Update Ship

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

108

public void updateShip() {
 int width = getWidth();
 int height = getHeight();

 double dx, dy, speed;

 if (!playing)
 return;

 /**
 * Rotate the ship if left or right cursor key is down.
 */
 if (left) {
 ship.angle += Constants.SHIP_ANGLE_STEP;
 if (ship.angle > 2 * Math.PI)
 ship.angle -= 2 * Math.PI;
 }
 if (right) {
 ship.angle -= Constants.SHIP_ANGLE_STEP;
 if (ship.angle < 0)
 ship.angle += 2 * Math.PI;
 }

 /**
 * Fire thrusters if up or down cursor key is down.
 */
 dx = Constants.SHIP_SPEED_STEP * -Math.sin(ship.angle);
 dy = Constants.SHIP_SPEED_STEP * Math.cos(ship.angle);
 if (up) {
 ship.deltaX += dx;
 ship.deltaY += dy;
 }
 if (down) {
 ship.deltaX -= dx;
 ship.deltaY -= dy;
 }

 /**
 * Don't let ship go past the speed limit.
 */
 if (up || down) {
 speed = Math.sqrt(ship.deltaX * ship.deltaX + ship.deltaY
 * ship.deltaY);
 if (speed > Constants.MAX_SHIP_SPEED) {
 dx = Constants.MAX_SHIP_SPEED * -Math.sin(ship.angle);
 dy = Constants.MAX_SHIP_SPEED * Math.cos(ship.angle);
 if (up)
 ship.deltaX = dx;
 else
 ship.deltaX = -dx;
 if (up)

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

109

 ship.deltaY = dy;
 else
 ship.deltaY = -dy;
 }
 }

 /**
 * Move the ship. If it is currently in hyper space, advance the
 * count down.
 */
 if (ship.active) {
 ship.advance(width, height);
 ship.render(width, height);
 if (hyperCounter > 0)
 hyperCounter--;

 // Update the thruster sprites to match the ship sprite.

 fwdThruster.x = ship.x;
 fwdThruster.y = ship.y;
 fwdThruster.angle = ship.angle;
 fwdThruster.render(width, height);
 revThruster.x = ship.x;
 revThruster.y = ship.y;
 revThruster.angle = ship.angle;
 revThruster.render(width, height);
 }

 /**
 * Ship is exploding, advance the countdown or create a new ship if it
 * is done exploding. The new ship is added as though it were in
 * hyper space. This gives the player time to move the ship if it is
 * in imminent danger. If that was the last ship, end the game.
 */
 else {
 if (--shipCounter <= 0) {
 if (shipsLeft > 0) {
 initShip();
 hyperCounter = Constants.HYPER_COUNT;
 } else {
 endGame();
 }
 }
 }
}

Getting Scores
Scoring is the final step in the life cycle of Asteroids and is usually an optional step. In this step, a check
is performed too see if the game is over and, if so, get a final score and do something with it (such as

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

110

create a high score listing). Listing 4-9 shows two boolean variables used to check if the game is over and
a long variable used to return the score.

Listing 4-9. Getting the Game Score

protected boolean gameOver() {
 return loaded && !playing;
}

@Override
protected long getScore() {
 return score;
}

Responding to Key Press and Touch Events
The final piece of the puzzle is listening for user events such as key press and touch events and taking the
appropriate action. We do this by overriding the onKeyUp, onKeyDown, and onTouchEvent methods. The
following tasks are performed:

• Update the class variables: up, down, left, or right depending on which arrow key
is pressed.

• Fire photons when the space bar is pressed.

• Jump into hyperspace when H is pressed. The ship will disappear from one point
and appear in a random location on the screen.

• Toggle the pause mode when P is pressed.

• Toggle sound (mute the game) when M is pressed.

• Start the game when S is pressed.

• Quit the game when E is pressed.

When the screen is tapped, the game will start if and only if the game resources are loaded and the
game is not playing already.

Listing 4-10. Responding to Key Press and Touch Events

@Override
public boolean onKeyUp(int keyCode, KeyEvent event) {
 keyReleased(event);
 return true;
}

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
 keyPressed(event);
 return true;

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

111

}

/**
 * OnTap Start Game
 */
@Override
public boolean onTouchEvent(MotionEvent event) {
 if (loaded && !playing) {
 initGame();
 }
 return true;
}

public void keyPressed(KeyEvent e) {
 final int keyCode = e.getKeyCode();

 /**
 * Check if any cursor keys have been pressed and set flags.
 */
 if (keyCode == KeyEvent.KEYCODE_DPAD_LEFT
 || keyCode == KeyEvent.KEYCODE_Q)
 left = true;
 if (keyCode == KeyEvent.KEYCODE_DPAD_RIGHT
 || keyCode == KeyEvent.KEYCODE_W)
 right = true;
 if (keyCode == KeyEvent.KEYCODE_DPAD_UP
 || keyCode == KeyEvent.KEYCODE_O)
 up = true;
 if (keyCode == KeyEvent.KEYCODE_DPAD_DOWN
 || keyCode == KeyEvent.KEYCODE_L)
 down = true;

 if ((up || down) && ship.active && !thrustersPlaying) {
 if (sound && !paused) {
 thrustersSound.loop();
 }
 thrustersPlaying = true;
 }

 /**
 * Spacebar: fire a photon and start its counter.
 */
 if ((keyCode == KeyEvent.KEYCODE_SPACE) && ship.active)
 {
 if (sound & !paused) {
 fireSound.play();
 }

 photonTime = System.currentTimeMillis();
 photonIndex++;

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

112

 if (photonIndex >= Constants.MAX_SHOTS)
 photonIndex = 0;

 photons[photonIndex].active = true;
 photons[photonIndex].x = ship.x;
 photons[photonIndex].y = ship.y;
 photons[photonIndex].deltaX = 2 * Constants.MAX_ROCK_SPEED
 * -Math.sin(ship.angle);
 photons[photonIndex].deltaY = 2 * Constants.MAX_ROCK_SPEED
 * Math.cos(ship.angle);
 }

 /**
 * 'H' key: warp ship into hyperspace by moving to a random location and
 * starting counter. Note: keys are case independent
 */
 if (keyCode == KeyEvent.KEYCODE_H && ship.active && hyperCounter <= 0) {
 ship.x = (int) (Math.random() * getWidth());
 ship.y = (int) (Math.random() * getHeight());
 hyperCounter = Constants.HYPER_COUNT;

 if (sound & !paused)
 warpSound.play();
 }

 /**
 * 'P' key: toggle pause mode and start or stop any active looping sound
 * clips.
 */
 if (keyCode == KeyEvent.KEYCODE_P) {
 if (paused) {
 if (sound && misslePlaying)
 missileSound.loop();
 if (sound && saucerPlaying)
 saucerSound.loop();
 if (sound && thrustersPlaying)
 thrustersSound.loop();
 } else {
 if (misslePlaying)
 missileSound.stop();
 if (saucerPlaying)
 saucerSound.stop();
 if (thrustersPlaying)
 thrustersSound.stop();
 }
 paused = !paused;
 }

 /**
 * 'M' key: toggle sound on or off and stop any looping sound clips.
 */

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

113

 if (keyCode == KeyEvent.KEYCODE_M && loaded) {
 if (sound) {
 crashSound.stop();
 explosionSound.stop();
 fireSound.stop();
 missileSound.stop();
 saucerSound.stop();
 thrustersSound.stop();
 warpSound.stop();
 } else {
 if (misslePlaying && !paused)
 missileSound.loop();
 if (saucerPlaying && !paused)
 saucerSound.loop();
 if (thrustersPlaying && !paused)
 thrustersSound.loop();
 }
 sound = !sound;
 }

 /**
 * 'S' key: start the game, if not already in progress.
 */
 if (keyCode == KeyEvent.KEYCODE_S && loaded && !playing) {
 initGame();
 }

 /**
 * 'E' Exit game
 */
 if (keyCode == KeyEvent.KEYCODE_E) {
 stopUpdateTimer();
 releaseSounds();

 System.exit(0); // Ouch!
 }
}

Our arcade game is now complete, and we can run it in the emulator.

Testing Asteroids on the Emulator
Let’s fire the emulator and play some Asteroids! Here is how:

1. Create a new launch configuration. From the Eclipse main menu,
click Run ➤ Run Configurations.

2. Enter a configuration name, Asteroids.

3. Select the project, ch04.Asteroids.

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

114

4. Set the Launch Action as Launch Default Activity, and click Run.

Stand by for the emulator window. You should see the game starting with the message Game Over
and some asteroids floating around the screen. Press S to start the game and try some of the game’s
features (see Figure 4-5):

• Move the ship around using the arrow keys. You should see the thrusters fire and
hear the thrusters’ sound. The ship should wrap around when it goes off the
screen.

• Press the space bar to fire the gun. Make sure the photons display (and that the
sound plays) and the asteroids are destroyed when hit.

• Press the H to jump into hyperspace. The ship should disappear and reappear in a
random location. Make sure the sound effect is played.

• Try to get a high score, and make sure the UFO shows up on screen and fires the
missile against you.

• Press E to terminate the game when you get bored.

Figure 4-5. The Asteroids game in action

CHAPTER 4 ■ JAVA GAMES CONTINUED: FUN WITH POLYGONS

115

What’s Next?
In this chapter, we looked at the polygon-based game Asteroids. This game presented new challenges
due to the lack of polygon support in the Android API. To overcome this limitation, we created two
helper classes: Rectangle and Polygon. This code has been ported from the Java SE API and slightly
modified for this game. You also learned how to build a PolygonSprite capable of remembering X and Y
coordinates and an angle of rotation. PolygonSprite is also capable of detecting collisions with other
PolygonSprites and drawing itself in the Android canvas.

With these classes, we have built the arcade classic Asteroids. Furthermore, we have looked at the
game’s inner workings such as a user-defined XML layout and manipulation of game resources such as
audio files and icons.

You have also taken a look at the critical steps in the game life cycle: initialization, drawing, and
updating physics, as well as the caveats of drawing the polygons in the Android canvas. Finally, you
learned at how to process key and touch events, and you tested Asteroids in the emulator.

I hope that you have learned new interesting techniques in building pure Java games. In the
following chapters, I switch gears to concentrate in hybrid games, which mix Java and C thru JNI for
maximum performance. We’ll begin with the always-interesting subject of OpenGL.

C H A P T E R 5

■ ■ ■

117

Hybrid 3D Graphics
with OpenGL and JNI

The classic Asteroids arcade game presented in the previous chapter provided a great introduction to
drawing techniques in Android, using polygons and user-defined layouts. Now it’s time to ramp things
up a notch.

In this chapter, you will learn a neat trick to mix OpenGL code in Java and C. This is a key step in
reusing large portions of OpenGL C code along with Java code, thus using the best features of each
language for maximum savings in time and costs.

Any game developer knows that OpenGL is the holy grail of advanced game development. You won’t
find any powerful games that are not written with this API, because it takes advantage of hardware
acceleration, which is infinitely superior to any kind of software renderer.

OpenGL can be a scary subject to the newcomer due to its complexity. But you don’t have to be an
OpenGL guru to understand what it does and how to draw elements with this API. All you need is the
desire to learn a powerful and exciting tool for gaming.

The goal of this chapter is not to teach you OpenGL (a whole book wouldn’t be enough for that), but
to show you how you can take the Android OpenGL sample provided by Google and modify it in a
completely different way by mixing OpenGL API calls in both Java and native C for maximum reusability.

Some may say this is simply another OpenGL chapter for a mobile device (dime a dozen, right?).
Well, it is not. This chapter presents a technique for OpenGL in Android that is unique, and at the time of
this writing, not available anywhere in the Android sphere (on the Web). This is a technique I stumbled
on by accident when thinking about porting the game Quake to Android. In a nutshell, the technique
consists of creating the OpenGL context, display, and surface objects in Java, and performing all drawing
operations natively in C. At the end of the rendering cycle, a JNI callback is used by the C engine to tell
the Java side to swap the buffers (render the image). The cycle then repeats itself. This technique is
extremely useful when you have a 200,000-line code game like Quake, and rewriting this code in Java is
simply not feasible.

The chapter starts by examining the OpenGL tumbling cubes sample to expose how OpenGL works
in Java. Next, we will look at how sections of the rendering process can be implemented in the native
layer, and how everything is bound by JNI. The final section discusses some of the limitations of the
OpenGL OpenGL Embedded System when it comes to advanced 3D games.

Let’s get started.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

118

Need An OpenGL Refresher?

For this chapter, you’ll need a basic understanding of OpenGL. If your OpenGL is a bit rusty, I suggest
referring to the best tutorials I have found on the Web:

• Greg Sidelnikov’s tutorial about the OpenGL coordinate system. It covers the basics
such as perspectives, orthographic projections, 3D camera, graphics pipeline,
variable and function naming conventions, and more. It is a good place to start:

http://www.falloutsoftware.com/tutorials/gl/gl0.htm

• If you are confused about OpenGL projections, MathWorld has some good
information about all kinds of 3D projections used in OpenGL:

http://mathworld.wolfram.com/OrthographicProjection.html

• NeHe Productions has compiled a comprehensive set of tutorials that cover pretty
much everything you need to write an OpenGL application. These are very popular:

http://nehe.gamedev.net/

The Power of Mobile Devices
Mobile Android devices have become pretty powerful for graphics development. Check out the following
hardware stats for the T-Mobile G1:

• ARM processor running at 500MHz

• Graphics processing unit (GPU) with 256KB of RAM

• 320-by-480 pixel display

To make good use of the GPU, Google has included the OpenGL Embedded System (ES) within
Android. OpenGL ES provides the software API to make high-performance, hardware-accelerated games
possible. This is a Java API, which is good news for Java developers who wish to create 3D games from
scratch, but bad news for C developers who wish to reuse 3D engines written in C. 3D game engines are
very complex and large, and are mostly written in C. Rewriting these engines in Java would be a very
difficult task, consuming significant development and time resources.

Consider how easy it is to reuse OpenGL code in C. Let’s look at another powerful smart phone:
Apple’s iPhone. If you search the iPhone App Store (or the Web), you will find that dozens of OpenGL-
based 3D games have already been ported to the platform, including some of the greatest 3D shooters
for the PC: Wolfenstein 3D, Doom, and Quake I. Even Quake III Arena—a game that has extremely
advanced 3D graphics for a mobile device—has been ported! What do all these games have in common?
They are written in C. Furthermore, Apple provides a C toolchain that makes it easy to have the games
running in the platform. Clearly, Android is at a big disadvantage in this field. Nevertheless, porting
these games to Android is still possible.

Even though Android supports only Java development, the Android OS is built in a stripped version
of GNU Linux featuring a C runtime. Using an ARM C toolchain, you can write and compile C code and
bind it to Java using JNI.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

119

■ Note As noted in previous chapters, Google doesn’t support this type of native development, but it seems
Google is being pushed by the overwhelming number of 3D games being ported to the iPhone and other mobile
devices. So much so, that Google has recently released the Android NDK, a set of tools and header files for native
development, introduced in Chapter 1.

A Head Start: The Source Code for this Chapter

In this chapter, we’ll use the Android 3D cubes sample in its original Java language, but we will also move
code to the native side. This sample is available from the Android site; however, the sample is composed
of many resources, which are bundled as part of the overall Android samples pack. To make things
simpler, I have packed the required files, plus the changes described throughout this chapter, in the
chapter source code.

If you wish, you can import the project into your workspace. To do so, select File ➞ Import. In the dialog
box, select Existing Projects into Workspace. Next, navigate to the chapter source ch06.OpenGL.
Optionally, check Copy project into workspace. When you click Finish, the automated build will load.

Try to familiarize yourself with the project layout, especially with the following folders:

• src contains the Java classes used by the project.

• native contains the cube renderer and the cube-drawing subroutines.

OpenGL the Java Way
Let’s look at how OpenGL graphics are done within Java. For this exploration, you need to create a
project to hold the GL tumbling cubes application from the Android samples. Here is how:

1. Click the New Android Project button.

2. In the New Android Project dialog box, enter a project name, such as ch05.OpenGL.

3. Specify the build target as Android 1.5.

4. Enter an application name, such as OpenGL Java.

5. Enter a package name, such as opengl.test.

6. Select Create Activity and enter JavaGLActivity.

7. Specify the minimum SDK version as 3. Figure 5-1 shows the completed dialog
box for this example.

8. Click Finish.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

120

■ Note The original sample code will be modified to fit the changes described throughout this chapter.

Figure 5-1. New Android project for the OpenGL sample

The Android cubes sample consists of the following Java classes (see Figure 5-2):

• GLSurfaceView: This is an implementation of SurfaceView that uses a dedicated
surface for displaying an OpenGL animation. The animation will run in a separate
thread (GLThread).

• GLThread: This is a generic thread with a loop for GL operations. Its job is to
perform resource initialization. It also delegates rendering to an instance of the
Renderer interface.

• Renderer: This is a generic interface for rendering objects. In this case, we will be
rendering two tumbling cubes.

• EglHelper: This is a GL helper class used to do the following:

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

121

• Initialize the EGL context.

• Create the GL surface.

• Swap buffers (perform the actual drawing).

• CubeRenderer: This is an implementation of the Renderer interface to draw the
cubes.

• Cube: This class encapsulates a GL cube, including vertices, colors, and indices for
each face.

Because the sample needs to be slightly modified to illustrate the concepts of the chapter, the
following classes have been added for this purpose:

• JavaGLActivity: This is the Android activity that will start the Java-only version of
the application.

• NativeGLActivity: This activity will start the hybrid version of the sample (with
Java/C/JNI code).

• Natives: This class defines the native methods used by this sample.

Figure 5-2. Resource list for the OpenGL sample

The Android manifest needs to be updated to include the new activities defined in the previous
paragraph, as shown in bold in Listing 5-1.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

122

Listing 5-1. Manifest File for This Chapter’s Example

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="opengl.test"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <activity android:name=".JavaGLActivity"
 android:label="OpenGL Java">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".NativeGLActivity"
 android:label="OpenGL Native">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="3" />
</manifest>

The following lines tell Android to create two application launchers in the device launchpad, one for

each of the activities OpenGL Java and OpenGL Native:

 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />

Let’s start with the Java-only implementation. Figure 5-3 defines the basic workflow of the OpenGL

application. The figure shows the main activity (JavaGLActivity), which creates the rendering surface
(GLSurfaceView). The surface creates a thread (GLThread) and renderer (CubeRenderer). GLThread contains
the loop that invokes the renderer draw() method that draws the tumbling cubes seen on the device
display.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

123

Figure 5-3. Workflow of the Java-only cubes sample

Java Main Activity
When the user starts the application, the JavaGLActivity.onCreate() method will be called (see Listing 5-2).
Here is where the surface view (mGLSurfaceView) is initialized and set as the application content:

mGLSurfaceView = new GLSurfaceView(this);
mGLSurfaceView.setRenderer(new CubeRenderer(true));
setContentView(mGLSurfaceView);

Note that the GL surface view must use a renderer (CubeRenderer in this case), which implements

the Renderer interface and takes a Boolean argument indicating if a translucent background should be
used.

Listing 5-2. Main Activity for the Java-Only Version of the GL Cubes Sample

package opengl.test;

import opengl.scenes.GLSurfaceView;
import opengl.scenes.cubes.CubeRenderer;
import android.app.Activity;
import android.os.Bundle;

public class JavaGLActivity extends Activity
{

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

124

 private GLSurfaceView mGLSurfaceView;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mGLSurfaceView = new GLSurfaceView(this);

 try {
 mGLSurfaceView.setRenderer(new CubeRenderer(true));
 setContentView(mGLSurfaceView);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 protected void onPause() {
 // Ideally a game should implement onResume() and onPause()
 // to take appropriate action when the activity loses focus
 super.onPause();
 mGLSurfaceView.onPause();
 }

 @Override
 protected void onResume() {
 super.onResume();
 mGLSurfaceView.onResume();
 }
}

When the application loses focus or resumes, the onPause() or onResume() method will be called,

respectively. These methods delegate to the surface view (GLSurfaceView) to take the appropriate action,
such as saving application state or suspending/resuming the rendering process.

Surface View
The class GLSurfaceView (see Listing 5-3) defines the surface where the tumbling cubes animation will
take place. The class constructor starts by initializing a callback to receive notifications when the surface
is changed, created, or destroyed:

 mHolder = getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_GPU);

By implementing SurfaceHolder.Callback and calling SurfaceHolder.addCallback(), the class will

receive the events:

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

125

• surfaceCreated(SurfaceHolder holder): This is called immediately after the
surface is first created. In this case, the surface delegates to the inner thread
GLThread.surfaceCreated().

• surfaceDestroyed(SurfaceHolder holder): This method is called immediately
before a surface is being destroyed. After returning from this call, the surface
should not be accessed. In this case, the method delegates to the rendering thread
GLThread.surfaceDestroyed().

• surfaceChanged(SurfaceHolder holder, int format, int w, int h): This
method is called immediately after any structural changes (format or size) have
been made to the surface. Here is where you tell the inner thread that the size has
changed. This method is always called at least once, after surfaceCreated(). The
second argument of this method (format) is the pixel format of the graphics
defined in the PixelFormat class.

Listing 5-3. Surface View for the GL Cubes Sample

package opengl.scenes;

import opengl.jni.Natives;
import android.content.Context;
import android.util.AttributeSet;
import android.view.SurfaceHolder;
import android.view.SurfaceView;

/**
 * An implementation of SurfaceView that uses the dedicated surface for
 * displaying an OpenGL animation. This allows the animation to run in a
 * separate thread, without requiring that it be driven by the update
 * mechanism of the view hierarchy.
 *
 * The application-specific rendering code is delegated to a GLView.Renderer
 * instance.
 */
public class GLSurfaceView extends SurfaceView
 implements SurfaceHolder.Callback
{
 public GLSurfaceView(Context context) {
 super(context);
 init();
 }

 public GLSurfaceView(Context context, AttributeSet attrs) {
 super(context, attrs);
 init();
 }

 private void init() {
 // Install a SurfaceHolder.Callback so we get notified when the
 // underlying surface is created and destroyed

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

126

 mHolder = getHolder();
 mHolder.addCallback(this);
 mHolder.setType(SurfaceHolder.SURFACE_TYPE_GPU);
 }

 public SurfaceHolder getSurfaceHolder() {
 return mHolder;
 }

 public void setRenderer(Renderer renderer) {
 mGLThread = new GLThread(renderer, mHolder);
 mGLThread.start();
 }

 public void surfaceCreated(SurfaceHolder holder) {
 mGLThread.surfaceCreated();
 }

 public void surfaceDestroyed(SurfaceHolder holder) {
 // Surface will be destroyed when we return
 mGLThread.surfaceDestroyed();
 }

 public void surfaceChanged(SurfaceHolder holder, int format, int w,
 int h) {
 // Surface size or format has changed. This should not happen in
 // this example.
 mGLThread.onWindowResize(w, h);
 }

 /**
 * Inform the view that the activity is paused.
 */
 public void onPause() {
 mGLThread.onPause();
 }

 /**
 * Inform the view that the activity is resumed.
 */
 public void onResume() {
 mGLThread.onResume();
 }

 /**
 * Inform the view that the window focus has changed.
 */
 @Override
 public void onWindowFocusChanged(boolean hasFocus) {
 super.onWindowFocusChanged(hasFocus);
 mGLThread.onWindowFocusChanged(hasFocus);
 }

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

127

 /**
 * Queue an "event" to be run on the GL rendering thread.
 *
 * @param r
 * the runnable to be run on the GL rendering thread.
 */
 public void queueEvent(Runnable r) {
 mGLThread.queueEvent(r);
 }

 @Override
 protected void onDetachedFromWindow() {
 super.onDetachedFromWindow();
 mGLThread.requestExitAndWait();
 }

 private SurfaceHolder mHolder;
 private GLThread mGLThread;

}

Other important methods in the surface view include the following:

• setRenderer(): This method creates the inner thread that does all the work and
starts it. The thread keeps a reference to the surface holder available by calling
getHolder().

public void setRenderer(Renderer renderer) {
 mGLThread = new GLThread(renderer, mHolder);
 mGLThread.start();
}

• queueEvent(Runnable r): This method sends an event to be run by the inner
thread.

• onDetachedFromWindow(): This method is called when the view is detached from a
window. At this point, it no longer has a surface for drawing.

GL Thread
The main loop of the animation is performed by GLThread. When started, this thread performs the
following steps:

1. It creates a semaphore:

sEglSemaphore.acquire();
guardedRun(); // Only 1 thread can access this code
sEglSemaphore.release();

2. It runs the critical animation loop. Within the loop, the actual drawing is
delegated to the CubeRenderer.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

128

3. When asked to quit, the loops terminates, and the OpenGL resources are
released.

■ Note A semaphore is an object often used to restrict the number of threads than can access the OpenGL
context. When the Android framework launches a second instance of an activity, the new instance's onCreate()
method may be called before the first instance returns from onDestroy(). A semaphore ensures that only one
instance at a time accesses the GL API. We must do this because OpenGL is a single-threaded API (which means
that only one thread can access the GLContext at a time).

Listing 5-4 shows a fragment of the GLThread class taken from the GL cubes sample. When the thread
starts, the run() method will be invoked, and a semaphore used to ensure that guardedRun() can be
accessed by one thread only. guardedRun() performs other important steps, such as the following:

• Initialize the Embedded OpenGL (EGL) for a given configuration specification.
The configuration specification defines information, such as pixel format and
image depth.

• Create the OpenGL surface and tell the renderer about it.

• Check if the size of the surface has changed and tell the renderer about it.

• Queue and get events to be run on the GL rendering thread.

Listing 5-4. Rendering Thread for the GL Cubes Sample

package opengl.scenes;

// …

/**
 * A generic GL Thread. Takes care of initializing EGL and GL.
 * Delegates to a Renderer instance to do the actual drawing.
*/
public class GLThread extends Thread
{
 public GLThread(Renderer renderer, SurfaceHolder holder) {
 super();
 mDone = false;
 mWidth = 0;
 mHeight = 0;
 mRenderer = renderer;
 mHolder = holder;
 setName("GLThread");
 }

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

129

 @Override
 public void run() {
 try {
 try {
 sEglSemaphore.acquire();
 } catch (InterruptedException e) {
 return;
 }
 guardedRun();
 } catch (Exception ex) {
 ex.printStackTrace();
 } finally {
 sEglSemaphore.release();
 }
 }

 private void guardedRun() throws InterruptedException {
 mEglHelper = new EglHelper();

 // Specify a configuration for our OpenGL session
 int[] configSpec = mRenderer.getConfigSpec();
 mEglHelper.start(configSpec);

 GL10 gl = null;
 boolean tellRendererSurfaceCreated = true;
 boolean tellRendererSurfaceChanged = true;

 // This is our main activity thread's loop,
 while (!mDone) {

 // Update the asynchronous state (window size)
 int w, h;
 boolean changed;
 boolean needStart = false;
 synchronized (this) {
 Runnable r;
 while ((r = getEvent()) != null) {
 r.run();
 }
 if (mPaused) {
 mEglHelper.finish();
 needStart = true;
 }
 if (needToWait()) {
 while (needToWait()) {
 wait();
 }
 }
 if (mDone) {
 break;
 }
 changed = mSizeChanged;

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

130

 w = mWidth;
 h = mHeight;
 mSizeChanged = false;
 }
 if (needStart) {
 mEglHelper.start(configSpec);
 tellRendererSurfaceCreated = true;
 changed = true;
 }
 if (changed) {
 // Create the surface
 gl = (GL10) mEglHelper.createSurface(mHolder);
 tellRendererSurfaceChanged = true;
 }
 if (tellRendererSurfaceCreated) {
 mRenderer.surfaceCreated(gl);
 tellRendererSurfaceCreated = false;
 }
 if (tellRendererSurfaceChanged) {
 mRenderer.sizeChanged(gl, w, h);
 tellRendererSurfaceChanged = false;
 }
 if ((w > 0) && (h > 0)) {
 /* draw a frame here */
 mRenderer.drawFrame(gl);

 // Call swapBuffers() to instruct the system to display
 mEglHelper.swap();
 }
 }

 // Clean up...
 mEglHelper.finish();
 }

 // …
 private static final Semaphore sEglSemaphore = new Semaphore(1);
 private EglHelper mEglHelper;
}

Cube Renderer
CubeRenderer is the class that renders the pair of tumbling cubes (see Listing 5-5). It implements the
Renderer interface and does some very interesting things.

The void drawFrame(GL10 gl) method does the actual drawing and gets called many times per
second. The method starts by setting the matrix mode to GL_MODELVIEW. This essentially says to render
things in a 3D perspective (model view). Next, it clears all screen buffers by calling glLoadIdentity().

 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

131

Next, the perspective is translated in the z axis by three units toward the eye viewpoint (also known
as the camera):

 gl.glTranslatef(0, 0, -3.0f);

The next two instructions tell the pipeline to rotate the perspective in the y and x axes by an angle

given in radians (0-6.28, 0 meaning zero degrees, and 6.28, meaning 360 degrees).

 gl.glRotatef(mAngle, 0, 1, 0);
 gl.glRotatef(mAngle * 0.25f, 1, 0, 0);

Next, it requests that vertices and colors be rendered. These are defined within the Cube class:

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

Then the cube is drawn:

 mCube.draw(gl);

The perspective is rotated again in the y and z axes, and translated half a unit away from the eye:

 gl.glRotatef(mAngle * 2.0f, 0, 1, 1);
 gl.glTranslatef(0.5f, 0.5f, 0.5f);

The second cube is drawn, and the angle of rotation is increased for the next iteration.

 mCube.draw(gl);
 mAngle += 1.2f;

The int[] getConfigSpec() method initializes the pixel format and the depth of the display. The

pixel format describes the size of the ARGB values used to describe a pixel. The depth indicates the
maximum number of colors used. For example, the following integer array requests 32 bits per pixel
(ARGB 32bpp) with a depth of 16 (2^16 colors).

int[] configSpec = {
EGL10.EGL_RED_SIZE, 8,
EGL10.EGL_GREEN_SIZE, 8,
EGL10.EGL_BLUE_SIZE, 8,
EGL10.EGL_ALPHA_SIZE, 8,
EGL10.EGL_DEPTH_SIZE, 16,
EGL10.EGL_NONE
};

The following are two other interesting methods in the cube renderer:

• void sizeChanged(GL10 gl, int width, int height): This method fires when the
size of the viewport changes. It scales the cubes by setting the ratio of the
projection matrix and resizing the viewport.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

132

• void surfaceCreated(GL10 gl): This method fires when the surface is created.
Here, some initialization is performed, such as setting a translucent background
(if requested) and miscellaneous OpenGL renderer tweaking.

When the code in drawFrame() is executed many times per second, the result is two tumbling cubes
(see Figure 5-4).

Listing 5-5. Cube Renderer for the Pair of Tumbling Cubes

package opengl.scenes.cubes;

import javax.microedition.khronos.egl.EGL10;
import javax.microedition.khronos.opengles.GL10;

import opengl.jni.Natives;
import opengl.scenes.Renderer;

/**
 * Render a pair of tumbling cubes.
 */
public class CubeRenderer implements Renderer {

 public CubeRenderer(boolean useTranslucentBackground) {
 mTranslucentBackground = useTranslucentBackground;
 mNativeDraw = nativeDraw;
 mCube = new Cube();
 }

 public void drawFrame(GL10 gl) {
 /*
 * Usually, the first thing one might want to do is to clear
 * the screen. The most efficient way of doing this is
 * to use glClear().
 */
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);

 /*
 * Now we're ready to draw some 3D objects
 */
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glTranslatef(0, 0, -3.0f);
 gl.glRotatef(mAngle, 0, 1, 0);
 gl.glRotatef(mAngle * 0.25f, 1, 0, 0);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 mCube.draw(gl);

 gl.glRotatef(mAngle * 2.0f, 0, 1, 1);

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

133

 gl.glTranslatef(0.5f, 0.5f, 0.5f);

 mCube.draw(gl);

 mAngle += 1.2f;
 }

 public int[] getConfigSpec() {
 if (mTranslucentBackground) {
 // We want a depth buffer and an alpha buffer
 int[] configSpec = { EGL10.EGL_RED_SIZE, 8,
 EGL10.EGL_GREEN_SIZE, 8, EGL10.EGL_BLUE_SIZE, 8,
 EGL10.EGL_ALPHA_SIZE, 8, EGL10.EGL_DEPTH_SIZE, 16,
 EGL10.EGL_NONE };
 return configSpec;
 } else {
 // We want a depth buffer, don't care about the
 // details of the color buffer.
 int[] configSpec = { EGL10.EGL_DEPTH_SIZE, 16,
 EGL10.EGL_NONE };
 return configSpec;
 }
 }

 public void sizeChanged(GL10 gl, int width, int height) {
 gl.glViewport(0, 0, width, height);

 /*
 * Set our projection matrix. This doesn't have to be done each time we
 * draw, but usually a new projection needs to be set when the viewport
 * is resized.
 */
 float ratio = (float) width / height;
 gl.glMatrixMode(GL10.GL_PROJECTION);
 gl.glLoadIdentity();
 gl.glFrustumf(-ratio, ratio, -1, 1, 1, 10);
 }

 public void surfaceCreated(GL10 gl) {
 /*
 * By default, OpenGL enables features that improve quality but reduce
 * performance. One might want to tweak that especially on software
 * renderer.
 */
 gl.glDisable(GL10.GL_DITHER);

 /*
 * Some one-time OpenGL initialization can be made here probably based
 * on features of this particular context
 */
 gl.glHint(GL10.GL_PERSPECTIVE_CORRECTION_HINT
 , GL10.GL_FASTEST);

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

134

 if (mTranslucentBackground) {
 gl.glClearColor(0, 0, 0, 0.5f);
 } else {
 gl.glClearColor(1, 1, 1, 0.5f);
 }

 gl.glEnable(GL10.GL_CULL_FACE);
 gl.glShadeModel(GL10.GL_SMOOTH);
 gl.glEnable(GL10.GL_DEPTH_TEST);
 }

 private boolean mTranslucentBackground;
 private Cube mCube;
 private float mAngle;
}

Cube Class
CubeRenderer delegates drawing to the Cube class (see Listing 5-6). This class defines a 12-sided cube with
8 vertices (8 * x,y,z coordinates), 32 colors (8 vertices * 4 ARGB values), and 36 indices for the x,y,z
coordinates of each side. The class consists of two methods:

• Cube(): This is the class constructor. It initializes arrays for the vertices, colors, and
indices required to draw. It then uses direct Java buffers to place the data on the
native heap, where the garbage collector cannot move them. This is required by
the gl*Pointer() API functions that do the actual drawing.

• draw(): To draw the cube, we simply set the vertices and colors, and issue a call to
glDrawElements using triangles (GL_TRIANGLES). Note that a cube has 6 faces, 8,
vertices, and 12 sides:

 gl.glVertexPointer(3, GL10.GL_FIXED, 0, mVertexBuffer);
 gl.glColorPointer(4, GL10.GL_FIXED, 0, mColorBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, 36
 , GL10.GL_UNSIGNED_BYTE, mIndexBuffer);

Listing 5-6. Cube Class for the GL Cubes Sample

package opengl.scenes.cubes;

import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.IntBuffer;
import javax.microedition.khronos.opengles.GL10;

/**
 * A vertex shaded cube.
 */
public class Cube {
 public Cube() {
 int one = 0x10000;

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

135

 // 8 vertices each with 3 xyz coordinates
 int vertices[] = { -one, -one, -one
 , one, -one, -one
 , one, one, -one
 , -one, one, -one
 , -one, -one, one
 , one, -one, one
 , one, one, one
 , -one, one, one };

 // 8 colors each with 4 RGBA values
 int colors[] = { 0, 0, 0, one
 , one, 0, 0, one
 , one, one, 0, one
 , 0, one, 0, one
 , 0, 0, one, one
 , one, 0, one, one
 , one, one, one, one
 , 0, one, one, one};
 // 12 indices each with 3 xyz coordinates
 byte indices[] = { 0, 4, 5, 0, 5, 1, 1, 5, 6, 1, 6, 2, 2, 6, 7,
 2, 7, 3, 3, 7, 4, 3, 4, 0, 4, 7, 6, 4, 6, 5, 3, 0, 1,
 3, 1, 2 };

 ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4);
 vbb.order(ByteOrder.nativeOrder());
 mVertexBuffer = vbb.asIntBuffer();
 mVertexBuffer.put(vertices);
 mVertexBuffer.position(0);

 ByteBuffer cbb = ByteBuffer.allocateDirect(colors.length * 4);
 cbb.order(ByteOrder.nativeOrder());
 mColorBuffer = cbb.asIntBuffer();
 mColorBuffer.put(colors);
 mColorBuffer.position(0);

 mIndexBuffer = ByteBuffer.allocateDirect(indices.length);
 mIndexBuffer.put(indices);
 mIndexBuffer.position(0);
 }

 public void draw(GL10 gl) {
 gl.glFrontFace(GL10.GL_CW);
 gl.glVertexPointer(3, GL10.GL_FIXED, 0, mVertexBuffer);
 gl.glColorPointer(4, GL10.GL_FIXED, 0, mColorBuffer);
 gl.glDrawElements(GL10.GL_TRIANGLES, 36, GL10.GL_UNSIGNED_BYTE,
 mIndexBuffer);
 }

 private IntBuffer mVertexBuffer;
 private IntBuffer mColorBuffer;

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

136

 private ByteBuffer mIndexBuffer;
}

Figure 5-4 shows the sample in action. In the next section, you’ll see how portions of this code can

be implemented natively.

Figure 5-4. Tumbling cubes from the Java sample

OpenGL the Native Way
In the previous section, you saw how a pure Java OpenGL application works from the ground up. This
applies if you write an application from scratch in Java. However, if you already have a C OpenGL
renderer and wish to interface with Android, you probably don’t want to rewrite your application
(especially if it has thousands of lines of code). This would consume significant time and resources, and

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

137

more than likely, give you terrible headache. To understand how you can maximize the return on your
investment, let’s look at the general steps used to create an OpenGL application.

Any OpenGL application can be divided into the following major steps:

1. Initialization: OpenGL is a single-threaded system that requires a GLContext to be
initialized. Only one thread can access this context at a time. In EGL, this step is
subdivided as follows:

a. Get an EGL instance. In Android, this can be done using the EGLContext class:

mEgl = EGLContext.getEGL();

b. Get a default display. The display is required for the rendering process. In
Android, use this call:

mEglDisplay = mEgl.eglGetDisplay(EGL10.EGL_DEFAULT_DISPLAY);

c. Initialize the display, as follows:

int[] version = new int[2];
mEgl.eglInitialize(mEglDisplay, version);

d. You must also specify the pixel format and image depth you wish to use. The
following requests a 32bpp pixel format with an image depth of 16:

EGLConfig[] configs = new EGLConfig[1];
int[] num_config = new int[1];

int[] configSpec = {
 EGL10.EGL_RED_SIZE, 8,
 EGL10.EGL_GREEN_SIZE, 8,
 EGL10.EGL_BLUE_SIZE, 8,
 EGL10.EGL_ALPHA_SIZE, 8,
 EGL10.EGL_DEPTH_SIZE, 16,
 EGL10.EGL_NONE
};
mEgl.eglChooseConfig(mEglDisplay, configSpec, configs, 1, num_config);

2. Main loop: This is usually a user-defined thread that performs or delegates
drawing operations.

3. Drawing: In the drawing process, a set of GL operations is performed for each
iteration of the loop. At the end of each iteration, buffers must be swapped to
display the rendered surface on the screen.

4. Cleanup: In this step, the GLContext is destroyed and resources released back to
the system.

All these steps can be performed in Java. So it happened that one day I wanted to port an OpenGL-
based game to Android written in C, and wondered if some steps could be done in Java and some in C. I
was very happy to discover that this is indeed possible. For example, the following steps can be
performed in Java within an Android activity:

• Initialization: Get the EGL instance, initialize the default display, and set the pixel
format and image depth.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

138

• Main loop: The main loop can be a combination of a Java thread that calls a native
game loop. Here is where things get interesting.

■ Note OpenGL operations can be performed natively after the GLContext is initialized by an Android activity if,
and only if, the native code is loaded by the activity as a shared library through JNI.

• Swap buffers: This step can be performed in Java, provided that the native library
issues a callback after all GL operations have been completed. This is simply using
JNI callbacks and will result in a rendered surface on the screen.

This is great news. You don’t need to rewrite large portions of an OpenGL game. You simply need to
initialize the GLContext within your Java activity, load the shared library, do all the rendering operations
natively, and issue a swap buffers callback to Java on each iteration of the game loop.

Let’s apply this concept by rewriting portions of the GL cubes Java sample in C. The portion that will
be rewritten is the rendering of the cubes. The rest—initialization, main loop, and swap buffers—will
remain in Java. To accomplish this, you must make some simple changes to the sample classes and add
a new native activity.

Main Activity
You must create a new activity (with its own launcher) to load the native code (see Listing 5-7). This
activity is almost identical to its Java counterpart, except for the following:

• A native library is loaded using System.load("/data/libgltest_jni.so").

• The Renderer constructor has been modified to accept a second Boolean
argument (use native rendering): mGLSurfaceView.setRenderer(new
CubeRenderer(true, true)). This tells the cube renderer to use a translucent
background and native rendering.

Listing 5-7. Native Cubes Activity

package opengl.test;

import opengl.scenes.GLSurfaceView;
import opengl.scenes.cubes.CubeRenderer;
import android.app.Activity;
import android.os.Bundle;

public class NativeGLActivity extends Activity {
 private GLSurfaceView mGLSurfaceView;

 {
 final String LIB_PATH = "/data/libgltest_jni.so";

 System.out

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

139

 .println("Loading JNI lib using abs path:" + LIB_PATH);
 System.load(LIB_PATH);
 }

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mGLSurfaceView = new GLSurfaceView(this);

 try {
 mGLSurfaceView.setRenderer(new CubeRenderer(true, true));
 setContentView(mGLSurfaceView);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 @Override
 protected void onResume() {
 // Ideally a game should implement onResume() and onPause()
 // to take appropriate action when the activity loses focus
 super.onResume();
 mGLSurfaceView.onResume();
 }

 @Override
 protected void onPause() {
 // Ideally a game should implement onResume() and onPause()
 // to take appropriate action when the activity loses focus
 super.onPause();
 mGLSurfaceView.onPause();
 }
}

The following new files will be added to the project (see Figure 5-5):

• Native activity: This is the main entry point to the application. It can be run from
its own launcher on the device.

• Native interface class: This is a new Java class that contains the native methods to
be invoked within the renderer thread.

• Native cube renderer (cuberenderer.c): This is the C equivalent of
CubeRenderer.java. It initializes the scene and draws a frame. It also contains all
the JNI callbacks.

• Native cube (cube.c): This file is equivalent to Cube.java; it draws the cube.

Three files will be updated to accommodate the native calls: CubeRenderer,
GLSurfaceView, and GLThread.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

140

Figure 5-5. GL native cubes sample file layout

Native Interface Class
The native interface class defines native methods to be invoked within the application thread (see
Listing 5-8). It includes one native method and two callbacks:

• static native int NativeRender(): This is the actual native method that will
render the cube. It is implemented natively in C and executed through JNI.

• static void OnMessage(String text): This is a callback invoked within the native
layer to display a message back to the application.

• static void GLSwapBuffers(): This is a callback invoked within the native layer to
request a buffer swap (render it). For this sample, this method will not be actually
invoked (as the loop is defined in Java), but it could be useful in other situations
(when the main loop is implemented natively).

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

141

■ Tip As you may know, using JNI, you can invoke C functions from Java. You may not know that you can also
load classes and invoke Java methods within C.

Listing 5-8. Native Interface for the GL Cubes Sample

package opengl.jni;

public class Natives {

 private static EventListener listener;

 public static interface EventListener {
 void OnMessage(String text);
 void GLSwapBuffers();
 }

 public static void setListener(EventListener l) {
 listener = l;
 }

 /**
 * Native Render test
 *
 * @return
 */
 public static native int NativeRender();

 @SuppressWarnings("unused")
 private static void OnMessage(String text) {
 if (listener != null)
 listener.OnMessage(text);
 }

 @SuppressWarnings("unused")
 private static void GLSwapBuffers() {
 if (listener != null)
 listener.GLSwapBuffers();
 }
}

This class needs a way to notify components (the activity, for example) that some message has been

received from the native layer. You do this by creating the interface EventListener. In this way, a class
that wants to receive messages must implement EventListener and issue a call to
Natives.setListener(this).

Before we jump to the C code, let’s take a look at the Java changes required to the classes
CubeRenderer, GLSurfaceView, and GLThread for the sample.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

142

Changes to the Original Sample
The class CubeRenderer has been modified to accept a Boolean argument in its constructor to request a
native draw (see Listing 5-9).

Listing 5-9. Changes for CubeRenderer Class

public class CubeRenderer implements Renderer
{
 private boolean mNativeDraw = false;

 public CubeRenderer(boolean useTranslucentBackground,
 boolean nativeDraw)
 {
 mTranslucentBackground = useTranslucentBackground;
 mNativeDraw = nativeDraw;
 mCube = new Cube();
 }

 public void drawFrame(GL10 gl) {
 if (mNativeDraw)
 doNativeDraw();
 else
 doJavaDraw(gl);
 }

 private void doJavaDraw(GL10 gl) {
 // Same as before
 // ...
 }

 public void doNativeDraw() {
 Natives.NativeRender();
 }

 // ...
}

When drawFrame() is invoked and mNativeDraw is true, the cube will be rendered from C (by calling

Natives.NativeRender()). Otherwise, the Java implementation will be used.
When the surface is created, and a renderer is set for that surface using

GLSurfaceView.setRenderer(Renderer renderer), you must tell the native interface class (Natives.java)
that you wish to listen for messages by sending a reference to the loop thread:

public void setRenderer(Renderer renderer) {
 mGLThread = new GLThread(renderer, mHolder);
 mGLThread.start();
 Natives.setListener(mGLThread);
}

Note that GLThread must implement Natives.EventListener for this to work.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

143

Finally, the last class to be updated is GLThread (see Listing 5-10), which contains the main loop.

Listing 5-10. Changes for GLThread.java

public class GLThread extends Thread implements EventListener
{
 // ...
 @Override
 public void GLSwapBuffers() {
 if (mEglHelper != null) {
 mEglHelper.swap();
 }
 }

 @Override
 public void OnMessage(String text) {
 System.out.println("GLThread::OnMessage " + text);
 }
}

GLThread implements EventListener. This allows the C code to send text messages if something is

wrong. The method GLSwapBuffers() will be invoked when the C code requests a buffer swap.
This takes care of the Java portion of the sample. Now let’s look at the C files: cuberenderer.c and

cube.c.

Native Cube Renderer
The native cube renderer (cuberenderer.c) is similar to the Java class CubeRenderer. This file performs
the following tasks (see Listings 5-11 through 5-14):

• It initializes the scene. This function is almost identical to
CubeRenderer.surfaceCreated().

• It draws a frame using the drawFrame() function. This function is similar in nature
to CubeRenderer.drawFrame().

• It contains the native implementation of the native interface class
opengl.jni.Natives.NativeRender (mapped in C as
Java_opengl_jni_Natives_NativeRender). This function will be invoked every time
a frame is rendered from the GLThread Java class.

• It contains the Java callbacks (functions that will invoke Java methods):

• jni_printf(char *format, ...) sends a text message back.

• jni_gl_swap_buffers () requests a buffer swap within Java.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

144

■ Caution Before the cuberenderer.c file can be compiled, the header file opengl_jni_Natives.h must be
created. This header contains the prototypes for the native methods in opengl.jni.Natives.java. To do this, use
the javah command: javah -cp [CLASS_PATH] –d include opengl.jni.Natives, where CLASS_PATH points to
the project bin folder.

Scene Initialization
Scene initialization is performed by the init_scene() function (see Listing 5-11). Its job is to perform
trivial GL initialization calls, such as setting a perspective correction hint, background color, and shade
model, and in this case, enabling face culling and depth tests.

init_scene()is meant to mirror the Java method CubeRenderer.surfaceCreated, which initializes the
scene after the surface is created. Note that Java lines such as gl.glDisable(GL10.GL_DITHER) become
glDisable(GL_DITHER). Because the context is already initialized in Java, you can simply make the GL
commands you need in the equivalent C function.

Listing 5-11. Scene Initialization from cuberenderer.c

#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>

#include <EGL/egl.h>
#include <GLES/gl.h>
#include <GLES/glext.h>

#include "include/opengl_jni_Natives.h"

#define ONE 1.0f
#define FIXED_ONE 0x10000

// Prototypes
void jni_printf(char *format, ...);
void jni_gl_swap_buffers ();

// Rotation Angle
static float mAngle = 0.0;

extern void Cube_draw();

static void init_scene(void)
{
 glDisable(GL_DITHER);

 /*
 * Some one-time OpenGL initialization can be made here

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

145

 * probably based on features of this particular context
 */
 glHint(GL_PERSPECTIVE_CORRECTION_HINT,GL_FASTEST);

 glClearColor(.5f, .5f, .5f, 1);

 glEnable(GL_CULL_FACE);
 glShadeModel(GL_SMOOTH);
 glEnable(GL_DEPTH_TEST);
}

Drawing Frames
Drawing the actual frames is performed by the drawFrame() function. This function performs the
following steps:

• It clears the screen via glClear().

• It sets the framework to draw 3D objects via the glMatrixMode(GL_MODELVIEW)
system call.

• It performs an initial translation—a rotation to be applied to the first cube.

• It draws the first cube by calling Cube_draw(). Note that vertices and colors must
be enabled via glEnableClientState().

• It performs a second rotation/translation and draws a second cube by calling
Cube_draw() again.

• It increases the angle for the next interaction.

drawFrame() is meant to mirror the Java method CubeRenderer.drawFrame(), which includes the code
in the next fragment:

 gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT);
 gl.glMatrixMode(GL10.GL_MODELVIEW);
 gl.glLoadIdentity();
 gl.glTranslatef(0, 0, -3.0f);
 gl.glRotatef(mAngle, 0, 1, 0);
 gl.glRotatef(mAngle*0.25f, 1, 0, 0);

 gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);
 gl.glEnableClientState(GL10.GL_COLOR_ARRAY);

 mCube.draw(gl);

 gl.glRotatef(mAngle*2.0f, 0, 1, 1);
 gl.glTranslatef(0.5f, 0.5f, 0.5f);

 mCube.draw(gl);

 mAngle += 1.2f;

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

146

In C, the preceding code simply becomes the following:

 glDisable(GL_DITHER);

 glTexEnvx(GL_TEXTURE_ENV,
 GL_TEXTURE_ENV_MODE,GL_MODULATE);
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glTranslatef(0, 0, -3.0f);
 glRotatef(mAngle, 0, 0, 1.0f);
 glRotatef(mAngle*0.25f, 1, 0, 0);

 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_COLOR_ARRAY);

 Cube_draw();

 glRotatef(mAngle*2.0f, 0, 1, 1);
 glTranslatef(0.5f, 0.5f, 0.5f);

 Cube_draw();

 mAngle += 1.2f;

Note that drawFrame() is defined as static, which tells the compiler that this function will be visible

only by functions within cuberenderer.c (a bit similar to the private keyword in Java). Furthermore, the
function Cube_draw() is implemented in cube.c.

Listing 5-12. Drawing Frames from cuberenderer.c

static void drawFrame()
{
 /*
 * By default, OpenGL enables features that improve quality
 * but reduce performance. One might want to tweak that
 * especially on software renderer.
 */
 glDisable(GL_DITHER);
 glTexEnvx(GL_TEXTURE_ENV,
 GL_TEXTURE_ENV_MODE,GL_MODULATE);

 /*
 * Usually, the first thing one might want to do is to clear
 * the screen. The most efficient way of doing this is to use
 * glClear().
 */
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

147

 /*
 * Now we're ready to draw some 3D objects
 */
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glTranslatef(0, 0, -3.0f);
 glRotatef(mAngle, 0, 0, 1.0f);
 glRotatef(mAngle*0.25f, 1, 0, 0);

 glEnableClientState(GL_VERTEX_ARRAY);
 glEnableClientState(GL_COLOR_ARRAY);

 Cube_draw();

 glRotatef(mAngle*2.0f, 0, 1, 1);
 glTranslatef(0.5f, 0.5f, 0.5f);

 Cube_draw();

 mAngle += 1.2f;
}

Java Callbacks
The Java callbacks are used to send messages from the native layer to the Java layer (see Listing 5-13).
The cube renderer implements two callbacks:

• jni_send_str(const char * text): This callback sends a string message to Java
(mostly for debugging purposes). It does so by attaching to the current thread.
This step must be done if you call JNI in a C function outside a JNI native
implementation. The callback then loads the Java class opengl.jni.Natives.java.
Finally, it calls the Java method opengl.jni.Natives.OnMessage(String).

• jni_gl_swap_buffers (): This is the most important callback. It tells Java that it is
time to swap the OpenGL buffers. In OpenGL lingo, that means render the
graphics. This step must be performed at the end of each frame of the rendering
loop. The callback implementation is similar to the previous one. The main
difference is that it invokes the Java method opengl.jni.Natives.GLSwapBuffers
().

Listing 5-13. Java Callbacks from cuberenderer.c

/**
 * Send a string back to Java
 */
static jmethodID mSendStr;
static jclass jNativesCls;
static JavaVM *g_VM;

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

148

static void jni_send_str(const char * text)
{
 JNIEnv *env;

 if (!g_VM) {
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 if (!jNativesCls) {
 jNativesCls = (*env)->FindClass(env, "opengl/jni/Natives");

 }
 if (jNativesCls == 0) {
 return;
 }

 // Call opengl.jni.Natives.OnMessage(String)
 if (! mSendStr) {
 mSendStr = (*env)->GetStaticMethodID(env, jNativesCls
 , "OnMessage"
 , "(Ljava/lang/String;)V");
 }
 if (mSendStr) {
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , mSendStr
 , (*env)->NewStringUTF(env, text));
 }
}

void jni_gl_swap_buffers () {
 JNIEnv *env;

 if (!g_VM) {
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 if (!jNativesCls) {
 jNativesCls = (*env)->FindClass(env, "opengl/jni/Natives");

 }
 if (jNativesCls == 0) {
 return;
 }

 // Call opengl.jni.Natives.GLSwapBuffers ()
 jmethodID mid = (*env)->GetStaticMethodID(env, jNativesCls

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

149

 , "GLSwapBuffers"
 , "()V");

 if (mid) {
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , mid
);
 }
}

/**
 * Printf into the java layer
 * does a varargs printf into a temp buffer
 * and calls jni_sebd_str
 */

void jni_printf(char *format, ...)
{
 va_list argptr;
 static char string[1024];

 va_start (argptr, format);
 vsprintf (string, format,argptr);
 va_end (argptr);

 jni_send_str (string);
}

Let’s take a closer look at the anatomy of a JNI Java callback. To start using JNI, a C program must

include the system header:

#include <jni.h>

Now, if your function is called from a different place than the one that started

Java_opengl_jni_Natives_NativeRender, you must attach to the current thread with the following:

(*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

This is required if, for example, your program implements its own game loop, and then sends

messages back to Java through JNI. This isn’t the case in our example, but I’ve included it so the function
can be invoked either way. g_VM is a global reference to the JVM, which must be saved within the very
first call to Java_opengl_jni_Natives_NativeRender. Next, to load a Java class opengl.jni.Natives within
C, you use the following:

jclass jNativesCls = (*env)->FindClass(env, "opengl/jni/Natives");

Here, env is a reference to the JNI environment obtained from then previous call. Note that the class

name must be separated using /, not ..
Now, with a reference to the natives class, you can call the static void method OnMessage:

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

150

jmethod mSendStr = (*env)->GetStaticMethodID(env, jNativesCls, "OnMessage"
, "(Ljava/lang/String;)V");
(*env)->CallStaticVoidMethod(env, jNativesCls, mSendStr
 , (*env)->NewStringUTF(env, text));

Note that to call this method, you need to obtain its JNI method ID using its name (OnMessage) and

its signature (Ljava/lang/String;)V. The signature describes the method’s arguments (a string in this
case) and the return type (void). With this information, you call the static void method sending the
corresponding arguments.

■ Note C strings must be converted into Java strings before invoking Java methods, using (*env)->
NewStringUTF(env, MyCString).

Native Interface Call
The native interface function (see Listing 5-14) is the C implementation of the Java native method
opengl.jni.Natives.NativeRender(). This function performs the following tasks:

• It saves a reference to the Java VM, required by the Java callbacks of the previous
section.

• It initializes the scene.

• It renders one frame. This function is meant to be called multiple times within the
rendering thread (implemented by GLThread.java).

Listing 5-14. Native Interface Function from cuberenderer.c

/*
 * Class: opengl_jni_Natives
 * Method: RenderTest
 * Signature: ()V
 */
JNIEXPORT jint JNICALL Java_opengl_jni_Natives_NativeRender
 (JNIEnv * env, jclass cls)
{

 (*env)->GetJavaVM(env, &g_VM);
 static int initialized = 0;

 if (! initialized) {
 jni_printf("Native:RenderTest initscene");
 init_scene();

 initialized = 1;

 }

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

151

 drawFrame();
 return 1;
}

Native Cube
Native cube (cube.c) is the last file in the lot (see Listing 5-15). This file is a carbon copy of Cube.java. It
defines the vertices, colors, and indices of the cube, and draws it in the same way as its Java counterpart.

Listing 5-15. Native Implementation of Cube.java

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <GLES/gl.h>

#define FIXED_ONE 0x10000
#define one 1.0f

typedef unsigned char byte;

extern void jni_printf(char *format, ...);

// Cube vertices
static GLfloat vertices[24] = {
 -one, -one, -one,
 one, -one, -one,
 one, one, -one,
 -one, one, -one,
 -one, -one, one,
 one, -one, one,
 one, one, one,
 -one, one, one,
};

// Colors
static GLfloat colors[] = {
 0, 0, 0, one,
 one, 0, 0, one,
 one, one, 0, one,
 0, one, 0, one,
 0, 0, one, one,
 one, 0, one, one,
 one, one, one, one,
 0, one, one, one,
};

static byte indices[] = {
 0, 4, 5, 0, 5, 1,
 1, 5, 6, 1, 6, 2,

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

152

 2, 6, 7, 2, 7, 3,
 3, 7, 4, 3, 4, 0,
 4, 7, 6, 4, 6, 5,
 3, 0, 1, 3, 1, 2
};

void Cube_draw()
{
 glFrontFace(GL_CW);

 glVertexPointer(3, GL_FLOAT, 0, vertices);
 glColorPointer(4, GL_FLOAT, 0 , colors);

 glDrawElements(GL_TRIANGLES, 36, GL_UNSIGNED_BYTE, indices);
}

Compiling and Running the Sample
You have the code in place, and now you must compile it. To do so, use the helper scripts agcc and ald
described in Chapter 1, and the Makefile shown in Listing 5-16.

Listing 5-16. Makefile for This Chapter’s Example

Android Makefile for CH05

Android source: Contains GL C headers
SYS_DEV = /home/user/mydroid

Compiler script
CC = agcc

Linker script
LINKER = ald

C files
MAIN_OBJS = cuberenderer.o cube.o

Library name, dynamic executable
LIB = libgltest_jni.so
DYN = gl-dyn

Compilation flags & libs
INCLUDES = -I$(SYS_DEV)/frameworks/base/opengl/include
CFLAGS = -DNORMALUNIX -DLINUX -DANDROID
LIBS = -lGLES_CM -lui

Compile the main library (ibgltest_jni.so)

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

153

lib: $(MAIN_OBJS) # jni
 @echo
 $(LINKER) -shared -o $(LIB) $(MAIN_OBJS) $(LIBS)
 @echo Done. Out file is $(LIB)

Create JNI headers
jni:
 @echo "Creating JNI C headers..."
 javah -jni -classpath ../bin -d include opengl.jni.Natives

Test dynamic exe
dyn:
 $(CC) -c test.c $(INCLUDES)
 $(LINKER) -o $(DYN) test.o -lgltest_jni -L.
 @echo
 @echo Done. Out file is $(DYN)
 @echo

.c.o:
 @echo
 $(CC) -Wall -O2 -fpic -c $(CFLAGS) $(INCLUDES) $<

Deploy lib to device /data folder
deploy-test:
 @echo "Deploying $(LIB) to /data"
 adb push $(LIB) /data

clean:
 rm -f *.o

First, generate the JNI headers for opengl.jni.Natives.java with the following:

$ make jni

Next, compile the library with the following:

user@ubuntu:~/workspace/ch05.OpenGL/native$ make
agcc -Wall -O2 -fpic -c -DNORMALUNIX -DLINUX -DANDROID -
I/home/user/mydroid/frameworks/base/opengl/include cuberenderer.c

agcc -Wall -O2 -fpic -c -DNORMALUNIX -DLINUX -DANDROID -
I/home/user/mydroid/frameworks/base/opengl/include cube.c

ald -shared -o libgltest_jni.so cuberenderer.o cube.o -lGLES_CM -lui
arm-none-linux-gnueabi-ld: warning: library search path "/usr/lib/jvm/java-6-
sun/jre/lib/i386" is unsafe for cross-compilation

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

154

Done. Out file is libgltest_jni.so

Check for missing symbols with this code:

user@ubuntu:~/workspace/ch05.OpenGL/native$ make dyn
agcc -c test.c -I/home/user/mydroid/frameworks/base/opengl/include
ald -o gl-dyn test.o -lgltest_jni -L.
arm-none-linux-gnueabi-ld: warning: library search path "/usr/lib/jvm/java-6-
sun/jre/lib/i386" is unsafe for cross-compilation
arm-none-linux-gnueabi-ld: warning: cannot find entry symbol _start; defaulting to 000082e8

Done. Out file is gl-dyn

■ Note The compiler will complain about the local system JNI headers: “library search path "/usr/lib/jvm/
java-6-sun/jre/lib/i386" is unsafe for cross-compilation.” This message can be ignored.

Finally, the library must be deployed to the device /data folder so the activity can load it:

user@ubuntu:~ ch05.OpenGL/native$ make deploy-test
Deploying libgltest_jni.so to /data
adb push libgltest_jni.so /data
87 KB/s (7389 bytes in 0.082s)

As shown in Figure 5-6, when the project is started in the device, two launchers will be placed in the

device desktop: OpenGL Java and OpenGL Native.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

155

Figure 5-6. Device launchers for the GL cubes sample

Run both launchers and look at the device log (see Listing 5-17). On the native side, you should see
the following messages:

DEBUG/dalvikvm(512): Trying to load lib /data/libgltest_jni.so 0x433a7258
DEBUG/dalvikvm(512): Added shared lib /data/libgltest_jni.so

This indicates that the native library has been successfully loaded by JNI. Now stop the activity

using the Devices view (see Figure 5-7), and then try the other activity.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

156

Figure 5-7. Stopping an Android activity using the Devices view

Listing 5-17. Device Logs for the Java and Native Implementations of GL Cubes

// Java Device Log
07-28 19:46:04.568: INFO/ActivityManager(52): Start proc opengl.test for activity
opengl.test/.JavaGLActivity: pid=505 uid=10021 gids={}
07-28 19:46:04.857: INFO/jdwp(505): received file descriptor 10 from ADB
07-28 19:46:05.677: INFO/System.out(505): GLSurfaceView::setRenderer setting
07-28 19:46:06.347: INFO/System.out(505): Vendor:Google Inc.
07-28 19:46:06.376: INFO/System.out(505): Renderer:Android PixelFlinger 1.0
07-28 19:46:06.376: INFO/System.out(505): Version:OpenGL ES-CM 1.0
07-28 19:46:06.416: INFO/System.out(505): Vendor:Google Inc.
07-28 19:46:06.436: INFO/System.out(505): Renderer:Android PixelFlinger 1.0
07-28 19:46:06.476: INFO/System.out(505): Version:OpenGL ES-CM 1.0
07-28 19:46:06.546: INFO/ARMAssembler(505): generated 07-28 19:46:06.638:
INFO/ActivityManager(52): Displayed activity opengl.test/.JavaGLActivity: 2202 ms

// Native Log
07-28 19:56:57.167: INFO/ActivityManager(52): Start proc opengl.test for activity
opengl.test/.NativeGLActivity: pid=512 uid=10021 gids={}
07-28 19:56:57.357: INFO/jdwp(512): received file descriptor 10 from ADB

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

157

07-28 19:56:58.247: INFO/System.out(512): Loading JNI lib using abs
path:/data/libgltest_jni.so
07-28 19:56:58.267: DEBUG/dalvikvm(512): Trying to load lib /data/libgltest_jni.so
0x433a7258
07-28 19:56:58.376: DEBUG/dalvikvm(512): Added shared lib /data/libgltest_jni.so 0x433a7258
07-28 19:56:58.387: DEBUG/dalvikvm(512): No JNI_OnLoad found in /data/libgltest_jni.so
0x433a7258
07-28 19:56:58.548: INFO/System.out(512): GLSurfaceView::setRenderer setting natives
listener
07-28 19:56:59.777: INFO/System.out(512): Vendor:Google Inc.
07-28 19:56:59.816: INFO/System.out(512): Renderer:Android PixelFlinger 1.0
07-28 19:56:59.916: INFO/System.out(512): Version:OpenGL ES-CM 1.0
07-28 19:57:00.056: INFO/System.out(512): Vendor:Google Inc.
07-28 19:57:00.158: INFO/System.out(512): Renderer:Android PixelFlinger 1.0
07-28 19:57:00.187: INFO/System.out(512): Version:OpenGL ES-CM 1.0
07-28 19:57:00.187: INFO/System.out(512): GLThread::OnMessage Native:RenderTest initscene
07-28 19:57:00.796: INFO/ActivityManager(52): Displayed activity
opengl.test/.NativeGLActivity: 3971 ms

Figure 5-7 shows the native renderer running in the emulator.

Figure 5-7. GL cubes native renderer

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

158

When it comes to advanced OpenGL games written for embedded devices, there are some caveats
that you should be aware of before starting you porting work, which we’ll look at in the next section.

Caveats of Porting OpenGL Games to Android
Today’s smart phones have become pretty powerful. They feature a GPU capable of advanced graphics.
Nevertheless, when it comes to writing advanced 3D games for embedded devices using OpenGL,
several issues should be considered.

Consider a game like Quake, which has been ported to multiple smart phones. This game uses
immediate mode drawing for specifying geometry. For example, consider the following snippet to render
an arbitrary polygon and corresponding texture:

// Bind some texture
glBegin (GL_POLYGON);
glTexCoord2f (...);
glVertex3fv (...);
...
glEnd ();

This code is typical of a desktop application; however, it is not valid in Android (which implements

OpenGL ES). This is because OpenGL ES does not support immediate mode (glBegin/glEnd) for simple
geometry. Porting this code can consume significant resources (especially for a game like Quake, which
has approximately 100,000 lines of source).

In OpenGL ES, geometry must be specified using vertex arrays, so the preceding code becomes
something like this:

const GLbyte Vertices []= { ...};
const GLbyte TexCoords []= { ...};
...
glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_TEXTCOORD_ARRAY);

glVertexPointer (..., GL_BYTE , 0, Vertices);
glTexCoordPointer (..., GL_BYTE , 0, TexCoords);
glDrawArrays (GL_TRIANGLES, 0, ...);

You also must consider floating-point issues. OpenGL ES defines functions that use fixed-point

values, as many devices do not have a floating-point unit (FPU). Fixed-point math is a technique to
encode floating-point numbers using only integers. OpenGL ES uses 16 bits to represent the integer part,
and another 16 bits to represent the fractional part. Here is an example of using a fixed-point translation
function:

glTranslatex (10 << 16, 0, 0, 2 << 16); // glTranslatef (10.0f, 0.0f, 0.0f, 2.0f);

The following are other differences worth mentioning:

• OpenGL ES does not render polygons as wireframe or points (only solid).

• There is no GLU (OpenGL Utility Library). However, it is possible to find
implementations of GLU functions on the Internet.

CHAPTER 5 ■ HYBRID 3D GRAPHICS WITH OPENGL AND JNI

159

• The GL_QUADS, GL_QUAD_STRIP, and GL_POLYGON primitives are not supported.

These are some of the things to watch for when you decide to port your OpenGL game to an
embedded device.

The Veil Has Been Lifted
The veil has been lifted to reveal a new frontier of 3D development for Android. The techniques
demonstrated in this chapter can help you to bring a large number of 3D PC games to the platform, at an
enormous savings in development costs.

In this chapter, you have learned a trick to mix OpenGL code in Java and C to enable the reuse of
large portions of C code along with Java code. We started by looking at the OpenGL tumbling cubes
sample provided by Google, and how sections of the rendering process can be implemented in C. You
saw that the sample’s rendering process included EGL initialization, the main loop, drawing, buffer
swap, and cleanup. Then you saw how to reimplement the cube rendering invoked within the main
loop. You created the new components:

• The native activity used to launch the application from the device

• The native interface class used to define the native methods and C callbacks

• The cube renderer and cube class used to render the cubes

Finally, we looked at the limitations of OpenGL ES when it comes to advanced 3D games.
I hope this chapter will help you get your own 3D games for Android with minimal effort and maximum
code reuse. This is a prelude to the next chapters, where we will look at two of the greatest 3D shooters
for the PC, Wolfenstein 3D and Doom, and the minimal changes required to get them running on your
phone.

C H A P T E R 6

■ ■ ■

161

3D Shooters Episode I:
Wolfenstein 3D for Android

The next two chapters are my personal favorites and the most exciting of this book. We start by looking
at the real thing: Wolfenstein 3D (also referred to as Wolf 3D), the godfather of all 3D shooters. The main
goal of this chapter is to show you how easy is to bring Wolf 3D from the PC to the Android device, but
also in this chapter, you will learn how to do the following:

• Maximize code reuse by compiling high-performance native code in a dynamic
shared library.

• Write JNI code to connect Java and C subroutines.

• Cascade graphics back and forth the native and Java layers.

• Handle sound requests sent by the native layer with the Android media player.

• Build the Android project and test in the emulator.

Let’s get started.

Gathering Your Tools
Some Java developers simply dismiss other languages, especially procedural languages like C. I believe
that you should embrace the elegant object oriented features of Java and the raw power of C and there is
nothing you cannot do in the gaming world.

Before we start, you will need to acquire the things explained in this section to make the most of this
chapter.

Downloading the Chapter Source Code
My 1.210goal in here is to create a balance between the object-oriented features of the Java language and
the power of C. Thus I have provided not only the Java source but the C code, neatly organized in this
chapter source code. You should import the project to workspace as you move along this chapter. Some
of the listings have been stripped for simplicity. To import the chapter source to your Eclipse workspace,
follow these steps:

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

162

1. From the main menu click File ➤ Import.

2. In the Import dialog, select Existing Projects into Workspace. Click Next.

3. Navigate to the Chapter source ch06.Wolf3D.SW; optionally check “Copy
project into workspace”. Click Finish.

The automated build will kick in immediately; make sure there are no errors in the project. Next, try

to familiarize yourself with the folder layout, which is divided in the following subfolders:

• src: This folder contains the Java layer of the game.

• assests: This folder contains the game files for the shareware version of Wolf 3D
compressed in the zip file: wolfsw.zip.

• libs/armeabi: This folder contains the Wolf 3D native library libwolf_jni.so.

• native: This folder contains the source of the Wolf 3D C engine. The version I
choose is Wolf 3D for the Game Park gaming device (a popular Korean handheld
also known as GP32).

• res: This folder contains Android resources: graphics, sounds, layouts, and strings.

Introducing Wolf 3D
When Wolf 3D came to the game scene of the 1990s, it revolutionized PC gaming forever. It was the first
game of its kind: a game with immersive 3D graphics where the player navigates the Nazi underground
picking up weapons, opening secret doors, and shooting up rabid dogs and evil Nazis (see Figure 6-1).

Figure 6-1. Wolf 3D running on the emulator

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

163

Even though the game’s environment appears to be 3D, it really is not. In reality, the game uses a
technique called ray casting pioneered by John Carmack from id Software (one of the original creators of
the game) to simulate a 3D environment. Ray casting is also called 2.5D and provides the geometry to
render perspectives and other pseudo-3D elements.

■ Tip A nice ray casting tutorial by F. Permad discusses the basics such as drawing textures, floors, ceilings,
walls, shading, and more. Plus, it has some neat Java examples. It can be found at
http://www.permadi.com/tutorial/raycast/index.html.

According to an article on Wikipedia at http://en.wikipedia.org/wiki/Wolfenstein_3D, Wolf 3D
was released by id Software in 1992 to a huge success. It popularized the first-person shooter game for
the PC. The source code was later released under a shareware strategy that helped the game to be ported
to almost any platform imaginable, including these:

• Windows and Pocket PC

• Linux

• Nintendo Entertainment System (NES) and Super Nintendo (SNES)

• Atari Jaguar

• Mac OS

• Game Boy Advance

• PlayStation and PSP

• Xbox 360

• iPhone and iPod Touch

When I started fiddling with the idea of bringing Wolf 3D to Android, I knew the key of the project
would be to find a highly portable version for Linux, because first, Android is built on Linux, and second,
high portability will minimize potential compilation and optimization errors that are very common
when using different versions of the GNU C compiler. The best two candidates I could find on the web
follow:

• Wolfenstein 3D for GP32: This is a port to the Gamepark32, a Korean handheld
device similar to the PSP. It is written in C. Wolf 3D for GP32 is available online at
http://sourceforge.net/projects/gp32wolf3d/.

• Wolf3D S60: This is port of Wolfenstein 3D and Spear of Destiny for Nokia S60 cell
phones. Wolf3D S60 is available online at http://sourceforge.net/projects/
wolf3d-s60/.

Digging through the source of both projects, I realized that both were almost identical and based on
a defunct port for Linux found on the Web. Of these two, the Gamepark32 version seemed the cleanest
and easiest to understand, so I decided to use it. If you wish to understand why nobody has taken the
time to port this code to Java, take a look at Listing 6-1.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

164

Listing 6-1. Total Number of Lines of Source and Headers for Wolf 3D for Gamepark32

gp2xwolf3d>wc -l *.c
 1026 fmopl.c
 1127 id_ca.c
 507 id_us.c
 471 id_vh.c
 416 jni_wolf.c
 355 misc.c
 145 objs.c
 198 sd_comm.c
 166 sd_null.c
 758 sd_oss.c
 16 test.c
 399 vi_comm.c
 273 vi_null.c
 450 vi_sdl.c
 999 wl_act1.c
 2622 wl_act2.c
 801 wl_act3.c
 1483 wl_agent.c
 248 wl_debug.c
 1411 wl_draw.c
 1603 wl_game.c
 1424 wl_inter.c
 2453 wl_main.c
 3626 wl_menu.c
 1373 wl_play.c
 1483 wl_state.c
 731 wl_text.c
 26564 total

gp2xwolf3d>wc -l *.h
 121 audiosod.h
 137 audiowl6.h
 108 fmopl.h
 144 foreign.h
 171 gfxv_sdm.h
 242 gfxv_sod.h
 185 gfxv_wl1.h
 189 gfxv_wl6.h
 203 gfxv_wl6_92.h
 24 gp2xcont.h
 80 id_ca.h
 71 id_heads.h
 39 id_us.h
 60 id_vh.h
 69 misc.h
 47 sd_comm.h
 20 version.h
 176 vi_comm.h

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

165

 795 wl_act3.h
 1401 wl_def.h
 212 wl_menu.h
 4494 total

Listing 6-1 shows the total number of lines of code (.c files plus .h header files) of Wolf 3D for the

Gamepark32. It’s close to 30,000 lines of code. It doesn’t seem that much for today’s standards, but
consider this: when I was in school, one of my computer ethics professors said that, statistically, a
software developer can deliver ten lines of production-quality code per day. If you do the math, 3,000
days is the time that a single person would take to deliver a high-quality product. Compound this with
the fact that that the work must be done pro bono. Wolf 3D falls under the GNU Public License (GPL),
which would allow you to sell your Java version; however, the GPL also requires for you to give up the
source, which will prevent you from reaping the product of your hard work.

In my quest to bring this game to Android, I even played with the idea of rewriting this code in Java.
I found people who attempted a Java and JavaScript port of the game, but I was quickly discouraged after
looking at the complexity and size of the source. These are the reasons why a pure Java port of this game
is not feasible:

• Size: The code base is too big and complex (even for such an old game).

• Licensing: All work must be done for free, which is not good for business.

• Time: Writing the game will take too long even for a small team of developers.

The only solution with potential time and cost savings is to create a dynamic shared library of the
game and cascade messages back and forth between Java and C using JNI. This is what you will learn in
this chapter. Let’s get started by looking at the game architecture from a high level perspective.

Understanding the Game Architecture
Figure 6-2 5.250shows the workflow of the application. When you start the game the main activity
(WolfLauncher) will start. After some preliminary sanity checks, WolfLauncher will start a thread which
loads the main subroutine from the dynamic shared object (DSO)—the native library). All interactions
with the native library go thru the native interface class (Natives). The DSO loads all game data and runs
the main game loop. In each iteration of this loop, two basic pieces of information are sent back to Java
thru JNI:

• An array of integers representing the video buffer for each frame of the game: This
array is encoded in Android’s format, as a 32 bit integers with ARGB values.

• An integer representing the index of a sound to be played by the Java audio API:
This value gets sent every time there is a sound event, such as firing the gun or
opening a door.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

166

■ Tip Because there is no native sound implementation, sound events are cascaded back to Java, which will load
and play them on the fly. This Java sound implementation slows things down a bit. Unfortunately, because Android
doesn’t use the standard Linux audio device and mixer, native sound is not possible at the time of this writing.
Furthermore, Google doesn’t support native development, which makes things tough.

Figure 6-2. The Wolf3D game architecture

Other types of messages sent by the DSO layer include these:

• Graphics initialization: This message is sent when the video buffer is first created.
Message contents include the width and height of the buffer.

• Miscellaneous text messages: These string messages are sent by the DSO to Java to
display information to the user.

The game display is represented by an XML layout, which contains two visual components:

• An image view: This element displays the video buffer sent back by the DSO after
an iteration of the game loop.

• A controller layout: This layout displays an SNES-style controller (see Figure 6-2),
which listens for touch events such as navigation, gun firing, and others. These
events are cascaded as scan codes back to the DSO, which process them and
updates the game flow accordingly.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

167

Game audio is handled by two Java classes that encapsulate multiple media players. These audio
classes receive events from the DSO (thru JNI) when a sound event occurs and play it accordingly. Let’s
look at the Java classes in more detail.

Understanding the Java Classes for Wolf 3D
We have looked at the high-level game architecture of Wolf 3D for Android. Now, let’s look at the classes
that constitute the Java side. Before we get started, make sure you have imported the chapter source into
your workspace. This will greatly help your understanding of this section. Figure 6-3 shows the layout of
the Java files for the game. The most important ones follow:

• WolfLauncher: This is the game’s main activity class, and it is created when the
user starts the game. Its job is to display the UI, handle phone events, such as
keyboard touch events, and send them to the Natives class. It also spawns the
main thread that starts the native game loop.

• SNESController: This class encapsulates the SNES-style controller used to play the
game without a keyboard.

• ControllerListener: This is an interface implemented by WolfLauncher and
provides the means for listening for controller events.

• AudioClip: This class encapsulates the Android media player and has methods to
play, stop, or loop a sound.

• AudioMananger: This class acts as an intermediary between the main activity and
the audio clips. It has logic to load, start, and cache sounds for better
performance.

• SoundNames: This class maps native sounds (represented by a number) to raw
sounds resources within the project.

• Natives: This is a two-way interface with the DSO. It contains all the native
functions that will be implemented in the DSO, plus callbacks that will be started
when the DSO sends messages back to Java.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

168

Figure 6-3. Layout of Java Resources

Other utility classes include the following:

• DialogTool: This class has utility methods to display messages back to the user,
launch a browser, and create dialogs.

• LibraryLoader: This class is used to load the DSO from the main activity.

• ScanCodes: This class maps android key codes to PC scan codes and ASCII codes.

• WolfTools: This class has miscellaneous game information such as the name of the
DSO, game, and subroutines to install game files.

Creating the Main WolfLauncher Class
The main activity class fires when the user starts the game (see Listing 6-2). This activity is defined by
two resources: a layout XML file and the class itself (WolfLauncher.java)

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

169

Main Activity Layout
The activity layout defines the main user interface. Wolf 3D has a simple UI: an image view that displays
the video buffer sent by the DSO and the controller layout explained in the “Movement Controller”
section.

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >
 <!-- GAME IMAGE -->
 <ImageView android:id="@+id/wolf_iv"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:focusableInTouchMode="true"
 android:focusable="true"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="false"/>
 <!-- Controller XML removed -->
</RelativeLayout>

Main Activity Class (WolfLauncher)
Here is where all the meat resides. When this class starts, the method onCreate executes performs several
actions. First, it sets the window manager to full screen with:

getWindow().setFlags(
 WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

Next, it sets the content view XML for the application using R.layout.wolf. This represents the

application layout XML containing the game image view and the controller components. It also keeps a
reference to the image view representing the video buffer (R.id.wolf_iv):

setContentView(R.layout.wolf);
mView = (ImageView) findViewById(R.id.wolf_iv);

It then initializes the movement controller with initController.
Finally, it starts the game using the base folder (the folder that contains the game files), the game ID

(Wolf 3D), and a Boolean value indicating if portrait or landscape mode should be used:
startGame(mGameDir, WolfTools.GAME_ID, true).

Listing 6-2 shows the first part of WolfLauncher.java with the methods onCreate and intController.

Listing 6-2. The First Section of the Wolf 3D Main Activity WolLauncher.java

package game.wolfsw;

public class WolfLauncher extends Activity

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

170

 implements Natives.EventListener, ControllerListener
{
 private static final String TAG = "Wolf3D";

 public static final Handler mHandler = new Handler();

 private static boolean mGameStarted = false;

 private static Bitmap mBitmap;
 private static ImageView mView;

 // Audio Manager
 private AudioManager mAudioMgr;

 // Sound? (yes by default)
 private boolean mSound = true;

 private String mGameDir = WolfTools.WOLF_FOLDER;

 // Navigation
 public static enum eNavMethod {
 KBD, PANEL
 };

 public static eNavMethod mNavMethod = eNavMethod.KBD;

 private SNESController controller;

 /**
 * Called when the activity is first created.
 */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // full screen
 getWindow().setFlags(
 WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 // No title
 requestWindowFeature(Window.FEATURE_NO_TITLE);

 setContentView(R.layout.wolf);

 mView = (ImageView) findViewById(R.id.wolf_iv);

 initController();

 if (mGameStarted) {
 return;
 }

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

171

 mGameDir += getString(R.string.pkg_name) + File.separator
 + "files" + File.separator;

 if (!mGameStarted)
 DialogTool.Toast(this, "Menu for options");

 // Image size
 setImageSize(320, 200);

 // Start Game
 startGame(mGameDir, WolfTools.GAME_ID, true);
 }

 private void initController() {
 // No controller in landscape
 if (!isPortrait()) {
 return;
 }

 // init controller
 if (controller == null) {
 controller = new SNESController(this);
 controller.setListener(this);
 }

 findViewById(R.id.snes).setVisibility(View.VISIBLE);
 mNavMethod = eNavMethod.PANEL;
 }

 public boolean isPortrait() {
 return getWindowManager().getDefaultDisplay().getOrientation() == 0;
 }

 /**
 * This will set the size of the image view
 *
 * @param w
 * @param h
 */
 private void setImageSize(int w, int h) {
 LayoutParams lp = mView.getLayoutParams();
 lp.width = w;
 lp.height = h;
 }

Other tasks handled by Listing 6-2 include the following:

• It initializes the movement controller, setting WolfLauncher as the listener for
controller events. It makes the controller visible, and sets the navigation method
to PANEL. (see the section titled Movement Controller for more details on this
class):

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

172

SNESController controller = new SNESController(this);
controller.setListener(this);

findViewById(R.id.snes).setVisibility(View.VISIBLE);
mNavMethod = eNavMethod.PANEL;

• It defines the method isPortrait() to query the orientation of the device:

public boolean isPortrait() {
 return getWindowManager().getDefaultDisplay().getOrientation() == 0;
}

• It defines a method to set the size of the video buffer (using the ImageView
reference mView) and its layout parameters:

private void setImageSize(int w, int h) {
 LayoutParams lp = mView.getLayoutParams();
 lp.width = w;
 lp.height = h;
}

Creating the Wolf 3D Main Menu
The main menu in Wolf3D is implemented by overriding two methods: onCreateOptionsMenu and
onOptionsItemSelected (see Listing 6-3). onCreateOptionsMenu is used to add menu options that will be
displayed when the user presses the menu key on the device. Wolf3D has three options:

• Toggle Screen: This option toggles the screen size between 320 × 320 pixels and 480
× 320 (full screen). It works in landscape mode only.

• Navigation: This option displays the navigation method dialog. This dialog lets the
user select between keyboard navigation and a game pad controller (useful for
keyboardless phones).

• Exit: This option terminates the game.

The next method (onOptionsItemSelected) fires when the user selects an option from the menu.
This method receives a MenuItem; using the item’s menu ID (obtained by calling item.getItemId()), the
method can proceed appropriately. Thus when the menu ID is 0, the screen size is toggled. When it is 1,
the navigation method dialog is display. When it is 2, the game is terminated. Figure 6-3 shows the main
menu of Wolf 3D plus the navigation method dialog in action.

Listing 6-3. The Main Menu for Wolf 3D (from WolfLauncher.java).

 /**
 * Menu
 */
 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0, 0, 0, "Toggle Screen").setIcon(R.drawable.view);
 menu.add(0, 1, 1, "Navigation").setIcon(R.drawable.nav);

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

173

 menu.add(0, 2, 2, "Exit").setIcon(R.drawable.exit);

 return true;
 }

 /**
 * Menu actions
 */
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);

 switch (item.getItemId()) {
 case 0:
 // Screen size
 LayoutParams lp = mView.getLayoutParams();

 // 0 == prt, 1 = land
 int orien = getWindowManager().getDefaultDisplay()
 .getOrientation();

 if (orien == 1) {
 if (lp.width < 0 || lp.height < 0) {
 lp.width = 480;
 lp.height = 320;
 return true;
 }

 lp.width = lp.width == 320 ? 480 : 320;
 lp.height = lp.height == 200 ? 320 : 200;
 } else {
 DialogTool.Toast(this, "Gotta be in landscape.");
 }
 return true;

 case 1:
 // navigation method
 DialogTool.showNavMethodDialog(this);
 return true;

 case 2:
 // Exit
 WolfTools.hardExit(0);
 return true;

 }
 return false;
 }

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

174

Figure 6-4. Wolf 3D main menu and navigation options dialog

Handling Key and Touch Events
Listing 6-4 shows the way the game handles key and touch events within the main activity.

• When the user presses a key, onKeyDown first checks if the menu key has been
pressed. It ignores the event if so. Otherwise, it translates the Android key code to
a PC scan code with ScanCodes.keySymToScancode(keyCode) and sends it to the
DSO using the Natives class key press.

• When the key is released, onKeyUp will be called performing similar steps as before.
Menu keys are ignored, and the key code gets translated to a scan code and sent to
the DSO as a key release event.

• When the screen is touched, onTouchEvent will be called. This method will send a
CONTROL scan code to the DSO, which indicates the gun should be fired.

Listing 6-4. Event Handlers Within the Main Activity

 /**
 * Key down
 */
 @Override
 public boolean onKeyDown(int keyCode, KeyEvent event) {
 // Ignore MENU
 if (keyCode == KeyEvent.KEYCODE_MENU)
 return false;

 try {
 int sym = ScanCodes.keySymToScancode(keyCode);

 Natives.keyPress(sym);

 } catch (UnsatisfiedLinkError e) {
 System.err.println(e.toString());

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

175

 }
 return false;
 }

 /**
 * Key Released
 */
 @Override
 public boolean onKeyUp(int keyCode, KeyEvent event) {
 // Ignore MENU
 if (keyCode == KeyEvent.KEYCODE_MENU)
 return false;

 try {
 int sym = ScanCodes.keySymToScancode(keyCode);

 Natives.keyRelease(sym);

 } catch (UnsatisfiedLinkError e) {
 System.err.println(e.toString());
 }
 return false;
 }

 /**
 * Touch event
 */
 @Override
 public boolean onTouchEvent(MotionEvent event) {
 try {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 // Fire on tap R-CTL
 Natives.keyPress(ScanCodes.sc_Control);
 } else if (event.getAction() == MotionEvent.ACTION_UP) {
 Natives.keyRelease(ScanCodes.sc_Control);
 } else if (event.getAction() == MotionEvent.ACTION_MOVE) {
 // Motion event
 }
 return true;
 } catch (UnsatisfiedLinkError e) {
 // Should not happen!
 Log.e(TAG, e.toString());
 return false;
 }
 }

Creating the Game Loop
In this section, we look at how the game starts within the main activity (see Listing 6-5). The startGame
function performs the following steps:

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

176

• It checks for a valid base folder. This is the folder that contains the game files. By
default it points to /data/data/PACKAGE_NAME/files.

• It installs the game files (if required). Game files for the shareware PC version of
Wolf 3D follow:

• Audio: audiohed.wl1 and audiot.wl1

• Graphics: config.wl1, gamemaps.wl1, and maphead.wl1

• VGA: vgadict.wl1, vgagraph.wl1, vgahead.wl1, and vswap.wl1

• It defines the game arguments: the game label, ID, and base folder. Game IDs are
wolf (for the retail version) and wolfsw (for shareware).

• It loads the native library using the system call System.load(LIBRAY_NAME).

• It sets up a listener to the natives interface class. This allows the game to receive
messages from the native layer.

• It creates an instance of the AudioManager. This class is in charge of playing
background music or sound events received from the native layer.

• It starts a new thread with the main game loop. The thread is required because the
native game loop will block execution.

At this point, the game will start, and native events will begin cascading into the Java layer.

Listing 6-5. The Game Loop from the Main Activity

 /**
 * Start the main game loop
 * @param baseDir
 * @param game
 * @param portrait
 */
 private void startGame(String baseDir, String game, boolean portrait) {
 File dir = new File(baseDir);

 if (!dir.exists()) {
 if (!dir.mkdir()) {
 MessageBox("Invalid game base folder: " + baseDir);
 return;
 }
 }

 // setup game files
 try {
 WolfTools.installGame(this, dir);
 } catch (Exception e) {
 MessageBox("Fatal Error", "Unable to set game files:"
 + e.toString());

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

177

 return;
 }

 Log.d(TAG, "Start game base dir: " + baseDir + " game=" + game
 + " port:" + portrait);

 // Args
 final String argv[] = { "wolf3d", game, "basedir", baseDir };

 // Load lib
 if (!loadLibrary()) {
 // this should not happen
 return;
 }

 Natives.setListener(this);

 // Audio?
 if (mSound)
 mAudioMgr = AudioManager.getInstance(this);

 new Thread(new Runnable() {
 public void run() {
 mGameStarted = true;
 Natives.WolfMain(argv);
 }
 }).start();
 }

Making Native Callbacks
After the startGame function completes, the following events will cascade from the native layer (see
Listing 6-6):

• OnSysError: This event will fire whenever an unrecoverable system error occurs.
The receiver should display the incoming message to the user and quit the
application.

• OnImageUpdate: This event will fire every time there is a native video update.
Depending on the frame rate, it may occur around 10 to 20 times per second. The
incoming arguments include:

• Android pixels: This is an array of 32-bit integers representing a packed
ARGB pixel.

• Frame X and Y coordinates: These are the left and top coordinates of the
video frame.

• Frame width and height: These are the width and height of the video frame
respectively.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

178

• OnInitGraphics: This event fires once on graphics initialization and will always fire
before the first call to OnImageUpdate. It receives the width and height of the video
buffer that will be used to create the game bitmap in the Java layer.

• OnMessage: This event fires whenever there is a text message from the native layer.
It is mostly used to check what is going on in the native side.

• OnStartSound and OnStartMusic: See the next section for details.

Listing 6-6. Native Callbacks from Main Activity

 /**
 * Native Events
 **/
 @Override
 public void OnSysError(final String text) {
 mHandler.post(new Runnable() {
 public void run() {
 MessageBox("System Message", text);
 }
 });

 // Wait for the user to read the box
 try {
 Thread.sleep(8000);
 } catch (InterruptedException e) {

 }
 // Ouch !
 WolfTools.hardExit(-1);
 }

 @Override
 public void OnImageUpdate(int[] pixels, int x, int y, int w, int h) {
 mBitmap.setPixels(pixels, 0, w, x, y, w, h);

 mHandler.post(new Runnable() {
 public void run() {
 try {
 mView.setImageBitmap(mBitmap);

 } catch (Throwable e) {
 e.printStackTrace();
 }
 }
 });
 }

 @Override
 public void OnInitGraphics(int w, int h) {
 Log.d(TAG, "OnInitGraphics creating Bitmap of " + w + " by "

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

179

 + h);
 mBitmap = Bitmap.createBitmap(w, h, Config.ARGB_8888);
 }

 @Override
 public void OnMessage(String text) {
 System.out.println("** Wolf Message: " + text);
 }

 /**
 * Load JNI library. Native lib lives in ProjectFolder/libs/armeabi/libwolf_jni.so
 */
 private boolean loadLibrary() {
 Log.d(TAG, "Loading JNI librray from " + WolfTools.WOLF_LIB);
 LibraryLoader.load(WolfTools.WOLF_LIB);

 // Listen for Doom events
 Natives.setListener(this);
 return true;
 }

 void MessageBox(String text) {
 WolfTools.MessageBox(this, getString(R.string.app_name), text);
 }

 void MessageBox(String title, String text) {
 WolfTools.MessageBox(this, title, text);
 }

Creating Sound and Music Handlers
Good sound and background music are important for any computer game. They provide the realistic
feeling for a great gaming experience. Listing 6-7 shows a section of the main activity that implements
the sound callbacks, which are fired by the native interface class:

• OnStartSound: This callback fires whenever the native layer requests a sound to be
played such as firing a gun. The argument is a sound number that maps to a file
name within the project.

• OnStartMusic: This callback fires when background music is requested by the
native interface class. Background music files are large and usually play once, as
opposed to sounds that are small and play many times.

The singleton AudioManager handles all sound and music playing using the methods: startSound and
startMusic. For more details, see the section “Sound Handler Classes.”

Listing 6-7. Audio Handlers from the Main Activity

 @Override
 public void OnStartSound(int idx) {

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

180

 if (mSound && mAudioMgr == null)
 Log.e(TAG, "Bug: Audio Mgr is NULL but sound is enabled!");

 try {
 if (mSound && mAudioMgr != null)
 mAudioMgr.startSound(idx);

 } catch (Exception e) {
 Log.e(TAG, "OnStartSound: " + e.toString());
 }
 }

 public void OnStartMusic(int idx) {
 if (mSound && mAudioMgr == null)
 Log.e(TAG, "Bug: Audio Mgr is NULL but sound is enabled!");

 try {
 if (mSound && mAudioMgr != null)
 mAudioMgr.startMusic(this, idx);

 } catch (Exception e) {
 Log.e(TAG, "OnStartSound: " + e.toString());
 }
 }

Creating Movement Controller Handlers
Listing 6-8 shows the section of the main activity that handles the movement controller events. The
movement controller is an SNES-style display (see Figure 6-4),which provides navigation capabilities for
phones without a keyboard. The controller itself consists of a series of drawable resources and controller
classes (see “Creating Movement Controller Classes”), which fire the following events whenever the user
presses any of its buttons:

• ControllerDown(int btnCode): This event fires when the user presses any button
in the controller. btnCode represents the Android key code defined in the KeyEvent
class.

• ControllerUp(int btnCode): This event fires when the user releases a button in the
controller. It will always fire after ControllerDown.

As Listing 6-8 shows, the controller buttons are mapped in the following way:

• Y: Strafe (or step) left

• X: Strafe right

• B: Fire

• A: Enable running

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

181

Also note that the Android key code must be mapped to a PC scan code and sent to the DSO using
the native interface class: Natives.sendNativeKeyEvent (event, scan code). For more details on how
the controller works see the “Creating the Movement Controller” section.

Listing 6-8. Controller Events from the Main Activity

 @Override
 public void ControllerDown(int btnCode) {
 switch (btnCode) {
 case KeyEvent.KEYCODE_Y:
 // strafe left
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN,
 ScanCodes.sc_Alt);
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN,
 ScanCodes.sc_LeftArrow);
 break;

 case KeyEvent.KEYCODE_X:
 // strafe right
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN,
 ScanCodes.sc_Alt);
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN,
 ScanCodes.sc_RightArrow);
 break;

 case KeyEvent.KEYCODE_B:
 // Fire
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN,
 ScanCodes.sc_Control);
 break;

 case KeyEvent.KEYCODE_A:
 // Rshift (Run)
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN,
 ScanCodes.sc_RShift);
 break;

 default:
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN, ScanCodes
 .keySymToScancode(btnCode));
 break;
 }
 }

 @Override
 public void ControllerUp(int btnCode) {
 switch (btnCode) {
 case KeyEvent.KEYCODE_Y:
 // strafe left
 Natives.sendNativeKeyEvent(Natives.EV_KEYUP,
 ScanCodes.sc_Alt);

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

182

 Natives.sendNativeKeyEvent(Natives.EV_KEYUP,
 ScanCodes.sc_LeftArrow);
 break;

 case KeyEvent.KEYCODE_X:
 // strafe right
 Natives.sendNativeKeyEvent(Natives.EV_KEYUP,
 ScanCodes.sc_Alt);
 Natives.sendNativeKeyEvent(Natives.EV_KEYUP,
 ScanCodes.sc_RightArrow);
 break;

 case KeyEvent.KEYCODE_B:
 // Fire
 Natives.sendNativeKeyEvent(Natives.EV_KEYUP,
 ScanCodes.sc_Control);
 break;

 case KeyEvent.KEYCODE_A:
 // shift (Run)
 Natives.sendNativeKeyEvent(Natives.EV_KEYUP,
 ScanCodes.sc_RShift);
 break;

 default:
 Natives.sendNativeKeyEvent(Natives.EV_KEYUP, ScanCodes
 .keySymToScancode(btnCode));
 break;
 }
 }
}

Creating the Movement Controller
The movement controller is designed to provide navigation and other actions for phones with no
keyboard. It is modeled after the popular SNES controller (see Figure 6-5), and provides the following
buttons:

• Navigation buttons: For up, down, left, and right rotation

• Selection buttons: For the select and start actions

• Extra buttons for miscellaneous actions: In Wolf 3D, they are mapped as follows: Y
to strafe left, X to strafe right, B to fire, and A to enable running.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

183

Figure 6-5. The game controller

Controller Layout
The controller UI is defined by an absolute layout XML (see Listing 6-9) within the main layout file
(wolf.xml). All buttons are placed on screen using absolute X and Y coordinates, where the upper left
corner of the screen represents (0,0). For this reason, this controller will only work in portrait mode (it is
too big for landscape at 480 ×320). Figure 6-4 shows the background image for the controller. On top of
this image the following image buttons are placed:

• Arrows for up, down, left, and right buttons

• Select and start

• X, Y, A, and B buttons

Drawable resources are defined using the XML android:background="@drawable/IMAGE_NAME", where
IMAGE_NAME must exist in the res folder within the project.

Listing 6-9. Movement Controller Layout

<AbsoluteLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/snes"
 android:orientation="vertical"
 android:layout_width="320px"
 android:layout_height="240px"
 android:background="@drawable/snes"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:focusable="false"
 android:focusableInTouchMode="false"
 android:visibility="gone"
 >

 <!-- Arrows -->
 <ImageButton android:id="@+id/btn_up"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

184

 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/snes_u0"
 android:layout_x="48px" android:layout_y="60px"/>

 <ImageButton android:id="@+id/btn_down"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/snes_d0"
 android:layout_x="45px" android:layout_y="128px"/>

 <ImageButton android:id="@+id/btn_left"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/snes_l0"
 android:layout_x="6px" android:layout_y="99px"/>

 <ImageButton android:id="@+id/btn_right"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/snes_r0"
 android:layout_y="99px" android:layout_x="80px"/>

 <!-- Select/Start -->
 <ImageButton android:id="@+id/btn_select"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/snes_select0"
 android:layout_y="205px" android:layout_x="110px"/>

 <ImageButton android:id="@+id/btn_start"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/snes_start0"
 android:layout_y="205px" android:layout_x="160px"/>

 <!-- X/Y -->
 <ImageButton android:id="@+id/btn_X"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

185

 android:layout_margin="0px"
 android:src="@drawable/snes_x0"
 android:layout_y="63px" android:layout_x="223px"/>

 <ImageButton android:id="@+id/btn_Y"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/snes_y0"
 android:layout_x="174px" android:layout_y="99px"/>

 <!-- A/B -->
 <ImageButton android:id="@+id/btn_A"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/snes_a0"
 android:layout_y="99px" android:layout_x="267px"/>

 <ImageButton android:id="@+id/btn_B"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/snes_b0"
 android:layout_x="223px" android:layout_y="141px"/>

</AbsoluteLayout>

Controller Class
The controller is constructed by the class SNESController (see Listing 6-10). Some of the key aspects of
this class follow:

• Constructor: The class requires an Android context that contains the layout XML
for the controller and is used for initialization.

• Initialization: In this step, touch events for the buttons are set up by querying the
main activity for a button ID and setting a touch listener:

mView.findViewById(BUTTON_ID).setOnTouchListener(
 new View.OnTouchListener() {
 public boolean onTouch(View v, MotionEvent evt) {
 }
}

• Key presses: Depending on the action type, DOWN or UP, a key is sent to the listener
using sendEvent(EVENT_TYPE, ANDROID_KEY).

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

186

• Event listener: Any class that wishes to receive controller events must implement
the ControllerListener interface. This interface provides the callbacks to handle
button presses:

public interface ControllerListener {
 public void ControllerUp(int btnCode);
 public void ControllerDown(int btnCode);
}

Listing 6-10. The Controller Class SNESController.java.

package game.controller;

// ...

public class SNESController {

 private Activity mView;

 private ControllerListener mListener;

 public SNESController(Context context) {
 mView = (Activity) context;
 init();
 }

 public SNESController(Context context, AttributeSet attrs) {
 mView = (Activity) context;
 init();
 }

 public SNESController(Context context, AttributeSet attrs, int style) {
 mView = (Activity) context;
 init();
 }

 public void setListener(ControllerListener l) {
 mListener = l;
 }

 private void init() {
 setupControls();
 }

 private void setupControls() {
 // up
 mView.findViewById(R.id.btn_up).setOnTouchListener(
 new View.OnTouchListener() {
 @Override
 public boolean onTouch(View v, MotionEvent evt) {
 final ImageButton b = (ImageButton) v;

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

187

 int action = evt.getAction();

 if (action == MotionEvent.ACTION_DOWN) {
 b.setImageResource(R.drawable.snes_u1);
 sendEvent(MotionEvent.ACTION_DOWN,
 KeyEvent.KEYCODE_DPAD_UP);
 } else if (action == MotionEvent.ACTION_UP) {
 b.setImageResource(R.drawable.snes_u0);
 sendEvent(MotionEvent.ACTION_UP,
 KeyEvent.KEYCODE_DPAD_UP);
 }
 return true;
 }
 });

 // down
 mView.findViewById(R.id.btn_down).setOnTouchListener(
 new View.OnTouchListener() {
 @Override
 public boolean onTouch(View v, MotionEvent evt) {
 final ImageButton b = (ImageButton) v;
 int action = evt.getAction();

 if (action == MotionEvent.ACTION_DOWN) {
 b.setImageResource(R.drawable.snes_d1);
 sendEvent(MotionEvent.ACTION_DOWN,
 KeyEvent.KEYCODE_DPAD_DOWN);
 } else if (action == MotionEvent.ACTION_UP) {
 b.setImageResource(R.drawable.snes_d0);
 sendEvent(MotionEvent.ACTION_UP,
 KeyEvent.KEYCODE_DPAD_DOWN);
 }
 return true;
 }
 });
 // left
 mView.findViewById(R.id.btn_left).setOnTouchListener(
 new View.OnTouchListener() {
 @Override
 public boolean onTouch(View v, MotionEvent evt) {
 int action = evt.getAction();
 final ImageButton b = (ImageButton) v;

 if (action == MotionEvent.ACTION_DOWN) {
 b.setImageResource(R.drawable.snes_l1);
 sendEvent(MotionEvent.ACTION_DOWN,
 KeyEvent.KEYCODE_DPAD_LEFT);
 } else if (action == MotionEvent.ACTION_UP) {
 b.setImageResource(R.drawable.snes_l0);
 sendEvent(MotionEvent.ACTION_UP,
 KeyEvent.KEYCODE_DPAD_LEFT);

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

188

 }
 return true;
 }
 });
 // Right
 mView.findViewById(R.id.btn_right).setOnTouchListener(
 new View.OnTouchListener() {
 @Override
 public boolean onTouch(View v, MotionEvent evt) {
 int action = evt.getAction();
 final ImageButton b = (ImageButton) v;

 if (action == MotionEvent.ACTION_DOWN) {
 b.setImageResource(R.drawable.snes_r1);
 sendEvent(MotionEvent.ACTION_DOWN,
 KeyEvent.KEYCODE_DPAD_RIGHT);
 } else if (action == MotionEvent.ACTION_UP) {
 b.setImageResource(R.drawable.snes_r0);
 sendEvent(MotionEvent.ACTION_UP,
 KeyEvent.KEYCODE_DPAD_RIGHT);
 }
 return true;
 }
 });

 // Events for the SELECT, START, X, Y, A, B buttons
 // have been removed for simplicity. See the class SNESController.java
 // for details

 /**
 * Send an event to the {@link ControllerListener}
 * @param state Up (MotionEvent.ACTION_UP) or
 * down (MotionEvent.ACTION_DOWN)
 * @param btnAndroid{@link KeyEvent}
 */
 private void sendEvent(int state, int btn) {
 if (mListener != null) {
 if (state == MotionEvent.ACTION_UP)
 mListener.ControllerUp(btn);
 else
 mListener.ControllerDown(btn);
 }
 }
}

Listing 6-10 defines touch events for the buttons: UP, DOWN, LEFT, RIFGHT, START, SELECT, X, Y, A, and B.

Let’s take a closer look at how the controller reacts to user events. The next fragment shows how the
select button in the controller is initialized:

 // Controller select button
 mView.findViewById(R.id.btn_select).setOnTouchListener(

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

189

 new View.OnTouchListener() {
 @Override
 public boolean onTouch(View v, MotionEvent evt) {
 int action = evt.getAction();
 final ImageButton b = (ImageButton) v;

 // button down
 if (action == MotionEvent.ACTION_DOWN) {
 // change button image
 b.setImageResource(R.drawable.snes_select1);

 // Send key to native layer
 sendEvent(MotionEvent.ACTION_DOWN,
 KeyEvent.KEYCODE_ENTER);
 }
 // Button up
 else if (action == MotionEvent.ACTION_UP) {
 // switch image
 b.setImageResource(R.drawable.snes_select0);

 sendEvent(MotionEvent.ACTION_UP,
 KeyEvent.KEYCODE_ENTER);
 }
 return true;
 }
 });

First, the button is extracted from the game layout using its ID by calling mView.findViewById(R.

id.btn_select), where btn_select is the ID of the select button described in the game layout XML
(wolf.xml). Next, it listens for touch events by calling setOnTouchListener and implementing the touch
listener interface. Whenever the user touches a button, the controller will send the Android key code to
the listener (by calling onTouch). The listener, in turn, will process the key code and react appropriately.
Note that when the user presses the controller, it will receive a MotionEvent.ACTION_DOWN event. When
this happens the corresponding button image will be swapped with a pressed image using
button.setImageResource(BUTTON_DOWN_IMAGE_RESID). The same goes for the ACTION_UP event. This helps
with the lack of sensitivity when using touch interfaces as opposed to a keyboard. Many users complain
about this fact. Figure 6-6 shows the image resources used by the controller to implement this
mechanism.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

190

Figure 6-6. Image resources used to define the controller key press and release events

Sound Classes
In a perfect world, Wolf3D will use native sound for increased performance. Unfortunately Android uses
a non standard sound library SoniVox EAS (Enhanced Audio System) whereas Wolf3D uses the Linux
OSS (Operating System Sound). To make things worse, Google provides no documentation or sample
code in the subject. This is a caveat as other smart phones such as the iPhone support a multitude of
open sound libraries. Anyway to bypass the limitation, the sound track has been extracted from the
original game files and stored in the res/raw folder under the main project. Figure 6-7 shows a snapshot
of these files.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

191

Figure 6-7. Snapshot of the Wolf 3D sound tracks

The sound architecture can be resumed in the following key steps:

1. When the native game loop requests a sound, a JNI callback will fire calling the
method wolf.jni.Natives.OnStartSound(idx), where idx represents an index
or sound ID.

2. wolf.jni.Natives will delegate the sound request to the listener WolfLauncher
which is the main activity of the application.

3. The main activity will use the classes AudioManager and AudioClip to play the
sound by mapping the sound ID to the corresponding raw resource (WAVE file).

4. The mappings of native sound IDs to Android raw (WAVE) files are defined in
the class wolf.audio.SoundNames.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

192

Mapping Sound Names to Raw Sound Resources
The name mapping class SoundNames is the critical component that maps a native sound IDs to an
Android raw resource IDs. Wolf 3D uses 86 sounds, which are defined using an array of integers where
the array index represents the native sound ID and the array value represents the Android raw resource
ID (see Listing 6-11). This class is used by the AudioManager. The native sound IDs were extracted from
the native header file audiowl6.h within the native/gp2xwolf3d folder (see the chapter source code for
details).

Listing 6-11. Native Sound Name Mappings

public class SoundNames {

 public static final int [] Sounds = new int[86];

 /* Native Sound
 typedef enum {
 HITWALLSNDWL6, // 0
 SELECTWPNSNDWL6, // 1
 SELECTITEMSNDWL6, // 2
 HEARTBEATSNDWL6, // 3
 MOVEGUN2SNDWL6, // 4
 *** SEE SOUND NAMES CLASS ***
 MISSILEFIRESNDWL6, // 85
 MISSILEHITSNDWL6, // 86
 LASTSOUNDWL6
 }
 */

 static {
 //Sounds[0] = R.raw.noway; // hit wall
 Sounds[1] = R.raw.wpnup; // sel wpn
 Sounds[2] = R.raw.itemup; // hit wall
 Sounds[4] = R.raw.wpnup; // Move gun(weapon up)

 // *** SEE SOUND NAMES CLASS ***

 Sounds[76] = R.raw.podth2;
 Sounds[77] = R.raw.podth3;
 Sounds[78] = R.raw.bgdth2;

 }

 /* Music Indexes
 typedef enum {
 CORNER_MUS, // 0
 DUNGEON_MUSWL6, // 1
 WARMARCH_MUS, // 2

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

193

 // *** SEE SOUND NAMES CLASS ***

 } musicnamesWL6;
 */

 public static final int [] Music = new int[27];

 static {
 Music[0] = R.raw.mus_emnycrnr;
 Music[1] = R.raw.mus_emnycrnr;
 Music[2] = R.raw.mus_marchwar;
 Music[3] = R.raw.mus_getthem;

 // *** SEE SOUND NAMES CLASS ***

 Music[26] = R.raw.pacman;
 }
}

Besides sounds, Wolf 3D implements background music, which is processed in the same exact way.

The difference being that background music is big and plays once, whereas sounds are tiny and can play
multiple times during the game. Wolf 3D uses 27 music files defined in the C header audiowl6.h in the
native/gp2xwolf3d folder (see the chapter source code for details). With the mappings in place, the
AudioManager can do its work.

Creating the Audio Manager
AudioManager is a singleton helper class that manages all audio and performs the following tasks:

• It starts a sound given its native ID.

• It starts background music given its native ID.

• It cashes commonly used sounds for better performance.

AudioManager uses a HashMap for clip caching:

HashMap<String, AudioClip> mSounds = new HashMap<String, AudioClip>();

When a sound request comes along, the method void startSound(int sidx) will be invoked where

sidx is the ID of the native sound. Next, the Android resource ID will be extracted using the SoundNames
class:

int id = SoundNames.Sounds[sidx];

Finally, the cache table will be queried. If the table contains the sound, it will be played from cache.

Otherwise, the sound will be loaded from disk and cached for the next event:

if (mSounds.containsKey(key)) {

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

194

 // Play from cache
 mSounds.get(key).play();
}
else {
 // load clip from disk
 AudioClip clip = new AudioClip(mContext, id);
 clip.play();

 // cache sound
 mSounds.put(key, clip);
 mClipCount++;
}

Listing 6-12 shows how it is done. Furthermore, AudioManager also implements several methods.

First, getInstance() is a singleton method used to provide only one instance of AudioManager.
preloadSounds(Context ctx) preloads commonly used sounds. An application context is required

for the inner AudioClip class, which is used to wrap the Android media player. The next fragment shows
how this method uses the resource IDs of the most common sounds to load them into memory. The goal
of this method is to improve performance by keeping these sounds in memory at all times:

 public void preloadSounds(Context ctx) {
 int[] IDS = new int[] { R.raw.doropn, R.raw.dorcls,
 R.raw.pistol, R.raw.wpnup };

 // Preload sound WAVs using their IDs
 Resources res = mContext.getResources();

 for (int i = 0; i < IDS.length; i++) {
 final int id = IDS[i];
 final String key = res.getResourceName(id);

 Log.d(TAG, "PreLoading sound " + key + " ID " + id);
 mSounds.put(key, new AudioClip(ctx, id));

 }
 }

Next, startMusic(Context ctx, int midx) starts the background music given a native music ID.

Note that there is only one audio clip for music. This means only one music track can be played at a
time. An Android context is required for the AudioClip:

 public void startMusic(Context ctx, int midx) {
 // Obtain a the raw music ID from the SoundNames mapping class
 int id = SoundNames.Music[midx];

 if (id == 0)
 return;

 try {
 // Check if the RESOURCE exists on disk
 mContext.getResources().getResourceName(id);

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

195

 } catch (NotFoundException e) {
 System.err.println("Music resID for idx " + midx
 + " no found");
 return;
 }

 // Stop any playing music
 if (music != null) {
 music.stop();
 music.release();
 }

 Log.d(TAG, "Starting music " + id);

 // Play it
 music = new AudioClip(ctx, id);
 music.play();
 }

Finally, the instance variable music is used to start playback. Note that music is an instance variable

of type AudioClip.

Listing 6-12. The Audio Manager for Wolf 3D

package wolf.audio;

/**
 * Audio manager. Plays and caches sounds for Woldf 3D
*/
public class AudioManager {
 static final String TAG = "AudioMgr";

 static private AudioManager am;

 // Game sound (WAVs) cache table
 private volatile HashMap<String, AudioClip> mSounds
 = new HashMap<String, AudioClip>();

 private int MAX_CLIPS = 20;
 private int mClipCount = 0;
 private Context mContext;

 // BG music
 private AudioClip music;

 /**
 * AudioManager singleton getInstance
 */
 static public AudioManager getInstance(Context ctx) {
 if (am == null)
 return new AudioManager(ctx);

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

196

 return am;
 }

 private AudioManager(Context ctx) {
 mContext = ctx;
 preloadSounds(ctx);
 }

 /**
 * Start a sound by name & volume
 * @param idx Sound idx (see SoundNames for mappings)
 */
 public synchronized void startSound(int sidx) {
 if (sidx == 0)
 return;

 if (sidx < 0 || sidx > SoundNames.Sounds.length) {
 return;
 }

 // The sound key
 int id = SoundNames.Sounds[sidx];
 String key;

 if (id == 0)
 return;

 try {
 key = mContext.getResources().getResourceName(id);
 } catch (NotFoundException e) {
 return;
 }

 if (mSounds.containsKey(key)) {
 // Play from cache
 mSounds.get(key).play();
 } else {
 // load clip from disk
 // If the sound table is full last entry
 if (mClipCount > MAX_CLIPS) {
 // Remove a last key
 int idx = mSounds.size() - 1;

 String k = (String) mSounds.keySet().toArray()[idx];
 AudioClip clip = mSounds.remove(k);
 clip.release();
 clip = null;
 mClipCount--;
 }

 AudioClip clip = new AudioClip(mContext, id);

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

197

 clip.play();

 mSounds.put(key, clip);
 mClipCount++;
 }
 }

 /**
 * PreLoad the most used sounds into a hash map
 *
 * @param ctx App context
 * @return
 */
 // public void preloadSounds(Context ctx) removed for simplicity

 /**
 * Start background music
 * @param ctx
 * @param midx Music index, See SoundNames for mappings
 */
 // public void startMusic(Context ctx, int midx) Removed for simplicity

}

Creating the Audio Clip
This is the final piece of the puzzle. AudioClip wraps the Android media player and provides methods for
(see Listing 6-13):

• Creating a clip using a resource ID or URI

• Playing or looping a sound

• Stopping a sound

• Setting the volume

AudioClip deals with the nasty idiosyncrasies of the media player such as illegal state exceptions
when the resources are not prepared, played, or stopped in the right sequence.

Listing 6-13. The Audio Clip Class for Wolf 3D.

package wolf.audio;

import android.content.Context;
import android.media.MediaPlayer;
import android.net.Uri;

public class AudioClip {
 static final String TAG = "AudioClip";

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

198

 private MediaPlayer mPlayer;
 private String name;

 private boolean mPlaying = false;
 private boolean mLoop = false;

 public AudioClip(Context ctx, int resID) {
 name = ctx.getResources().getResourceName(resID);

 mPlayer = MediaPlayer.create(ctx, resID);
 mPlayer.setOnCompletionListener(
 new MediaPlayer.OnCompletionListener() {
 @Override
 public void onCompletion(MediaPlayer mp) {
 mPlaying = false;
 if (mLoop) {
 mp.start();
 }
 }

 });
 }

 public AudioClip(Context ctx, Uri uri) {
 name = uri.toString();

 mPlayer = MediaPlayer.create(ctx, uri);
 mPlayer.setOnCompletionListener(
 new MediaPlayer.OnCompletionListener() {
 @Override
 public void onCompletion(MediaPlayer mp) {
 mPlaying = false;
 if (mLoop) {
 mp.start();
 }
 }

 });
 }

 public synchronized void play() {
 if (mPlaying)
 return;

 if (mPlayer != null) {
 mPlaying = true;
 mPlayer.start();
 }
 }

 public synchronized void play(int vol) {
 if (mPlaying)

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

199

 return;

 if (mPlayer != null) {
 mPlaying = true;
 mPlayer.setVolume((float) Math.log10(vol)
 , (float) Math.log(vol));
 mPlayer.start();
 }
 }

 public synchronized void stop() {
 try {
 mLoop = false;
 if (mPlaying) {
 mPlaying = false;
 mPlayer.pause();
 }

 } catch (Exception e) {
 System.err.println("AduioClip::stop " + name + " "
 + e.toString());
 }
 }

 public synchronized void loop() {
 mLoop = true;
 mPlaying = true;
 mPlayer.start();
 }

 public void release() {
 if (mPlayer != null) {
 mPlayer.release();
 mPlayer = null;
 }
 }

 public String getName() {
 return name;
 }

 /**
 * Set volume
 * @param vol integer between 1-100
 */
 public void setVolume(int vol) {
 if (mPlayer != null) {
 mPlayer.setVolume((float) Math.log10(vol)
 , (float) Math.log10(vol));
 }
 }
}

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

200

Native Interface Class
The native interface class (Natives.java) acts as the glue between the Java and the C code (see
Listing 6-14). In Wolf 3D, this class is a two-way pipeline that handles all native access:

• It describes native methods that will be called from Java code.

• It implements Java callbacks, that is, java methods that will be called from C.

This class declares the following native methods implemented in C:

• native int WolfMain(String[] argv): This method starts the main game loop.
argv represents an array of arguments that will be sent to the native layer.

• native int keyPress(int key): This method can be used to send a key pressed
event to the native layer. The argument key represents a PC scan code.

• native int keyRelease(int key): This method can be used to send a key release
event where key represents PC scan code.

■ Tip Note that PC scan codes are not the same as Android key codes. The utility class wolf.util.ScanCodes is
used to convert these codes.

Listing 6-14. Native Interface Class Natives.java.

package wolf.jni;

import android.util.Log;

public class Natives {
 public static final String TAG = "Natives";

 public static final int EV_KEYDOWN = 0;
 public static final int EV_KEYUP = 1;
 public static final int EV_MOUSE = 2;

 private static EventListener listener;

 /**
 * Native event listener interface
 */
 public static interface EventListener {
 void OnMessage(String text);
 void OnInitGraphics(int w, int h);
 void OnImageUpdate(int[] pixels, int x, int y, int w, int h);
 void OnSysError(String text);
 void OnStartSound(int idx);
 void OnStartMusic(int idx);

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

201

 }

 public static void setListener(EventListener l) {
 listener = l;
 }

 // Native Main game sub (takes an array of arguments)
 public static native int WolfMain(String[] argv);

 // Native Key press. It sends a pc scan code
 public static native int keyPress(int key);

 // Native Key release. It sends a pc scan code
 public static native int keyRelease(int key);

 /***
 * C - Callbacks
 ***/
 // This fires on messages from the C layer
 private static void OnMessage(String text) {
 if (listener != null)
 listener.OnMessage(text);
 }

 // Fires on init graphics: receives the width and height of the video
 private static void OnInitGraphics(int w, int h) {
 if (listener != null)
 listener.OnInitGraphics(w, h);
 }

 // Fires on image update: receives the video RGBA pixels plus x,y
 // coordinates and width and height of the image
 private static void OnImageUpdate(int[] pixels, int x, int y,
 int w, int h) {
 if (listener != null)
 listener.OnImageUpdate(pixels, x, y, w, h);

 }

 // Fires when the C lib calls exit()
 private static void OnSysError(String message) {
 if (listener != null)
 listener.OnSysError(message
 + " - Please report this error.");
 }

 // Fires when a sound is requested in the C layer.
 // Receives a sound index
 private static void OnStartSound(int idx) {
 if (listener != null)

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

202

 listener.OnStartSound(idx);
 }

 // Fires when music is played in the C layer.
 private static void OnStartMusic(int idx) {
 if (listener != null)
 listener.OnStartMusic(idx);
 }

 // Sends a key event to the native layer
 // type : one of Natives.EV_KEYDOWN or Natives.EV_KEYUP
 // sym: PC scan code
 public static void sendNativeKeyEvent(int type, int sym) {
 try {
 if (type == Natives.EV_KEYDOWN)
 Natives.keyPress(sym);
 else
 Natives.keyRelease(sym);
 } catch (UnsatisfiedLinkError e) {
 Log.e(TAG, e.toString());
 }
 }
}

In order for the game activity (WolfLauncher) to receive native callbacks, such as when a video

update occurs or a sound must be played, it must implement the interface Natives. EventListener. This
interface provides the critical notifications at the core of the game:

• OnMessage(String text): This event sends a message from the native layer for
information purposes.

• OnInitGraphics(int w, int h): This event gets called when the video graphics
gets initialized. It returns the width and height of the video buffer.

• OnImageUpdate(int[] pixels, int x, int y, int w, int h): This is perhaps the
most important method out there. It gets called when a video update occurs and
returns an Android ARGB packed array of pixels to be displayed on the device. It
also returns the X and Y coordinates of the top left pixel and the width and height
of the video buffer.

• OnSysError(String text): This event fires when a fatal error occurs. The client
should display the incoming message and terminate; otherwise, the application
will certainly crash.

• OnStartSound(int idx): This event fires when a sound must be played. idx
represents the native sound ID.

• OnStartMusic(int idx): This event fires when background music must be played.
idx represents the native music ID.

Now, let’s look at some of the native code where all the magic occurs.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

203

Coding the Native Layer
Even though Wolf3D is an old game written in the 1980s, it is still big for a mobile device. The C code is
roughly 30,000 lines of C code that’s very hard to understand. This section will take a look at some tiny
changes made to the core to add JNI functionality. You should look at the source code of the chapter
when going through this section.

The changes made to the original game for JNI can be summarized as follows:

• New files:

• jni_wolf.c: This file contains all JNI native method implementations plus C
to Java callbacks

• jni_wolf.h and wolf_jni_Natives.h. These are the C headers that support
jni_wolf.c.

• Updated files:

• sd_null.c: This file will be updated to cascade sound and music requests
back to Java.

• vi_null.c: This file will be updated to cascade video buffer events back to
Java.

Let’s take a look at sections of jni_wolf.c. This is the most important file and must be understood
completely. Table 6-1 shows the name mappings of the native Java methods to their corresponding C
counterparts:

Table 6-1. Native Methods and Their C Names for Wolf 3D.

Java C

public static native int
wolf.jni.Natives.WolfMain(String[] argv)

JNIEXPORT jint JNICALL Java_wolf_jni_Natives_WolfMain
(JNIEnv * env, jclass cls, jobjectArray jargv)

public static native int
wolf.jni.Natives.keyPress(int key)

JNIEXPORT jint JNICALL Java_wolf_jni_Natives_keyPress
(JNIEnv * env, jclass cls, jint scanCode)

public static native int
wolf.jni.Natives.keyRelease(int key)

JNIEXPORT jint JNICALL Java_wolf_jni_Natives_
keyRelease (JNIEnv * env, jclass cls, jint scanCode)

Consider the native wolf.jni.Natives.WolfMain. Internally, it gets translated to Java_

wolf_jni_Natives_WolfMain. This must be done using the javah command (see the section
“Compiling the DSO” for details). This function starts the main game loop.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

204

Initializing the Game Loop
This is the most important function in this file. It starts the native game loop and will block execution.
For this reason, this function should be called within a Java thread. The critical steps shown in Listing 6-15
follow:

1. Save a reference to the Java VM is using (*env)->GetJavaVM(env, &g_VM). This
reference will be later used within the C to Java callbacks.

2. Convert the Java string array (jargv) to a C array (char **). The C array will be
send to the native game loop. The key aspects of converting a Java string array
to a C array follow:

• Get the length of the java array with (*env)->GetArrayLength(env, jarray).

• Get the value of the Nth row of the Java array as a Java string with jstring
jrow = (jstring)(*env)->GetObjectArrayElement(env, jargv, i).

• Convert the Java string above (jrow) to a C string: const char *row =
(*env)->GetStringUTFChars(env, jrow, 0).

• Allocate space for the C array for that specific row: args[i] = malloc(
strlen(row) + 1).

• Copy the new C string to the C array: strcpy (args[i], row).

• Release the java string row: (*env)->ReleaseStringUTFChars(env, jrow,
row).

• Repeat the same process for each element in the Java array.

3. Load the native interface class wolf.jni.Natives.java: jNativesCls = (*env)->
FindClass(env, "wolf/jni/Natives"). This class will be used by the C to Java
native callbacks.

4. Load the video update callback using its name and signature:
jSendImageMethod = (*env)->GetStaticMethodID(env, jNativesCls,
"OnImageUpdate", "([IIIII)V").

5. Load the sound update callback: jStartSoundMethod = (*env)-
>GetStaticMethodID(env, jNativesCls, "OnStartSound", "(I)V").

6. Invoke the native game loop sending the C array created previously: wolf_main
(clen, args).

At this point, execution will block, and the native video buffer should fill up; plus native events
should start coming up. These events must be glued to the Android activity using the C to Java callbacks.

Listing 6-15. The Main Game Loop from wolf_jni.c

// Global Java VM
static JavaVM *g_VM;

// Java Native interface class

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

205

jclass jNativesCls;
// Video buffer java callback
jmethodID jSendImageMethod;

// Sound callback
jmethodID jStartSoundMethod;

// Java image pixels: int ARGB
jintArray jImage;
int iSize;

// Native game loop
extern int wolf_main(int argc, char **argv);

JNIEXPORT jint JNICALL Java_wolf_jni_Natives_WolfMain
 (JNIEnv * env, jclass cls, jobjectArray jargv)
{
 (*env)->GetJavaVM(env, &g_VM);

 // Extract char ** args from Java array
 jsize clen = getArrayLen(env, jargv);

 // convert Java String[] arguments to C char **
 char * args[(int)clen];

 int i;
 jstring jrow;
 for (i = 0; i < clen; i++)
 {
 jrow = (jstring)(*env)->GetObjectArrayElement(env, jargv, i);
 const char *row = (*env)->GetStringUTFChars(env, jrow, 0);

 args[i] = malloc(strlen(row) + 1);
 strcpy (args[i], row);

 // free java string jrow
 (*env)->ReleaseStringUTFChars(env, jrow, row);
 }

 /*
 * Load the Java native interface class wolf.jni.natives
 */
 jNativesCls = (*env)->FindClass(env, "wolf/jni/Natives");

 if (jNativesCls == 0) {
 printf("Unable to find class: wolf/jni/Natives");
 return -1;
 }

 // Load wolf.jni.Natives.OnImageUpdate(int[] video, int x, int y, int w, int h)
 jSendImageMethod = (*env)->GetStaticMethodID(env, jNativesCls

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

206

 , "OnImageUpdate"
 , "([IIIII)V");

 if (jSendImageMethod == 0) {
 jni_printf("Unable to find method wolf.jni.OnImageUpdate(byte[])");
 return -1;
 }

 // Load OnStartSound(int id)
 jStartSoundMethod = (*env)->GetStaticMethodID(env, jNativesCls
 , "OnStartSound"
 , "(I)V");

 if (jStartSoundMethod == 0) {
 jni_printf("Unable to find method wolf.jni.OnStartSound sig: ([BI)V");
 return -1;
 }
 // Print args
 for (i = 0; i < clen; i++) {
 jni_printf("WolfMain args[%d]=%s", clen, args[i]);
 }

 // Invoke Quake's main sub. This will loop forever
 wolf_main (clen, args);
 return 0;
}

Cascading Messages with C to Java Callbacks
C to Java callbacks are used to cascade native events such as video and sound events back to the Java
activity. The callbacks require a JNI implementation plus some tiny changes to the original C files. There
are three types of callbacks in Wolf 3D:

• Graphics initialization: It is the very first callback that should fire to notify the
main activity of the size (width and height) of the video buffer. The main activity
will in turn use this information to create a bitmap to be displayed on the device.

• Video buffer update: This callback must fire after graphics initialization and send
an Android packed ARGB bitmap back to the main activity for display.

• Sound and music requests: These are used to tell the main activity that a sound or
background music must be played.

Initializing Graphics
Listing 6-15 shows the way graphics are initialized in the game. There are two functions in two different
files: jni_init_graphics (int width, int height) in jni_wolf.c and VL_Startup() in vi_null.c.

jni_init_graphics implements the C to Java callback that tells the main activity that graphics are
ready. It sends the width and height of the video buffer, and they are used to create a Java bitmap that

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

207

will be used to display the video on the device. Note that this callback fires outside of the current JNI
thread. When the callback fires, you cannot touch the JNI environment directly (JNIEnv *env), or you will
cause an invalid thread access error that will crash the application. Instead, you must attach to the
current thread with the following call:

(*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL)

where env will get a reference to the current thread JNI environment. Furthermore to do this, you must
save a global reference to the Java virtual machine (usually from the very first native call):

(*env)->GetJavaVM(env, &g_VM);

Once you have attached to the current thread, you can load the

wolf.jni.Natives.OnInitGraphics(width, height) using the method name and signature and execute it
with the width and height of the video buffer:

jmethodID mid = (*env)->GetStaticMethodID(
 env, jNativesCls, "OnInitGraphics", "(II)V");
(*env)->CallStaticVoidMethod(env, jNativesCls, mid, width, height);

The second part of the listing (a section of the file vi_null.c) shows where jni_init_graphics is

called from VL_Startup(). This is the native video startup callback of the game (see Listing 6-16).

Listing 6-16. Graphics Initialization from wolf_jni.c and vi_null.c.

// This function is new code for Android and lives in wolf_ini.c
void jni_init_graphics(int width, int height)
{
 JNIEnv *env;

 if (!g_VM) {
 ERROR0("I_JNI: jni_init_graphics No JNI VM available.\n");
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 iSize = width * height;

 // Create a new int[] used by jni_send_pixels
 jImage = (*env)-> NewIntArray(env, iSize);

 // call doom.util.Natives.OnInitGraphics(w, h);
 jmethodID mid = (*env)->GetStaticMethodID(env, jNativesCls
 , "OnInitGraphics"
 , "(II)V");

 if (mid) {
 (*env)->CallStaticVoidMethod(env, jNativesCls

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

208

 , mid
 , width, height);
 }
}

// This function lives in vi_null.c
// byte* gfxbuf is the global graphics buffer
void VL_Startup()
{
 // Original code
 vwidth = 320;
 vheight = 200;

 if (MS_CheckParm("x2")) {
 vwidth *= 2;
 vheight *= 2;
 } else if (MS_CheckParm("x3")) {
 vwidth *= 3;
 vheight *= 3;
 }

 if (gfxbuf == NULL)
 gfxbuf = malloc(vwidth * vheight * 1);

 // New code for Android
 jni_printf("VL_Startup %dx%d. Calling init graphics.",vwidth, vheight);
 jni_init_graphics(vwidth, vheight);
}

The function VL_Startup is the video startup function called by the Wolf native engine. Look closer,

and you can see that it initializes the size of the screen to a resolution of 320 ×200 pixels. It also checks
for the argument x2 or x3 (which tell the Wolf engine to double or triple the screen resolution). It also
allocates space for the video buffer. Finally, the last two lines display a debugging message and, most
importantly, tell the Java layer that the graphics have been initialized. These two lines are critical for the
game to work in Android.

Cascading Video Buffers
After the graphics are initialized, we can start sending video buffer updates to the main activity. To do so,
we use the C to Java callback jni_send_pixels in jni_wolf.c and VW_UpdateScreen() in vi_null.c.

jni_send_pixels is almost identical to the callback in the previous section. The main difference
being that this callback will fire many times per second and must be as quick and nimble as possible.

• To achieve maximum performance, the method ID for
wolf.jni.Natives.OnImageUpdate is loaded by the native WolfMain
implementation.

• To speed thing up even more, the array buffer used to send the pixels to Java
(jImage) is created on jni_init_graphics using the width and height of the buffer.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

209

• With these two variables, the array region is set by calling: (*env)->
SetIntArrayRegion(env, jImage, 0, iSize, (jint *) data), where data is an
array of 32 bit integers packed in Android format (ARGB).

In the second file of Listing 6-17, two important functions are called:

• VL_SetPalette (const byte *palette): This is the function that sets the palette
that will be used to pack the pixels in Android format. Wolf 3D uses a 256-color
palette of sequential red, green, and blue (RGB) bytes, (256 × 3 for a total of 768
bytes).

• VW_UpdateScreen(): With the palette in place, this game callback will fire every
time there is a video update. Here, we simply make a palette lookup using the
global graphics buffer (gfxbuf), and the video width and height (vwidth and
vheight) for each byte in gfxbuf. Note that gfxbuf is an array of bytes that
represent color indexes in the palette:

int size = vwidth * vheight;
int pixels[size], i;

for (i = 0 ; i < size ; i ++) {
 byte colIdx = gfxbuf[i];
 pixels[i] = (0xFF << 24)
 | (pal[colIdx].red << 16)
 | (pal[colIdx].green << 8)
 | (pal[colIdx].blue);
}

Finally, the array of pixels is sent to Java along with the video width and height:

jni_send_pixels(pixels,0,0, vwidth, vheight).

Listing 6-17. Cascading the Video Buffer

// In jni_wolf.c
// g_VM is the global Java VM
void jni_send_pixels(int * data, int x, int y, int w, int h)
{
 JNIEnv *env;

 if (!g_VM) {
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 // Send img back to java.
 if (jSendImageMethod) {
 (*env)->SetIntArrayRegion(env, jImage, 0, iSize, (jint *) data);

 // Call Java method

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

210

 (*env)->CallStaticVoidMethod(env, jNativesCls
 , jSendImageMethod
 , jImage
 , (jint)x, (jint)y, (jint)w, (jint)h);
 }
}

// In file vi_null.c
/**
 * Class XColor
 ***/
typedef struct Color XColor;

struct Color
{
 int red;
 int green;
 int blue;
 //int pixel;
};

// Pallete
XColor pal[256];

void VL_SetPalette(const byte *palette)
{
 int i;

 VL_WaitVBL(1);

 for (i = 0; i < 256; i++)
 {
 pal[i].red = palette[i*3+0] << 2;
 pal[i].green = palette[i*3+1] << 2;
 pal[i].blue = palette[i*3+2] << 2;
 }
}

void VW_UpdateScreen()
{
 // screen size
 int size = vwidth * vheight;

 // ARGB pixels
 int pixels[size], i;

 for (i = 0 ; i < size ; i ++) {
 byte colIdx = gfxbuf[i];
 pixels[i] = (0xFF << 24)
 | (pal[colIdx].red << 16)
 | (pal[colIdx].green << 8)

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

211

 | (pal[colIdx].blue);

 }
 // send thru JNI here
 jni_send_pixels(pixels,0,0, vwidth, vheight);

}

Cascading Sound and Music Requests
Sound and music requests are cascaded by two C to Java callbacks and changes to the native file
sd_null.c:

• jni_start_sound (int idx): This callback calls the Java method
wolf.jni.Natives.OnStartSound(int idx), where idx is the native sound ID.

• jni_start_music (int idx): This callback calls the Java method
wolf.jni.Natives.OnStartMusic(int idx), where idx is the native music ID.

Listing 6-18 shows the implementation of these callbacks. Remember that you must attach to the
current thread to prevent a JNI invalid thread access with

(*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL)

Once the thread is attached, you can call the Java method using its ID plus the argument (the sound

ID in this case):

(*env)->CallStaticVoidMethod(env, jNativesCls, jStartSoundMethod, (jint) idx);

Note that the method IDs for sound and music, jStartSoundMethod and jStartMusicMethod

respectively, were loaded at startup for increased performance.

Listing 6-18. Cascading Sound and Music Requests

// In jni_wolf.c
void jni_start_sound (int idx)
{
 /*
 * Attach to the curr thread otherwise we get JNI WARNING:
 * threadid=3 using env from threadid=15 which aborts the VM
 */
 JNIEnv *env;

 if (!g_VM) {
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 if (jStartSoundMethod == 0) {

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

212

 jni_printf("BUG: Invalid JNI method method OnStartSound (I)V");
 return ;
 }

 // Call Java method wolf.jni.OnStartSound(int idx)
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , jStartSoundMethod
 , (jint) idx);

}

void jni_start_music (int idx)
{
 /*
 * Attach to the curr thread otherwise we get JNI WARNING:
 * threadid=3 using env from threadid=15 which aborts the VM
 */
 JNIEnv *env;

 if (!g_VM) {
 return;
 }

 if (!jNativesCls) {
 printf("JNIStartMusic: No JNI interface\n");
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 jmethodID mid = (*env)->GetStaticMethodID(env, jNativesCls
 , "OnStartMusic"
 , "(I)V");

 if (mid) {
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , mid
 , (jint) idx);
 }
}

// In sd_null.c
extern void jni_start_sound (int idx);
extern void jni_start_music (int idx);

boolean SD_PlaySoundWL6(soundnamesWL6 sound)
{
 // New code for Android
 jni_start_sound (sound);
 return true;
}

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

213

boolean SD_PlaySoundSOD(soundnamesSOD sound)
{
 // New code for Android
 jni_start_sound (sound);
 return true;
}

Listing 6-18 also shows the changes required to the native sound handlers (in sd_null.c) to call the

C to Java callbacks:

• SD_PlaySoundWL6 (soundnamesWL6 sound): This is the handler for the Wolf 3D
chapter of the game. soundnamesWL6 s a C enumeration described in audiowl6.h,
which defines the IDs for sounds and music.

• SD_PlaySoundSOD (soundnamesSOD sound): This is the handler for the Spear of
Destiny (SOD) chapter of the game. soundnamesSOD s a C enumeration described in
audiosod.h which defines the IDs for sounds and music.

Finally, you are ready to compile the code and see how it works on the device. Here is how.

Compiling the Native Library
The native library (or Dynamic Shared Object - DSO) contains all the native code and interacts with the
Java side of Wolf 3D. Before we can test the game in the emulator, this library must be compiled. Here
are the steps required to do this:

1. Write a Makefile to compile the native code.

2. Generate the JNI headers required by the JNI interface.

3. Compile the native code into the dynamic shared library (DSO):
libwolf_jni.so.

4. Place the DSO under the libs/armeabi folder of the main project.

5. Start the project in the emulator.

Writing the Makefile
The Makefile for Wolf 3D uses the agcc and ald scripts for compiling and linking defined in Chapter 1.
Some interesting features of this file are described in Listing 6-19:

• Compilation: We use –wall to display all warnings and -O2 to define a level of
optimization.

• Linking: The linking step is performed by the script: ald -shared -o
libwolf_jni.so $(OBJS), where –shared tells the compiler to build a shared library
and -o defines the name of the output library (libwolf_jni.so).

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

214

• JNI Headers: The make target jni is defined to create the headers required by the
JNI interface using the javah command: javah -jni -classpath ../../bin -d
include wolf.jni.Natives. The class path must point to the location of the
compiled wolf.jni.Natives class, -d defines the directory where the output
headers will be stored, and wolf.jni.Natives is the Java class that contains the
native methods.

Listing 6-19. The Makefile for Wolf 3D

CC = agcc

All warning + Optimizations
CFLAGS = -Wall -O2

Object files
OBJS = objs.o misc.o id_ca.o id_vh.o id_us.o \
 wl_act1.o wl_act2.o wl_act3.o wl_agent.o wl_game.o \
 wl_inter.o wl_menu.o wl_play.o wl_state.o wl_text.o wl_main.o \
 wl_debug.o vi_comm.o sd_comm.o sd_null.o wl_draw.o

JNI files
JNIOBJS = jni_wolf.o vi_null.o

OBJS += $(JNIOBJS)

Main target
all: lib

Library
lib: $(OBJS) j
 ald -shared -o libwolf_jni.so $(OBJS)

.c.o:
 @echo
 $(CC) -fpic -c $(CFLAGS) $(INCLUDES) $<

Create JNI headers
jni:
 @echo "Creating JNI C headers..."
 javah -jni -classpath ../../bin -d include wolf.jni.Natives

clean:
 rm -rf *.o

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

215

Generating JNI Headers
We must generate the headers for the JNI interface before we compile the DSO. Use the Makefile to do
so:

$make jni

Note that this command must be run within the native/gp2xwolf3d folder of the chapter source.

With the JNI headers in place, we can compile the DSO as follows:

$ make

If you make changes to the native code, you might wish to test for missing symbols in the DSO by

compiling a simple test program against the library (see Listing 6-20). This is a small program that calls
the game loop. It is not meant to be run but to detect linker errors (missing symbols) in the Wolf 3D
native library.

Listing 6-20. Wolf 3D Test Program Used to Detect Linker Errors

#include <stdio.h>

void _start(int argc, char **argv) {
 int i;
 int myargc = 4;

 // wolf, wolfsw, sodemo, sod, sodm2, sodm3
 char * myargv[] = {"wolf3d", "wolfsw", "basedir" , "/data/wolf/"};

 for (i = 0 ; i < myargc; i++)
 printf("argv[%d]=%s\n", i, myargv[i]);

 wolf_main(myargc, myargv);
 exit(0);
}

$ agcc -c test.c
$ ald -o testwolf -L. -lwolf_jni

Testing Wolf 3D in the Emulator
Let’s play Wolf 3D in the emulator. Make sure to do this sanity check first: the native library is critical
and must be placed in the libs/armeabi folder of the main project (as shown in Figure 6-8). At runtime,
the library will be loaded and cached to the right location in the device.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

216

Figure 6-8. Launch properties for Wolf 3D

■ Tip If the library is not placed properly, the Java system call System.loadLibrary() will fail with an
UnsatisfiedLinkError.

To create a launch configuration for Wolf 3D:

1. Click Run ➤ Run Configuration.

2. Right-click the Android Application on the left menu, and click New.

3. Enter a name: Wolf. Select the corresponding project: ch06.Wolf3D.SW. Click
Run.

Take a look at the log messages from the device to make sure everything works (see Listing 6-21).
This can be seen from the LogCat view of the Eclipse IDE.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

217

Listing 6-21. Log Messages from Wolf 3D

08-21 18:12:50.823: DEBUG/WolfTools(710): Installing game wolfsw.zip in
/data/data/game.wolfsw/files
08-21 18:12:53.653: DEBUG/Wolf3D(710): Start game base dir: /data/data/game.wolfsw/files/
 game=wolfsw port:true
08-21 18:12:53.663: DEBUG/Wolf3D(710): Loading JNI librray from wolf_jni
08-21 18:12:53.697: DEBUG/LibLoader(710): Trying to load library wolf_jni from LD_PATH:
 /system/lib
08-21 18:12:53.704: DEBUG/dalvikvm(710): Trying to load lib /data/data/game.wolfsw/lib/
libwolf_jni.so 0x43596e78
08-21 18:12:54.034: DEBUG/dalvikvm(710): Added shared lib /data/data/game.wolfsw/lib/
libwolf_jni.so 0x43596e78
08-21 18:12:55.305: INFO/System.out(710): ** Wolf Message: WolfMain args[4]=wolf3d
08-21 18:12:55.305: INFO/System.out(710): ** Wolf Message: WolfMain args[4]=wolfsw
08-21 18:12:55.314: INFO/System.out(710): ** Wolf Message: WolfMain args[4]=basedir
08-21 18:12:55.354: INFO/System.out(710): ** Wolf Message: WolfMain args[4]=/data/data/
game.wolfsw/files/
08-21 18:12:55.465: INFO/System.out(710): ** Wolf Message: Now Loading Wolfenstein 3D Plus
 basedir /data/data/game.wolfsw/files/
08-21 18:12:55.515: INFO/System.out(710): ** Wolf Message: You Chose Shareware Wolf3D
08-21 18:12:55.766: INFO/ActivityManager(580): Displayed activity game.wolfsw/
.WolfLauncher: 8499 ms
08-21 18:12:56.463: INFO/System.out(710): ** Wolf Message: VL_Startup 320x200. Calling
 init graphics.
08-21 18:12:56.514: DEBUG/Wolf3D(710): OnInitGraphics creating Bitmap of 320 by 200

The first line shows the game files being installed in /data/data/game.wolfsw/files. Note that
without these data files the game will crash. The next lines show the native library being successfully
loaded by the Java VM:

Trying to load lib /data/data/game.wolfsw/lib/libwolf_jni.so 0x43596e78
Added shared lib /data/data/game.wolfsw/lib/libwolf_jni.so 0x43596e78

At this point, the game should start successfully, and you should be able to use the controller

buttons (or the keyboard if you wish) to play Wolfenstein 3D in your Android device (see Figure 6-9).
Enjoy!

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

218

Figure 6-9. Wolf 3D in action on the emulator

What’s Next?
Who would have thought that the PC version of Wolf 3D could ever be run on a mobile device? In this
chapter, you have learned how this can be accomplished by embracing the power of two great
languages: Java and C. Specifically, we covered the basic game architecture and how the following Java
and C components—the main activity, audio, JNI interface, and native code—fit together. Next, we
looked at the Java layer that controls the interaction with the device including:

• The game launcher activity: It contains the UI layout and the device event listeners
for keyboard or touch events.

• Game loop: It contains the user-defined thread that loads the native library and
starts the native game loop.

• Sound and music handlers: They receive notifications from the native layer when
sound or background music should be started.

• Movement controller handlers: They control movement events using a UI-based
game pad useful for phones that have no keyboard.

CHAPTER 6 ■ 3D SHOOTERS EPISODE I: WOLFENSTEIN 3D FOR ANDROID

219

• Sound classes: They work in concert with the sound and music handlers to provide
high quality sound to the game.

• Native interface class: It contains the native method implementations that allow
the Java code to talk to the C code, plus C-to-Java callbacks for communication in
the opposite direction.

Next, we looked at the native code where we made simple changes to the original C code to insert C
to Java callbacks. These callbacks are used as part of the JNI layer to cascade graphics information, video
buffers, and sound/music requests back to Java. Finally, we looked at compilation and testing. Here, we
covered the Makefile required for building the DSO as well as how to set up the game project file system
for testing on the emulator.

In the next chapter, we continue with 3D shooters by looking at the next great PC shooter, Doom.
That chapter will show you how easy it is to bring this complex game for the PC to Android in record
time with minimal changes.

C H A P T E R 7

■ ■ ■

221

3D Shooters Episode II:
Doom for Android

This chapter looks at another great game for the PC: Doom. Doom came along shortly after Wolfenstein
3D and put id Software at the lead of the pack in 3D graphics gaming for the PC. In this chapter, you’ll
learn how to bring the open source Doom engine (PrBoom) to the Android platform.

The chapter starts with fun facts about Doom itself, which will help you understand the breadth of
this project. Bringing a PC game to a mobile device with little change to the original code is a difficult
task. As you can probably tell from reading the previous chapters, I embrace the Java/C power combo for
maximum performance.

Next, we dig into the game itself, which is divided into two big layers: Java and native. This makes
sense, as the game is a mix of original C wrapped in Java code. In the Java layer are classes for the main
activity, audio, and JNI interface (what I call the native interface class). The native layer has the native
method implementations (using JNI) plus changes to the original C code. The latter is required to glue
both layers together and requires less then 50 lines of new code (I consider this to be the most difficult to
follow, as there are close to 80,000 lines of original C code, but I will explain the new C code as clearly as
possible.)

Finally, we get to compilation, deployment, and playing Doom in the emulator! You will learn
awesome tips for native library compilation—a subject that is obscure to the average Java developer.

This is a long a complex chapter, and I have tried my best to make it as simple and clean as possible.
For the sake of simplicity, I have omitted some of the lengthier code. Even so, there are some big listings
throughout this chapter and a lot of things to cover. To make the most of this chapter, you should grab
the chapter source distributed with this book. The project has been built with Eclipse Galileo and can be
imported into your workspace. The source will help you to understand the layout of the resources as you
read through the chapter.

The Sky Is the Limit with the Java/C Power Combo
The goal here is not to try to explain how the game itself works (that would take a complete book), but to
show the kinds of things that can be accomplished by combining the elegant object-oriented features of
Java with the raw power of C. Most Java developers dismiss procedural languages like C, failing to see
what can be accomplished when this duo coexists harmoniously. The trick is to find the right balance
that combines the best of both worlds to solve a complex task with minimal time and effort. Here, you
will learn how a task that would take a team of Java developers possibly months to complete can be done
in a matter of days by someone who understands that object-oriented and procedural languages are not
enemies, but simply pieces of the same puzzle.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

222

Consider Tables 7-1 and 7-2. They show the total number of lines of new Java code, plus the number
of lines inserted in the existing C code in Doom for Android.

Table 7-1. Estimated Number of Lines for Java Files of Doom for Android

File Description Lines of Code

DoomClient.java Main game activity 700

DialogTool.java Methods to create help dialogs 300

DoomTools.java Miscellaneous helper subs 450

GameFileDownloader.java A class to install game files to the SD card 180

WebDownload.java Web download tool 200

AudioManager.java Singleton for audio management 200

AudioClip.java Wrapper for Android MediaPlayer to play sounds 110

Table 7-2. Estimated Number of Lines Changed from the Original Doom C Code

File Description Lines of Code

jni_doom.c (new) Implementation of the JNI native methods plus C to Java callbacks 450

i_sound.c C to Java callbacks to send sound events to Java 3

s_sound.c C to Java callbacks to send sound events to Java 6

i_video.c C to Java callbacks to send video events to Java 10

Here’s the rundown of the estimated totals:

• Total number of lines of new Java Code = 2140

• Total number of lines of original C code = 80,000

• Total number of lines of new C code = 469

The bottom line? One developer has managed to reuse about 80,000 lines of C code, thus bringing a

PC game to Android with a few thousand lines of new code in a couple of days. Imagine the potential
savings in development costs and time. Now compare this to a team of three developers trying to port
the 80,000 lines of raw C to pure Java. It would probably take them months of head-pounding work with
no financial gain (as the code is open sourced). This simply makes no sense. I hope that at this point you
understand why this chapter is my personal favorite and a must-read for the aspiring Android game
developer. So get the source code for the chapter, and let’s get started.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

223

Bringing Doom to a Mobile Device
After working on Wolfenstein 3D for Android, I was so excited that I decided my next challenge would be
to bring the great game Doom to the platform. But I had my doubts that this could even be achieved
once I looked at the complexity and the amount of original C code. Listing 7-1 shows a portion of the
total number of lines of C code of the popular Doom engine PrBoom (available from
http://prboom.sourceforge.net/).

I knew I had two choices for this project:

• Port the C code line by line to Java. I even started porting a few files to Java. Believe
me when I say that this is not a good idea. The amount of time that it would take to
do this makes the project unfeasible, especially considering that the hard work
must be done pro bono.

• Find a way to pack the game as a dynamic shared object (DSO) and call it from Java
using JNI. This option seems to be simpler and quicker, but requires expert knowledge
of C and JNI, as well as changes to the original game to glue both languages together.

Given these two options, the latter is the best approach to the problem, so I decided to build a DSO
and glue it to Java with JNI.

Listing 7-1. Portion of Code for the PrBoom Doom Engine (Approximately 90,000 Lines in Total)

$ wc –l *.c
 1585 am_map.c
 554 d_client.c
 3093 d_deh.c
 140 d_items.c
 1744 d_main.c
 759 d_server.c
 48 doomdef.c
 108 doomstat.c
 85 dstrings.c
 668 f_finale.c
 202 f_wipe.c
 2979 g_game.c
 2717 gl_main.c
 957 gl_texture.c
 767 hu_lib.c
 1593 hu_stuff.c
 866 mmus2mid.c
 467 p_ceilng.c
// …
 450 r_fps.c
 649 r_main.c
 788 r_patch.c
 468 r_plane.c
 854 r_segs.c
 56 r_sky.c
 1077 r_things.c
 714 s_sound.c

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

224

 245 sounds.c
 374 st_lib.c
 1160 st_stuff.c
 128 tables.c
 1037 v_video.c
 38 version.c
 166 w_memcache.c
 335 w_mmap.c
 476 w_wad.c
 1968 wi_stuff.c
 123 z_bmalloc.c
 705 z_zone.c
 73176 total

$ wc –l *.h
 111 am_map.h
 209 config.h
 1118 d_deh.h
 707 d_englsh.h
 125 d_event.h
 59 d_items.h
 82 d_main.h
 214 d_net.h
 234 d_player.h
 94 d_think.h
 59 d_ticcmd.h
 204 doomdata.h
// …
 64 r_bsp.h
 109 r_data.h
 428 r_defs.h
 45 r_demo.h
 163 r_draw.h
 174 r_filter.h
 100 s_sound.h
 305 sounds.h
 209 st_lib.h
 102 st_stuff.h
 93 tables.h
 207 v_video.h
 40 version.h
 146 w_wad.h
 64 wi_stuff.h
 52 z_bmalloc.h
 131 z_zone.h
 13460 total

As I’ve noted, I chose to use the PrBoom Doom engine. Even though the game was created by

id Software and released under the GNU license in 1993 (see http://en.wikipedia.org/wiki/
Doom_(video_game)), there are many Doom engines out there. I did try a few engines before settling on
PrBoom.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

225

The first engine I tried was the original code from id Software—after all, it is the original creator. But
I had a lot of trouble with id Software’s Linux implementation of the game, due to two main issues:

• Color palette: The Linux flavor supports an 8-bit color palette, which looks pretty
bad on 32-bit machines. This code was written for old machines (it has not been
updated for a long time). There should be a more modern implementation out
there.

• Sine and cosine tables: These are used for ray casting. I had many compiler
idiosyncrasies (using the CodeSourcery GCC 4.3.x compiler) where these tables,
which have hard-coded values, were not filled in correctly, making sprites go
through walls or move in the wrong way and creating many other display
problems.

PrBoom is a modern Doom engine. It is highly portable, although it is much bigger than the original
game. I found it to be the best choice due to the plethora of platforms it has been ported to and the
powerful support available for it from the developer community.

Game Architecture for Doom
Doom’s game architecture is a bit similar to the architecture of Wolfenstein 3D. When the user starts the
game, the main activity org.doom.DoomClient will start (see Figure 7-1). This activity is bound to the other
pieces in the following manner:

• The main activity is bound to the device UI through an XML layout (doom.xml).
This layout defines an image buffer used to display the graphics and a set of
controller buttons for navigation (see the “Game Layout” section for details).

• The Doom engine is written in C and compiled as a DSO (libdoom_jni.so). All
communication with the DSO goes through the JNI layer (or native interface class
Natives.java). Events are cascaded back to the main activity, which dispatches
them to their respective handler. Game files are read from the SD card by the DSO,
which handles all game aspects except sound.

• Sound requests are delegated by the native library to the native interface class to
the main activity, and finally to the sound classes, which play them using the
Android MediaPlayer.

• Video buffers (pixels) are cascaded by the native library to the native interface
class to the main activity, which renders them into the ImageView of the layout
XML.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

226

Figure 7-1. Doom for Android architecture

This process continues in an endless loop, where key and touch events are dispatched back to the
DSO, which updates the game accordingly.

The game is composed of the following Java packages:

• org.doom: This is the main game package and contains the main activity
DoomClient.java. This class controls the application life cycle and the key and
touch events, dispatches sound and music requests to the audio classes, and
dispatches user events to the DSO through the native interface class.

• doom.audio: This package contains the audio classes AudioManager and AudioClip.

• AudioManager: This class is in charge of playing sounds and background
music using AudioClip. It also caches sounds for better performance.

• AudioClip.java: This class is capable of playing, stopping, and looping a
sound using the Android MediaPlayer. Sound files use the WAVE format.

• doom.jni: This JNI package contains the native interface class Natives.java. This
class is a two-way pipe for all access with the DSO. This includes native Java
methods and C to Java callbacks.

• doom.util: This package contains the following utility classes:

• DialogTool.java: This class contains miscellaneous dialogs to start the
game and install shareware game files, message boxes, and other items.

• DoomTools.java: This class contains basic game constants and commonly
used subroutines.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

227

• GameFileDownloader.java: This class is capable of downloading shareware
game files from the Internet into the SD card.

• LibraryLoader.java: This class loads the DSO, which is required before the
native methods can be invoked.

• WebDownload.java: This is a web download tool used by the
GameFileDownloader class.

Again, before we look at these components in more detail, make sure you have the chapter code at
hand; most of the listings have been stripped down for simplicity.

Java Main Activity
The main activity class is invoked when the user starts the game and controls the life cycle of the
application. In Doom, this life cycle is handled by the following:

• Creation handler: This handler is implemented by onCreate and it is called when
the activity is first created. It sets the UI layout XML (doom.xml) and initializes the
game.

• Menu handlers: Here, we have onCreateOptionsMenu and onOptionsItemSelected.
The first method creates the game menu, and the latter processes the menu when
the user selects an option.

• Key and touch handlers: These methods receive key and touch events and dispatch
them to the right JNI component.

• Native callback handlers: These methods receive video and sound updates from
the native interface and dispatch them.

• Controller toolbar: The controller toolbar is a set of image buttons displayed at the
bottom of the screen for navigation. It is helpful for devices that do not have a
keyboard.

Creation Handler
The creation handler is defined by onCreate (see Listing 7-2). For Doom, this method performs the
following steps:

• Sets the display to full screen and hides the title

• Sets the content view layout to R.layout.doom, which maps to doom.xml

• Gets a reference to the video buffer (R.id.doom_iv), which will be used to display
the pixels sent by the DSO

• Sets the navigation controls

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

228

Listing 7-2. Main Activity Life Cycle

public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Full screen
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);

 // No title
 requestWindowFeature(Window.FEATURE_NO_TITLE);

 setContentView(R.layout.doom);

 mView = (ImageView)findViewById(R.id.doom_iv);

 if (mGameStarted) {
 setGameUI();
 setupPanControls();
 return;
 }

 // Pan controls
 setupPanControls();

}

onCreate is the very first function called when the game starts, and it is called only once while the

application is in memory. Next, let’s look at the game layout loaded by this function.

Game Layout
GUIs in Android are defined by XML layouts, where visual components are placed in a variety of layout
schemes. Doom’s layout (doom.xml) is a relative layout, which has widgets placed relative to each other
(meaning they can overlap depending on the widget size). The master layout contains an image view
and two table layouts.

In Android, an image view encapsulates an array of pixels representing an image. The great thing
about image views is that they have efficient automatic resize capabilities. This will allow the game to be
resized on the fly!

The two table layouts are for the navigation controls (see Figure 7-2). The first table layout defines a
three-row table that contains image buttons for up, down, left, and right navigation. The second table
layout is a one-row table that contains buttons for the level map, object pick up, and strafing left and
right.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

229

Figure 7-2. Doom displaying the game layout

Listing 7-3 shows Doom’s relative layout XML. The most important attributes are explained in Table 7-3.

Table 7-3. Main Attributes of doom.xml

Attribute Meaning

android:id="@+id/doom_iv" Defines the ID of the widget, which can be used for
programmatic access. The format must be @+id/NAME.

android:layout_width="fill_parent" Defines the width of the widget. The values can be
fill_parent or wrap_content.

android:focusableInTouchMode="true" Specifies that the widget should be focusable and receive
touch events from the main activity.

android:focusable="true" Specifies that the widget should be focusable and receive
key events from the main activity.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

230

Table 7-3. Main Attributes of doom.xml (continued)

Attribute Meaning

android:src="@drawable/up" Defines the bitmap source of the widget (applies to image
view only). The format is @drawable/NAME, where NAME is
the bitmap filename saved under the res/drawable folder
of the project.

android:layout_alignParentBottom="true" Tells the relative layout to align the widget to the bottom
of the parent, possibly overlapping other widgets.

android:layout_alignParentLeft="true" Tells the relative layout to align the widget to the left of
the parent, possibly overlapping other widgets.

android:visibility="gone" Sets the visibility of the widget. Possible values are
visible or gone (indicates the widget occupies no space).

Listing 7-3. Doom Game UI layout doom.xml

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 >

 <!-- GAME IMAGE -->
 <ImageView android:id="@+id/doom_iv"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:adjustViewBounds="true"
 android:visibility="visible"
 android:background="@drawable/doom"
 android:focusableInTouchMode="true"
 android:focusable="true"/>

 <!-- Nav Controls -->
 <TableLayout android:id="@+id/pan_ctls"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 android:layout_alignParentLeft="true"
 android:visibility="gone"
 android:focusable="false"
 android:focusableInTouchMode="false">

 <TableRow>
 <ImageButton android:id="@+id/btn_upleft"

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

231

 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:background="#00000000"
 android:layout_margin="0px"
 android:src="@drawable/blank"
 />
 <ImageButton android:id="@+id/btn_up"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/up"
 android:background="#00000000"
 android:layout_margin="0px"
 />
 <ImageButton android:id="@+id/btn_upright"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:src="@drawable/blank"
 android:background="#00000000"
 android:layout_margin="0px"
 />
 </TableRow>
 </TableLayout>

 <!-- Other controls: Map, Open, strafe -->
 <!-- This XML has been removed for simplicity
 <!-- See the file doom.xml for details -->
</RelativeLayout>

Once the GUI is all set, the next step is to provide a menu and handlers for the application.

Menu and Selection Handlers
The application menu can be easily defined by overriding the following methods:

• onCreateOptionsMenu(Menu menu): Override this method to add items to the menu.
To do this, use menu.add(groupId, itemId, order, Menu Label), where groupId is
the ID of the group for this item. This can be used to define groups of items for
batch state changes. itemId is the unique item ID. order is the order for the item.

• onOptionsItemSelected(MenuItem item): Override this method to process menu
selections. The item selected can be obtained with item.getItemId().

The following menus are defined for Doom (see Listing 7-4):

• Start, to run the native game loop

• Install Game, to download and install game files

• Navigation, to switch the navigation controls between the keyboard and touch
screen

• Exit, to quit the application

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

232

Listing 7-4. Game Menu and Selection

public boolean onCreateOptionsMenu(Menu menu) {
 super.onCreateOptionsMenu(menu);
 menu.add(0, 0, 0, "Start").setIcon(R.drawable.icon);
 menu.add(0, 2, 2, "Install Game").setIcon(R.drawable.install);
 menu.add(0, 3, 3, "Navigation").setIcon(R.drawable.nav);
 menu.add(0, 6, 6, "Exit").setIcon(R.drawable.exit);
 return true;
}

/**
 * Menu selection
 */
public boolean onOptionsItemSelected(MenuItem item) {
 super.onOptionsItemSelected(item);
 switch (item.getItemId()) {
 case 0:
 if (mGameStarted) {
 MessageBox("Game already in progress.");
 return true;
 }
 mMultiPlayer = false;
 showLauncherDialog(this, mMultiPlayer);

 return true;
 case 2:
 if (mGameStarted) {
 MessageBox("Can't install while game in progress.");
 return true;
 }

 // SD card required
 if (! DoomTools.checkSDCard(this)) return true;

 // Download Game file
 DialogTool.showDownloadDialog(this);
 return true;

 case 3:
 DialogTool.showNavMethodDialog(this);
 return true;

 case 6:
 // Exit
 DoomTools.hardExit(0);
 return true;

 }
 return false;
}

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

233

Key and Touch Event Handlers
Key and touch handlers can be overridden to process key and touch events. Doom handles key and
touch events as follows (see Listing 7-5):

• The Android keyCode is first translated to an ASCII key symbol by calling int sym =
DoomTools.keyCodeToKeySym(keyCode).

• The ASCII symbol is the sent to the DSO through the native interface class
Natives.keyEvent(EVENT_TYPE, SYMBOL), where the event type must be either
Natives.EV_KEYUP or Natives.EV_KEYDOWN. Note that any errors in the native side
(such as a missing symbol or invalid signature) will throw an
UnsatisfiedLinkError.

Listing 7-5. Key and Touch Handlers

public boolean onKeyUp(int keyCode, KeyEvent event) {
 //
 if (keyCode == KeyEvent.KEYCODE_MENU) {
 return false;
 }

 int sym = DoomTools.keyCodeToKeySym(keyCode);

 try {
 Natives.keyEvent(Natives.EV_KEYUP, sym);

 } catch (UnsatisfiedLinkError e) {
 // Should not happen
 Log.e(TAG, e.toString());
 }
 return false;
}

public boolean onKeyDown(int keyCode, KeyEvent event) {
 // Ignore menu key
 if (keyCode == KeyEvent.KEYCODE_MENU) {
 return false;
 }

 int sym = DoomTools.keyCodeToKeySym(keyCode);

 try {
 Natives.keyEvent(Natives.EV_KEYDOWN, sym);
 }
 catch (UnsatisfiedLinkError e) {
 // Should not happen
 Log.e(TAG, e.toString());
 }
 return false;
}

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

234

public boolean onTouchEvent(MotionEvent event)
{

 try {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 // Fire on tap R-CTL
 Natives.keyEvent(Natives.EV_KEYDOWN, DoomTools.KEY_RCTL);
 }
 else if (event.getAction() == MotionEvent.ACTION_UP) {
 Natives.keyEvent(Natives.EV_KEYUP, DoomTools.KEY_RCTL);
 }
 else if (event.getAction() == MotionEvent.ACTION_MOVE) {
 // Motion event
 }
 return true;
 }
 catch (UnsatisfiedLinkError e) {
 // Should not happen!
 Log.e(TAG, e.toString());
 return false;
 }
}

For touch events, Android provides three actions: ACTION_DOWN, ACTION_UP, and ACTION_MOVE, when

the user is pressing, releasing, and dragging fingers in the device screen, respectively. When a finger
press or release occurs, Doom will send a right control (KEY_RCTL) to the native layer, which will result in
the weapon being fired.

Native Callback Handlers
The native callback handlers are implemented by the main activity (DoomClient.java) via the
Natives.EventListener interface. This allows the activity to listen for native callbacks. The handlers are
divided in the following categories:

• Graphics initialization: This handler receives information when the native
graphics have been initialized. It receives the width and height of the video buffer.

• Image update: This handler receives video buffer updates and fires multiple times
per second.

• Message update: This handler receives string messages from the native rendering
engine.

• Fatal errors: This handler will fire whenever an unrecoverable error occurs.

• Sound and music requests: A series of handlers handle audio.

Graphics Initialization Handler
The graphics initialization handler is critical and must be the first to fire before the game can start. It
receives the width and height of the video buffer, which are used to create the Android bitmap that

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

235

renders the video on the device (see Listing 7-6). To create a 32-bit ARGB bitmap in Android, you use the
following call:

Bitmap.createBitmap(width, height, Config.ARGB_8888)

Config.ARGB_8888 tells the system you wish to use a 4-byte (32-bit) ARGB bitmap. You will use this

bitmap to set pixels for the video in later sections. Note that this callback fires only once during the
lifetime of the game. To set the width and height of the video buffer ImageView, use a call to
ImageView.getLayoutParams().

Listing 7-6. Graphics Initialization

public void OnInitGraphics(int w, int h) {
 Log.d(TAG, "OnInitGraphics creating Bitmap of " + w + " by " + h);
 mBitmap = Bitmap.createBitmap(w, h, Config.ARGB_8888);
 LayoutParams lp = mView.getLayoutParams();
 mWidth = w;
 mHeight = h;
 lp.width = w;
 lp.height = h;
}

Image Update Handler
The image update handler receives an array of ARGB packed pixels representing a color (see Listing 7-7).
It fires multiple times per second, and its job is to replace pixels in the bitmap with the colors in the array
by calling the following method:

mBitmap.setPixels(pixels, offset, stride, x, y, width, height)

Here, the arguments are as follows:

• pixels is the colors to write to the bitmap.

• offset is the index of the first color to read from pixels[].

• stride is the number of colors in pixels[] to skip between rows (normally, this
value will be the same as the width of the bitmap.

• x is the x coordinate of the first pixel to write to in the bitmap.

• y is the y coordinate of the first pixel to write to in the bitmap.

• width is the number of colors to copy from pixels[] per row.

• height is the number of rows to write to the bitmap.

Listing 7-7. Image Update Handler

public void OnImageUpdate(int[] pixels) {
 mBitmap.setPixels(pixels, 0, mWidth, 0, 0, mWidth, mHeight);

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

236

 mHandler.post(new Runnable() {
 public void run() {
 mView.setImageBitmap(mBitmap);
 }
 });
}

Note that because this handler fires from a non-UI thread, you cannot set the pixels directly into the

ImageView, but must use an android.os.Handler to post a Runnable to the message queue:

 Handler.post(new Runnable() {
 public void run() {
 // Code that updates the UI goes here
 }
 });

■ Note A handler allows you to send and process message and runnable objects associated with a thread's
message queue. Each handler instance is associated with a single thread and that thread's message queue. When
you create a new handler, it is bound to the thread and message queue of the thread that is creating it. Always use
a handler when updating UI widgets from a non-UI thread!

Message Updates
The message updates handler receives native messages, which are very helpful for debugging. Listing 7-8
shows this handler, which logs the text to the Android console.

Listing 7-8. Message Update Handler

/**
 * Fires on DSO message
 */
public void OnMessage(String text, int level) {
 Log.d(TAG, "**Doom Message: " + text);
}

Fatal Error Handler
The fatal error handler deals with unrecoverable errors. This means displaying a message to the user and
exiting gracefully. There are many things that can cause unrecoverable errors, such as code bugs,
corrupted game files, I/O errors, and network failures.

Listing 7-9 shows the way Doom deals with this situation. It uses a message handler to display a
message box to the user (remember that this method fires from a non-UI thread, where all UI widget
access must go through an OS handler). It then waits for a while so the user can read the message, and
finally exits gracefully.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

237

Listing 7-9. Fatal Error Handler

public void OnFatalError(final String text) {
 mHandler.post(new Runnable() {
 public void run() {
 MessageBox("Fatal Error",
 text + " - Please report this error.");
 }
 });

 // Wait for the user to read the box
 try {
 Thread.sleep(8000);
 } catch (InterruptedException e) {

 }
 // Must quit here or the LIB will crash
 DoomTools.hardExit(-1);
}

Audio Request Handlers
The native Doom engine cannot access the sound device directly. This is due to the nonstandard audio
library used by Android (Enhanced Audio System, EAS, by SoniVOX). To overcome this very serious
limitation, audio requests are cascaded back to these handlers, which start sound events at a given
volume, start and stop background music events, and set the background music.

Listing 7-10 shows the audio handlers for Doom. Note that all requests are delegated to the
doom.audio.AudioManager class, which deals with the Android audio system.

Listing 7-10. Sound and Music Handlers

public void OnStartSound(String name, int vol)
{
 if (mSound && mAudioMgr == null)
 Log.e(TAG, "Bug: Audio Mgr is NULL but sound is enabled!");

 try {
 if (mSound && mAudioMgr != null)
 mAudioMgr.startSound(name, vol);

 } catch (Exception e) {
 Log.e(TAG, "OnStartSound: " + e.toString());
 }
}

/**
 * Fires on background music
 */
public void OnStartMusic(String name, int loop) {
 if (mSound && mAudioMgr != null)

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

238

 mAudioMgr.startMusic(DoomClient.this, name, loop);
}

/**
 * Stop bg music
 */
public void OnStopMusic(String name) {
 if (mSound && mAudioMgr != null)
 mAudioMgr.stopMusic(name);
}

public void OnSetMusicVolume(int volume) {
 if (mSound && mAudioMgr != null)
 mAudioMgr.setMusicVolume(volume);
}

■ Note Even though cascading audio in this way will make the game slower, it will provide high-quality sound to
the game. I believe it is a mistake by Google not to support open audio standards, such as the Advanced Linux
Sound Architecture (ALSA). After all, Android itself is built on open source foundations. This will hamper porting
efforts of thousands of native games out there.

Navigation Controls
Android devices feature a trackball, which is cumbersome for mobile games. In fact, most gaming
devices, such as PlayStation Portable (PSP) and Game Boy, feature multiple keypad arrows, which are
great for navigation. On the plus side, the QWERTY keyboard is helpful for PC games. But the latest
Android devices have neither a keyboard nor a trackball. Here is where the navigation controls can help.
Figure 7-3 shows the navigation controls in action during a game.

Figure 7-3. Navigation controls for Doom

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

239

The controls themselves are implemented as image buttons within the game layout (see the “Game
Layout” section). The RelativeLayout of the game allows the controls to overlap the video ImageView, as
shown in Figure 7-3. To set up events for the buttons, simply load the button widget using its ID and set
a touch listener:

findViewById(R.id.BUTTON_ID).setOnTouchListener(new View.OnTouchListener(){
 public boolean onTouch(View v, MotionEvent evt) {
 // ACTION_DOWN or ACTION_UP
 int action = evt.getAction();
 // …
 }
});

Depending on the touch event action, ACTION_DOWN or ACTION_UP, you simply send a key event to the

native layer with the following code:

public static void sendNativeKeyEvent (int type, int sym) {
 try {
 Natives.keyEvent(type, sym);
 } catch (UnsatisfiedLinkError e) {
 Log.e(TAG, e.toString());
 }
}

Listing 7-11 shows the setupPanControls function for the up, down, left, and right buttons of the

Doom controller.

Listing 7-11. Controller Event Setup

private void setupPanControls() {
 // Up
 findViewById(R.id.btn_up).setOnTouchListener(
 new View.OnTouchListener(){
 public boolean onTouch(View v, MotionEvent evt) {
 int action = evt.getAction();
 if (action == MotionEvent.ACTION_DOWN) {
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN
 , DoomTools.KEY_UPARROW);
 }
 else if (action == MotionEvent.ACTION_UP) {
 Natives.sendNativeKeyEvent(Natives.EV_KEYUP
 , DoomTools.KEY_UPARROW);
 }
 return true;
 }
 });

 // Down
 findViewById(R.id.btn_down).setOnTouchListener(
 new View.OnTouchListener(){
 public boolean onTouch(View v, MotionEvent evt) {

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

240

 int action = evt.getAction();
 if (action == MotionEvent.ACTION_DOWN) {
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN
 , DoomTools.KEY_DOWNARROW);
 }
 else if (action == MotionEvent.ACTION_UP) {
 Natives.sendNativeKeyEvent(Natives.EV_KEYUP
 , DoomTools.KEY_DOWNARROW);
 }
 return true;
 }
 });

 // Right
 findViewById(R.id.btn_right).setOnTouchListener(
 new View.OnTouchListener(){
 public boolean onTouch(View v, MotionEvent evt) {
 int action = evt.getAction();
 if (action == MotionEvent.ACTION_DOWN) {
 Natives.sendNativeKeyEvent(Natives.EV_KEYDOWN
 , DoomTools.KEY_RIGHTARROW);
 }
 else if (action == MotionEvent.ACTION_UP) {
 Natives.sendNativeKeyEvent(Natives.EV_KEYUP
 , DoomTools.KEY_RIGHTARROW);
 }
 return true;
 }
 });

 // More ...
}

Audio Classes
The audio classes are implemented in the package doom.audio and consist of two files: AudioManager and
AudioClip.

AudioManager is a singleton class very similar to the AudioManager class presented in the previous
chapter. Some of the method signatures are different to accommodate the Doom engine:

• preloadSounds(): This method preloads the most common Doom sounds to
improve performance. Sounds are encoded in WAVE format.

• startSound(String name, int vol): This method starts the sound given by a
name key at volume vol. The key does not include the file extension, and the
volume ranges from 0 to 100.

• startMusic (Context ctx, String key, int loop): This method starts a
background music file given by key and loops if loop is set to anything other
than 0. An Android context is required by the background AudioClip.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

241

• stopMusic (String key): This method stops the background music given by key.

• setMusicVolume (int vol): This method sets the background music volume. vol
ranges from 0 to 100.

The AudioClip class is the same as Wolfenstein 3D’s AudioClip (shown in the previous chapter). The
only difference is that the package has been renamed.

Because the audio files (including background music) can occupy more than 5MB, files have been
packed in a zip archive and installed at runtime into the SD card. This will save precious disk space in
the main file system. The zip archive lives in the assets folder of the Doom project.

■ Tip Android features an automated media scanner service that searches for audio files within the file system.
This can be really annoying, as your media player will suddenly display a few hundred unwanted Doom sounds
and music. You can fix the problem by adding an empty file called .nomedia to the sound folder. This will tell the
media scanner to bypass this directory.

Native Interface Class
The native interface class is the two-way pipe that sends messages from Java to the Doom engine
through native methods, and from the engine to Java using C to Java callbacks (see Listing 7-12). This
class consists of three parts: callback listener, native methods, and C to Java callbacks.

Callback Listener
The callback listener is implemented by the interface EventListener. It must be implemented by clients
that wish to receive C to Java callbacks (in this case, by the main activity DoomClient.java). The C to Java
callbacks are as follows:

• OnMessage(String text, int level): This is mostly a debug callback that sends
messages to let Java know what is happening on the native side.

• OnInitGraphics(int w, int h): This is the very first callback and fires only once
after graphics initialization. It tells Java the width and height of the video buffer.

• OnImageUpdate(int[] pixels): This fires many times per second and sends an
Android packed video buffer to Java, which will use it to render the game bitmap.

• OnFatalError(String text): This callback fires when there is an unrecoverable
error in the engine. The receiver should display the message and terminate.

• OnQuit(int code): This callback fires when the user exits the game. It sends a
return code back to the receiver.

• OnStartSound(String name, int vol): This fires when the native engine starts a
sound. It delegates to the receiver.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

242

• OnStartMusic(String name, int loop): This fires on background music. It
delegates to the receiver.

• OnStopMusic(String name): This fires on stop music background. It delegates to
the receiver.

• OnSetMusicVolume(int volume): This fires when the user sets the music volume. It
delegates to the receiver.

Native Methods
The native methods invoke the native Doom engine. There are three basic native methods:

• static native int DoomMain(String[] argv): This method invokes the main
game loop of the Doom engine.

• static native int keyEvent(int type, int key): This method sends a key event
to the engine. The event type is either EV_KEYDOWN or EV_KEYUP. The argument key
must be an ASCII symbol, not an Android key code. This means the key code must
be translated before being sent to the engine.

• static native int motionEvent(int b, int x, int y): This method sends a
motion event to the engine (such as when the user drags a finger on the display).
The first argument is a mouse button (always zero in this case), plus the x and y
coordinates of the event itself.

static native int DoomMain(String[] argv) requires a list or arguments and blocks execution, so
it must be run within a thread. The following are the most important arguments:

• width defines the width of the video buffer.

• height defines the height of the video buffer.

• iwad defines the game to be played. The following game files are supported by the
engine:

• doom1.wad: This is the shareware episode of Doom.

• doom.wad: This is the retail episode.

• doom2.wad: This is the second episode in the Doom series.

• plutonia.wad: This is the Plutonia Experiment episode, part of the Ultimate
Doom series.

• tnt.wad: This is an episode dubbed Evilution, also part of the ultimate
Doom series.

• file defines extra game files to be used by the engine.

For example, to play Doom shareware in landscape mode, the list arguments that must be sent to
DoomMain (as a String array) would be doom -width 480 -height 320 -iwad doom1.wad.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

243

C to Java Callbacks
C to Java callbacks are used to delegate engine messages to the listener activity. To do so, the native
interface class uses a private listener and a static setter method:

private static EventListener listener;
public static void setListener(EventListener l) {
 listener = l;
}

Note that there can be only one listener. When the Doom engine sends a message (such as have

some text), the native interface class simply delegates to the listener, which deals with the event:

private static void OnMessage(String text, int level) {
 if (listener != null)
 listener.OnMessage(text, level);
}

In the preceding example, the engine is saying “have some text,” along with an integer log level. The

rest of callbacks are shown in Listing 7-12.

Listing 7-12. Native Interface Class (Natives.java)

package doom.jni;

import android.util.Log;

public class Natives {
 public static final String TAG = "Natives";

 private static EventListener listener;

 public static final int EV_KEYDOWN = 0;
 public static final int EV_KEYUP = 1;
 public static final int EV_MOUSE = 2;

 public static interface EventListener {
 void OnMessage(String text, int level);
 void OnInitGraphics(int w, int h);
 void OnImageUpdate(int[] pixels);
 void OnFatalError(String text);
 void OnQuit(int code);
 void OnStartSound(String name, int vol);
 void OnStartMusic(String name, int loop);
 void OnStopMusic(String name);
 void OnSetMusicVolume(int volume);
 }

 public static void setListener(EventListener l) {
 listener = l;
 }

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

244

 /**
 * Send a key event to the native layer
 *
 * @param type : key up down or mouse
 * @param sym: ASCII symbol
 */
 public static void sendNativeKeyEvent(int type, int sym) {
 try {
 Natives.keyEvent(type, sym);
 } catch (UnsatisfiedLinkError e) {
 Log.e(TAG, e.toString());
 }
 }

 // Native Main Doom Loop: @param argv: program arguments
 public static native int DoomMain(String[] argv);

 /**
 * Send a Key Event
 * @param type: event type: UP/DOWN
 * @param key: ASCII symbol
 */
 public static native int keyEvent(int type, int key);

 /***
 * C to Java - Callbacks
 ***/

 /**
 * This fires on messages from the C layer
 */
 private static void OnMessage(String text, int level) {
 if (listener != null)
 listener.OnMessage(text, level);
 }

 private static void OnInitGraphics(int w, int h) {
 if (listener != null)
 listener.OnInitGraphics(w, h);
 }

 private static void OnImageUpdate(int[] pixels) {
 if (listener != null)
 listener.OnImageUpdate(pixels);

 }

 private static void OnFatalError(String message) {
 if (listener != null)
 listener.OnFatalError(message);
 }

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

245

 private static void OnQuit(int code) {
 if (listener != null)
 listener.OnQuit(code);
 }
 /**
 * Fires when a sound is played in the C layer.
 */
 private static void OnStartSound(byte[] name, int vol) {
 if (listener != null)
 listener.OnStartSound(new String(name), vol);
 }

 /**
 * Start background music callback
 */
 private static void OnStartMusic(String name, int loop) {
 if (listener != null)
 listener.OnStartMusic(name, loop);
 }

 /**
 * Stop background music
 * @param name
 */
 private static void OnStopMusic(String name) {
 if (listener != null)
 listener.OnStopMusic(name);
 }

 /**
 * Set background music volume
 * @param volume Range: (0-255)
 */
 private static void OnSetMusicVolume(int volume) {
 if (listener != null)
 listener.OnSetMusicVolume((int) (volume * 100.0 / 15.0));
 }
}

Native Layer
The native layer glues the Java and C code together by defining three types of tasks to be performed:

• Native method implementations: These are the C implementations of the native
Java methods defined by the native interface class. This code lives in the file
jni_doom.c.

• Original game changes: The original Doom engine needs to be modified slightly to
accommodate the JNI glue. This consists of inserting calls to the C to Java
callbacks in the correct files.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

246

• Removal of invalid dependencies: Invalid dependencies in the original code must
be removed. For example, the original Simple DirectMedia Layer (SDL)
dependency used by the PC code must be deleted.

Let’s look a these tasks in more detail.

Native Method Implementations
Table 7-4 shows the Java native signatures and their C counterparts in jni_doom.c.

Table 7-4. Java Native Methods and Their Native Counterparts

Java Method C Method

static native int DoomMain(String[] argv) JNIEXPORT jint JNICALL
Java_doom_jni_Natives_DoomMain(JNIEnv * env,
jclass class, jobjectArray jargv)

static native int keyEvent(int type, int key) JNIEXPORT jint JNICALL
Java_doom_jni_Natives_keyEvent(JNIEnv * env,
jclass cls, jint type, jint key)

static native int motionEvent(int btn, int x,
int y)

JNIEXPORT jint JNICALL
Java_doom_jni_Natives_motionEvent(JNIEnv * env,
jclass cls, jint btn, jint x, jint y)

Before you can proceed with the implementation, the javah command must be used to generate the

required header files and signatures:

javah -jni -classpath PATH_TO_PROJECT_FOLDER/bin -d include doom.jni.Natives

Note that a class path to the bin folder is required for javah to find the doom.jni.Natives class. The

output file doom_jni_Natives.h will be dumped in the include folder by using -d. The header file is then
used by jni_doom.c, as shown in this fragment:

#include <stdio.h>
#include "include/doom_jni_Natives.h"
#include "include/jni_doom.h"
#include "doomdef.h"
#include "d_event.h"

The code will use Doom code, thus the inclusion of doomdef.h and d_event.h. The header

jni_doom.h defines prototypes for the C to Java callbacks and miscellaneous constants.
You also need a static reference to the JVM used by the C to Java callbacks, as in the next fragment:

// Global Java VM reference
static JavaVM *g_VM;

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

247

For improved performance, static references to the Java native interface class (doom.jni.Natives)
are kept in jNativesCls. References to the Java methods to send the video image (jSendImageMethod) and
sound file (jStartSoundMethod) are also kept. This is because these methods will be invoked multiple
times, and looking up this names every time can slow things.

static jclass jNativesCls;
static jmethodID jSendImageMethod;
static jmethodID jStartSoundMethod;

Also, since you may send a pixel buffer (image) multiple times per second, you should keep a

reference to the Java array and its size, as in the next fragment:

static jintArray jImage;
static int iSize;
extern int doom_main(int argc, char **argv);

The line extern int doom_main defines the main engine function and tells the compiler it is defined

somewhere else in the library. The header jni_doom.h included up front defines the constants and
method signatures required to invoke the C to Java callbacks. For example, the next fragment of the
header defines constants for the Java native interface class (doom/jni/Natives), and the method names
and signatures for the callbacks OnImageUpdate and OnStartSound (see the “C to Java Callbacks” section
for more details).

#define CB_CLASS "doom/jni/Natives"
#define CB_CLASS_IU_CB "OnImageUpdate"
#define CB_CLASS_IU_SIG "([I)V"

#define CB_CLASS_SS_CB "OnStartSound"
#define CB_CLASS_SS_SIG "([BI)V"

Let’s take a look at the actual implementations. They are divided in three groups:

• Native game loop: This invokes the engine loop doom_main.

• Key and motion events: These post key and motion events to the engine.

• C to Java callbacks: These callbacks are critical for the Java code to receive
information from the Doom engine.

Native Game Loop
The native game loop’s job is to extract the arguments sent as a jobjectArray into a C char ** array and
invoke the main Doom engine function (doom_main). This function performs additional steps:

• Obtain a reference to the JVM using (*env)->GetJavaVM(env, &g_VM). This
reference will be used by the C to Java callbacks.

• Load the doom.jni.Natives class, also used by the C to Java callbacks: jNativesCls
= (*env)->FindClass(env, “doom/jni/Natives”).

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

248

• Load the doom.jni.Natives.OnImageUpdate and doom.jni.natives.OnStartSound
Java methods. This is done for performance reasons, as these methods are called
many times.

Listing 7-13 shows the native game loop.

Listing 7-13. JNI Call to the Main Game Loop

/*
 * Class: doom_jni_Natives
 * Method: DoomMain
 * Signature: ([Ljava/lang/String;)V
 */
JNIEXPORT jint JNICALL Java_doom_jni_Natives_DoomMain
 (JNIEnv * env, jclass class, jobjectArray jargv)
{
 // Obtain a global ref to the Java VM
 (*env)->GetJavaVM(env, &g_VM);

 // Extract char ** args from Java array
 jsize clen = getArrayLen(env, jargv);

 char * args[(int)clen];

 int i;
 jstring jrow;
 for (i = 0; i < clen; i++)
 {
 jrow = (jstring)(*env)->GetObjectArrayElement(env, jargv, i);
 const char *row = (*env)->GetStringUTFChars(env, jrow, 0);

 args[i] = malloc(strlen(row) + 1);
 strcpy (args[i], row);

 jni_printf("Main argv[%d]=%s", i, args[i]);

 // Free Java string jrow
 (*env)->ReleaseStringUTFChars(env, jrow, row);
 }

 /*
 * Load the Image update class (called many times)
 */
 jNativesCls = (*env)->FindClass(env, CB_CLASS);

 if (jNativesCls == 0) {
 jni_printf("Unable to find class: %s", CB_CLASS);
 return -1;
 }

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

249

 // Load doom.util.Natives.OnImageUpdate(char[])
 jSendImageMethod = (*env)->GetStaticMethodID(env, jNativesCls
 , CB_CLASS_IU_CB
 , CB_CLASS_IU_SIG);

 if (jSendImageMethod == 0) {
 jni_printf("Unable to find method OnImageUpdate(): %s"
 , CB_CLASS);
 return -1;
 }

 // Load OnStartSound(String name, int vol)
 jStartSoundMethod = (*env)->GetStaticMethodID(env, jNativesCls
 , CB_CLASS_SS_CB
 , CB_CLASS_SS_SIG);

 if (jStartSoundMethod == 0) {
 jni_printf("Unable to find method OnStartSound signature: %s "
 , CB_CLASS_SS_SIG);
 return -1;
 }

 // Invoke Doom's main sub. This will loop forever
 doom_main (clen, args);

 return 0;
}

Key and Motion Events
Key and motion events are posted via the extern symbol D_PostEvent, as shown in Listing 7-14. The
event type (event_t) is defined by the engine and consists of the following:

• A type (0 for key down, 1 for key up, and 2 for mouse events)

• An ASCII key stored in event.data1 for key events

• A mouse button and x and y coordinates for mouse events, stored as event.
data1 = MOUSE BUTTON, event.data2 = x, and event.data3 = y. Mouse buttons
can be 1 for left, 2 for middle, or 3 for right.

Listing 7-14. Posting Key and Motion Events with JNI

/*
 * Class: doom_util_Natives
 * Method: keyEvent
 * Signature: (II)V
 */
extern void D_PostEvent (event_t* ev);

JNIEXPORT jint JNICALL Java_doom_jni_Natives_keyEvent

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

250

 (JNIEnv * env, jclass cls, jint type, jint key)
{
 event_t event;
 event.type = (int)type;
 event.data1 = (int)key;
 D_PostEvent(&event);

 return type + key;
}

/*
 * Class: doom_util_Natives
 * Method: motionEvent
 * Signature: (II)I
 */
JNIEXPORT jint JNICALL Java_doom_jni_Natives_motionEvent
 (JNIEnv * env, jclass cls, jint x, jint y, jint z)
{
 event_t event;
 event.type = ev_mouse;
 event.data1 = x;
 event.data2 = y;
 event.data3 = z;
 D_PostEvent(&event);
 return 0;
}

C to Java Callbacks
Table 7-5 shows the callbacks on the left side and the Java methods they invoke on the right. The
callbacks can be divided into the following types:

• Graphics initialization (jni_init_graphics)

• Video buffer (jni_send_pixels)

• Sound and music (jni_start_sound, jni_start_music, jni_stop_music and
jni_set_music_volume)

• Fatal errors (jni_fatal_error)

Table 7-5. C to Java Callbacks in jni_doom.c

C Method Invoked Java Method

void jni_init_graphics(int width, int
 height)

static void OnInitGraphics(int w, int h)

void jni_send_pixels(int * data) static void OnImageUpdate(int[] pixels)

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

251

Table 7-5. C to Java Callbacks in jni_doom.c (continued)

C Method Invoked Java Method

void jni_start_sound (const char * name,
 int vol)

static void OnStartSound(byte[] name, int vol)

void jni_start_music (const char * name,
 int loop)

static void OnStartMusic(String name, int loop)

void jni_stop_music (const char * name) static void OnStopMusic(String name)

void jni_set_music_volume (int vol) static void OnSetMusicVolume(int volume)

void jni_fatal_error(const char * text) static void OnFatalError(String message)

The callbacks must be inserted in the C code as explained in the next sections.

Graphics Initialization

Constants for the graphics initialization callback are defined in jni_doom.h, as shown in Listing 7-15.
CB_CLASS_IG_CB indicates the Java method name OnInitGraphics. CB_CLASS_IG_SIG "(II)V" defines the
signature: two integer parameters and a void return type, as shown in the next fragment:

#define CB_CLASS_IG_CB "OnInitGraphics"
#define CB_CLASS_IG_SIG "(II)V"

This callback also performs some critical steps:

• It attaches to the current thread with (*g_VM)->AttachCurrentThread (g_VM,
&env, NULL). Here is where the global JVM reference comes into play.
Furthermore, the JNI environment (env) will be used to invoke the callback.

• It allocates space for the Java pixel array (video buffer) used by jni_send_pixels
using the width and height of the display: jImage = (*env)-> NewIntArray(env,
width * height).

• It invokes the static void method doom.util.Natives.OnInitGraphics(width,
height) using its method ID: (*env)->CallStaticVoidMethod(env, jNativesCls,
METHOD_ID, ARGUMENTS), where ARGUMENTS are the width and height of the display.
Note that the arguments must match the arguments in the Java method!

Listing 7-15. Graphics Initialization

/**
 * Fires when Doom graphics are initialized.
 * params: img width, height
 */
void jni_init_graphics(int width, int height)

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

252

{
 JNIEnv *env;

 if (!g_VM) {
 printf("No JNI VM available.\n");
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 iSize = width * height;

 // Create a new int[] used by jni_send_pixels
 jImage = (*env)-> NewIntArray(env, iSize);

 // Call doom.util.Natives.OnInitGraphics(w, h);
 jmethodID mid = (*env)->GetStaticMethodID(env, jNativesCls
 , CB_CLASS_IG_CB
 , CB_CLASS_IG_SIG);

 if (mid) {
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , mid
 , width, height);
 }
}

Video Buffer Callback

The video buffer callback is critical, and it must be lean and mean. It gets called continuously and must
not create any objects (see Listing 7-16). Like the previous callback, it attaches to the current thread. It
also calls the static void method doom.jni.Natives.OnImageUpdate(int[] pixels). But before calling this
method, it must set the pixels into the Java array (jImage):

(*env)->SetIntArrayRegion(env, jImage, 0, iSize, (jint *) data)

data is an array of integers already formatted as 32-bit ARGB pixels, as required by Android, and

iSize is the size of the display calculated in the previous callback.

Listing 7-16. Sending Video Pixels

/**
 * Image update Java callback. Gets called many times per sec.
 * It must not look up JNI classes/methods or create any objects; otherwise
 * the local JNI ref table will overflow & the app will crash
 */
void jni_send_pixels(int * data)
{
 JNIEnv *env;

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

253

 if (!g_VM) {
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 // Send img back to Java.
 if (jSendImageMethod) {
 (*env)->SetIntArrayRegion(env, jImage, 0, iSize, (jint *) data);

 // Call Java method
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , jSendImageMethod
 , jImage);
 }

}

Sound and Music Callbacks

The sound and music callbacks fire from the engine when a sound or background music must be played.
In a perfect world, sound would be handled in the native layer; however, due to the lack of
documentation and support for open audio standards in Android, requests are cascaded back to Java for
processing.

There are four sound and music callbacks in Doom, with their names and signatures defined in the
header jni_doom.h:

// doom.jni.Natives.OnStartSound(byte[] name, int volume)
#define CB_CLASS_SS_CB "OnStartSound"
#define CB_CLASS_SS_SIG "([BI)V"

// doom.jni.Natives.OnStartMusic (String name , int loop)
#define CB_CLASS_SM_CB "OnStartMusic"
#define CB_CLASS_SM_SIG "(Ljava/lang/String;I)V"

// doom.jni.Natives.OnStopMusic (String name)
#define CB_CLASS_STOPM_CB "OnStopMusic"
#define CB_CLASS_STOPM_SIG "(Ljava/lang/String;)V"

// doom.jni.Natives.OnSetMusicVolume (int volume)
#define CB_CLASS_SETMV_CB "OnSetMusicVolume"
#define CB_CLASS_SETMV_SIG "(I)V"

Note the method signature for OnStartSound with ([BI)V, where [B represents an array of bytes (the

name of the sound), I represents an integer (volume), and V is the return type of the method (void).
Another interesting signature is OnStartMusic with (Ljava/lang/String;I)V, where Ljava/lang/String;
means the class java.lang.String (enclosed in L;).

Listing 7-17 shows the implementation of these callbacks. They are pretty similar in nature, in that
they all must attach to the current thread using the global JVM (g_VM). The following are some of the key
aspects of the code:

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

254

• To create a Java byte array, you can use jbyteArray ARRAY = (*env)->
NewByteArray(env, SIZE), where the words byte/Byte can be replaced with
boolean/Boolean, int/Int, object/Object, and other primitive types, depending on
your needs.

• To insert data into the array, use (*env)->SetByteArrayRegion(env, ARRAY,
START, SIZE, (jbyte *) C_ARRAY), where Byte can be replaced with any Java
primitive type.

• To call a static void method, use (*env)->CallStaticVoidMethod(env, CLASS,
METHOD_ID, ARG1, ARG2,…).

• To release resources for an array, use (*env)->DeleteLocalRef(env, ARRAY).

Listing 7-17. Cascading Sound and Music Requests Back to Java

/**
 * Fires multiple times when a sound is played
 * @param name Sound name
 * @param volume
 */
void jni_start_sound (const char * name, int vol)
{
 /*
 * Attach to the curr thread; otherwise we get JNI WARNING:
 * threadid=3 using env from threadid=15 which aborts the VM
 */
 JNIEnv *env;

 if (!g_VM) {
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 if (jStartSoundMethod == 0) {
 jni_printf("BUG: Invalid Doom JNI method OnStartSound %s"
 , CB_CLASS_SS_SIG);
 return ;
 }

 // Create a new char[] used by jni_send_pixels
 // Used to prevent JNI ref table overflows
 int iSize = strlen(name);
 jbyteArray jSound = (*env)-> NewByteArray(env, iSize);

 (*env)->SetByteArrayRegion(env, jSound, 0, iSize, (jbyte *) name);

 // Call Java method
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , jStartSoundMethod
 , jSound //(*env)->NewStringUTF(env, name)

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

255

 , (jint) vol);

 (*env)->DeleteLocalRef(env,jSound);
}

/**
 * Fires when a background song is requested
 */
void jni_start_music (const char * name, int loop)
{
 /*
 * Attach to the curr thread; otherwise we get JNI WARNING:
 * threadid=3 using env from threadid=15 which aborts the VM
 */
 JNIEnv *env;

 if (!g_VM) {
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 jmethodID mid = (*env)->GetStaticMethodID(env, jNativesCls
 , CB_CLASS_SM_CB
 , CB_CLASS_SM_SIG);

 if (mid) {
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , mid
 , (*env)->NewStringUTF(env, name)
 , (jint) loop);

 }
}

/**
 * Fires when a background song is stopped
 */
void jni_stop_music (const char * name)
{
 /*
 * Attach to the curr thread; otherwise we get JNI WARNING:
 * threadid=3 using env from threadid=15 which aborts the VM
 */
 JNIEnv *env;

 if (!g_VM) {
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

256

 jmethodID mid = (*env)->GetStaticMethodID(env, jNativesCls
 , CB_CLASS_STOPM_CB
 , CB_CLASS_STOPM_SIG);

 if (mid) {
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , mid
 , (*env)->NewStringUTF(env, name)
);

 }
}

/**
 * Set bg msic vol callback
 */
void jni_set_music_volume (int vol) {
 JNIEnv *env;

 if (!g_VM) {
 return;
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 jmethodID mid = (*env)->GetStaticMethodID(env, jNativesCls
 , CB_CLASS_SETMV_CB
 , CB_CLASS_SETMV_SIG);

 if (mid) {
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , mid
 , (jint) vol
);

 }

}

Fatal Errors

Fatal or unrecoverable errors occur in any type of software. In Doom, these errors are cascaded back to
Java, where a message is presented to the user, and then the application aborts. The next fragment from
jni_doom.h shows the callback name and signature for this task:

#define CB_CLASS_FATAL_CB "OnFatalError"
#define CB_CLASS_FATAL_SIG "(Ljava/lang/String;)V"

This callback is simple (see Listing 7-18). It works as follows:

• It attaches to the current thread, aborting if no JNI environment is available.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

257

• It looks up the doom.jni.Natives Java class, aborting if not found.

• It looks up the doom.jni.Natives.OnFatalError(String) using the method name
and signature.

• It calls the static void method.

Listing 7-18. Cascading Fatal Errors

/**
 * Called when a fatal error has occurred.
 * The receiver should terminate
 */
void jni_fatal_error(const char * text) {
 JNIEnv *env;

 if (!g_VM) {
 printf("JNI FATAL: No JNI Environment available. %s\n", text);
 exit(-1);
 }

 (*g_VM)->AttachCurrentThread (g_VM, (void **) &env, NULL);

 if (!env) {
 printf("JNI FATAL: Unable to attach to thread: %s.\n", text);
 exit(-1);
 }

 if (!jNativesCls) {
 jNativesCls = (*env)->FindClass(env, CB_CLASS);

 if (jNativesCls == 0) {
 printf("JNI FATAL: Unable to find class: %s", CB_CLASS);
 exit(-1);
 }
 }
 jmethodID mid = (*env)->GetStaticMethodID(env, jNativesCls
 , CB_CLASS_FATAL_CB
 , CB_CLASS_FATAL_SIG);

 if (mid) {
 (*env)->CallStaticVoidMethod(env, jNativesCls
 , mid
 , (*env)->NewStringUTF(env, text));
 }
 else {
 printf("JNI FATAL: Unable to find method: %s, signature: %s\n"
 , CB_CLASS_MSG_CB, CB_CLASS_MSG_SIG);
 exit (-1);
 }

}

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

258

Original Game Changes
In order for the JNI glue to work, changes are required to the original game engine. Some are simple,
such as inserting calls to the C to Java callbacks; some are not so simple, such as removing invalid
dependencies. Table 7-6 shows the original files and the changes required. Considering that the engine
has a total of 90,000 lines of code, these changes are not that bad.

Table 7-6. Changes Required to the Original Engine to Insert the JNI Glue

File Changes

i_main.c Rename the main subroutine to doom_main.

i_system.c In I_Error, insert jni_fatal_error.

i_sound.c Comment SDL dependencies. In I_StartSound, insert start sound callback
jni_start_sound.

s_sound.c In S_SetMusicVolume, insert volume callback jni_set_music_volume.

i_video.c Comment SDL dependencies. Insert code to build an Android ARBG pixel array from the
video buffer. In I_SetRes, add JNI callback to initialize graphics. In I_FinishUpdate, send
pixels to Java with jni_send_pixels.

These changes are explained in more detail in the next sections.

Renaming main
Let’s start with the simplest change: renaming the main() subroutine in i_main.c so it can be invoked
from the Java native Java_doom_jni_Natives_DoomMain, which will start the game from Java, as shown in
the next fragment:

// In i_main.c
int main(int argc, char **argv)
int doom_main(int argc, char **argv)

// In jni_doom.c
extern int doom_main(int argc, char **argv);

JNIEXPORT jint JNICALL Java_doom_jni_Natives_DoomMain

 (JNIEnv * env, jclass class, jobjectArray jargv)

{
 ...
 doom_main (clen, args);
 ...
}

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

259

Once main is renamed to doom_main, simply add the extern symbol extern int doom_main(int argc,
char **argv) to jni_doom.c and invoke it from the game starter function.

Inserting the Fatal Error Callback
Another simple change is to insert the C to Java callback jni_fatal_error whenever an unrecoverable
error occurs. The changes occur in the I_Error function in the i_system.c file, as shown in Listing 7-19.

Listing 7-19. Changes Required to i_system.c

void I_Error (char *error, ...)
{
 va_list argptr;
 static char string[1024];

 // Message first.
 va_start (argptr,error);
 vsprintf (string, error ,argptr);
 va_end (argptr);

 // Shutdown. Here might be other errors.
 if (demorecording)
 G_CheckDemoStatus();

 D_QuitNetGame ();
 I_ShutdownGraphics();

 // Send the error back to JNI layer
 jni_fatal_error(string);

 // Something wrong has happened
 // OLD CODE -> exit(-1);
}

Commenting SDL Occurrences
The Doom engine is built on top of SDL, which is an open framework to access system resources such as
sound and video hardware. Doom uses SDL to display video and play music. This is a relatively hard
problem, as Android has no support for SDL. Thus, any SDL occurrence must be commented or
removed and replaced by a JNI equivalent. This happens in two files: i_sound.c and i_video.c.

Changes to i_sound.c are simple and consist of commenting the sdl.h header file and inserting
jni_doom.h instead, as shown in the next fragment:

#include <sdl.h>
#include "include/jni_doom.h"

Furthermore, any function that starts with SDL_ must be commented. Luckily, these functions do

not affect the game flow itself, and thus they can be safely commented.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

260

Sound System Changes
Other changes are required to i_sound.c to insert a call to jni_start_sound, as shown in Listing 7-20. The
global variable S_sfx[id].name provides the sound name, which will be sent back to Java and loaded
from the file system, along with its volume.

Listing 7-20. Changes Required to i_sound.c to Insert the jni_start_sound Callback

int I_StartSound(int id, int channel, int vol, int sep, int pitch, int priority)
{
 const unsigned char* data;
 int lump;
 size_t len;

 // ...

 // The entries DSBSPWLK, DSBSPACT, DSSWTCHN
 // and DSSWTCHX are all zero-length sounds
 if (len<=8) return -1;

 /* Find padded length */
 len -= 8;
 // Do the lump caching outside the SDL_LockAudio/SDL_UnlockAudio pair
 // Use locking which makes sure the sound data is in a malloced area and
 // not in a memory mapped one
 data = W_LockLumpNum(lump);

 // JNI changes: Send a sound request to Java
 // id is the sound index, S_sfx[id].name (soundname)
 // vol = volume
 jni_start_sound(S_sfx[id].name , vol);

 // ...

 return channel;
}

Changes are also required to s_sound.c to insert a call to jni_set_music_volume (volume) to send the

background music volume back to Java (see Listing 7-21). Note that this function is called within the
game when the user changes the music volume from the options menu.

Listing 7-21. Changes Required to s_sound.c to Insert the Music JNI Callback

void S_SetMusicVolume(int volume)
{
 // Return if music is not enabled
 if (!mus_card || nomusicparm)
 return;

 if (volume < 0 || volume > 15)

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

261

 I_Error("S_SetMusicVolume: Attempt to set music volume at %d", volume);

 // JNI Changes: Send a volume request to Java
 // volume = [0..100]
 jni_set_music_volume (volume);

 I_SetMusicVolume(volume);
 snd_MusicVolume = volume;
}

Video Buffer Changes
Here is where the toughest changes must be done. The file i_video.c is the one that renders the video
buffer and uses SDL heavily. All SDL references must be removed and replaced with structures
compatible with Android.

Down to the pipe, a video buffer is simply an array of packed colors, represented as either bytes
indicating the index of a color in a color palette or integers specifying an RGB color. SDL uses a structure
called SDL_Surface to encapsulate the video buffer as an array of bytes plus a palette used to map colors
to the buffer. Consider the next fragment, which replaces the SDL screen with a similar structure called
XImage (actually taken from the X11 structure of the same name).

static SDL_Surface *screen; // OLD CODE
static XImage * image; // NEW CODE

In Doom, SDL_Surface will be replaced with the equivalent XImage that holds the array of bytes for

the video buffer. Note that the video buffer cannot be rendered directly to a display. Instead, it must be
cascaded back to Java using the C to Java callbacks, where Android will take care of the actual rendering.

Because XImage doesn’t exist, it must be written. This isn’t difficult, as XImage is simply a C struct
holding the width, height, and array of bytes for the video buffer, as shown in Listing 7-22.

Listing 7-22. Video Buffer Image Object from i_video.c

/**
 * Class XImage
 **/
typedef struct Image XImage;

struct Image
{
 int width;
 int height;
 byte * data;
};

/**
 * Class Color
 */
typedef struct Color XColor;

struct Color

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

262

{
 int red;
 int green;
 int blue;
};

// The Image
XImage * image;

/**
 * XImage Constructor
 */
XImage * XCreateImage(int width, int height)
{
 XImage * this = (XImage*) malloc(sizeof(XImage));

 // set width, height
 this->width = width;
 this->height = height;

 // allocate image buffer
 this->data = (byte *)malloc (width * height);

 return this;
}
/**
 * Class XImage
 **/

In addition to XImage, you need a color palette used to map the bytes on XImage to ARGB colors used

by Android. For this purpose, you use the struct XColor, which holds the red, green, and blue values of a
color. You also need a function to allocate memory for the XImage given its width and height
(XCreateImage). This function will allocate space for the image byte buffer. You must modify the palette
upload function (I_UploadNewPalette) in i_video.c to use the new XColor structure, as shown in
Listing 7-23.

Listing 7-23. Setting the Color Palette in i_video.c

// Color palette
static XColor * colours;

static void I_UploadNewPalette(int pal)
{
 // This is used to replace the current 256 colour cmap with a new one
 // Used by 256 colour PseudoColor modes

 static int cachedgamma;
 static size_t num_pals;

 if (V_GetMode() == VID_MODEGL)
 return;

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

263

 if ((colours == NULL) || (cachedgamma != usegamma)) {

 int pplump = W_GetNumForName("PLAYPAL");
 int gtlump = (W_CheckNumForName)("GAMMATBL",ns_prboom);

 register const byte * palette = W_CacheLumpNum(pplump);
 register const byte * const gtable = (const byte *)W_CacheLumpNum(gtlump)
 + 256*(cachedgamma = usegamma);

 register int i;

 num_pals = W_LumpLength(pplump) / (3*256);
 num_pals *= 256;

 if (!colours) {
 // First call - allocate and prepare colour array
 colours = malloc(sizeof(*colours)*num_pals);
 }

 // set the colormap entries
 for (i=0 ; (size_t)i<num_pals ; i++) {
 colours[i].red = gtable[palette[0]];
 colours[i].green = gtable[palette[1]];
 colours[i].blue = gtable[palette[2]];
 palette += 3;
 }

 W_UnlockLumpNum(pplump);
 W_UnlockLumpNum(gtlump);
 num_pals/=256;
 }
}

In Listing 7-23, the original SDL palette has been replaced by XColor * colours. Note that the Doom

engine uses a 768-color palette (256 colors for each one of red, green, and blue). The palette is read from
the game file, along with a gamma table (used to apply a brightness factor to each color). With this
information, the palette is filled and kept in memory for later use.

The final change to i_video.c is the function that does the actual rendering, I_FinishUpdate (see
Listing 7-24). This function uses the width and height of the screen to create an array of pixels (each one
representing an Android packed ARGB color). It then loops through the array and uses the byte value
from the screen buffer to look up the color from the palette:

byte b = screens[0].data[i]; // Video buffer byte
XColor color = colours[b]; // Palette color for that byte

It then constructs a 32-bit pixel using the RGB values of color:

pixels[i] = (0xFF << 24) | (color.red << 16) | (color.green << 8) | color.blue

Note that 0xFF << 24 represents the alpha (opacity) value of the pixel—fully visible in this case.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

264

Finally, the array is sent back using the callback jni_send_pixels(pixels), where Android will do
the rendering.

Listing 7-24. Video Buffer Renderer Function from i_video.c

void I_FinishUpdate (void)
{
 if (I_SkipFrame()) return;

 // Screen size
 int size = SCREENWIDTH * SCREENHEIGHT;

 // ARGB pixels
 int pixels[size], i;

 for (i = 0 ; i < size ; i ++) {
 byte b = screens[0].data[i];

 XColor color = colours[b];

 pixels[i] = (0xFF << 24)
 | (color.red << 16)
 | (color.green << 8)
 | color.blue;
 }

 // Send pixels to Java
 jni_send_pixels(pixels);

}

At this point, the Doom engine is all set and ready for compilation.

Doom Library (DSO) Compilation
Listing 7-25 shows the Makefile for the DSO. It uses the compiler and linker helper scripts agcc and ald,
created in Chapter 1. The default optimization level is set to 2. Other compilation flags include the
following:

• -ffast-math: Use fast math.

• -Wall: Display all warnings.

• -nostdinc: Do not include standard header files.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

265

The build targets are as follows:

• lib builds the DSO libdoom_jni.so.

• jni creates the JNI headers for doom.jni.Natives.java and places them in the
include folder.

• deploy-lib deploys the DSO to the device using the SDK adb tool.

• clean cleans up the object files.

Listing 7-25. Makefile for the Doom Engine DSO

Android Makefile for Doom

CC = agcc
MACROS = -DNORMALUNIX -DLINUX -DHAVE_NET -DUSE_SDL_NET -DHAVE_CONFIG_H
FLAGS = -O2 -ffast-math -Wall -nostdinc

LINKER = ald
LFLAGS =
LIBS =

MAIN_OBJS = \
 am_map.o m_cheat.o p_lights.o p_user.o sounds.o \
 hu_lib.o md5.o p_map.o r_bsp.o s_sound.o \
 d_deh.o hu_stuff.o m_menu.o p_maputl.o r_data.o st_lib.o \
 d_items.o i_main.o m_misc.o p_mobj.o r_demo.o st_stuff.o \
 d_main.o info.o p_plats.o r_draw.o tables.o \
 doomdef.o i_sound.o m_random.o p_pspr.o r_filter.o version.o \
 doomstat.o i_system.o p_ceilng.o p_saveg.o r_fps.o v_video.o \
 p_checksum.o p_setup.o r_main.o wi_stuff.o \
 dstrings.o p_doors.o p_sight.o r_patch.o w_memcache.o \
 f_finale.o jni_doom.o p_enemy.o p_spec.o r_plane.o w_mmap.o \
 f_wipe.o lprintf.o p_floor.o p_switch.o r_segs.o w_wad.o \
 g_game.o m_argv.o p_genlin.o p_telept.o r_sky.o z_bmalloc.o \
 m_bbox.o p_inter.o p_tick.o r_things.o z_zone.o \
 d_client.o i_video.o i_network.o d_server.o

LIB = ../bin/libdoom_jni.so
DYN = ../bin/doom-cli

all: lib

jni:
 @echo "Creating JNI C headers..."
 javah -jni -classpath ../../bin -d include doom.jni.Natives

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

266

DSO
lib: $(MAIN_OBJS)
 @echo
 $(LINKER) -shared $(LFLAGS) $(LIB_PATHS) $(LIBS) -o $(LIB) \
 $(MAIN_OBJS) $(LIBRARIES)
 @echo
 @echo Done. Out file is $(LIB)
 @echo

.c.o:
 @echo
 $(CC) -fpic -c $(FLAGS) $(MACROS) $(INCLUDES) $<

Deploy lib
deploy-lib: lib
 adb push $(LIB) /data/data/org.doom/files

clean:
 rm -f *.o $(EXE)

Testing Doom for Android in the Emulator
To test the game in the emulator, create a launch configuration within your Eclipse IDE, as follows:

1. From the main menu, select Run ➤ Run Configurations.

2. Enter a name for the configuration (Doom) and select the project
ch07.Android.Doom.

3. Set the Launch Action as Launch Default Activity. Figure 7-4 shows the
completed Run Configurations dialog box for this example.

4. Click Run.

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

267

Figure 7-4. Android run configuration for Doom

Now let’s play some Doom. From the emulator, click Menu ➤ Start and monitor the log view to
make sure everything works. Consider the log fragment in Listing 7-26.

Listing 7-26. Log Fragment from a Doom Run

DEBUG/DoomClient(23981): Loading JNI librray from doom_jni
DEBUG/LibLoader(23981): Trying to load library doom_jni from LD_PATH: /system/lib
DEBUG/dalvikvm(23981): Trying to load lib /data/data/org.doom/lib/libdoom_jni.so 0x43733de8
DEBUG/dalvikvm(23981): Added shared lib /data/data/org.doom/lib/libdoom_jni.so 0x43733de8
DEBUG/dalvikvm(23981): No JNI_OnLoad found in /data/data/org.doom/lib/libdoom_jni.so
 0x43733de8
DEBUG/DoomTools(23981): Sound folder: /sdcard/doom/sound
DEBUG/DoomClient(23981): Starting doom thread with wad doom1.wad sound enabled? true
 Orientation:1
DEBUG/DoomClient(23981): **Doom Message: Main argv[0]=doom
DEBUG/DoomClient(23981): **Doom Message: Main argv[1]=-width
DEBUG/DoomClient(23981): **Doom Message: Main argv[2]=480
DEBUG/DoomClient(23981): **Doom Message: Main argv[3]=-height
DEBUG/DoomClient(23981): **Doom Message: Main argv[4]=320
DEBUG/DoomClient(23981): **Doom Message: Main argv[5]=-iwad

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

268

DEBUG/DoomClient(23981): **Doom Message: Main argv[6]=doom1.wad
DEBUG/DoomClient(23981): **Doom Message: I_UpdateVideoMode: 480x320 (fullscreen)
 default VM=8
DEBUG/DoomClient(23981): **Doom Message: I_SetRes: Creating 480x320 image.

The next two lines show the native library is loaded successfully by the JVM:

Trying to load lib /data/data/org.doom/lib/libdoom_jni.so
Added shared lib /data/data/org.doom/lib/libdoom_jni.so

So far, so good. Next, the game arguments are displayed:

**Doom Message: Main argv[0]=doom
**Doom Message: Main argv[1]=-width
**Doom Message: Main argv[2]=480
**Doom Message: Main argv[3]=-height
**Doom Message: Main argv[4]=320
**Doom Message: Main argv[5]=-iwad
**Doom Message: Main argv[6]=doom1.wad

This tells us the size of the display, 480-by-20 (landscape mode), plus the name of the game file,

doom1.wad. At this point, the game has successfully loaded and is ready for action (see Figure 7-5).

Figure 7-5. Doom running in the Android emulator

CHAPTER 7 ■ 3D SHOOTERS EPISODE II: DOOM FOR ANDROID

269

You Have Done It
Congratulations! You have seen how easy it is to bring one of the first PC shooters to Android using a mix
of Java and the original C engine. We have looked at the complexity of the game and the best way to
implement it. We covered the following topics:

• The game architecture, where Java activities and UI XML layouts are glued with C
subroutines using JNI native methods and C to Java callbacks

• The main activity, which is the Java class that controls the life cycle of the
application, along with a UI layout

• User interface handlers, such as menus and key and touch event handlers, and
native callback handlers for graphics initialization, video buffer updates, fatal
errors, and audio requests

We have also looked at custom touch screen controls for phones that do not have a keyboard. You
saw that the native interface class has callback listeners for clients that wish to receive C to Java
callbacks, native methods invoked through JNI to start the game loop and send key and motion event
information to the Native library, and C to Java callbacks used to delegate engine messages to the
listener activity.

We have looked at the native layer that glues the Java and C code together and provides the native
method implementations. Changes to the original code are also required to remove invalid
dependencies and insert the C to Java callbacks. Finally, you saw the Makefile required to compile the
Native library and the IDE launch configuration to test the game in the emulator.

Using the Java/C power combo, we have brought one of the great PC games, Doom, to the platform.
Even though Google is pushing for Java-only development and provides little or no support for native
development, Java alone is not the best choice when it comes to advanced mobile gaming. Java-only
code works fine for the regular mobile app, but it is not enough for high-performance graphics.

I hope that the material in this book has opened a new frontier for you to explore, and you’re excited
about the possibility of bringing thousands of PC games to Android with minimal time and effort.

A P P E N D I X

■ ■ ■

271

Deployment and Compilation Tips

In this appendix, we explore some helpful tips to deploy your application, NDK 1.5, and OpenGL tricks
as well as compiling the native code in chapters 6 and 7 using the NDK for extra time savings.
Specifically, this section includes tips for the following:

• Creating a key store for signature of you application package

• Signing you application using the workbench

• Compiling the project from Chapter 6 (Wolf 3D for Android) using NDK 1.5

• Adding custom support for OpenGL to the NDK 1.5.

• Compiling the project from Chapter 7 (Doom for Android) with NDK 1.6

Let’s get started!

Signing Your Application
Before your application can be installed in any Android device, it must be signed using a Java key store.
This section describes the steps you must follow to accomplish this task. You can find more details in the
Android Developer Guide.

■ Note Android developers, more information about signing your applications is available at
http://developer.android.com/guide/publishing/app-signing.html#setup.

Creating a Key Store
A key store is a password-protected file that contains public/private key pairs used for JAR signatures.
You can create a key store with the following command:

$ keytool -genkey -v -keystore my-release-key.keystore -alias alias_name -keyalg RSA
 -validity 10000 -storepass <password1> -keypass <password2>

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

272

Table A-1 lists the possible arguments for the keytool command.

Table A-1. Arguments for the Keytool Command

Argument Description

-genkey Generate a public and private key pair.

-v Use verbose output.

-keystore Specify the name of the key store.

-alias <alias_name> Add an alias for the key pair.

-validity <valdays> Specify the validity period in days.

-storepass <password> Add a password for the key store.

-keypass <password> Add a password for the key.

■ Tip When you run your applications in the emulator, the Eclipse workbench automatically signs the application
using a debug key store. This key store can be found in %USERPROFILE%\debug.keystore (in Windows) and
$HOME/.android/debug.keystore (in Linux). The debug key store password is "android", and the key alias and
password are androiddebugkey/android.

Signing the Application
Prior to the Android SDK 1.5, the application signature had to be done manually using the Java SDK
jarsigner command (see Listing A-1).

Listing A-1. Windows Batch Script to Sign the Wolf3D Application Package (APK)

@echo off
set JAVA_HOME=c:\Program Files\Java\jdk1.6.0_07
set PKG=c:\tmp\APK\Wolf3D.apk

rem To sign
"%JAVA_HOME%\bin\jarsigner" -verbose -keystore ar-release-key.keystore %PKG% android_radio

rem To verify that your .apk is signed, you can use a command like this
"%JAVA_HOME%\bin\jarsigner" -verbose -verify %PKG%

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

273

Listing A-1 uses the Java SDK jarsigner command and the key store created in the previous section
to sign the packed application as follows:

jarsigner -verbose -keystore ar-release-key.keystore Wolfd3D.apk android_radio

The arguments are as follows:

• verbose displays information about the files being signed.

• keystore defines the location of the Java key store created in the previous section.

• Wolfd3D.apk is the application package to sign.

• android_radio is the alias that represents the public/private key pair used for
signature.

■ Caution The keytool and jarsigner commands are part of the Java SDK, not the JRE. You will have to install
a Java SDK and set up the paths in your system to be able to create a key store and sign your applications with
jarsigner.

With the Android SDK 1.5 or later, signing your package is much easier, provided you already have a
key store; you don’t need the jarsigner command in this instance. To sign your package with the Eclipse
workbench, follow these steps:

1. Right-click the project to be signed, and select Android Tools ➤ Export Signed
Application Package (see Figure A-1).

2. In the “Keystore selection” dialog shown in Figure A-2, select “Use existing
keystore,” and navigate to the key store created previously. Type the password
for the key store.

3. Select the alias that represents the key pair to be used for signature, and enter
the corresponding password (see Figure A-3).

4. Enter the destination of the package as shown in Figure A-4. Click Finish.

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

274

Figure A-1. Exporting the application menu

Figure A-2. The “Keystore selection” dialog

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

275

Figure A-3. The “Key alias selection” dialog

Figure A-4. Choosing the destination folder for the application package

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

276

Using the Android NDK to Compile Libraries from Chapters 6
and 7
In this section, we will compile the library from Chapter 6 (Wolf3D) using the NDK 1.5 as well as the
Chapter 7 library (Doom for Android) using the NDK 1.6. Knowing how to use the NDK is important for
you and can be a time saver if you have a slow system (such as a laptop/VMware combination). When I
started writing the games in Chapters 6 and 7, the NDK didn’t yet exist. That was the reason I used the
CodeSourcery G++ toolkit; then along came the NDK 1.5. All in all, I don’t advocate the use of the NDK
1.5, particularly at this early stage. The reasons I don’t like to use the NDK 1.5 are simple:

• Limited support for the C runtime: The NDK includes only bare bones support for
the stable portions of the C runtime (the portions that are very unlikely to change
in the future). This limitation is stressed by Google in the documentation. The
components supported are the C runtime (libc.so), Math library (libm.so), and
Compression library (libz.so), and there’s minimal support for C++. This level of
C support is fine for a game like Wolf3D or Doom but is not enough for the
advanced graphics, like OpenGL, that are required for more advanced games such
as Quake. If you find yourself in the latter situation, you are forced to either
translate all code to Java or hack the NDK to add support for OpenGL as explained
in the section “Adding OpenGL Support.”

• Poor integration with the Eclipse workbench: The NDK is a cumbersome and
difficult tool to use at this point. For example, the output folder, where the library
is compiled, is independent from your Eclipse workspace, and this disconnect
forces you to copy the file every time you make changes. Although the output
folder includes space for your Android project, this will force you to switch the
workspace to every location instead of centralizing the workspace as we are used
to with eclipse. The bottom line is that this tool needs to be integrated within the
workbench so you can add native libraries and compile them on the fly along with
the Java code, similar to the way the C Development Tools (CDT) work with the
workbench.

• Limited firmware support: According to Google, the NDK supports only versions
1.5 or later of the firmware. This can be a problem if you wish to support other
firmware versions, because 1.5 is fairly new and not supported in every device.
Although Google claims that the NDK only supports firmware 1.5, I have been able
to run native libraries in firmware 1.2 and 1.1 on the emulator.

• No support for the media player, logging, and OpenGL: Google has omitted the
libraries that are likely to change in future releases. This omission makes sense but
leaves many users in the dark when needing support for an advanced graphics,
audio, or logging mechanism. If you’re in this boat, you will have to install the
header files and libraries manually.

Despite these caveats, the NDK is a very useful tool for working with native code that is worth using:

• It provides a fast compilation environment for Windows users that rely on
VMware for compilation. This feature is very important, and the NDK is more than
enough to replace your slow VMware Linux image (especially if you run it in a
laptop) with the fast NDK, Cygwin, and Windows combination.

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

277

• It helps in debugging. In some cases, differences in the C compiler can cause
runtime crashes and many issues that are difficult to debug. For example, the
CodeSourcery G++ compiler used in this book is at version 4.3.x, while the NDK
compiler is at 4.2.x. This difference can have a significant impact in the way
programs run. As a matter of fact, I had crashes on libraries compiled with
CodeSourcery that work just fine using the NDK. The NDK will ensure your library
is on par with the C runtime running in the device.

All in all, the NDK is a good tool that can be a time saver once you get used to it. Plus, you can add
manual library support to satisfy custom needs. In the next section, you’ll learn how to use this tool to
compile Wolf 3D from source.

Installing the Android NDK and Cygwin

Installing the Android NDK is simple. Just download the zip archive and uncompress it somewhere in your
file system. You can get it at http://developer.android.com/sdk/ndk/1.6_r1/index.html.

If you are using a Windows system, you will also need Cygwin, the Linux-like environment for Windows.
Cygwin installation can be a little time consuming but isn’t difficult. Simply download the installer, and
follow the easy instructions (make sure you select GNU make under development tools in the package
selection page of the install). You can get the Cygwin installer at http://www.cygwin.com/.

■ Tip If using Cygwin, you must install GNU make. This tool is not enabled by default in the Cygwin installation
wizard, and it is required by the Android NDK. Please read the NDK installation instructions under
NDK_HOME/docs/INSTALL.TXT before your proceed!

Compiling Wolf 3D with the NDK 1.5
In this section, you will learn how to use the NDK to compile the native code in Chapter 6 in a Windows
system running Cygwin. Take a look at the NDK folder structure. There are two folders that any
application must use:

• app: This folder contains all the modules to be compiled.

• sources: This folder contains the code for every module in the app folder.

Let’s compile the Wolf3D library using the NDK:

1. Create an application module folder in NDK_HOME\apps\Wolf3D.

2. Within the folder above you need to create the folder NDK_HOME\apps\Wolf3D\
project\libs\armeabi. This folder will contain the actual compiled library.

3. Create the application module descriptor file NDK_HOME\apps\
Wolf3D\Application.mk. This file describes the name of the module as follows:

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

278

APP_PROJECT_PATH := $(call my-dir)/project
APP_MODULES := wolf3d

In the preceding snippet, APP_MODULES is critical. It defines the name of the module and must match

the application folder (Wolf3D). At the end of the process, the output library name will be named
libwolf3d.so.

The next folder we need is an application source folder:

1. Create NDK_HOME\sources\Wolf3D. This folder will contain the native code.

2. Copy the contents from ch06.Wolf3D.SW/native/gp2xwolf3d into the Wolf3D
folder created in step 1.

3. Create NDK_HOME\sources\Wolf3D\Android.mk. This is the Makefile used for
compilation (see Listing A-2).

Listing A-2. NDK Makefile for Wolf3D

Copyright (C) 2009 The Android Open Source Project

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
See the License for the specific language governing permissions and
limitations under the License.

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := libwolf3d

LP := $(LOCAL_PATH)

INC := -Isources/Wolf3D/include

optimization
OPTS := -O6 -ffast-math -fexpensive-optimizations -funroll-loops -fomit-frame-pointer

compilation flags
LOCAL_CFLAGS := -DANDROID $(OPTS) $(INC)

LOCAL_LDLIBS :=
LOCAL_SHARED_LIBRARIES :=

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

279

FILES := objs.c misc.c id_ca.c id_vh.c id_us.c \
 wl_act1.c wl_act2.c wl_act3.c wl_agent.c wl_game.c \
 wl_inter.c wl_menu.c wl_play.c wl_state.c wl_text.c wl_main.c \
 wl_debug.c vi_comm.c sd_comm.c \
 wl_draw.c jni_wolf.c vi_null.c sd_null.c

LOCAL_SRC_FILES := $(FILES)

include $(BUILD_SHARED_LIBRARY)

Let’s take a closer look to the variables defined in Listing A-2:

• LOCAL_PATH: This variable defines the local path of the module,
NDK_HOME/sources/Wolf3D in this particular case.

• LOCAL_MODULE: This variable defines the name of the local module. It must match
the module name (wolf3d) with the prefix lib, thus libwolf3d.

• LOCAL_CFLAGS: Here is where you can put the optimization flags of your choice and
extra include directories (where C headers live). For Wolf 3D, I use

-Isources/Wolf3D/include

• LOCAL_SRC_FILES: These are the source files that compose the library.

The following actions will be executed during the make process:

• include $(CLEAR_VARS): This action clears previous values of the local variables
used by the module.

• include $(BUILD_SHARED_LIBRARY): This action tells the compilation project to
build a shared library.

Types of libraries in Linux

The types of libraries that can be compiled with the NDK can be confusing for the newcomer:

• Shared libraries: These are loaded dynamically by an executable at runtime. In
Linux, they use the naming convention lib<SOME_NAME>.so. For example,
libwolf3d.so is the shared library used by our project.

• Static libraries: These are binary code archives that will be included into a master
shared library at compile time. They use the naming convention
lib<SOME_NAME>.a.

Compiling the Shared Library
Finally, we are ready to go. Start the compilation process by typing the following within the NDK home
folder (see Figure A-5):

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

280

$make APP=Wolf3D

■ Tip Make sure you type the previous command within the NDK root folder. Furthermore, if you use Windows,
you must use the Cygwin console to do so, as shown in Figure A-5.

Figure A-5. Compiling Wolf3D using the NDK within the Cygwin console

The output library libwolf3d.so will be created in the application folder NDK_HOME/apps/
Wolf3D/project/libs/armeabi. You can copy this file to your project workspace folder of the same
name (libs/armeabi).

Adding Support for OpenGL to the NDK 1.5
One of the limitations of the NDK 1.5 is the lack of support for OpenGL. Although Google discourages the
use of this native API due to its unstable nature, you can manually add support for it within the NDK by
following two simple steps. In this section, you will learn how to add support for OpenGL to the NDK.
This is a critical tool if you are bringing games to the platform that use native OpenGL calls. In my case, I
used this technique to get the native code from the great game Quake to compile for the Android
platform. I hope it will be as useful for you as it was for me.

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

281

You need to add support for two things to use custom APIs with the NDK:

• Header files: These are required for compilation. The problem is that they are not
distributed with the NDK source, which means you will need to obtain them by
other means (from the Android source, perhaps).

• Native libraries: The native libraries are required to link the final library.

In the case of OpenGL, the best bet is to download the Android source to obtain the header files.
This can be a time consuming but necessary step (Chapter 1 shows how to do this). Next, assuming that
you have downloaded the Android source to a Windows PC under c:\tmp\mydroid, follow the next steps
to setup OpenGL

1. Copy the OpenGL header file folders EGL and GLES from the Android source
(located in c:\tmp\mydroid\frameworks\base\opengl\include) to
NDK_HOME\build\platforms\android-1.5\arch-arm\usr\include (see
Figure A-6).

Figure A-6. OpenGL header files within the NDK

2. Next, you need to copy OpenGL libraries to NDK_HOME\build\
platforms\android-1.5\arch-arm\usr\lib, as shown in Figure A-7.

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

282

Figure A-7. OpenGL libraries within the NDK

You can extract the OpenGL library from the device using the console command:

adb pull /system/lib/libGLESv1_CM.so libGLESv1_CM.so

■ Tip Note that libGLESv1_CM.so is the name of the OpenGL library for firmware version 1.2 or later, and
libGLES_CM.so is for firmware version 1.0. This means that libraries compiled for firmware 1.2 or later will not
run in firmware 1.0.

Compiling Doom with NDK 1.6
If you read this book carefully, you’ll get the sense that that I don’t like the NDK 1.5 (when I started in
this project the NDK didn’t even exist). I think the NDK 1.5 is cumbersome to use, because of the lack of
integration with the Eclipse workbench. Plus, version 1.5 has only the bare bones to compile a native
library (that is, the C runtime, Compression library, and basic C++ support). Just when this book was
being finished up, Google released the NDK 1.6, a nice improvement over 1.5. Here are the highlights of
this new version:

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

283

• The sources folder from the NDK folder structure is gone (see the section on Wolf
3D and NDK 1.5). Now, all code (Java and native) lives in the apps folder. Within
the apps folder, the project folder contains the Android Java project, and within
project, the jni folder contains the native code and the Makefile Android.mk.

• NDK 1.6 adds support for OpenGL ES 2.0. This welcome addition will help many
3D games out there.

I would recommend the NDK over the CodeSourcery G++ compiler if you have a slow system such
as a laptop or VMware combination or if your library crashes mysteriously, perhaps because of GNU
compiler version issues, which can happen in programs that are not highly portable. Discrepancies in
the GNU compiler version (for example, CodeSourcery uses GCC 4.3.x instead of Android’s 4.2.x) can
cause optimization errors and other types of runtime errors that ultimately crash the game.

All in all, NDK 1.6 is a good improvement but still has far to go to catch up with other powerful tools,
such as Apple’s iPhone Xcode platform. For example, the NDK will recompile the entire library if you
change the Makefile, Android.mk (too add a new source file for example). This is really annoying when
you have a big library with lots of source files. Other tools such as GNU make will detect the changes and
recompile only the right files in the library. Anyway, for Doom, the folder structure for NDK 1.6 should
look as follows:

• android-ndk-1.6_r1/apps/Doom/Application.mk: This file defines the module
name to be built.

• android-ndk-1.6_r1/apps/Doom/project: This folder contains the actual Android
project for the game.

• android-ndk-1.6_r1/apps/Doom/project/jni: This folder contains the native code
and the Makefile, Android.mk.

Here is how you get Doom to compile with NDK 1.6:

1. Create android-ndk-1.6_r1/apps/Doom/Application.mk. This file contains the
module (doom) that we are building:

APP_PROJECT_PATH := $(call my-dir)/project
APP_MODULES := doom

2. Create the folder android-ndk-1.6_r1/apps/Doom/project. Copy the Android
project from ch07.Android.Doom to this folder. You don’t need to copy the
native folder (this is the native code).

3. Create the folder android-ndk-1.6_r1/apps/Doom/project/jni, and copy the
native code from ch07.Android.Doom/native/prboom.

4. Create a Makefile called Android.mk in android-ndk-1.6_r1/apps/Doom/
project/jni. This make file should look as follows:

LOCAL_PATH := $(call my-dir)

clear vars
include $(CLEAR_VARS)

module name
LOCAL_MODULE := doom

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

284

LP := $(LOCAL_PATH)

doom folder
DOOM := apps/Doom/project/jni

includes
INC := -I$(DOOM) -I$(DOOM)/include

DOOM_FLAGS := -DNORMALUNIX -DLINUX -DHAVE_CONFIG_H

OPTS := -O3 -ffast-math -fexpensive-optimizations
LOCAL_CFLAGS := $(DOOM_FLAGS) $(OPTS) $(INC)

sources
LOCAL_SRC_FILES := \
 am_map.c m_cheat.c p_lights.c p_user.c sounds.c \
 hu_lib.c md5.c p_map.c r_bsp.c s_sound.c \
 d_deh.c hu_stuff.c m_menu.c p_maputl.c r_data.c st_lib.c \
 d_items.c m_misc.c p_mobj.c r_demo.c st_stuff.c \
 d_main.c info.c p_plats.c r_draw.c tables.c \
 doomdef.c m_random.c p_pspr.c r_filter.c version.c \
 doomstat.c p_ceilng.c p_saveg.c r_fps.c v_video.c \
 p_checksum.c p_setup.c r_main.c wi_stuff.c \
 dstrings.c p_doors.c p_sight.c r_patch.c w_memcache.c \
 f_finale.c p_enemy.c p_spec.c r_plane.c w_mmap.c \
 f_wipe.c lprintf.c p_floor.c p_switch.c r_segs.c w_wad.c \
 g_game.c m_argv.c p_genlin.c p_telept.c r_sky.c z_bmalloc.c \
 m_bbox.c p_inter.c p_tick.c r_things.c z_zone.c \
 d_client.c d_server.c \
 droid/i_video.c droid/i_network.c droid/i_joy.c \
 droid/i_system.c droid/i_main.c droid/i_sound.c \
 droid/jni_doom.c

Build libdoom.so
include $(BUILD_SHARED_LIBRARY)

5. Finally, run make APP=Doom from the NDK root folder android-ndk-1.6_r1. The
output library libdoom.so will be stored in Doom/project//libs/armeabi and
ready to use. Import Doom/project into your Eclipse workspace, and start the
game.

Final Thoughts
I hope that you have enjoyed Pro Android Games. I wrote this book to show you the things that can be
done with two powerful languages: Java and C. I have shown how one person can bring a complex PC
game to Android with little effort in record time using these two great languages. I’d like to finish up with
the things I liked and disliked about writing software for Android as opposed to other mobile platforms,
such as the iPhone OS. You may not agree with my statements, but they could be useful in your game
development career. These are the limitations in Android I have found writing the games for this book:

APPENDIX ■ DEPLOYMENT AND COMPILATION TIPS

285

• Lack of an open audio library: I consider this to be a serious limitation. Audio is
critical in gaming, and most vendors nowadays try to use open APIs such Open
Audio Library (AL) or the standard Linux sound devices. Up to version 2.0,
Android uses the SoniVox Enhanced Audio System (EAS).

• Lack of streaming audio: This is another serious issue. I found the lack of
streaming audio to be the most frustrating thing about Android. I don’t mind
learning the EAS audio API, but the darn thing doesn’t even support audio
streaming? Audio streaming is critical and used extensively by Wolfenstein 3D and
Doom in Chapters 6 and 7. To overcome this shortcoming, I was forced to cascade
audio events to the Java layers, put the soundtracks in external files, and have the
MediaPlayer handle them. In Android, you are boxed in by the MediaPlayer.
Although I have heard that Google is planning support for OpenAL (audio library);
this would be a good move.

• Lack of support for native development: I am happy to see that Google has realized
how critical native development support will be if Android is to become a
competitor in the mobile gaming arena. With the release of the Android NDK 1.6,
things have improved greatly, but Android still lags behind the iPhone OS in this
field.

• Only basic OpenGL ES implementation: As of version 1.5 of the SDK, Android
implemented OpenGL ES 1.x. The iPhone OS has been supported OpenGL ES 2.0
for a long time now. Although I am happy to report that, with firmware 2.0,
Android implements OpenGL ES 2.0, development in this area still lags behind the
iPhone.

On the other hand, Android has some great features that make it a serious contender as a mobile
development platform:

• Open source: An army of developers is out there ready to build code for this open
platform, and new devices are popping out all the time.

• Built on Linux: I love Linux, and I am always ready to support development in this
beautiful OS. It is a masterpiece of software engineering.

• Multitasking: multitasking as an advantage is in the eye of the beholder (I am not
sure where to put this one). In one hand, there are some who say that multitasking
is great for social networking applications, because you can have multiple
background processes feeding you information, but detractors claim that it hogs
the CPU resources and diminishes battery life. I have to go with the detractors on
this one.

All in all, I am happy to see that, with the release of the NDK 1.6, Google is realizing the need for native
development if Android is to be serious contender to the iPhone OS for gaming. Android has a way to go
to catch up, but the platform development seems to run at a tremendous pace. Android versus the
iPhone OS—I can’t wait to see who wins. At the moment, my money is on the iPhone OS, but my heart is
with Android.

■ ■ ■

287

Index

�SPECIAL CHARACTERS
$ make command, 12
${GCC} $LD_FLAGS $LIB_PATHS $@

$LIBRARIES command, 17
$HOME/.bashrc file, 9
$HOME/bin directory, 18
$HOME/tmp/android/system/lib folder, 7
$(OBJ) dependencies, 12

�A
Abstract Windowing Toolkit (AWT), 81
ACTION_DOWN action, 234, 239
ACTION_MOVE action, 234
ACTION_UP action, 189, 234, 239
actions buttons, miscellaneous, 182
adb push FILENAME DEVICE_DEST

command, 47
addPoint(int x, int y) method, 86
Advanced Linux Sound Architecture

(ALSA), 238
advance(int width, int height) method, 94
agcc script, 11, 152, 213
ald script, 11, 17, 213
-alias <alias_name> argument, 272
all target, 11
Android 1.1, 27
Android 1.5, 27
Android 1.6, 27
Android Debug Bridge (adb), 3, 4, 7
Android Developer Guide, 271

Android gaming, vs. Java ME gaming, 55—

56
Android Native Development Kit (NDK),

compiling libraries with
adding support for OpenGL, 280—282
Doom, 282—283
shared libraries, 279—280
Wolf 3D, 277—278

Android native libraries, 4
Android pixels argument, 177
Android software development kit (SDK), 4
Android source software, 4
Android Virtual Device (AVD), 3, 27—29
android_radio argument, 273
android:focusable="true" attribute, 229
android:focusableInTouchMode="true"

attribute, 229
android:id="@+id/doom_iv" attribute, 229
android:layout_alignParentBottom="true"

attribute, 230
android:layout_alignParentLeft="true"

attribute, 230
android:layout_width="fill_parent"

attribute, 229
Android.mk file, 283
android.os.Handler class, 236
android:src="@drawable/up" attribute,

230
android:visibility="gone" attribute, 230
APP_MODULES file, 278
application architecture

converting Java array to C array, 43

■ INDEX

288

defining variable-arguments function in
C, 44—45

getting size of Java array, 44
invoking Java static void method, 44
main activity, 34—35
native interface, 36—37
native library, 37—42
overview, 32—34

application signing, 272—275
creating key store, 271—272
overview, 271

apps folder, 283
ArcadeGame class, 61, 65, 95, 97, 99
ArcadeGame.initilize class, 68
ArcadeGame.java class, 57
arm-none-linux-gnueabi prefix, 11
arm-none-linux-gnueabi-g++ C++

compiler, 10
arm-none-linux-gnueabi-gcc -c file1.c -

Ifolder1 -Ifolder2 command, 12
arm-none-linux-gnueabi-gcc C++

compiler, 10
arm-none-linux-gnueabi-ld C++ compiler,

10
arm-none-linux-gnueabi-objdump C++

compiler, 10
arm-none-linux-gnueabi-strip C++

compiler, 10
arrays

converting, 43
Java, size of, 44

assests folder, 162
Asteroids class, 95, 97, 101
AsteroidsActivity class, 95, 97
Asteroids.png file, 98
asteroids.xml file, 95, 97
Asteroids.xml file, 98
audio clips, playing, 72—75
audio request handlers, 237—238
AudioClip class, 73, 75, 98, 101, 167, 191,

194, 241
AudioClip.java class, 58, 226
AudioClip.java file, 222
audiohed.wl1 file, 176

AudioManager class, 176, 191, 192, 226,
240

AudioManager.java file, 222
AudioMananger class, 167
audiot.wl1 file, 176
audiowl6.h, C header, 193
audiowl6.h file, 192

�B
bin folder, 5
bionic folder, 6
bionic/linker/linker.c:1581 file, 50
bitmap sprites, 70
boolean gameOver() method, 100
boolean variables, 110

�C
C array, coverting from Java array, 43
C Development Tools (CDT), 276
C runtime (LIBC), 15, 276
calculateBounds(int xpoints[], int

ypoints[], int npoints) method, 86
Canvas class, 82, 83
Canvas.drawLines class, 83
canvas.drawPoint class, 104
Carmack, John, 163
CB_CLASS class, 41
CB_CLASS_MSG_CB class, 41
CB_CLASS_MSG_SIG class, 42
CFLAGS=-Werror command, 47
CodeSourcery G++ compiler, 277
Color palette, Linux, 225
compiling

libraries with Android NDK
adding support for OpenGL, 280—282
Doom, 282—283
shared libraries, 279—280
Wolf 3D, 277—278

ported OpenGL application, 152
adding support for OpenGL, 280—282
Doom, 282—283
shared libraries, 279—280
Wolf 3D, 277—278

Compression library, 276

■ INDEX

289

Config.ARGB_8888 class, 235
config.wl1 file, 176
Constants class, 97
constructors method, 86
contains(int x, int y) method, 86
controller layout, 166
Controller toolbar, 227
ControllerListener class, 167
ControllerListener interface, 186
ControllerUp(int btnCode) event, 180
Create New AVD dialog box, 29
Creation handler, 227
Cube class, 121, 134—136
Cube() method, 134
Cube_draw() method, 145
CubeRenderer, 121
CubeRenderer class, 130—134, 141, 143
cuberenderer.c file, 144
cuberenderer.c function, 146
CubeRenderer.drawFrame() method, 143,

145
CubeRenderer.surfaceCreated() method,

143, 144
C,variable-arguments function in, 44—45
Cygwin environment, 277

�D
d_event.h header, 246
D_PostEvent method, 249
/data folder, 154
default (all) target, 45
deploy-lib target, 265
deployment tips

compiling libraries with Android NDK
adding support for OpenGL, 280—282
Doom, 282—283
shared libraries, 279—280
Wolf 3D, 277—278

signing applications, 271—272
/dev/eac device, 75
device /system/lib folder, 7
DialogTool class, 168
DialogTool.java class, 226
DialogTool.java file, 222
Doom game

audio classes, 240—241
bringing to mobile device, 223—225
compiling libraries with Android NDK,

282—283
Doom Library (DSO) compilation, 264—

266
game architecture, 225—227
Java main activity class

creation handler, 227—228
game layout, 228—231
key and touch event handlers, 233—

234
menu and selection handlers, 231—

232
native callback handlers, 234—238
navigation controls, 238—240

Java/C combo, 221—222
native interface class

C to Java callbacks, 243—245
callback listener, 241—242
native methods, 242

native layer
native method implementations, 246,

257
original game changes, 258—264

testing for Android in emulator, 266—268
doom_jni_Natives.h file, 246
doom_main method, 259
doom1.wad file, 242
doom2.wad file, 242
doom.audio package, 226
doom.audio.AudioManager class, 237
DoomClient.java file, 222
doomdef.h header, 246
doom.jni package, 226
doom.jni.Natives Java class, 246, 257
doom.jni.Natives.OnFatalError(String)

method, 257
doom.jni.Natives.OnImageUpdate

method, 248
doom.jni.Natives.OnImageUpdate(int[]

pixels) method, 252
doom.jni.natives.OnStartSound method,

248
doom.png file, 2

■ INDEX

290

Doom/project/ /libs/armeabi file, 284
DoomTools.java class, 226
DoomTools.java file, 222
doom.util package, 226
doom.util.Natives.OnInitGraphics(width,

height) method, 251
doom.wad file, 242
down class variable, 110
draw() method, 122, 134
drawArc (RectF oval, float startAngle, float

sweepAngle, boolean useCenter, Paint
paint) method, 82

draw(Canvas canvas, Paint paint) method,
94

drawCircle () method, 82
drawFrame() function, 142—143, 145—146
drawing frames, 145—147
drawLine () method, 82
drawLines () method, 82
drawPoint() method, 82
drawRect () method, 82
drawRoundRect () method, 82
dynamic shared object (DSO), 165, 166,

167, 223
dynamic-linker=/system/bin/linker path,

17

�E
Eclipse Galileo, 221
Eclipse software, 4
Eclipse workbench, 273, 276
EglHelper class, 120
emulator

testing Doom game for Android in, 266—
268

testing Java game on, 79—80
EventListener interface, 141, 241
Exit option, 172
extern int doom_main file, 247
extern int doom_main(int argc, char

**argv) method, 259

�F
fatal errors handler, 234, 236—237
ffast-math flag, 264
firmware support, 276
float[] getPoints()method, 86
floating-point unit (FPU), 158
frame height argument, 177
frame width argument, 177
frame X coordinate argument, 177
frame Y coordinate argument, 177
frames, drawing, 145—147

�G
g_VM function, 42
Game Boy device, 238
game loop, in Wolfenstein 3D, 175—176
GameFileDownloader.java class, 227
GameFileDownloader.java file, 222
gamemaps.wl1 file, 176
Gamepark32 device, 163, 165
gcc command, 15
-genkey argument, 272
getAssets argument, 34
getAssets().open() method, 34
getBoundingBox() method, 86
getHeight method, 102, 104
getImage(RESOURCEID) method, 70
getInstance() method, 194
GetObjectArrayElement() method, 43
GetStringUTFChars() method, 43
getWidth method, 102, 104
gfxbuf buffer, 209
Git software tool, 5
GL commands, 144
gl*Pointer() method, 134
GL_MODELVIEW method, 130
glClear() method, 145
glEnableClientState() method, 145
glLoadIdentity() method, 130
GLSurfaceView class, 120, 124, 141
GLSurfaceView.setRenderer() method, 142
GLSwapBuffers() method, 143
GLThread class, 120, 122, 127—130, 141, 142
GNU

■ INDEX

291

compiler, 283
GCC toolchain, 11
Gzip (LIBZ) library, 15

GNU Public License (GPL), 165
Google APIs target, 27
/gp2xwolf3d folder, 192
graphical user interface (GUI), 1
graphics initialization

callback, 206
handler, 234—235
message, 166

Graphics processing unit (GPU), 118
guardedRun() method, 128

�H
header files, 281
height argument, 235, 242
HOME variable, 15

�I
I$JAVA_HOME/include file, 41
I$JAVA_HOME/include/linux file, 41
I_Error function, 259
i_main.c file, 258
i_sound.c file, 222, 258, 259
i_system.c file, 258, 259
i_video.c file, 222, 258, 259, 261, 263
ID btn_upleft assembly, 2
IllegalState exception, 73
image update handler, 234, 235—236
image view element, 166
ImageView class, 225
ImageView.getLayoutParams() method,

235
immediate mode drawing, 158
include $(BUILD_SHARED_LIBRARY)

action, 279
include $(CLEAR_VARS) action, 279
init command, 6
init_scene() function, 144
initialize()method, 66, 101
int getArrayLen() function, 42
int lib_main() function, 42
int wolf.jni.Natives.WolfMain method, 203

int[] getConfigSpec() method, 131
intController method, 169
integrated development environment

(IDE), 3
invalid dependencies, removal of, 246
isColliding(PolygonSprite s) method, 94
isPortrait() method, 172
item.getItemId() method, 172
iwad argument, 242

�J
jarsigner command, 273
Java

arrays
converting to C array, 43
getting size of, 44

callbacks, 147—150, 247
methods, vs C counterparts, 203
OpenGL within

Cube class, 134—136
CubeRenderer class, 130—134
GL Thread, 127—130
Java main activity, 123—124
overview, 119—123
Surface View, 124—127

Java game, building, 55, 80. See also Space
Blaster game
Android gaming vs. Java ME gaming,

55—56
testing on emulator, 79—80

Java JDK 5.0, 4
Java Native Interface (JNI), 1, 165, 203

callback, 117, 191
headers, 214

Java SDK jarsigner command, 272—273
Java string array, 204
Java Virtual Machine (JVM) command, 41
Java_doom_jni_Natives_DoomMain class,

258
JAVA_HOME variable, 15
JAVA_HOME/include file, 41
JAVA_HOME/include/linux file, 41
Java_opengl_jni_Natives_NativeRender

function, 149
java.awt.Dimension class, 55

■ INDEX

292

java.awt.Polygon class, 55
JavaGLActivity class, 121
JavaGLActivity.onCreate() method, 123
javah command, 203, 214, 246
javah -jni -classpath ./bin -d include

jni.Natives command, 47
java.lang.String class, 253
jint Java_wolf_jni_Natives_WolfMain

function, 203
jNativesCls function, 42
jni folder, 283
JNI interface, 221
JNI method, 150
jni target, 45, 265
jni_doom.c file, 222, 246
jni_doom.h header, 246—247, 251, 256
jni_gl_swap_buffers () callback, 147
jni_init_graphics (int width, int height)

function, 206
jni_init_graphics function, 206
jni_Natives header file, 41
jni_send_pixels callback, 208, 264
jni_send_pixels method, 251
jni_send_str(const char * text) callback,

147
jni_set_music_volume (volume) method,

260
jni_start_music (int idx) callback, 211
jni_start_sound (int idx) callback, 211
jni_start_sound variable, 260
jni_wolf.c file, 203, 206
jni_wolf.h file, 203
jni.Natives Java class, 41—42
jni.Natives.java file, 32
jni.Natives.LibMain() method, 44
jni.Natives.OnMessage() method, 44, 54
jStartMusicMethod method, 211
jStartSoundMethod method, 211

�K
kernel headers (KERNEL), 15
key events, 76—78, 247

press, 110—113
in Wolfenstein 3D, 174

key handlers, 227

key store, creating, 271—272
keyCode class, 233
KeyEvent class, 180
-keypass <password> argument, 272
keystore argument, 272—273
keytool command, 272—273

�L
LayoutInfalter class, 61
LD_FLAGS variable, 17
left class variable, 110
/lib folder, 51
lib target, 45, 265
LIB_PATHS variable, 17
lib.c file, 33
libraries, compiling with Android NDK

adding support for OpenGL, 280—282
Doom, 282—283
shared, 279—280
Wolf 3D, 277—278

LIBRARIES variable, 17
LibraryLoader class, 168
LibraryLoader.java class, 227
libs/armeabi folder, 162, 213, 215
libwolf_jni.so library, 162
LinearLayout class, 61, 65, 81, 97
LinearLayout::onDraw() method, 58
LinearLayout.onLayout class, 68
LinerLayout class, 99
Linux Operating System Sound (OSS), 190
Ljava/lang/String file, 253
LOCAL_CFLAGS variable, 279
LOCAL_MODULE variable, 279
LOCAL_PATH variable, 279
LOCAL_SRC_FILES variable, 279
long getScore() method, 100

�M
Main loop, 137—138
main.c file, 33
main.xml file, 97
make command, 52
make pushlib file, 49
Makefile file, 11

■ INDEX

293

malloc(length of string + 1) method, 43
maphead.wl1 file, 176
Math library (LIBM), 15
mBitmapPaint object, 68
MediaPlayer class, 73, 225, 285
menu handlers, 227
menu options, adding, 172
message updates handler, 234, 236
mGLSurfaceView.setRenderer(new

CubeRenderer(true, true)) method, 138
Miscellaneous text message, 166
mLaserBarPaint object, 68
mobile devices, and OpenGL, 118—119
motion events, 247
MotionEvent.ACTION_DOWN event, 189
movement controller

class for, 185—189
creating handlers for, 180—182
layout of, 182—185

mShieldBarPaint object, 68
mShieldPaint object, 68
mTextPaint object, 68
music handlers, in Wolfenstein 3D, 179
music request callback, 206
music variable, 195
myapp binary, 12
mydroid folder, 5

�N
native activity, 139
native callback handlers, 227
native callbacks, in Wolfenstein 3D, 177—

178
native code

compiling and testing shared library
compiling statically, 51—52
debugging with strace, 50—51
testing dynamic library on device, 49
troubleshooting missing symbols, 48—

49
creating native Android app, 27, 45. See

also application architecture
creating Android project, 30
creating AVD, 27—29

testing native application, 52—54

native cube (cube.c), 139, 151
native cube renderer (cuberenderer.c), 139

drawing frames, 145—147
Java callbacks, 147—150
native interface call, 150
scene initialization, 144—145

Native Development Kit (NDK), 25, 48
native folder, 119, 162
native game loop, 247
native int keyPress(int key) method, 200
native int keyRelease(int key) method, 200
native int WolfMain(String[] argv) method,

200
native interface, 36—37
native interface class, 139, 140—141, 200—

202
native library, 34, 37—42, 281
native method implementations, 245
native OpenGL applications, porting

changes to GL Cubes sample, 142—143
compiling sample, 152
main activity, 138—139
native cube (cube.c), 151
native cube renderer (cuberenderer.c)

drawing frames, 145—147
Java callbacks, 147—150
native interface call, 150
scene initialization, 144—145

native interface class, 140—141
overview, 136
running sample, 158

NativeGLActivity class, 121
native/gp2xwolf3d folder, 193, 215
Natives class, 121, 165, 167, 174
natives interface class, 176
Natives.EventListener interface, 234
Natives.EventListener listener, 142
Natives.LibMain class, 37
Natives.LibMain(String[] argv) method, 34
Natives.sendNativeKeyEvent (event, scan

code) class, 181
Natives.setListener(this) method, 141
navigation buttons, 182
navigation method, 171—172
navigation option, 172

■ INDEX

294

navigation options dialog, 174
NDK_HOME\apps\Wolf3D\Application.m

k file, 277
NDK_HOME\apps\Wolf3D\project\libs\a

rmeabi folder, 277, 280
NDK_HOME\sources\Wolf3D folder, 278
NDK_HOME\sources\Wolf3D\Android.m

k folder, 278
.nomedia file, 241
nostdinc flag, 264
nostdinc parameter, 15
-nostdlib command, 52
nostdlib path, 17

�O
offset argument, 235
onCreate class, 228
onCreate() method, 2, 60, 128, 169
onCreate(Bundle savedInstanceState)

method, 34
onCreateOptionsMenu method, 172, 231
onDestroy() method, 128
onDetachedFromWindow() method, 127
onDraw() method, 58, 61, 81
OnFatalError(String text) callback, 241
OnImageUpdate callback, 247
OnImageUpdate event, 177, 178
OnImageUpdate() method, 202
OnInitGraphics class, 251
OnInitGraphics event, 178
OnInitGraphics(int w, int h) event, 202
onKeyDown event, 76
onKeyDown method, 110
onKeyUp event, 76
onKeyUp method, 110
onLayout() method, 65, 66
OnMessage class, 37
OnMessage event, 178
OnMessage method, 42
OnMessage(String text) event, 202
OnMessage(String text, int level) callback,

241
onOptionsItemSelected method, 172, 231
onPause() method, 124
OnQuit(int code) callback, 241

onRestart method, 61
onResume() method, 124
OnSetMusicVolume(int volume) callback,

242
OnStartMusic callback, 179
OnStartMusic class, 253
OnStartMusic event, 178
OnStartMusic(int idx) event, 202
OnStartMusic(String name, int loop)

callback, 242
OnStartSound callback, 179, 247
OnStartSound class, 253
OnStartSound event, 178
OnStartSound(int idx) event, 202
OnStartSound(String name, int vol)

callback, 241
onStop method, 61
OnStopMusic(String name) callback, 242
OnSysError event, 177
OnSysError(String text) event, 202
onTouchEvent event, 76
onTouchEvent method, 78, 110, 174
open audio library, 285
Open Audio Library (AL), 285
Open source, 285
openFileOutput argument, 35
OpenGL

adding support to Android NDK, 280—
282

caveats of porting games to Android,
158—159

Embedded System (ES), 117—118, 285
header file, 281
within Java

Cube class, 134—136
CubeRenderer class, 130—134
GL Thread, 127—130
Java main activity, 123—124
Surface View, 124—127

native OpenGL applications
changes to GL Cubes sample, 142—

143
compiling sample, 152
main activity, 138—139
native cube (cube.c), 151

■ INDEX

295

native cube renderer
(cuberenderer.c), 143—150

native interface class, 140—141
overview, 136—138
running sample, 158

and power of mobile devices, 118—119
support, 276

opengl_jni_Natives file, 144
opengl.jni.Natives class, 149
opengl.jni.Natives.java file, 144
opengl.jni.Natives.NativeRender()

method, 150
operating system (OS), Linux, 4
Operating System Sound (OSS), Linux, 190
org.doom package, 226
org.doom.DoomClient file, 225
Original game changes, 245

�P
Paint objects, 71
PATH environment variable, 4
Permad, F., 163
pixels argument, 235
PlayStation Portable (PSP) device, 238
plutonia.wad file, 242
Polygon class, 81, 83, 85—86, 97, 115
polygons

creating Polygon class, 85—86
creating PolygonSprite class, 91—95
creating project

game layout, 97
game life cycle, 99, 110
key press and touch events, 110—113
overview, 95—96
resources, 97

drawing, caveats of, 81—83
drawing rectangles, caveats of, 83
game architecture, 95

PolygonSprite class, 81, 83, 86, 91—95, 97,
115

porting native OpenGL applications. See
native OpenGL applications, porting

postInvalidate()method, 66
PrBoom Doom engine, 223—224
preloadSounds() method, 240

preloadSounds(Context ctx) method, 194
printf-style function, 45
private static void OnMessage(String text,

int level) method, 36
project folder, 283
public/private key, 271
pushbin target, 45
pushlib target, 45

�Q
queueEvent(Runnable r) method, 127
QWERTY keyboard, 238

�R
ray casting (2.5D casting), 163
ray casting technique, 163
Rect class, 83
Rectangle class, 81, 83, 86, 97, 115
rectangles, drawing, 83
RectF class, 83
RelativeLayout class, 239
ReleaseStringUTFChars() method, 43
render() method, 94
Renderer class, 120
Renderer constructor, 138
repo tool, 5
requests handler, 234
res folder, 162, 183
res//drawable folder, 2
res/raw folder, 101, 190
right class variable, 110
R.layout.wolf application, 169
root folder, 280
rpath ${SYS_ROOT}/lib, 17
rpath /system/lib path, 17
run() method, 128
Runnable class, 236
running, ported OpenGL application, 158

�S
S_sfx[id].name variable, 260
s_sound.c file, 222, 258
s_sound.c method, 260
ScanCodes class, 168

■ INDEX

296

scene initialization, native cube renderer
(cuberenderer.c), 144—145

sd_null.c file, 203
SD_PlaySoundSOD handler, 213
SD_PlaySoundWL6 handler, 213
sdcard.iso file, 3
SDK_HOME//tools directory, 3
SDL_Surface class, 261
SE java.awt.Rectangle class, 83
select button, 188
semaphore, 128
setFocusable class, 61
setMusicVolume (int vol) method, 241
setOnCompletionListener() method, 75
setRenderer() method, 127
setUpdatePeriod method, 66
setupPanControls function, 239
shared libraries, compiling libraries with

Android NDK, 279—280
Simple DirectMedia Layer (SDL), 246
Sine and cosine tables, 225
SNESController class, 167, 186
SNES-style controller, 166
Software Development Kit (SDK)

command tools, 2
SoniVox Enhanced Audio System (EAS),

75, 190, 285
sound

adding, 75
handlers, creating, 179
initializing, 68
request callback, 206

sound classes, in Wolfenstein 3D
creating AudioClip class, 197
creating AudioManager class, 193—195
mapping sound names to raw sound

resources, 192—193
overview, 190—191

SoundNames class, 167, 192, 193
sources folder, 277, 283
Space Blaster game

creating game's activity class, 60—61
creating project, 59—60
creatinggame layout, 61—66
game architecture, 57—59

handling key and touch events, 76—78
implementing game

adding native sound, 75
creating star field, 71
initializing sprites and sounds, 68
loading bitmap sprites, 70
playing audio clips, 72—75

SpaceBlaster class, 71, 78, 95
SpaceBlasterGame class, 61
SpaceBlasterGame method, 66
SpaceBlasterGame.initilize class, 68
SpaceBlasterGame.java class, 57
SpaceBlaster.java class, 57
SpaceBlaster.java file, 66
sprites

drawing, 103
initializing, 68
loading bitmap, 70

src folder, 119, 162
star field, creating, 71
startGame function, 175, 177
startMusic method, 179, 240
startSound method, 179, 240
startUpdateTimer()method, 66
static libraries, 279
static native int DoomMain(String[] argv)

method, 242, 246
static native int keyEvent(int type, int key)

method, 242, 246
static native int LibMain(String[] argv)

method, 36
static native int motionEvent(int btn, int x,

int y) method, 242, 246
static native int NativeRender() method,

140
static void GLSwapBuffers() callback, 140
static void OnMessage(String text)

callback, 140
stopMusic (String key) method, 241
-storepass <password> argument, 272
strcpy (char ** target , char * source)

method, 43
streaming audio, 285
stride argument, 235
string array, converting, 204

■ INDEX

297

Strings.xml file, 98
struct XColor class, 262
Surface View class, for GL Cubes sample,

124—127
surfaceChanged() method, 125
surfaceCreated() method, 125
surfaceDestroyed() method, 125
SurfaceHolder.addCallback() class, 124
SurfaceHolder.Callback callback, 124
swap buffers, 138
SYS_DEV variable, 15
SYS_ROOT variable, 15
/system/bin/linker file, 49
/system/lib folder, 7, 51
System.load() method, 34
System.loadLibrary() method, 216

�T
testing, Java game, 79—80
testlib target, 45
testlib.c file, 33
text message, miscellaneous, 166
Timertask:run() method, 66
tnt.wad file, 242
Toggle Screen option, 172
TOOLCHAIN_ROOT variable, 15
Tools class, 98
Tools.java class, 58
touch events, 76—78, 110—113, 174
touch handlers, 227

�U
Ubuntu Linux VMware appliance, 4
UI widget, 236
up class variable, 110
updateBounds() method, 86
updateShip() method, 106

�V
-v argument, 272
va_end command, 45
va_list command, 45
va_start command, 45
-validity <valdays> argument, 272

variable-arguments function in C,
defining, 44—45

verbose argument, 273
vgadict.wl1 file, 176
vgagraph.wl1 file, 176
vgahead.wl1 file, 176
vi_null.c file, 203, 206, 207, 208
video buffer update callback, 206
VL_SetPalette () function, 209
VL_Startup() method, 206, 207, 208
VMware Linux image, 276
VMware Player software, 4
VMware Virtual Appliance Marketplace, 4
void drawFrame(GL10 gl) method, 130
void initialize() method, 99
void jni_fatal_error() method, 251
void jni_printf() function, 42
void jni_send_pixels() method, 250
void jni_set_music_volume () method, 251
void jni_start_music () method, 251
void jni_start_sound () method, 251
void jni_stop_music () method, 251
void onDraw() method, 99
void sizeChanged() method, 131
void startSound() method, 193
void surfaceCreated() method, 132
void updatePhysics() method, 100
vswap.wl1 file, 176
VW_UpdateScreen() method, 208—209

�W
Wall flag, 264
WebDownload.java class, 227
width argument, 235, 242
wolf game ID, 176
wolf_jni_Natives.h file, 203
wolf.audio.SoundNames class, 191
Wolfd3D.apk argument, 273
Wolfenstein 3D game

coding native layer, 203—213
initializing game loop, 204
making C to Java callbacks, 206—208,

206—213, 208—209, 211—213
compiling libraries with Android NDK,

277—278

■ INDEX

298

compiling native library
generating JNI headers, 215
writing Makefile, 213—214

game architecture, 165—167
Java classes for

creating game loop, 175—176
creating main menu, 172
creating movement controller, 182—

189
creating movement controller

handlers, 180—181
creating sound and music handlers,

179
handling key and touch events, 174
making native callbacks, 177—178
native interface class (Natives.java

class), 200—202
sound classes, 190—197
WolfLauncher class, 168—172

testing in emulator, 215—217

tools, 161—162
wolf.jni.Natives method, 191
wolf.jni.Natives.OnStartMusic() method,

211
wolf.jni.Natives.OnStartSound() method,

191, 211
WolfLauncher activity, 165
WolfLauncher class, 167, 168—172
wolfsw game ID, 176
WolfTools class, 168
wolf.util.ScanCodes class, 200
Workstation software, 4

�X, Y, Z
x argument, 235
XImage class, 261
XML parser (EXPAT), 15
y argument, 235

.

	Apress - Pro Android Games (December 2009) (ATTiCA)
	Books for Professionals
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	What Software Will You Need?
	A Windows or Linux PC with a Java SDK Properly Installed
	Eclipse IDE and Android SDK Properly Installed
	GNU C Compiler for ARM Processors
	Chapter Source

	What Makes This Book Unique?
	Android SDK Compatibility
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	Welcome to Android Gaming
	What Skills Do You Need?
	A Solid Foundation of Android
	A Basic Knowledge of Linux and Shell Scripting

	What Software Tools Do You Need?
	Setting Up Your Machine
	Getting the Android Source
	Extracting Native Android Libraries
	Installing the GNU Toolchain for ARM Processors
	Writing Custom Compilation Scripts
	The Traditional Linux Compilation Process
	An Android Compilation Script
	An Android Linker Script
	Testing the Scripts

	Setting Up Your Development Environment
	You Have Taken the First Step

	Compiling Native Code in Android
	Your First Native Android App
	Creating an AVD
	Creating the Android Project
	Application Architecture
	Main Activity
	Native Interface
	Native Library
	Converting a Java Array to a C Array
	Getting the Size of a Java Array
	Invoking a Java Static Void Method
	Defining a Variable-Arguments Function in C

	Compiling and Testing the Shared Library
	Troubleshooting Missing Symbols
	Testing the Dynamic Library on the Device
	Debugging with strace
	Compiling Statically

	Testing the Native Application
	What’s Next?

	Building a Java Game from Scratch
	Android Gaming vs. Java ME Gaming
	Creating Space Blaster, Your First Java Game
	Understanding Game Architecture
	Creating the Project
	Creating the Game’s Activity Class
	Creating the Game Layout
	Implementing the Game
	Initializing Sprites and Sounds
	Loading Bitmap Sprites
	Creating the Star Field
	Playing Audio Clips
	About Native Sound
	Handling Key and Touch Events

	Testing on the Emulator
	What’s Next?

	Java Games Continued: Fun with Polygons
	About the Chapter Layout
	Understanding the Caveats of Drawing Polygons in Android
	Understanding the Caveats of Drawing Rectangles
	Creating a Polygon Class for Asteroids
	Creating a PolygonSprite Class for Asteroids
	Understanding the Game’s Architecture
	Creating the Project
	Creating the Game Layout
	Looking at the Resources
	Understanding the Game Life Cycle
	Initializing the Game
	Drawing Sprites
	Updating Game Physics
	Getting Scores
	Responding to Key Press and Touch Events

	Testing Asteroids on the Emulator
	What’s Next?

	Hybrid 3D Graphics with OpenGL and JNI
	The Power of Mobile Devices
	OpenGL the Java Way
	Java Main Activity
	Surface View
	GL Thread
	Cube Renderer
	Cube Class

	OpenGL the Native Way
	Main Activity
	Native Interface Class
	Changes to the Original Sample
	Native Cube Renderer
	Scene Initialization
	Drawing Frames
	Java Callbacks
	Native Interface Call
	Native Cube
	Compiling and Running the Sample

	Caveats of Porting OpenGL Games to Android
	The Veil Has Been Lifted

	3D Shooters Episode I: Wolfenstein 3D for Android
	Gathering Your Tools
	Downloading the Chapter Source Code

	Introducing Wolf 3D
	Understanding the Game Architecture
	Understanding the Java Classes for Wolf 3D
	Creating the Main WolfLauncher Class
	Main Activity Layout
	Main Activity Class (WolfLauncher)
	Creating the Wolf 3D Main Menu
	Handling Key and Touch Events
	Creating the Game Loop
	Making Native Callbacks
	Creating Sound and Music Handlers
	Creating Movement Controller Handlers
	Creating the Movement Controller
	Controller Layout
	Controller Class
	Sound Classes
	Mapping Sound Names to Raw Sound Resources
	Creating the Audio Manager
	Creating the Audio Clip
	Native Interface Class

	Coding the Native Layer
	Initializing the Game Loop
	Cascading Messages with C to Java Callbacks
	Initializing Graphics
	Cascading Video Buffers
	Cascading Sound and Music Requests

	Compiling the Native Library
	Writing the Makefile
	Generating JNI Headers

	Testing Wolf 3D in the Emulator
	What’s Next?

	3D Shooters Episode II: Doom for Android
	The Sky Is the Limit with the Java/C Power Combo
	Bringing Doom to a Mobile Device
	Game Architecture for Doom
	Java Main Activity
	Creation Handler
	Game Layout
	Menu and Selection Handlers
	Key and Touch Event Handlers
	Native Callback Handlers
	Graphics Initialization Handler
	Image Update Handler
	Message Updates
	Fatal Error Handler
	Audio Request Handlers
	Navigation Controls

	Audio Classes
	Native Interface Class
	Callback Listener
	Native Methods
	C to Java Callbacks

	Native Layer
	Native Method Implementations
	Native Game Loop
	Key and Motion Events
	C to Java Callbacks
	Original Game Changes
	Renaming main
	Inserting the Fatal Error Callback
	Commenting SDL Occurrences
	Sound System Changes
	Video Buffer Changes

	Doom Library (DSO) Compilation
	Testing Doom for Android in the Emulator
	You Have Done It

	Deployment and Compilation Tips
	Signing Your Application
	Creating a Key Store
	Signing the Application

	Using the Android NDK to Compile Libraries from Chapters 6 and 7
	Compiling Wolf 3D with the NDK 1.5
	Compiling the Shared Library
	Adding Support for OpenGL to the NDK 1.5
	Compiling Doom with NDK 1.6

	Final Thoughts

	Index
	SPECIAL CHARACTERS
	A
	B
	C
	D
	F
	G
	E
	J
	H
	I
	L
	M K
	N
	O
	Q
	R
	P
	S
	T
	W U
	V
	X, Y, Z

