
Chris Haseman

Android
Essentials

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Android Essentials
Dear Reader,

This book covers the essential information required to build an Android applica-
tion. It will help any developer, amateur, professional, or dabbler who is interested in
developing for Android. Over the course of the book, I cover the essentials you’ll need
to get started with your own innovative application. I took on this project because,
after five years of working in the mobile software industry, it has become clear that we
need help. With mobile devices becoming more ubiquitous, powerful, and, indeed,
essential, fresh blood is necessary to overcome the stagnation that has plagued our
business. As an industry, we need to graduate from making cookie-cutter ringtones,
wallpaper, and e-mail applications. I hope, once you’ve finished this book, that you’ll
be in a position to start that killer mobile product you’ve told all your friends you’re
going to make.

In Android Essentials, I cover the details of installing and using the Android SDK,
making and rendering user interface tools, harnessing location tracking and Google
Maps, and putting everything together with a little glue from XML parsers and net-
working clients. These tools and tricks should be enough to get you past your empty
editor, the daunting blank canvas of the developer world, and onto the path of your
own innovative mobile app. Android potentially represents our best hope for a break
from the constricted world of mobile development. Use it to make something amaz-
ing. I can’t wait to see what you create.

Regards,

Chris Haseman
Lead software engineer at Gravity Mobile

Hasem
an

Android Essentials

Apress’s firstPress series is your source for understanding cutting-edge technology. Short, highly
focused, and written by experts, Apress’s firstPress books save you time and effort. They contain
the information you could get based on intensive research yourself or if you were to attend a
conference every other week—if only you had the time. They cover the concepts and techniques
that will keep you ahead of the technology curve. Apress’s firstPress books are real books, in your
choice of electronic or print-on-demand format, with no rough edges even when the technology
itself is still rough. You can’t afford to be without them.

User level:
Beginner–Intermediate

www.apress.com
SOURCE CODE ONLINE

116
PAGES

Available as a
PDF Electronic Book
or Print On Demand

RELATED TITLES

About firstPress
Apress's firstPress series is your source for understanding cutting-edge technology. Short,
highly focused, and written by experts, Apress's firstPress books save you time and effort. They
contain the information you could get based on intensive research yourself or if you were to
attend a conference every other week—if only you had the time. They cover the concepts and
techniques that will keep you ahead of the technology curve. Apress's firstPress books are real
books, in your choice of electronic or print-on-demand format, with no rough edges even when
the technology itself is still rough. You can't afford to be without them.

Android Essentials

Dear Reader,

This book covers the essential information required to build an Android application. It will help
any developer, amateur, professional, or dabbler who is interested in developing for Android.
Over the course of the book, I cover the essentials you’ll need to get started with your own
innovative application. I took on this project because, after five years of working in the mobile
software industry, it has become clear that we need help. With mobile devices becoming more
ubiquitous, powerful, and, indeed, essential, fresh blood is necessary to overcome the stagnation
that has plagued our business. As an industry, we need to graduate from making cookie-cutter
ringtones, wallpaper, and e-mail applications. I hope, once you’ve finished this book, that you’ll
be in a position to start that killer mobile product you’ve told all your friends you’re going to
make.

In Android Essentials, I cover the details of installing and using the Android SDK,
making and rendering user interface tools, harnessing location tracking and Google Maps, and
putting everything together with a little glue from XML parsers and networking clients. These
tools and tricks should be enough to get you past your empty editor, the daunting blank canvas
of the developer world, and onto the path of your own innovative mobile app. Android
potentially represents our best hope for a break from the constricted world of mobile
development. Use it to make something amazing. I can’t wait to see what you create.

Regards,
Chris Haseman
Lead software engineer at Gravity Mobile

 Android Essentials i

Contents
Chapter 1: Introduction...1

What You Need to Know to Start.. 1

How to Best Use This Book .. 2

Getting Started... 2

Installing Eclipse ... 3
Getting the Android SDK.. 3
Installing the Eclipse Plug-In .. 4

The Android Project.. 5

Running, Debugging, and Causing General Mayhem.......................... 8

Chapter 2: The Application ..9

Getting Active .. 9

Getting Splashy ... 10

Creating the Intent Receiver...19

Setting It Up .. 19
Seeing the Intent Receiver in Action... 23
Triggering the Activity.. 26

Who Do You Want to Humiliate Today? ...29

Nervous with the Service .. 29
Zen and the Art of Getting Even ... 33

Moving Data in Android ...34

Shameless Self-Promotion .. 36
Adding Evil Corporate URLS with a Content Resolver 38

ii Android Essentials

Part of This Balanced Breakfast ..39

Chapter 3: User Interface ..41

Easy and Fast, the XML Layout...42

Laying Out... 42
Scrolling, Text Entry, Buttons, and All the Simple Things in Life 51

Waking Up the Widgets...55

Widgets in Java ... 59
Getting Under the Hood .. 59

Custom UI Rendering with the Canvas..67

Customizing the View... 67
Creating the Game Loop ... 69
Bringing It All Together.. 74

Using the User Interface...74

Chapter 4: Location, Location, Location75

Where Am I? ...75

Building the LocationManager Object .. 76
Look Up, Wave, the Satellites Are Watching… ... 77

Google Maps..80

A Metric Ton of Map Objects ... 80
Moving the Map .. 82
Taking Stock.. 84
It’s a Bird, It’s a Plane...Nope, It’s Bad Photoshoping 84
Wrapping Up ... 87

Chapter 5: Taking Android Out for a Walk...................................89

Loading a List from the Web ..89

First Things…First? .. 90
Getting the Network in Gear ... 92

 Android Essentials iii

Putting the Data in Its Place .. 94

Making a List and Checking It…...95

The Setup: Embracing the List.. 95
Adding the Adapter ... 96
Stuffing Data into the Adapter .. 98
At Last, Adding the Data... 99
Selection… .. 100

The Next Step ..102

Dressing Up the Menu... 102

Looking Back ..106

Chapter 6: Tying on a Bow .. 107

The Making of an Application ...107

Looks Aren’t Everything, Except, of Course, When They Are 107
Location Isn’t Too Important, Except When You Need Pizza at 4 a.m.... 108
Taking Off Android’s Leash and Letting It Romp Around the Internet ... 109
Overall ... 109

Other Sources of Information ..109

Getting Help .. 110

It’s Time to Stop Reading and Start Helping.....................................110

Copyright ... 112

iv Android Essentials

Android Essentials
Chris Haseman

So, you want to be an Android developer? Good, you’ve come to the right place.
Whether you’re a dabbler, professional, hobbyist, or coding junkie, I hope
you’ve picked up my book out of a desire to learn about the somewhat
schizophrenic world that is mobile development. Specifically, I hope you’re
interested in picking up the gauntlet thrown down by the Open Handset
Alliance’s Android team.
I took the opportunity to write this book because it’s clear that Android has the
potential to open up the mobile space in ways that keep us jaded mobile
programmers up late at night. Volumes could be written about the errors of past
platforms and the shortsightedness of an industry whose greatest achievement, at
least here in America, is selling several million ringtones. You and your peers
can bring about a long-needed change to the industry, perhaps bringing a much-
needed breath of fresh air to an environment that, over the years, appears to
have stagnated. You’ll have to forgive my enthusiasm; it has been a long wait.

 Android Essentials 1

Chapter 1: Introduction
Before you start, we’ll need to have a quick discussion about where you’re
beginning.

What You Need to Know to Start
It is a natural question you may be asking yourself: is this book for you?
Yes, obviously, it is because you’re reading it. However, I will make a few
assumptions about your abilities:
 You understand Java; you can write it, read it, and grok it. Because this book

is about the Android platform and not the language, I will be writing large
amounts of Java code inline and assuming you can follow along. If your Java
skills are rusty, I recommend checking out Apress’s wealth of Java
information on its site (http://java.apress.com/).

 Some familiarity with other mobile platforms will help you. As you move
through the book, I’ll make comparisons between Android and other mobile
software development kits (SDKs). You don’t need to be a professional
mobile developer to follow along by any means.

 You have superior hacker skills. OK, not really, but if you’re comfortable
rolling up your proverbial sleeves and digging into the heart of a problem,
you should feel right at home with this book.

 I will assume you have exactly zero experience developing for Android. If
you’ve already mastered the basics, you may want to skip the first chapter
and focus on the more advanced topics that follow.

That wasn’t a big list, but it contained a few things that will help you
follow the book with your sanity intact.
Ideally, I want this book to be useful and valuable to anyone interested in
developing applications for Android. Hobbyists will find a foundation here
for their dream application. Mobile game developers will find the nuts and

http://java.apress.com

2 Android Essentials

bolts of graphical output and user input. Multimedia and application
developers will find all the tricks, tips, and core functionality they need to
put together the next major killer app. If you’re a business-oriented person
looking into porting your existing applications to Android, you’ll find
invaluable information on how to accomplish exactly that. In short, this
book has a lot to offer you no matter your desired outcome, experience,
time, or interest.

How to Best Use This Book
The simple answer is to read it, but this may mean different things to
different people. If you’re new to mobile development and Android, it
would be best for you to treat this book as a tutorial. Follow along, chapter
by chapter, until you have all the basics you need to get working.
If you’re a more experienced Java and mobile programmer but are
inexperienced with Android, you might want to treat this book as more of a
reference manual after going through the first chapter to get a feel for
things.
Throughout this work, I will primarily use real-world examples as a means
to get you comfortable with Android. This book may not have a huge
appeal to those who are already established veteran Android developers. As
I said before, I will start from a place that assumes no prior experience with
this SDK. This book will start simple: a splash screen, a main menu, and
some simple multimedia. I’ll then get into the more advanced concepts of
Bluetooth, location-based services, background applications, and the other
exciting features Android has to offer.
Enough talking, it’s time to start.

Getting Started
It begins with installing the SDK. On a personal note, I’m doing all my
development on Mac OS X with Eclipse. All screenshots, IDE information,

 Android Essentials 3

tips, and tricks will be geared toward the Eclipse IDE. It seems the Android
developers had the open source IDE Eclipse in mind, because they’ve
released a plug-in that eases setup and debugging. For the sake of
simplicity, I use Eclipse and the Open Handset Alliance’s Android. I do not
endorse this setup over any other. I will, however, take a little bit of time to
walk through downloading and configuring Eclipse to integrate it with
Android. If you’re already up and running on the SDK, skip to “The
Android Project” section. Additionally, you can find a much more in-depth
install guide on Google’s SDK installation page (http://code.google.
com/android/intro/installing.html#installingplugin).

Installing Eclipse
Again, because Eclipse will be used in the book’s examples, download the
full version at http://www.eclipse.org/downloads/.
Be sure to get the Java EE version. It includes frameworks for a few editors
that the full Google Eclipse plug-in will use. Install Eclipse; the default
configurations should work just fine.

Note With Windows and with the Mac, it’s a good idea to keep your
files and SDK installation out of folders that contain spaces. Many tools such
as Ant, among others, can be confused by spaces in folder names.

Getting the Android SDK
You can find the Android SDK on Google’s website at
http://code.google.com/android/download.html.
Grab it, download it somewhere handy, and then unpack it. I’ve put mine in
my Development folder at /Developer/AndroidSDK.
You can just as easily put the ZIP file anywhere on your filesystem. Just
remember where you’ve stashed it, because you’ll need to tell Eclipse

http://code.google.com/android/intro/installing.html#installingplugin
http://code.google.com/android/intro/installing.html#installingplugin
http://www.eclipse.org/downloads
http://code.google.com/android/download.html

4 Android Essentials

where it is later. It’s also a good idea, if you’re a Windows or Linux user,
to add the location of the Android tools to your Path variable.

Installing the Eclipse Plug-In
I like graphical user interfaces (GUIs), provided they have hotkeys like the
Eclipse IDE, when working with Android. To get more than basic
functionally out of the process, you’ll need to download the Android
Developer Tools. To install it from within Eclipse, follow the directions
outlined by Google at http://code.google.com/android/intro/
installing.html#installingplugin.
If you’ve already installed the older version of the SDK and the Eclipse
plug-in, I recommend you go back and update it to M5-RC15 (or the latest
version) now using the previously mentioned links. Enough has changed
between the older version and the latest that the changing details could be
confusing. If you correctly follow the directions but get an error when
trying to install the Android editors, go back and install the full version of
Java EE Eclipse. The basic Java SDK doesn’t include all the correct
packages used by the Android plug-in.
Don’t forget to point the Android plug-in to where you unpacked your copy
of the SDK. It’ll be in Windows/Preferences/Android on the Android
tab.
Create a new project by selecting File New Android Project. Give the
project and activity a pithy name of your choosing. You’ll also have to
insert into your source package name at least one dot (.), such as apress.
book.sample or crazy.flyingmonkey.application.
Eclipse gives a fairly unhelpful error message if you forget to give it more
than one name separated by dots. I can personally testify that this can be
fairly frustrating if your brain is fried and you’re, say, trying to get a book
done on a deadline.

http://code.google.com/android/intro

 Android Essentials 5

The Android Project
So, you’re now the proud owner of your own basic Android application. If
this isn’t the case, because you skipped the previous section, create a new
project right now. New projects, by default, have an implementation of
“Hello, World.” Books and articles that start by explaining “Hello, World”
aren’t particularly useful in my humble opinion. Consequently, I’m not
going to take your time breaking down the functionality of the most basic
Android application. What is worth taking some time to look into,
however, are the contents, layout, and files of your new project. Let me
briefly explain how each file and directory contributes to a functioning
Android project (see Table 1-1).

Table 1-1. Files in a Basic Android Project

FILE NAME PURPOSE

YourActivity.java File for your default launch activity; more on
this to follow.

R.java File containing an ID for all asset constants.

Android Library/ Folder containing all Android’s SDK files.

assets/ Multimedia and other miscellaneous required
files.

res/ Base directory for resources used by the UI.

res/drawable Directory for image files to be rendered by the
UI layer.

res/layout All XML-style view layout files are stored here.
Again, more on this later.

 Continued

6 Android Essentials

Table 1-1. continued

FILE NAME PURPOSE

res/values Location for string’s and configuration files.

AndroidManifest.xml File that describes your application to the
outside operating system.

Obviously, you’ve moved well beyond the days of Hello_World.c. As
you move forward, I’ll mention these files in passing. If you have trouble
following later in the book, refer to this table. I’ll take a few minutes to
break down a few essentials.
Most central, and probably most confusing, among the various files is the
Android manifest. This is the link between your application and the outside
world. In this file, you will register intents for activities. (I’ll get into
intents and activities, as well as how they work, in the following chapter.)
So that you have the groundwork for further development, Code Listing
1-1 shows what the Android manifest looks like when you create your first
project.

Code Listing 1-1. Android Manifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/
 apk/res/android"package="apress.book.sample">
<application android:icon="@drawable/icon">
<activity android:name=".SampleApp"
 android:label="@string/app_name">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name=
 "android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

 Android Essentials 7

After the xml/declaration comes the <manifest> tag with the schema
URL. One of its properties is the name of your source package. In the case
of this example, it is apress.book.sample.
Next up is the application declaration and location of the application icon.
The @drawable notation indicates that the item can be found in the
res/drawable folder. The application, at this point, consists of a single
activity: SampleApp. The activity name is hard-coded, but its label, or what
is displayed to the user within the Android application menu, is defined in
the res/values/strings.xml file. The @string notation pulls the value
from app_name within the aforementioned XML file.
Now you come to the intent filter. I will go into intent filters at length in
the next chapter, but for now, you need to know that android.intent.
action.MAIN and android.intent.category.LAUNCHER are predefined
strings that tell Android which activity to fire up as your application is
started.
That’s all there is to the manifest file in its most basic form. For space
reasons, I will try to avoid writing out the entire manifest file again. If you
need context for elements that are being inserted later, dog-ear this page
and return to it later.

Note Get in the habit of moving as many strings, resources, and
screen layouts into the res folder as much as humanly possible. It may
cost you a little more time to work from these files up front, but once you
start porting your application to the different languages, screen sizes, and
function sets, your prep time will be paid back with interest. I’m sure this is
something you read in computer manuals constantly, but it bears repeating.
A little bit of planning and overhead up front can save you weeks of porting
and debugging on the back side of a project. This is particularly important
when developing for mobile devices, because each application can have
many separate build environments.

8 Android Essentials

Next up on the important file list is R.java. This file is where reference
identification numbers live for all your resources, both graphical and
drawable. Adding a new graphic to res/drawable should result in a
corresponding identifier in the R.java class. References can then be made
to these IDs rather than the items on the filesystem. This allows you to
swap out strings for localization, screen size, and other errata that are
guaranteed to change between devices.
You’ll get into the other files as you add functionality to your repertoire.
Let’s get your application up and running.

Running, Debugging, and Causing General Mayhem
Running and debugging are, thankfully, extremely straightforward with
Android. From within Eclipse, pull down the Run menu and select…wait
for it…Run. This launches the Android emulator.

Tip Once you’ve started the emulator for the first time, you don’t
need to quit or close it down. The latest version of the SDK ships with an
emulator that can take minutes to “boot up.” While the emulator is running,
each subsequent Run or Debug execution will build and deploy your latest
code to the emulator. The emulator will accept the changes and
automatically launch your new project. This is the opposite of BREW or
J2ME, which must relaunch after each change in your source base.

Once the Android emulator is up and running, you should see the “Hello
World, YourApplicationName” message.
Again, “Hello, World” as a programming example is, for lack of a better
term, emphatically lame, so I’ll skip it and move on to a more practical
example: a simple splash screen. Along the way, you should come to
understand activities, intents, intent filters, services, and content providers.

 Android Essentials 9

Chapter 2: The Application
An application in Android is defined by the contents of its manifest. Each
Android application declares all its activities, entry points, communication
layers, permissions, and intents through AndroidManifest.xml. Four
basic building blocks, when combined, comprise a rich Android
application:
 Activity: The most basic building block of an Android application
 Intent receiver: A reactive object launched to handle a specific task
 Service: A background process with no user interface
 Content provider: A basic superclass framework for handling and storing data

In this chapter, I’ll break down each specific piece with a concrete
functional example. First up is the activity, the core building block of a
stand-alone Android application.

Getting Active
All Android mobile applications, at least in the traditional sense, will
revolve around an activity. If you’ve had any experience with other mobile
platforms, Android’s activity is quite similar to BREW’s applet or Java
ME’s midlet. There are, however, a few very important differences.

Android vs. Java ME vs. BREW

A BREW application will, in the vast majority of all cases, consist of a
single applet. That applet communicates with the rest of the handset
through receiving and sending events. You can think of a Java ME
application, on the other hand, as an extension of the Midlet class. The
midlet has functions for starting, stopping, pausing, key handling, and
performing any other interaction between the handset and application. A
Java ME application usually consists of a single midlet.

10 Android Essentials

Android applications can have any number of activities registered with the
handset through the AndroidManifest.xml file. Android’s multiactivity
architecture is probably the major difference between developing for
Android and developing for other handset SDKs. This single fact makes it
much easier to write modular, compartmentalized code. In BREW and Java
ME, a developer will implement most functionality within the confines of
the midlet or the applet. In Android, you can write an activity, content
handler, intent receiver, or service to handle nearly anything. Once you’ve
written an activity to edit a text file, you can refer to this activity in all
future applications you write by sending and receiving intent actions. This
isn’t to say that such architecture isn’t possible within BREW or Java ME.
It just has to be done at the Java, C, or C++ level or, in Brew, with
cumbersome extensions instead of being built smoothly into the application
framework.

Functionality

Just like the midlet, an activity uses a series of functions to interact with the
outside world. At its base, your activity must override the method
onCreate. Other functions you’ll want to override are onStop, onPause,
onResume, and onKeyDown. These few functions are what will let you tie
your activity into the Android handset at large.
By default, new Android applications created within Eclipse will
implement a “Hello, World” application. I’ll show you how to go from this
basic application to a fully functional splash screen.

Getting Splashy
You can download the packaged version of this splash screen example
from the downloads section of www.apress.com if you want to use it as a
starting point for your own Android application or you want to follow
along in a more passive fashion. In this example, because it is your first, I
will go through it in a series of small steps. I’ll break down exactly what

http://www.apress.com

 Android Essentials 11

needs to be written, from adding a new image resource to modifying XML
layout files. Down the road, examples will not parse out into such minute
detail. This should be the only chapter that will read like a tutorial for
beginners.

Adding the Image Resource

First you’ll need a sample splash screen image. The “socially awkward”
splash screen I’ve included is not going to win any awards, but it is a good
poke at the rash of social networking applications that seem to keep
cropping up in the mobile space right now.
To add this new resource, I’ve placed menu_background.jpg inside
res/drawable. Make sure a new ID is added to R.java. It should look
something like this:
public static final int menu_background=0x7f020001;

This is now your means of loading and drawing the image from within
your code. You’ll return to this concept in the next chapter on user
interaction.

Creating an XML Layout File

Now that you have an image resource, you can add it to your XML layout
file. These files are kept in res/layout/, and you should currently have
one called main.xml. Add a new XML file called splash.xml, and copy
the contents of the main.xml file into it. Next, modify the file by removing
the <TextView> tag and add an <ImageView> tag that looks like the
following:
<ImageView android:src="@drawable/menu_background"
android:layout_width="fill_parent"
 android:layout_height="fill_parent">
</ImageView>

Using Android’s XML layout objects is simple and straightforward. As I
mentioned, files in the /res directories can be referenced with the @

12 Android Essentials

symbol as shown earlier, for example,
android:src="@drawable/menu_background". Further, layout_width
and layout_height dictate the size of the image view. Look to make sure
your new layout file has been added to R.java. It should appear as
follows:
public static final int splash=0x7f030001;

Drawing the Splash Screen

Now that your splash screen is defined, it’s time to activate and paint it.
Your existing Android activity is already drawing main.xml, so you’ll
shift to your new splash layout. To make the switch, change this code:
setContentView(R.layout.main);

in the method onCreate to this code:
setContentView(R.layout.splash);

Run the application, and watch your newly created splash screen come to
life. If you’ve gotten errors thus far, check to make sure your names for
everything match up. If the image isn’t drawing, make sure it’s been
correctly placed in the res/drawable folder and that splash.xml refers
to the correct name and file.

Timing Is Almost Everything

The splash screen is now rendering, but splash screens alone make for
boring applications, so you’ll need to move on to the main menu. You’ll
use a simple inline-defined thread to accomplish the timing. There are a
few constants initialized before the thread that I’ve included. For the sake
of completeness, I’ve included the entirety of the onCreate method. Code
Listing 2-1 shows what mine looks like with the timing thread in place.

Code Listing 2-1. Timing the Splash Screen

long m_dwSplashTime = 3000;
boolean m_bPaused = false;

 Android Essentials 13

boolean m_bSplashActive = true;

public void onCreate(Bundle icicle)
 {
super.onCreate(icicle);

 //Draw the splash screen
setContentView(R.layout.splash);
 //Very simple timer thread
 Thread splashTimer = new Thread()
 {
 public void run()
 {
 try
 {
 //Wait loop
 long ms = 0;
 while(m_bSplashActive && ms < m_dwSplashTime)
 {
 sleep(100);
 //Advance the timer only if we're running.
 if(!m_bPaused)
 ms += 100;
 }
 //Advance to the next screen.
 startActivity(new Intent(
 "com.google.app.splashy.CLEARSPLASH"));
 }
 catch(Exception e)
{
 Log.e("Splash", e.toString());
}
 finally
 {
 finish();
 }
 }
 };
 splashTimer.start();
}

14 Android Essentials

At long last, you’re getting into some Java code. This simple thread will
run until the time counter exceeds m_dwSplashTime. Although there are
other methods for implementing a timer, I like this one for two reasons:
 It can be paused. The timer will advance only if the m_bPaused flag is
false. As you’ll see in a minute, it’s easy to suspend the timer if your
activity’s onPause method is called. This is not always a requirement for a
splash screen, but it is important for other timing-based operations.

 Moving to the next screen is as simple as flipping the m_bSplashActive
flag to false. Advancing to the next screen, if you implement it in this
fashion, does not require you to make the move and then cancel a more
traditional timer.

With this code in place, you should see the splash screen for as long as you
set m_dwSplashTime in milliseconds. When that time is up or the user
interrupts the splash screen with a key press, startActivity will be
called (I’ll explain this shortly). This function will move the user to what
will become the main menu in the next chapter. finish closes down the
splash activity so the user does not return to it when they press Back from
the main menu. You’ll need to implement an activity that accepts the
CLEARSPLASH intent action. In the meantime, let’s review a few other
important activity methods you’ll want to override.

Pause, Resume, Rinse, Repeat

Pausing the splash timer when your activity is suspended by an incoming
call, SMS message, or other interruption is as easy as the following:
protected void onPause()
{
 super.onPause();
 m_bPaused = true;
}

 Android Essentials 15

As with most of these overridden methods, you’ll need to invoke the
superclass before doing anything else. If you review the timer thread,
you’ll see that the ms counter responsible for keeping track of time passed
doesn’t advance if m_bPaused is true. At this point, I’m sure you can
guess what onResume will look like:
protected void onResume()
{
 super.onResume();
 m_bPaused = false;
}

No surprises here. When your application is resumed, the timer thread will
resume adding time to the ms counter.

Basic Key Handling

Key handling within the activity is handled by overriding the onKeyDown
method. We’ll use this function to allow a user to cancel your fledgling
splash screen. As you can see in the timer thread at the start of this section,
you’ve set up an escape clause in the timer loop by the name of
m_bSplashActive. To escape, you’ll just override the onKeyDown method
so that it flips the splash flag to false. Here’s the code you’ll need to add:
public boolean onKeyDown(int keyCode, KeyEvent event)
{
 //if we get any key, clear the splash screen
 super.onKeyDown(keyCode, event);
 m_bSplashActive = false;
 return true;
}

Now, when the user hits any key, the screen will be advanced on the next
trip through the timer loop.

16 Android Essentials

ADDITIONAL EXERCISES
If you want to make this a fully functional splash screen, you’ll need
to add two elements. This gives me a great excuse to assign you
some homework. Try to add two bits of functionality:

▪ Allow the user to skip the splash screen only when clicking the OK
or center key.

▪ Make the Back key exit the application rather than putting it in the
background.

As a hint, you’ll want to look up the key-code mapping in the Android
SDK documentation to accomplish these tasks.

Clear Intent

There’s one more thing you’ll need to do before you’re done with the
splash screen. I’m sure you’re wondering about that startActivity
method call earlier. This means it’s time to talk briefly, in this limited
context, about the intent. An intent is an object that functions as a
communication event between two or more activities, content handlers,
intent receivers, or services. In this case, you will call startActivity
with the intent com.google.app.splashy.CLEARSPLASH. When
startActivity is called, Android searches all its manifests for the node
that has registered for the aforementioned CLEARSPLASH intent action. It
just so happens that you’ll add your own activity called MainMenu that will
register for just such an intent.
To create what will become the main menu activity, add a new class to
your existing source package called MainMenu. Next, make sure it extends
the Activity class, implements onCreate, and calls setContentView on
R.layout.main. At this point, you’ll want to open
AndroidManifest.xml and add a new activity element to it. After the

 Android Essentials 17

</activity> closing tag of the splash screen, you should insert the
following:
<activity android:name=".MainMenu"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name=
 "com.google.app.splashy.CLEARSPLASH"/>
<category android:name=
 "android.intent.category.DEFAULT"/>
 </intent-filter>
</activity>

Define the activity’s name as .MainMenu. This will tell Android which
Java class to load and run. Register, within the intent filter tag, for the
com.apress.splash.CLEARSPLASH intent action. In reality, the name of
the intent could be beef.funkporium.swizzle, and as long as the name
is consistent between the startActivity call and the snippet of the
Android manifest listed earlier, all the right things should continue to
happen.

Running It

Running your application at this point should result, if you’ve paid
attention thus far, in your splash screen being drawn for a few seconds,
followed by your new main menu activity taking focus. It should also be
impossible to get back to the splash screen once your application has
advanced to the main menu. If you’re having trouble, make sure your new
main menu is listed in the manifest and in R.java. Also, make sure you’re
drawing the correct layout file within your new intent.

The Life Cycle of an Activity

The life cycle of an activity is covered extensively in the Google
documentation. However, if I’m reviewing the nuts and bolts of what
makes an activity, I cannot pass by this important information. At
this point, with your splash screen, you should be ready to roll.

18 Android Essentials

For explanation’s sake, I’ve also added the following functions to the
splash screen activity:
protected void onStop()
{
 super.onStop();
}
protected void onDestroy()
{
 super.onDestroy();
}

If you place breakpoints in all the functions within your new splash activity
and run it in debug mode, you’ll see the breakpoints hit in the following
order:

1. onCreate

2. onStart

3. onResume
4. At this point, your activity is now running. Three seconds in, the timer

thread will reach its end and call startActivity with the splash
clearing intent. Next, it will call finish, which tells Android to shut
down the splash screen activity.

5. onPause

6. onStop

7. onDestroy

This is the general life cycle of an activity from start to finish. You can find
a much more comprehensive exposé on the life and times of an Android
activity in Google’s documentation at http://code.google.com/
android/reference/android/app/Activity.html. You’ll even find a
spiffy graph. In essence, the handset uses a combination of the previous
functions to alert you to the major events that can occur in your
application: starting, closing, suspending, and resuming. Activities, as I’ve

http://code.google.com

 Android Essentials 19

covered before, are going to be the core building block of any traditional
application; they give you control over the screen and the ability to receive
user inputs. You’ll get more into user interaction in later chapters.

Thus Far

So far I’ve explored how activities are integrated within the phone, how
they are started and stopped, and how they communicate on a basic level.
I’ve demonstrated how to display a simple XML view screen and how to
switch between two actives both in reaction to a key event and at the end of
a set amount of time. In the short-term, you’ll need to learn more about
how Android uses intents, intent receivers, and intent filters to
communicate. To do this, you’ll need another sample application.

Creating the Intent Receiver
An intent receiver is one of the few things in Android that does exactly
what its name implies. Its role is to hang around waiting for registered
intent actions, Android’s version of BREW-style notifications. I’ll use a
somewhat less production-worthy application to demonstrate one of the
trickier tasks of an intent receiver: receiving and reacting to incoming text
messages.

Setting It Up
Let me paint you a picture. You’ve returned to your desk one afternoon to
discover that you’ve fallen victim to a Hello Kitty attack. Your office desk
is covered, from carpet to ceiling, with cute pink images of the most
annoying icon known to humankind. You know who’s done it, and it’s
payback time. You also know that your VP of engineering hates a
particular song with a fiery passion matched by nothing else. That song is
“La Bamba.” You decide to get even by rigging your co-worker’s Android
phone with a sleeper application. I’ll show you how to make an Android
application that will respond to a specific SMS message by playing an

20 Android Essentials

audio file for maximum humiliation effect. This will make your newfound
enemy the subject of intense anger from your VP. At the same time, you’ll
want your victim to know he’s been had…and give him a chance to shut
the sound off. This prank application requires an intent receiver, an
activity, a service, and the means for all three to communicate. Imagine
your co-worker’s surprise when his phone starts spouting the very song
your VP of engineering hates most in the world.

What Practical Use Could This Possibly Have?

This is an excellent question. Although on the surface this may not seem to
be the most practical of applications, I’m sure, with a little imagination,
you can come up with a variety of important realistic uses for this little
prank application, from push e-mail notifications to interphone application
communication. Besides, things have been far too serious thus far.
You’ll move forward in four stages. In each phase, you’ll learn more about
intent receivers, services, and the interactions between all these application
pieces:
 Being notified on arrival of an SMS
 Opening the contents of an SMS and looking for a specific payload
 Starting an activity when the SMS arrives and being aware that the startup

has occurred at the behest of the intent receiver
 Starting a new service that will play an audio file

Using Intent Receivers

Before you get into building the intent receiver, you need to take a quick
moment to learn why you would use one. Intent receivers have little to no
memory footprint, linkage, or overhead. Where an activity has to load all of
its heavy imported classes on startup, an intent receiver has none of these
obligations. Because new intents of a certain type could arrive with
crushing frequency (network status updates, for example), a lightweight

 Android Essentials 21

object must take the first pass at parsing the data. If it is an appropriate time
to awaken a larger UI process or hefty background service, the intent
receiver should take such an action.

Tip Intent receivers can be started and closed frequently (depending
on what they listen for); try to make them lightweight and use as few
libraries as you can get away with. Your users will not be happy if their
phone is slowed to a crawl because you’ve inserted too much overhead into
the processing of any particular event.

Building the Intent Receiver

First things first—you’ll need to create a new project for the little prank
application. In the source directory, create a new class that will become the
new intent receiver. At first pass, it should look like this:
public class PrankSMSReceiver extends IntentReceiver
{
 public void onReceiveIntent
 (Context context, Intent intent)
 {
 return;
 }
}

Now that you have the class set up, you’ll need to tell Android you’d like
to receive SMS events. You do this by modifying the
AndroidManifest.xml file to give you permission and to register for the
RECEIVE_SMS intent action.

Permissions

Carriers, users, and even developers may not want to give Android
applications free reign to run through the privileged layers of their handsets
and networks. Consequently, Google has introduced a notion of

22 Android Essentials

permissions in Android (something all developers with previous mobile
experience should recognize). To be able to receive SMS messages, you’ll
need to notify the handset that you’re allowed to receive them.
Because permissions, in Android, are declared for all elements within a
particular manifest, you’ll add the permissions line after the <manifest>
declaration tag (Code Listing 2-2). The sample app will be called
PrankApp. Its main activity is called PrankActivity. No namespace
prizes should be given to this writer for originality.

Code Listing 2-2. Adding Permissions to Receive SMS Messages

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android=
 "http://schemas.android.com/apk/res/android"
 package="com.apress.book.PrankApp">
 <uses-permission android:name=
 "android.permission.RECEIVE_SMS" />

Without the permissions flag, Android will not launch your application
when it receives an SMS. There are other permissions I’ll need to cover as
you move along. In the meantime, you can find a list of all permissions in
Android’s documentation at http://code.google.com/android/
reference/android/Manifest.permission.html.

Send Me SMS Too!

Now that you have permission to interact with the SMS layer of the
handset, you have to tell the handset what to do when a new text message
arrives. To accomplish this, you must open the AndroidManifest.xml file
as you’ve done before. You’ll add a new intent receiver alongside the
existing activity. Code Listing 2-3 shows what to insert (I’ve left the
</activity> tag in place for reference).

http://schemas.android.com/apk/res/android
http://code.google.com/android

 Android Essentials 23

Code Listing 2-3. Registering the New Intent Receiver for
Incoming SMSs

</activity>
<receiver android:name=
 "PrankSMSReceiver"android:enabled="true">
 <intent-filter>

<actionandroid:name="android.provider.Telephony.SMS_RECEIVED"
/>

<categoryandroid:name="android.intent.category.DEFAULT" />
 </intent-filter>
</receiver>

That’s all you should need to receive an intent notification each time the
handset gets an incoming SMS.

Seeing the Intent Receiver in Action
This is a little more difficult to pull off than it sounds. A process must be
running for the DDMS (the debugger application) to attach to it. But in
most cases you don’t want the application to run except when a new event
triggers it. The solution is a little bit of a shell game with the Eclipse IDE.
This may get a little more complicated as you advance to the later steps.
Place a breakpoint inside your onReceiveIntent method. Start debugging
the application, and let the emulator sit on the “Hello World,
PrankActivity” screen.
In Eclipse, switch views to the DDMS. You can do this by pressing
Command+F8 a few times or by selecting the menu Window Open
Perspective DDMS.
Figure 2-1 shows what it looks like.

24 Android Essentials

Figure 2-1. The DDMS perspective

Along the left window, on the Devices tab, you should now see your
application highlighted with a little green bug next to it. This is the DDMS
telling you that the debugger is attached to your PrankApp process. A little
further down is Emulator Control tab. This is where you’ll send the SMS
message. Enter any phone number first, select SMS, type a test message,
and hit Send.

 Android Essentials 25

You should, if you’ve set up your manifest correctly, see Eclipse switch
back to the Debug perspective and halt on your newly set breakpoint.

Note If nothing is happening, first make sure you’ve set the
permissions correctly. If they’re not correct, you should see a failed
permissions message go by on the bottom of the DDMS screen on the
LogCat tab. Also, make sure your application is already running and has the
green debugging icon next to it on the Devices tab. If all else fails, compare
your project with the sample one I’ve included with this book.

If you’ve correctly followed along so far, your intent’s onReceiveIntent
function will now be called each time an SMS message is sent to the
handset. Next, you’ll have to figure out how to retrieve the contents of an
SMS message.

What’s in an SMS?

Sadly, to date, Android’s documentation on receiving and filtering SMS
messages is confusing at best. I suspect it’s not a feature that’s high on the
list of things to tell developers about. Although I disagree with these
priorities, it gives me a chance to fill the gap.
Here’s what the methodonReceiveIntent looks like now that you’re
listening for new SMS messages:
public void onReceiveIntent
 (Context context, Intent intent)
{
 SmsMessage msg[] =
 Telephony.Sms.Intents.getMessagesFromIntent(intent);
 for(int i = 0; i < msg.length; i++)
 {
 String msgTxt = msg[i].getMessageBody();
 if (msgTxt.equals("0xBADCAT0_Fire_The_Missiles!"))
 {

26 Android Essentials

 //Start the pranking here
 }
 }

 return;
}

You’ll also need to import two libraries to make this work:
import android.telephony.gsm.SmsMessage;
import android.provider.Telephony;

Buried in the Telephony library is the call getMessageFromIntent, which
will return an array of SMS messages. All that’s left is pulling the payload
out of the SMS messages in question. The special code you’ll be looking
for to trigger your prank activity is the text
“0xBADCAT0_Fire_The_Missiles!”
It must be a combination suitably unique so that it will not be triggered by
accident. You wouldn’t want your prank to misfire and alert the victim too
early.

Note In Android, features that are not documented well are very likely
not finished. Because the documentation for receiving SMS messages is
nearly nonexistent, you should expect some changes in how SMSs are
processed. More than likely, the overall method should be similar, but it’s
safe to assume that some of the details will change before the SDK reaches
its final version. This example is more about learning how to use an intent
receiver than it is about the particulars of text message communication.

Triggering the Activity
It’s important to remember that the life cycle of an intent receiver lasts only
as long as the method call onReceiveIntent. Once out of that function,
Android is free to kill the process running your application. Any
asynchronous functionality will die a messy death if started. If you want to

 Android Essentials 27

do anything beyond simple processing within the method, you’ll need to
start a service or an activity. Since you want to both play music and alert
your victim that they’ve been had, you’ll need to start up an activity. You
accomplish this as follows:
if (msgTxt.equals("0xBADCAT0_Fire_The_Missiles!"))
{
//Start the Activity
 Intent startActivity = new Intent();
 startActivity.setLaunchFlags(Intent.NEW_TASK_LAUNCH);
 startActivity.setAction("com.apress.START_THE_MUSIC");
 context.startActivity(startActivity);
}

The only unrecognizable code you’ll see here is the addition of
NEW_TASK_LAUNCH in setLaunchFlags. You’ll need to do this any time
you want to send out an intent action that will start a new activity.
Additionally, just as you did in the splash screen example application,
you’ll have to add a new action to the intent filter of your activity. The
process should look familiar:
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<action android:name="com.apress.START_THE_MUSIC" />
<category android:name=
 "android.intent.category.LAUNCHER" />
<category android:name=
 "android.intent.category.DEFAULT" />
</intent-filter>

Now, if you’ve correctly added the earlier code in place, when you send a
SMS message from the DDMS perspective, you should see your
application come to the foreground and the “Hello World, PrankActivity”
text display proudly on the screen.

Rigging the Activity

There is one last piece you’ll need to add before getting into the more
dastardly music playback service: rigging up the activity to correctly

28 Android Essentials

respond to the action sent by your SMS intent receiver. If the application is
started normally, you’ll want to immediately close it down. Again, you
can’t have the victim of your prank launching it from the menus and
clueing in to your plan too early. To do this, you’ll have to retrieve the
launching intent and call the getAction method to figure out under what
case it has been launched. The PrankActivity’s onCreate method
should now look like Code Listing 2-4.

Code Listing 2-4. Launching on a Specific Intent Action

public void onCreate(Bundle icicle)
{
super.onCreate(icicle);

 Intent i = getIntent();
 String action = i.getAction();
 if (action != null &&
 action.equals("com.apress.START_THE_MUSIC"))
 {
 setContentView(R.layout.pranked);
 //We'll need to start the music service here
 }
 else
 finish();
}

First you’ll get the intent that launched your activity. With the intent in
hand, you can retrieve the calling action with the getAction method. This
will return a string containing the launching event that you’ll check against
your known music action listed in the previous XML. If the launch event
for your activity comes from normal means (from the menu or from
starting the debugger), the action string will be null. If this is the case,
you’ll want to shut down the activity immediately using the finish
method.

 Android Essentials 29

Note The onCreate method is called only when your application is
started for the first time. If you’ve launched your application and then
exited it (using the Back key), the application will still be running in the
background. If, at that point, you send the SMS message, your activity will
come back to the foreground, but its onStart method will be called but not
onCreate. Feel free to move the functionality of your own sample (if you’re
following along) to the onStart method.

Who Do You Want to Humiliate Today?
Although it might be a little overkill, you’ll use one of Android’s Service
objects to handle music playback. I’m going to do it this way for two
reasons:
 It’s a great chance to demonstrate the use of a service in a simple,

uncomplicated environment.
 Potentially, it will let you start up the music without a visible application

presence, making your prank application that much more dastardly.

Nervous with the Service
Why would you want to use a service? Essentially, it’s meant to be an
object that runs as a separated process from the user interface. It’s perfect
for cases when a developer wants functionality (be it network or
multimedia related) to be able to run independently. Examples include
audio playback, background web transactions, and evil prank applications.
Although services allow multiple applications to bind (to open a
communications channel), with them you’ll be using it as a simple
background process. Again, services have a wealth of uses beyond the
simple one you’re putting them to here.

30 Android Essentials

Creating a Service

Add a new class to your source package. I’ve called my PrankService
again (no points for originality). At its most basic level, a service must
override the onBind method. To get a service class to compile, it must
look, at least a little bit, like Code Listing 2-5.

Code Listing 2-5. A Stripped-Down Service

public class PrankService extends Service
{
 public IBinder onBind(Intent intent)
 {
 return null;
 }
}

For this example, you won’t be using the onBind method of the service
interaction. You’ll simply be starting and stopping the service from within
your main activity. To do this, you’ll have to override two more methods
within the Service class:
 onStart(int startId, Bundle arguments)

 onDestroy()

When onStart is called, you’ll begin playing your sample media file.
When the service is destroyed, you’ll explicitly stop it. This is not
necessarily required, but you’ll spell it out a little more later for the sake of
explanation.

Starting the Service

Starting a new service should look similar to starting an activity. Since
you’ve already been exposed to this a few times before, I’ll just drop in the
code and let you sort it out yourself.

 Android Essentials 31

Recall the onCreate method within PrankActivity listed earlier. Simply
replace the comment “We’ll need to start the music service here” with the
following line of code:
startService(new Intent
 ("com.apress.START_AUDIO_SERVICE"), null);

Again, this should look familiar. The only difference between starting an
activity and starting a service (aside from the different method call) is the
ability to pass a bundle (essentially a map or hash table) of parameters
along with the intent. That bundle will be passed to the onCreate method
of the service.

Starting the Music

Like BREW and Java ME, Android has made media playback (at least on a
simple play/stop basis) very simple and easy to use. When your service’s
onStart function is called, you’ll load and play a test audio file from the
/res/raw directory. The first order of business is to copy a sample audio
file into /res/raw (if you don’t have this directory, go ahead and create it).
Next, drop your humiliating, and copy-write respecting, audio file into the
raw folder. If you’re using Eclipse, you should add a corresponding
element to R.raw. In your case, it’s R.raw.test.
Now that you have a music file to reference, you can add the procedural
calls to your PrankService as follows:
public void onStart(int startId, Bundle arguments)
{
 MediaPlayer p;
 super.onStart(startId, arguments);
 player = MediaPlayer.create(this, R.raw.test);
 player.start();
}

Remember, onStart is an overridden method, so you’ll have to call the
superclass version of the same function first, or Android will get cranky
with you. At that point, you’ll just have the MediaPlayer static class

32 Android Essentials

create a new media player object. Because a service is a child of the
Context class, you’ll pass a pointer to your current context and the static
variable representing your test media. At this point, you can call play, and
you’re off to the races. Playback should continue in the background with
this service until the stopService method is called by your main activity.
When stopService is called, the following method will be called:
public void onDestroy()
{
 super.onDestroy();
 player.stop();
}

An Act of Mercy

Since you’re being a nice prankster, you’ll give your victim a way out. As
you’ve seen before, the activity is triggered by the intent receiver at which
point the activity starts the service. As you’ve just seen, the service is
responsible for playing the noise that will so irritate your fictional VP of
engineering. Again, because you’re being merciful in your execution of
payback, you’ll have to build in a way for the victim to turn off the music.
Adding the following method in your PrankActivity can accomplish
your act of grace:
public boolean onKeyDown(int keyCode, KeyEvent event)
{
 stopService(new Intent(
 "com.apress.START_AUDIO_SERVICE"));
 finish();
 return true;
}

Manifestation

Here’s what the manifestation looks like:
<service android:name=".PrankService">
 <intent-filter>

 Android Essentials 33

 <action android:name=
 "com.apress.START_AUDIO_SERVICE" />
 <category android:name=
 "android.intent.category.DEFAULT" />
 </intent-filter>
</service>

Zen and the Art of Getting Even
Through the use of a devious little prank application, you’ve explored how
intents, intent receivers, services, and activities work together in an
advanced, mostly background, application. I’ll now go over, step by step,
what you did and how you accomplished it.

Getting It Done

You did the following:
1. You used an intent receiver with the right permissions and a system-level

SMS intent to arrange for your PrankSMSReciever object to be
instantiated each time an SMS arrives on the phone. If your intent receiver
detected a very specific SMS payload, it would respond by sending an
intent that would start your activity.

2. This activity, named PrankActivity, would listen for the specific intent
action sent by the PrankSMSReceiver. When it received that precise
intent action, your activity would display a “gotcha” message to the
victim. At the same time, the activity would send out an intent meant to
start up a service. If, at any point the victim/user pressed a key on the
phone, the application would exit, and the music service would be
terminated.

3. The service class, called PrankService, listening for the
PrankActivity’s intent, would start and begin to play an obnoxious,
predefined audio file. It would continue to play until it was told to stop by
the PrankActivity’s call to the method stopService.

34 Android Essentials

Note This sample application does not deal with the handset’s native
SMS application. Because all intent receivers are notified of an incoming
intent, your application will be competing for user attention with Android’s
SMS inbox application. In production, this may require a substantial timer
and perhaps a trigger text payload, which is a little more subtle than
“0xBADCAT0_Fire_The_Missiles!”

FURTHER DEVIOUSNESS
Here are a few ways you can explore and extend the prank
application on your own:

▪ Get more evil by taking the activity out of the loop. Launch the
PrankService directly from the intent receiver. Do not give the
victim a way of shutting off the music.

▪ Add a different text payload to stop the music. This exercise
would be an excellent one to combine with the previous one.

▪ Customize your “get even” message. Create a prefix that triggers
the service and a payload, which is displayed by the main app
activity. Pass this payload from the intent receiver to the activity
using a payload within the intent. Taunting, sometimes, needs fine-
tuning.

These are just a few ways you can better learn the pieces of Android
while at the same time making life miserable for those around you.

Moving Data in Android
Finally, to round your knowledge about Android’s application building
blocks, you need to focus on the content resolver. Android does not give
the SDK particular access to the phones filesystem, as Brew does. Nor does
it offer a RecordStore, as does Java ME. Your primary method for
passing data between your activities, intent receivers, and services is going
to be through the ContentResolver superclass. Though you can store data
through files, preferences, and other databases, content resolvers can take

 Android Essentials 35

many forms, and Android ships with a few important content resolvers
built in. Here’s a list, at time of publication, of the major Android content
resolvers you’ll probably want to interact with on a regular basis:
 Browser

 Bookmarks
 Search history

 Phone calls
 Call log
 Recent calls

 Contacts
 System settings

 Hardware settings (Bluetooth, networking settings)
 Software settings

Android’s documentation gives an excellent walk-through of using the
contacts content resolver here: http://code.google.com/android/
devel/data/contentproviders.html#usingacp.
Quickly, I’ll walk you through adding a bookmark to the phone browser’s
bookmark list. First, you’ll want to search the current list of bookmarks to
see whether your link is in place. Second, you’ll add your bookmark if it
isn’t there.

Note It is possible to create your own content providers as a way to
wrap Android’s SQLite implementation for universal access. You’ll get into
how to do this in later chapters. For now you’re just going to handle the
“client” side of this content resolver interaction.

http://code.google.com/android

36 Android Essentials

Android uses a custom implementation of SQLite to store information
locally. If you’re not familiar with the basics of SQL, now might be a good
time to brush up. I’m going to assume, for the sake of expediency, that you
understand basic SQL searching commands. If you need to brush up,
Apress has an excellent resource at http://apress.com/book/
catalog?category=145.

Shameless Self-Promotion
Let’s say in the “About” section of your application that you want to have a
button that adds your commercial software page to the user’s web
bookmarks. You want to make sure it isn’t added twice if your user has
clicked the button again by accident. For the sake of this simple
demonstration, you’ll trigger this event in your sample application when
the user presses a key.

Note On an amusing note, if you need proof, as a developer, that
Android is still not quite fully baked, you need look no further than the
documentation for android.content.ContentResolver under the
method getDataFilePath, which states “DO NOT USE THIS FUNCTION!!
Someone added this, and they shouldn't have. You do not have direct
access to files inside of a content provider. Don't touch this. Go away.” It’s
good to know that even the technical writers for Android’s documentation
have a sense of humor.

Fetching the User’s Bookmarks

It should be obvious, at least at this point, that a developer could do some
fairly nefarious things with access to a user’s bookmarks. It’s not clear, at
this point, what Android will do to keep this sort of thing from happening. I
suppose it’s up to the carriers to lock down or monitor this behavior. In any
case, you’ll use a call to the method managedQuery, which will return a list
of the user’s bookmarks:

http://apress.com/book

 Android Essentials 37

Cursor bookmarks =
 android.provider.Browser.getAllBookmarks
 (getContentResolver());
int urlColumn = bookmarks.getColumnIndex(
android.provider.Browser.BookmarkColumns.URL);
Cursor results;
String[] proj = new String[]
 {
 android.provider.BaseColumns._ID,
 android.provider.Browser.BookmarkColumns.URL,
 android.provider.Browser.BookmarkColumns.TITLE
 };
results =
 managedQuery(android.provider.Browser.BOOKMARKS_URI,
 proj, null,
 android.provider.Browser.BookmarkColumns.URL
 + " ASC");

I’ll now break down what’s happening. You’ll first get the column index of
the bookmark URL. Again, because Android provides access to most of its
internal data in a SQL format, you should get used to referring to your
saved information in a database-centric way. Next you’ll set up the cursor,
an object similar to a Java ME RecordStore enumerator and set up your
projection string array. Because you’re interested only in the columns
containing the URL, you can keep it very simple. The method call
managedQuery is the call that will return your data. You’ll pass in the URI
string for the bookmarks store, hand it your simple projection array, leave
the where section empty, and tell it to sort the URLs in descending order.

Searching the Results

Searching through the results is as simple as iterating through the Curser
object and pulling out a string from the URL column id you retrieved
earlier:
Cursor results =
 android.provider.Browser.getAllBookmarks
 (getContentResolver());
int urlColumn =

38 Android Essentials

results.getColumnIndex
 (android.provider.Browser.BookmarkColumns.URL);
results.first();
do
{
 //url is a method param
 //containing what we're looking for
 if(results.getString(urlColumn).equals(url))
 return false;
} while(results.next());

You could do more based on the contents of the URL, but for now you’ll
just look for your www.apress.com link. Obviously, if this code were run
with the aforementioned Apress URL, you won’t find it. Since the user
wants to add your corporate URL in your fictional “About” section, you’ll
have to oblige them.

Adding Evil Corporate URLS with a Content Resolver
Maybe they aren’t evil, but you’ll add them anyway. Since Apress is
probably one of the least evil of companies out there (not that I’m biased,
mind you), you’ll let them get away with it, just this once. Here’s the fancy
ContentReceiver way of adding the bookmark records:
ContentValues inputValues = new ContentValues();
inputValues.put
 (android.provider.Browser.BookmarkColumns.BOOKMARK,
 "1");
inputValues.put
 (android.provider.Browser.BookmarkColumns.URL,
 "http://www.apress.com/");
inputValues.put
 (android.provider.Browser.BookmarkColumns.TITLE,
 "Apress, the not so evil company");

ContentResolver cr = getContentResolver();
Uri uri =
cr.insert
 (android.provider.Browser.BOOKMARKS_URI,
 inputValues);

http://www.apress.com
http://www.apress.com

 Android Essentials 39

As with most SDKs, there’s more than one way to accomplish the same
task. Earlier, you had the more complex way of adding a bookmark. This
approach is useful because it gives you a reference for how to add elements
through a ContentResolver that doesn’t have helper functions. Now,
here’s the easy way:
android.provider.Browser.saveBookmark(this, "Apress", url);

The helper function will activate a dialog box asking the user to confirm
the bookmark add. This is probably the most user-friendly way of adding
bookmarks—unless you want to control what the dialog box looks like.

Part of This Balanced Breakfast
In the past three examples you explored all of Android’s major building
blocks. You started by looking at a functional splash screen. This let you
explore the essentials of starting, maintaining, and moving through the
Activity object. It let you get your foot though the door about intents and
interprocess/object communication. Using and passing intents between
activities, services, content handlers, and intent receivers is probably one of
the most important things that sets Android apart from the other mobile
environments.
With activities and communication basics under your belt, you moved on to
the service and intent receiver. To use these two building blocks, you
cooked up a devious prank application that would both force you to use all
three pieces (activity, service, and intent receiver) and make all three
communicate with each other. Almost as a side note, you explored what it
takes to be notified when an SMS message arrives on the phone.
Last, you explored how to retrieve and write to a content resolver that is
native to the device: the browser’s bookmark database. Proof that things do
not always go as planned, Android rebuffed your attempts at adding a new
bookmark through the traditional content resolver method, which forced

40 Android Essentials

you to fall back on a helper function designed to do the same thing. Now
that I’ve covered the basics, it’s time to let the handset user weigh in a
little more.

 Android Essentials 41

Chapter 3: User Interface
In Soviet Google, the Interface Renders You

In the scrum of mobile UI development architectures, Android’s rises to the
top. If you have some mobile experience, you’ll find it to be a happy union
of Java ME’s Canvas/Screen object and the BREW widget hierarchy, with
some XML layout tools to boot. Each activity, as it’s launched from within
your application, is placed on a screen stack. Android is already configured
to handle closing down the top activity and activating the one under it
when you ask or when the user presses Back. This setup allows you to
think of every activity as the base for a single screen.
Each activity may contain different views and view groups in a hierarchical
tree. You can visualize this tree with the view groups and layout objects as
the trunk and branches (because view group objects can be cast into views)
and with the views or widgets as the leaves. A single view, in its most basic
format, is a drawable rectangle. A view group, in its most basic format, is
an object containing one or more views. This object hierarchy allows you
to lay out complex user interfaces without having to go through the error-
prone process of calculating view rectangles and widget overlap maps. If,
on the other hand, that sort of thing is your bag, Android will stay out of
the way and let you render in the style of Java ME’s hand-drawn game
canvas.
In this chapter, you’ll start with basic XML-based screen layouts and move
toward the more complex custom canvas drawing. For the sake of this
book, I’ll break down and discuss views as three major food groups:
 XML-defined widgets/views and view groups: Good for basic information

display and menus

 Android native views: TextViews, LayoutGroups, ScrollBars, and text
entry

 Custom views: The game programmer’s best friend

42 Android Essentials

You’ll start with a sample login screen, move into manipulating and laying
out widgets and views in code, and finally render an interactive animation
with a custom view.

Easy and Fast, the XML Layout
Getting started with XML layouts might seem simple at first, but it’s going
to get complicated really quickly. You’ll start with the layouts and work
your way down to the individual elements.

Laying Out
Most XML screens will be wrapped in a layout object. Layout objects
come in many different flavors, each of which you’ll look at really quickly
and then check out with a simple example in the following sections.

Caution At compile time, these XML layout files are parsed and packed
by Android into a tight binary format. This saves monstrous amounts of
parsing time on startup. However, it means that the XML files cannot be
changed by your code during runtime. More specifically, you may be able to
change these XML files during execution, but it will do absolutely nothing to
the layout of your application. Additionally, you have to pay a small
performance price for inflating a view or view group from XML. Your mileage
may vary depending on CPU load and UI complexity.

 Android Essentials 43

LinearLayout

All elements are arranged in a descending column from top to bottom or
left to right. Each element can have gravity and weight properties that
denote how they dynamically grow and shrink to fill space. Elements
arrange themselves in a row or column notation based on the
android:orientation parameter. For example (see Figure 3-1):
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element One"
 />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element Two"
 />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element Three"
 />
</LinearLayout>

http://schemas.android.com/apk/res/android

44 Android Essentials

Figure 3-1. Linear layout example

 Android Essentials 45

RelativeLayout

Each child element is laid out in relation to other child elements.
Relationships can be established so that children will start themselves
where a previous child ends. Children can relate only to elements that are
listed before them. So, build your dependency from the beginning of the
XML file to the end. Note that IDs are required so that widgets can
reference each other. For example (see Figure 3-2):
<RelativeLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
<TextView
 android:id="@+id/EL01"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element One"
 />
<TextView
 android:id="@+id/EL02"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element Two"
 android:layout_below="@id/EL01"
 />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element Three"
 android:layout_toRight="@id/EL02"
 />
</RelativeLayout>

http://schemas.android.com/apk/res/android

46 Android Essentials

Figure 3-2. Relative layout example

 Android Essentials 47

AbsoluteLayout

Each child must be given a specific location within the bounds of the
parent layout object. The AbsoluteLayout object is probably the easiest to
build and visualize but the hardest to migrate to a new device or screen
size. For example (see Figure 3-3):
<AbsoluteLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element One"
 />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element Two"
 android:layout_x="30px"
 android:layout_y="30px"
 />
<TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element Three"
 android:layout_x="50px"
 android:layout_y="50px"
 />
</AbsoluteLayout>

http://schemas.android.com/apk/res/android

48 Android Essentials

Figure 3-3. Absolute layout example

 Android Essentials 49

TableLayout

TableLayout is a layout object that allows you to specify table rows.
Android tries to arrange each of the child elements into the correct row and
columns. For example (see Figure 3-4):
<TableLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

<TableRow>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element One A"
 />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element One B"
 />
 </TableRow>
 <TableRow>
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element Two A"
 />
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Element Two B"
 />
 </TableRow>
</TableLayout>

http://schemas.android.com/apk/res/android

50 Android Essentials

Figure 3-4. Table layout example

 Android Essentials 51

These are the major layout objects you’ll be using as you go forward. Each
example has a few simple TextView elements to demonstrate how the
layout shakes down for each layout type and a screen capture depicting
how each XML file will render. You can find more thorough examples in
the Android documentation at http://code.google.com/android/
samples/ApiDemos/src/com/google/android/samples/view/.

Note If you’re new to mobile development, when deciding how to lay
out your application, you must repeat one motto in your head: “porting,
porting, porting.” Ideally, one layout could be set up that would work for all
possible devices. In reality, this never works. If you plan on running your
application on more than one phone (as most carriers require that you do),
put an emphasis on dynamic and relative layout structures. I promise, your
screen size will change in a dramatic way later. Minimize the number of
absolute X/Y values, and keep the ones you do use in easy-to-find
locations.

The next task is finding a list of all the relevant child elements that can be
placed inside a layout. This resource is available in confusing
documentation form at http://code.google.com/android/
reference/android/R.styleable.html#Menu.
From there, you can move on to the first UI task: making a login screen for
the “socially awkward” application. This login screen will become part of
the getSplashy example application.

Scrolling, Text Entry, Buttons, and All the Simple Things
in Life
It’s now time to put one of the layout classes to use. XML layouts are
perfect for user input, information relay, and nearly anything where the
contents of the screen are relatively static. You’ll add a simple login

http://code.google.com/android
http://code.google.com/android

52 Android Essentials

screen to the aforementioned “socially awkward” application (see Code
Listing 3-1). The first task is to describe what the screen will look like in a
new view. You’ll use a linear layout so you can just add widgets vertically.
(Note that this XML requires a general_bg image and the disclaimer
string to be defined in the res folder. Download the project for this chapter
from the Apress web site for more information.)

Code Listing 3-1. /res/layout/login.xml

<ScrollView xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:scrollbars="vertical">

<LinearLayout
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/general_bg"
>

 <TextView
 android:text="Login Screen"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAlign="center"
 />
 <TextView
 android:text="Username:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
 <EditText
 android:id="@+id/username"
 android:layout_width="fill_parent"
android:layout_height="wrap_content"
/>

http://schemas.android.com/apk/res/android

 Android Essentials 53

<TextView
 android:text="Password:"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
/>
<EditText
 android:id="@+id/password"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 />
<Button
 android:id="@+id/loginbutton"
 android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Login"
/>
<TextView
 android:id="@+id/status"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAlign="center"
 android:text="Enter Username and Password"
 />
 <TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="@string/disclaimer"
 />

</LinearLayout>
</ScrollView>

I’ll pull a few specific lines from the previous listing and explain what they
do in the following sections. Remember, you haven’t defined any locations
for the elements that make up this screen. However, because you’re using
the LinearLayout object, each successive element is attached to the
bottom of the previous element.

54 Android Essentials

Scrolling

To scroll through a view that’s grown larger than the size of your device’s
screen, simply wrap your layout object in a ScrollView. To enable scroll
bars vertically, your ScrollView must set the parameter
android:scrollbars="vertical", which will display a scroll bar only
as you page down the screen. To make the view long enough to
demonstrate this object, I’ve added a TextView with a phony disclaimer to
the end of the linear layout. You’ll notice that if you set the previous XML
as the active view, that focus will shift down the objects until you reach the
button, at which point the scroll bar will handle the down key and move the
user to the bottom of the text.

Prying Open the TextView

Two major “widgets” are at work in the previous XML.

Note A widget in Android refers to any self-contained subclass of the
View object.

For the titles and text-entry labels, you use the TextView object. For user-
controlled text entry, you use the EditText object. Most notable, and
therefore the one worth going over in more detail, is the final “status” text:
<TextView
 android:id="@+id/status"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:textAlign="center"
 android:text=”Enter Username and Password”
 />

First, because this text element is going to be modified at some point by
your source code at runtime, you need to give it an ID. This allows you
to use the findViewById method later to get a handler for it.

 Android Essentials 55

The @+id/status will add the ID status to your R.java file if it doesn’t
exist already. This might bug out your IDE when you reference it in your
code for the first time. Never fear, though, because the first time you
compile, all will be sorted out.
Next, you tell the TextView to set its width to the width of its parent, in
this case, the LinearLayout object. You tell it to let its height be bounded
by the size of the text by using wrap_content for the layout_height
parameter. You want the text to reside in the center of the screen, so you’ll
use textAlign because you’ve set its width to be the entire screen. Lastly,
you’ll give it some simple text to display when the activity starts up. Later,
you’ll change this text to reflect the current status.
To see the results of this handiwork, simply create an activity, and set this
XML layout to be the main content view. You should be able to see the
screen, type in the text entry field, and select the box. These actions,
however, will have no results. To tie them into the program and make them
interactive, you’ll have to keep reading.

XML Layout

The take-home message here is that the XML layout scheme is both simple
and powerful. It provides a nonprogrammer interface for mobile screen
layout and design. It also gives developers the tools to crack open and
modify these values on the fly during runtime, as you’ll do now by
exploring how to interact with Android’s built-in widgets.

Waking Up the Widgets
I’ve already demonstrated how to use Android’s TextView, Button, and
EditText widgets. But how useful is a text-entry field if you can’t ingest
what your users have entered? That’s a rhetorical question; don’t answer
it—I won’t be able to hear you (I hope). The answer is obvious: text entry

56 Android Essentials

with no purpose or result is not useful at all. To access the contents of the
EditText widgets you defined earlier, you’ll have to do two things:

1. Get an object handle to the widget you defined in the XML.

2. Listen for clicks or select events on the Login button widget.

Getting a Handle on Things

The first task is to get a pointer to elements you’ve defined in your XML
layout files. To do this, you’ll make sure that each XML widget you want
to access has an android:id parameter. As briefly mentioned earlier,
using the notation @+id/-id_name_here- will make sure your R.java file
has the ID you need. The following is an example of how to get a pointer to
the View object when your application starts up. This is the onCreate
method in your new login activity added to the GetSplashy example
application:
Button btn = null;
public void onCreate(Bundle args)
{
 super.onCreate(args);
 setContentView(R.layout.login);

 btn = (Button) findViewById(R.id.loginbutton);
}

Here you’ve acquired a pointer to the login button by calling
findViewById. This allows you to add a click listener so that you’ll be
notified when the button is selected (on a touch screen with a stylus) or
selected by the center softkey. You’ll extend the ClickListener class
inline as follows:
public class loginScreen extends Activity
{

 private OnClickListener buttonListener =
 new OnClickListener()

 Android Essentials 57

 {
 public void onClick(View v)
 {
 grabEnteredText();
 }
 };
 ...
 }

The previous inline definition, when notified that a selection has occurred,
calls the grabEnteredText method. Now that you’ve defined the click
listener, you can use the btn reference in the onCreate method:
public void onCreate(Bundle args)
{
 //...

 btn = (Button) findViewById(R.id.loginbutton);
 btn.setOnClickListener(buttonListener);
}

If you place a breakpoint in your button listener’s onClick method, it
should fire both when you move focus to and select the login button and
when you click it with your mouse while running the emulator.

Reeling in the Text

All that’s left to do is to define grabEnteredText to do exactly as its
name implies. In the final production version of a login screen, you want to
extract the entered text, begin a network login call, and fire up a loading
dialog box. For now, you’ll just show a dialog box containing what’s been
entered in the login and password fields. Here’s what grabEnteredText
looks like in the updated login activity:
public void grabEnteredText()
 {
 //Get a pointer to the status text
 TextView status =
 (TextView) findViewById(R.id.status);

58 Android Essentials

 //Grab handles to both text-entry fields
 EditText username =
 (EditText) findViewById(R.id.username);
 EditText pwd =
 (EditText) findViewById(R.id.password);

 //Extract Strings from the EditText objects
 // and format them in strings
 String usrTxt = username.getText().toString();
 String pwdTxt = pwd.getText().toString();

 //HTTP transaction would spin up a
 //new thread here
 status.setText("Login" + usrTxt + " : " + pwdTxt);

 //Show dialog box that would eventually turn into
 this.showAlert("Login Data", 0, "Login"
 + usrTxt + " : " + pwdTxt, "ok!", false);
}

First, using findViewById, you retrieve TextView and EditText pointers
for the status, username, and password widgets. Next, you extract the
contents of the text-entry widgets by retrieving the TextEntry object and
converting it into a String class. Last, you put the contents of the two
fields together, add both of them to the status text object, and pop up a
dialog box also containing the two strings.
That’s it—you’ve now allowed a user to enter text, and you’ve grabbed,
manipulated, and even displayed a dialog box containing that information.
Well done! Take a second to pat yourself, or anyone who might happen to
be within arms reach, on the back.
So far, you’ve explored how to do screen layout in XML alone with the
“socially awkward” splash screen. You’ve learned how to use a hybrid of
the two just now with your login screen. The last stop on the Android
widget express will require building onscreen layouts using code alone.

 Android Essentials 59

Widgets in Java
When you see the amount of code I’ve written to produce even a small
selectable menu, you’ll probably be, like I was, somewhat aghast. After
getting the hang of screen layout in XML, trying to do it all by hand in Java
will feel like playing classical music on the piano with a pair of scuffed-up
bowling balls. Be warned—it involves a lot of typing and probably more
than a little frustration.
On the other hand, there may be some specific elements of a UI layout you
want to adjust dynamically at runtime. Since, as I’ve mentioned earlier, you
cannot edit the layout XML files when the application is run, it’s essential
to have the tools required to modify every possible piece of the user
interface in code at runtime. Android gives you that power, provided
you’re comfortable typing at blazing speeds.

Getting Under the Hood
You’ll now tinker under the hood and kick the tires of Android’s widgets.
You’ll take a basic look at some of the core pieces, many of which you’ve
explored in XML form. As in previous examples, for the sake of
explanation, I’ll keep it basic. It should be easy to apply what I’ve
discussed here to the more complicated aspects of UI layout. In later, more
advanced examples, you’ll get more into other Android widgets. In the
following example, I’ve taken pains to make sure you use little to none of
the XML elements you relied on previously. It should give you a chance to
get a good handle on non-XML layout, but keep in mind, practically, you’d
have to be crazy to do all your user interface screens this way.

The Main Menu

Nearly all mobile applications, at least at the time of publication, begin
with a graphical main menu. This graphical screen directs users to the
various functionality of the mobile application. Because the concept of a

60 Android Essentials

“main menu” is so universal to the mobile application experience, it makes
for an excellent and practical case study. Your objective, in this example, is
to put together a simple and functional main menu. For the sake of
comparison, you’ll use another linear layout to put everything together. The
example will be built in three major stages:

1. Layout: You’ll arrange all the entries of your main menu correctly on the
screen. Granted, this will use only a fraction of Android’s massive screen
real estate. But most application menus will use large graphics and take up
significantly more space.

2. Focus: You’ll need to set up a focus structure so that users can move
through the elements. As the focus shifts, you’ll have to adjust the colors
of each menu element.

3. Select events: Finally, you’ll need to set up a listener so that when an
element is selected or clicked, you’re informed and can take the
appropriate action based on the item selected.

When you’ve finished all three of these tasks, you should have the
framework to build the primary entry screen of about 80 percent of all
mobile applications. Although not entirely practical (being that I’ve used
exactly zero XML), it is an excellent demonstration of how to get things
done in a custom runtime-driven way. As you add more functionality to
your “socially awkward” application, you’ll fill out this main menu more
completely.

Laying Out, Java-Style

The first step in the simple main menu is getting all your menu elements on
the screen. As I mentioned earlier, you’ll be using a linear layout to
accomplish it. You’ll need to do all this before the application draws for the
first time, so it’ll have to be in the onCreate method of the new MainMenu
activity. (Refer to Chapter 1 if you’ve lost track of how to create and plug
in a new activity.) Code Listing 3-2 shows what its instantiation and
configuration looks like.

 Android Essentials 61

Code Listing 3-2. Creating a Layout Object in the onCreate Method

LinearLayout layout = new LinearLayout(this);
layout.setBackground(R.drawable.general_bg);
layout.setOrientation(LinearLayout.VERTICAL);
layout.setLayoutParams(
 new LayoutParams(LayoutParams.FILL_PARENT,
 LayoutParams.FILL_PARENT));
setContentView(layout);

After what you’ve been through thus far, this, conceptually, should seem
familiar. You’ll set the background using an image in the /res/drawable/
folder, set the linear layout orientation to vertical, and set the
LayoutParams to fill the parent. (The parent, in this case, is the activity,
which controls the full screen.) Layout parameters, at their base, must
define the height and width of a given widget. As you’ll probably find out
later, trying to place a widget into a ViewGroup before its layout
parameters are set will throw an exception. However, now that you have a
layout object to fill, you can start building out the screen.

Adding a Title

Next, add a simple title, which will be centered, at the top of your main
menu screen. Code Listing 3-3 shows the block of code you’ll need for it.

Code Listing 3-3. Adding the Title

TextView title = new TextView(this);
title.setText(R.string.man_menu_title);
title.setLayoutParams(
 new LinearLayout.LayoutParams(
 LinearLayout.LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));
title.setAlignment(Alignment.ALIGN_CENTER);

layout.addView(title);

Create the text object, and set the text from the
/res/values/strings.xml. I know I said I wouldn’t use any XML, but

62 Android Essentials

I’m afraid I may have fibbed about that bit. In production, you’ll want to
move all your strings to this location rather than defining them in code. If
your clients are like mine, you won’t want to pull out your source editor
and recompile every time they want to change the wording on one of the
screens.
Now that you have a title, it’s time to add the more interesting and active
menu elements.

Laying Out Menu Entries

Now you’ll add the individual menu elements. Because this is going to be
fairly repetitive after the first one, I’ll insert and explain the first element
but leave you to your own devices for the rest. Feel free to grab the full
project at the Apress site to see the rest of the menu items. Again, you’ll fill
in more of them as you progress through the rest of the Android essentials.
Code Listing 3-4 shows the code to add an individual menu item.

Code Listing 3-4. Adding a Menu Item

TextView ItemOne = new TextView(this);
ItemOne.setFocusable(true);
ItemOne.setText("Login Screen");
ItemOne.setTextColor(Color.WHITE);
ItemOne.setLayoutParams(
new LinearLayout.LayoutParams(
LinearLayout.LayoutParams.FILL_PARENT,
 LayoutParams.WRAP_CONTENT));

//Give the menu item an ID for tracking reasons.
//The ID is a static int defined locally to the class
ItemOne.setId(IdOne);
//Add it to our linear layout
layout.addView(ItemOne);

Gosh, you probably think after reading the code carefully, this looks almost
like the title you’ve already added. You’re exactly right, how clever of you.
The heavy lifting of denoting when an object is in focus and when it’s been

 Android Essentials 63

selected has yet to come, so don’t get too cocky yet. Here are the two
differences between the previous menu item and previously listed title text:
 You need to tell the TextView that it can accept focus by calling the
setFocusable method.

 The menu listing item will need an ID so you can distinguish it from the rest
of the menu elements in your selection handler.

As I mentioned briefly, whenever adding a widget to a ViewGroup, the
LayoutParams object must specifically be the object defined within that
view group. For example, in the previous setLayoutParams method call,
you must pass in a LinearLayout.LayoutParams object. You must pass
in the correct subclassed layout parameter, or Android will throw an
exception at you during runtime.
As I said before, to make the menu, I’ll add two more text elements almost
exactly like the previous listing. For the sake of expediency, I won’t list
them here. Be sure to refer to the full project to satisfy your curiosity. Now
that you have all your menu items in place, it’s time to modify them when
they receive or lose focus.

Focus Young Grasshopper….

To handle focus change events, you have to create an implementation of
the OnFocusChangeListener abstract class. The example’s version,
defined locally within the MainMenu activity class, will look like Code
Listing 3-5.

Code Listing 3-5. Creating a Focus Listener

OnFocusChangeListener focusListener =
 new OnFocusChangeListener()
{
 public void onFocusChanged(View v, boolean hasFocus)
 {
 adjustTextColor(v, hasFocus);
 }

64 Android Essentials

};
private void adjustTextColor(View v, boolean hasFocus)
{
 //Dangerous cast. Be sure you are
 //listening only to TextView focus changes
 // or this could go horribly wrong.
 TextView t = (TextView)v;
 if(hasFocus)
 t.setTextColor(Color.RED);
 else
 t.setTextColor(Color.WHITE);
}

In addition, you have to add the following line corresponding to each
selectable element in the menu to attach the focus change listener object:
ItemOne.setOnFocusChangeListener(focusListener);

With the listener in place, you’ll now be notified each time one of your
menu elements gains or loses focus. In more advanced main menus, this
method would be the place to add image shifts, animations, 3D explosions,
or other whiz-bang graphical effects. In this example, you’ll have to settle
for just changing the text color. Now that the user can tell, through the
color change, which menu item is highlighted, you’ll need to react when
they press the center key to select an item.

Tip It’s possible to set the focused, unfocused, and selected color of
a TextView by using the setTextColor(ColorStateList colors)
method, which is a simpler way of implementing a text-based main menu.
There are always many ways to accomplish a goal in a good IDE; I’ve
simply selected the more versatile (because I hope your applications move
beyond text menus). For more information on using setTextColor, see
the Android documentation at http://code.google.com/android/
reference/android/widget/TextView.html#setTextColor(int).

http://code.google.com/android

 Android Essentials 65

Click and Select Events

You’ve already seen how to register for onClick events in the login
screen, so you should be able to breeze through this section without
trouble. Code Listing 3-6 shows the example code to grab select events.

Code Listing 3-6. Adding a Selection Listener

OnClickListener clickListener = new OnClickListener()
{
 public void onClick(View v)
 {
 String text = "You selected Item: ";
 switch(v.getId())
 {
 caseIdOne:
 text += "1";
 startActivity(
 new Intent(MainMenu.this, Login.class));
 break;
 caseIdTwo:
 text += "2";
 startActivity(
 new Intent(
 "com.apress.example.CUSTOM_VIEW"));
 break;
 caseIdThree:
 text += "3";
 break;
 }
 //We'll get to the following line in a bit
 status.setText(text);
 }
};

The previous switch statement is the reason for calling setID back when
you were originally creating and laying out the TextView widgets. When a
menu item is selected or clicked by the pointer, the onClick function is
called, and the corresponding view is passed in as a parameter. You will
examine the ID of the view passed in to determine which menu item was

66 Android Essentials

selected. This allows you to take the appropriate action for the menu
selected. In this way, you can switch to the previously defined login screen
and your soon-to-be-written custom view with the startActivity method
call.
There’s still one small step left, and if you look at the bottom of the
onCreatefuction in the sample code, you’ll spot it. You need to add a
click listener to the view. Here’s the line that should be run while you build
up the widget list:
ItemOne.setOnClickListener(clickListener);

Looking Back

Reviewing the Java-driven main menu, you’ve accomplished several
important things.
First, you performed the layout functionally previously only through XML
files. Although not entirely practical to do by hand, it does give you the
tools to change and customize the XML views while your application is
running.
Second, you registered for focus change events for all your menu items.
When the focus change listener was called, you changed the color of the
focused item to highlight it. In practical use, there are more efficient ways
of accomplishing the same thing, but I’m assuming you’d want to
substitute changing text colors for something more, shall we say,
extravagant.
Third, you learned how to listen for and react to select events, discern
which item was selected, and take the appropriate action based on that
selection.
Again, looking over all the code required to lay widgets out on the screen
by hand is fairly prohibitive, but using the tools you’ve just learned, you
could modify, enhance, and customize how a menu or list works based on
data and user preference while the app is running. If, however, you need to

 Android Essentials 67

get even more specialized with how you draw to the screen, you’ll need a
less subtle and more code-heavy approach.

Custom UI Rendering with the Canvas
This is the section all you budding game developers have been waiting for.
Android allows you to define a custom View object simply by extending
the View class and implementing the onDraw method. To demonstrate a
custom view running in an animation loop, I’ve taken some inspiration
from a San Francisco Exploratorium exhibit about how we perceive motion
and sound. You can find more information on the museum and the relevant
exhibit at http://www.exploratorium.edu/listen/index.php. You
can purchase the scientific white paper at http://www.nature.com/
neuro/journal/v7/n7/full/nn1268.html.
The example will animate two balls traveling toward each other and then
either passing by or bouncing and moving away. The example is meant to
show that the sound of a bounce can make the difference between a person
seeing the objects pass and seeing them bounce off each other. Code-wise,
I’ll demonstrate a few essential aspects of a custom view:
 Implementing an Android view

 Drawing to the screen using the Canvas object
 Creating an animation loop
 Modifying and interacting with your custom view from the activity

Customizing the View
You can customize view windows in two ways. The first is to extend the
View class. This allows you to roll your own “widget” by creating a viable
child class of android.View. The other method, which you’ll have to
explore on your own, is to subclass an existing widget such as TextView,
ProgressBar, or ImageView and modify its behavior using protected

http://www.exploratorium.edu/listen/index.php
http://www.nature.com

68 Android Essentials

methods. This example shows the first option because its scope is broad
and a little easier to understand.
At its most basic level, a custom widget overrides the protected onDraw
method. Code Listing 3-7 shows an example of just such a method.

Code Listing 3-7. Simple Custom View Declared in the
CanvasExample Activity

protected class CustomView extends View
{
 public void onDraw(Canvas canvas)
 {
 Paint p = new Paint();
 p.setColor(Color.WHITE);
 canvas.drawText("Yo!", 0, 25, p);
 }
}

Congratulations! By typing these few lines of text, you’re now the proud
owner of your own custom widget. Granted, all it does is say hello like my
17-year-old punk cousin, but I suppose you have to start somewhere. For
those of you with experience in dealing with the GameCanvas object in
Java ME, this should look familiar. To receive onDraw calls, you’ll need to
set it as the main content view for the sample activity. You’ll have to write
code that will instantiate it and make it the current view. Code Listing 3-8
shows what the CanvasExample activity will look like.

Code Listing 3-8. Activating a Custom View

CustomView vw = null;
public void onCreate(Bundle args)
{
 super.onCreate(args);
 vw = new CustomView(this);
 setTitle("Bounce or Pass, sounds changes everything");
 setContentView(vw);
}

 Android Essentials 69

You set the title for your sample activity because you haven’t given it an
application name. Then it’s just a matter of creating a new CustomView
object and setting it to be the current content view. This will call the
onDraw method within your custom widget and display your somewhat
unconventional greeting. You now have a handle on drawing to the screen
in a very basic way. You should now be able to get into more complicated
rendering and starting your animation loop.

Creating the Game Loop
As all game programmers will tell you, most games, at their core, consist of
a constant loop. The loop checks for user input and, based on that input and
any other game actions, will then draw the new frame/frames to the screen.
The loop in your sample application will not win any awards for
complexity or ingenuity, but it will get your started on your own game-
rendering loop.

Note If you want to implement your own animation loop outside the
View/ViewGroup hierarchy, look into building a loop with the
SurfaceView object. You can find documentation for this object at
http://code.google.com/android/reference/android/view/Surf
aceView.html.

Loading Audio and Images

Before you get into drawing the CustomView, you’ll need to load a few
resources on initialization that will be used later. Code Listing 3-9 shows
the new constructor for CustomView including local class variable
declarations.

http://code.google.com/android/reference/android/view/Surf

70 Android Essentials

Code Listing 3-9. Initializing the CustomView

protected class CustomView extends View
{
 Context ctx;
 Paint lPaint = new Paint();
 int x_1=0,y_1=0;
 MediaPlayer player = null;
 Bitmap ball = null;
 boolean running = true;

 CustomView(Context c)
 {
 super(c);
 player = MediaPlayer.create(c, R.raw.bounce);
 BitmapDrawable d = (BitmapDrawable)
 getResources().getDrawable(R.drawable.theball);
 ball = d.getBitmap();
 ctx = c;
 }
 ...
}

In the constructor, you’re loading the bounce media resource from its
/res/raw location through the R.java constants file. Because you’ve
done this before with several other resource types, you should be an old
hand at it. You also need to load in an image that will be drawn as the
“ball.” You do this using the resources manager object, which is retrieved
from the Context object. Although you haven’t explicitly loaded an image
in code from a resource location before, it should look like almost any
other resource load.

Implementing the Loop, Implementing the Loop,
Implementing the…

Without further ado, Code Listing 3-10 shows what the CustomView
object’s onDraw method looks like.

 Android Essentials 71

Code Listing 3-10. The Core of the Animation Loop

public void onDraw(Canvas canvas)
{
 //Draw the white background
 Rect rct = new Rect();
 rct.set(0, 0,
 canvas.getBitmapWidth(),
 canvas.getBitmapHeight());
 Paint pnt = new Paint();
 pnt.setStyle(Paint.Style.FILL);
 pnt.setColor(Color.WHITE);
 canvas.drawRect(rct, pnt);

 //Increment the X and Y value for the sprites
 x_1+=2;
 y_1+=2;

 //Reset the loop when the balls drift offscreen.
 if(x_1 >= canvas.getBitmapWidth())
 {
 x_1 = 0;
 y_1 = 0;
 }

 //Draw ball 1
 drawSprint(x_1, y_1, canvas);
 //Draw ball 2
 drawSprint(canvas.getBitmapWidth() - x_1, y_1, canvas);

 if(running)
 invalidate();
}

Starting from the top, you’ll first white out the background using a paint-
style object and a call to canvas.drawRect. The paint object, in
combination with the Rectangle object, will tell the canvas to draw a
white box that covers the entire screen. Next, you’ll increment the x and y
values for your ball sprites. You’ll then need to reset them if they’ve drifted

72 Android Essentials

past the bounds of the screen and, finally, draw them with your own
drawSprite call. Code Listing 3-11 shows the contents of that function.

Code Listing 3-11. Drawing a Bitmap

protected void drawSprint(int x, int y, Canvas canvas)
{
 canvas.drawBitmap(ball, x, y, lPaint);
}

This function, right now, is simply a straightforward call to the
drawBitmap method. I’ve separated out this method only because drawing
the sprite in another context might require more functionality than in this
simple example. Finally, returning to the onDraw function, you’ll call
invalidate only if your running flag is true. Calling invalidate on a
view is Android’s preferred way of forcing a redraw. In this case, you’ll
invalidate yourself, which will call onDraw, and the whole process starts
over once again. If you simply set the running flag to false on pause or
exit and invalidate it again when resuming, the animation should stay in
step with the focus of its parent activity.

Adding and Controlling Sound

Since the auditory illusion requires the ability to turn on and off the sound
of the two objects bouncing off each other, you’ll need to set up the audio
to play as they hit and then build a mechanism for the user to turn that
audio on and off.
To play the audio, add the code in Code Listing 3-12 to the previous
onDraw function since it is also, in effect, the game control loop. When I
say “game loop,” I’m referring to the invalidate call at the end of
onDraw, which will place a redraw in Android’s UI event loop. Keep in
mind that playSound is a boolean declared just inside the custom view.

 Android Essentials 73

Code Listing 3-12. Playing and Reloading Audio

if(playSound &&
 canvas.getBitmapWidth() - x_1 -16 == x_1 + 16)
player.start();

if(x_1 >= canvas.getBitmapWidth())
{
 x_1 = 0;
 y_1 = 0;
 player.stop();
 player.release();
 player = MediaPlayer.create(ctx, R.raw.bounce);
}

As you might have noticed, you’re starting the audio playback when the
sprites are 16 pixels away from each other. This is a little slush time to let
the audio get started. I should note that it speaks more to my inability to
edit audio files than it does to a lack of efficiency in audio load and
playback times in Android. You also must be sure to play the audio only if
the playSound boolean is true. This variable is a member of the
Activity class in which the custom view is defined. Using this boolean,
you’ll get control over the custom view class from within the screen
activity. To turn on and off the audio, you now simply implement the
method in Code Listing 3-13 in the activity.

Code Listing 3-13. Reacting to Key Events

public boolean onKeyDown(int key, KeyEvent kc)
{
 if(key == KeyEvent.KEYCODE_DPAD_CENTER)
 {
 playSound = !playSound;
 return true;
 }

 return super.onKeyDown(key, kc);
}

74 Android Essentials

This code should look similar to how you dismissed the prank application
in Chapter 2.

Bringing It All Together
If you’ve followed along closely (or cheated and simply downloaded the
finished project), you should be able to run the application and watch the
illusion. Press the center directional key to turn on and off the audio. With
the audio off, it should look like they pass each other; with it on, it looks
like they bounce off and go their separate ways.
In this example, I’ve demonstrated how to create your own View subclass,
how use it to draw on the screen, how to set up a game-rendering loop, and
how to control that simple loop using key events.

Using the User Interface
In this chapter, you’ve learned, in detail, how to lay out screens using
Android’s XML schema and how to interact and modify that schema at
runtime with some Java code.
Next, you learned how lay out UI widgets and view groups using source
code alone. It’s a not-so-practical application of Android user interface
tools, but it’s important to go through for the sake of understanding
nonetheless. Last, you explored the essential tools for building a game-
rendering loop. You added some simple multimedia and user control into
the mix and created a simple auditory illusion that should impress your
very nerdy friends.

Tip Using all that you’ve learned in this chapter, build a frame for
this illusion that contains some explanatory text and a border using XML.
When the activity starts up, render the XML but insert the custom view into
the proper place. For this task, I suggest using a relative layout, a
TextView for the explanation, and a Rectangle for the border.

 Android Essentials 75

Chapter 4: Location, Location, Location
In this chapter, we’ll tackle the very trendy subject of location-based
services. One of Android’s major selling points is its native access to the
Google Maps infrastructure. Although it is an optional feature, what carrier
wouldn’t include this powerful package? I suppose that, in the coming year
or so, we’ll find out. You’ll delve into this subject in two major parts in this
chapter. First, you’ll take on Android’s LocationManager object, which
allows you to determine your latitude and longitude, ostensibly, using a
variety of systems under the hood. Next, you’ll get into making the Google
Maps API do your bidding. It’s important to note that Android’s support
for GPS and tower-based location systems is not fully implemented. At
press time, it’s possible to emulate GPS data either by using the default,
which is a drive around the Bay Area in California, or by building your
own fake GPS data. My example will use the first method, but I’ll include
code that should eventually work with shipping handsets. You can find
more information about building a custom GPS route and the ins and outs
of location-based services (LBSs) in the Android documentation at
http://code.google.com/android/toolbox/apis/lbs.html.
By means of example, you’ll implement an application that retrieves the
handset’s location from the sample GPS module, starts a MapActivity
object, centers the screen on the location, and then uses an overlay to draw
a tack on top of it.

Where Am I?
For the most part, location-based services with Android work exactly as
you would expect them to with one minor exception. Android allows for
developers to specify which location lookup method to use. This allows
you to customize the power consumption, cost, and accuracy based on the
specific use you have in mind for your application.

http://code.google.com/android/toolbox/apis/lbs.html

76 Android Essentials

Building the LocationManager Object
The first task will be to get a handler to the LocationManager object,
the high-level object used to find the handset’s location. The
LocationManager can use any number of LocationProvider objects to
do the GPS (or tower-based) lookup. Here are the relevant class variable
declarations and subsequent buildGPS method that will prime the pump
for later location retrieval:
Point m_curLocation;
LocationProvider m_locationProvider;
LocationManager m_locationMgr;

private void buildGPS()
{
 List<LocationProvider> providorList = null;
 Criteria c = new Criteria();

 c.setAccuracy(50);
 c.setAltitudeRequired(false);
 c.setCostAllowed(false);
 c.setSpeedRequired(false);
 //Following line is commented out because it drops
 //android into an infinite loop.
 //c.setPowerRequirement(c.POWER_LOW);

 m_locationMgr =
 (LocationManager)
 getSystemService(LOCATION_SERVICE);

 m_locationProvider = m_locationMgr.getBestProvider(c);

 if(m_locationProvider != null)
 return;

 providorList = m_locationMgr.getProviders();

 if(providorList.size() > 0)
 m_locationProvider = providorList.get(0);
}

 Android Essentials 77

You’ll notice that you can’t simply instantiate a new LocationManager
object. It must be retrieved through the getSystemService method, a
public member of the Activity class.

One Must-Have Standard

Once you’ve declared the relevant variables, you’ll build a useless (at least
until Android arrives on devices) Criteria object. The Criteria allows
you to specify features for the lookup method you want to use.
In this example, since you’ll be tracking the user constantly in an urban
environment, you want something low-cost, low-power, and accurate. You
won’t need speed or altitude because you’re just going to be pushing this
information to the Google Maps screen. You’ll specify all these variables
by making calls to the Criteria object, which will eventually be passed
into the LocationManager object.
With these criteria set, you can request the best provider that meets your
needs. Again, because the Android emulator supports only one example
GPS stub, you’ll get a null object back from the getBestProvider call.
Later, with real hardware, these criteria will be more effective, even
essential. Since the LBS criteria were rejected, you’ll just grab the first
element of the provider list, which will be named, at least in this version of
the Android software, gps.
Note, also, that the low-power requirement is commented out. At time of
publication, including this setting causes Android to spiral into some kind
of infinite loop. Android engineers, heads up!

Look Up, Wave, the Satellites Are Watching…
Now that I’ve laid the groundwork for your location service, you can move
on to the lookup itself. The application will request its coordinates every
five seconds and move the containing MapActivity to the correct place
(something I’ll get into at length later in the chapter). Code Listing 4-1

78 Android Essentials

shows the code to start the operation. It won’t compile until you include the
code that comes in the next block after this one, because you’ll have to
define the LocationUpdater object.

Code Listing 4-1. Registering for Location Updates

boolean running = true;
private void startLocationThread()
{
 try
 {
 LocationUpdater l = new LocationUpdater();
 registerReceiver(l,
 new IntentFilter("GPS_UPDATE"));

 m_locationMgr.requestUpdates(
 m_locationProvider, 5000,
 50, new Intent("GPS_UPDATE")
 } catch (Exception e){}
}

To download the location at five-second intervals, you’ll request updates
from the location manager. First, you’ll have to register a new
LocationUpdater for the GPS_UPDATE intent. This is the intent that will
be fired each time the LocationManager has an update for you.

Tip It’s a good idea to request updates in the onResume activity
method and to stop the updates when onPause is called. This keeps your
application from consuming resources while your application is not the
topmost visible application.

You can specify which provider (on the emulator it’ll be gps, but on the
handset it’ll be the closest location provider to your specifications) and
specify the time interval as 5000 and max distance change as 50 meters.
Remember, both of these qualifications need to be met for a GPS_UPDATE
intent to be fired.

 Android Essentials 79

Of course, for this code to work, you’ll have to define what a
LocationUpdater is. You’ll define it within the example activity so it has
access to the activity’s private members; see Code Listing 4-2.

Code Listing 4-2. Defining the Intent Receiver

class LocationUpdater extends IntentReceiver
 {
 public void onReceiveIntent(
 Context context, Intent intent)
 {
 Location here;

 if (m_locationProvider == null)
 here =
 m_locationMgr.
 getCurrentLocation("gps");
 else
 here =
 m_locationMgr.
 getCurrentLocation(
 m_locationProvider.getName());

 setMapLocationCenter(
 here.getLatitude(),
 here.getLongitude());
 }
 };

In the previous code, the onReceiveIntent function is called when the
LocationManager sends out a GPS_UPDATE intent. When you’re notified
of a five-second interval (or a 500-meter location change), you’ll acquire a
new location and call setMapLocationCenter to update the location of
the phone on the Google Maps object.
So, you now have the latitude and longitude of the handset coming in every
five seconds. You have the location, so let’s write some code to display
that information on a map.

80 Android Essentials

Note Don’t forget to add the correct permissions to your manifest file
when requesting LBS data. You’ll want to add ACCESS_LOCATION,
ACCESS_GPS, ACCESS_CELL_ID, and ACCESS_ASSISTED_GPS. The top-
level one will give you access to location services in general. Each of the
other permissions will let you access a particular method of location
tracking. Be sure to include the ACCESS_LOCATION and at least one other
type in your manifest, or your LocationProvider will always come back
as null.

Google Maps
It is impossible to write a book about Android without tackling this subject.
Developers everywhere salivate at the possibilities made available with a
GPS-enabled handset and a native implementation of Google Maps. The
fact that you’ve probably flipped to this chapter and are reading it first
should say something about what we’re all excited about.

A Metric Ton of Map Objects
You have several players to deal with when displaying a Google Maps
screen. It’s good to have a quick introduction to all the major players.
You’ll need to coordinate them all in a delicate ballet of complexity in
order to make the map screen behave itself.
 MapActivity is the grand poobah of the Google Maps family.
MapActivity takes care of all the low-level thread management,
networking, and basic gesture/key handling.

 MapView is the view that supports and displays the map. This must be
contained by a MapActivity.

 MapController is the object used to move the map around the screen.

 OverlayController is the superobject to manage all the individual
overlay graphics.

 Android Essentials 81

 Overlay is a single drawable object to be painted overtop the MapView.

 Point is a single latitude-longitude position. This is the object you’ll use to
keep track of where the handset is.

Each of the objects listed (yes, there are a lot of them, and no, there will not
be a quiz later) plays a significant role in drawing the map and indicating
the user’s location. Obviously, you’ll need to start with the MapActivity,
because it’s the baseline that contains all the rest. Here’s the declaration
and classwide variable list:
public class MapExampleActivity extends MapActivity
{
 MapView m_mapView;
 MapController m_mapController;
 Point m_curLocation;
 LocationProvider m_locationProvider;
 LocationManager m_locationMgr;
 OverlayController m_overlayController;
 boolean m_locationLoopActive = false;

Some of these variables should look familiar from the code in the previous
location example. I’ve listed them here just so that you’ll have some
context for what’s to come. Here’s the onCreate method that will initialize
the metric ton of mapping objects:
public void onCreate(Bundle ice)
{
 super.onCreate(ice);
 m_mapView = new MapView(this);
 m_mapController = m_mapView.getController();
 m_overlayController =
 m_mapView.createOverlayController();
 m_overlayController.add(new TackOverlay(this), true);
 m_mapController.zoomTo(9);
 buildGPS();

 setContentView(m_mapView);
}

82 Android Essentials

Creating a MapView, as you can see, requires nothing more than a context
pointer. However, if you try to set it as the content view in something other
than a MapActivity, you’ll find yourself in exception land. The
MapController, which is what you’ll use to move the map to your GPS
locations, is retrieved from the MapView object. You’ll create an
OverlayController with the MapView and add a new instance of your
TackOverlay object to it.
Keep that TackOverlay line in the back of your head until later. You’ll
return to it in just a minute. Last, you set the zoom level to something that
will let you see highways and cites. You’ll also need to set up the GPS
variables that were covered and listed in the previous section. After all that,
you can finally set the MapView as the activeContent view.

Note A MapActivity can contain more than just a MapView object.
You can define it and other widgets by hand or through XML, as discussed
in Chapter 3. For the most part, the MapActivity is exactly like an
Activity class…aside from its extra resource and thread handling for the
MapView object.

If you run your MapActivity as it stands thus far, you’ll see Google Maps
start up and center you somewhere in Tulsa, Oklahoma. You’ll need to
refer to the Android engineers for why it happens that way; I’m frankly at a
loss for why you’d want to start your map there, but maybe I just haven’t
spent enough time in Tulsa.

Moving the Map
Let’s look at the code that will move the map to the appropriate location. If
you remember your location lookup loop (say that five times fast!), you’ll
remember the method call:

 Android Essentials 83

 "setMapLocationCenter(
 here.getLatitude(), here.getLongitude());"

Since this is the next step in the application, let’s take a look at the contents
of this simple method:
public void setMapLocationCenter(double lat, double lon)
{
 m_curLocation = new Point((int)(lat * 1E6),
 (int) (lon * 1E6));

 m_mapController.animateTo(m_curLocation);
}

Now you see the use of the illustrious com.google.android.maps.Point
object, not to be confused with the android.graphics.Point object,
which is, clearly, difficult to do, because their names are so distinct. The
map Point object allows you to set its location with the constructor in 1E6
notation (which, if you’re not a mapping/GPS buff, means multiplying the
stuff returned from the GPS module by 1E6 to avoid looking like you’re
somewhere off the coast of Africa).
Now that you’ve converted the GPS output into a map Point, you can
move the onscreen map to center on it. You accomplish this through the
map controller by calling animateTo.
The final step in this section is to start the location loop when the user
presses the center key. By now, you should be a pro at this sort of thing; in
fact, I’ll bet you’re so good I don’t even have to explain the following
code:
public boolean onKeyDown(int KeyCode, KeyEvent evt)
{
 super.onKeyDown(KeyCode, evt);
 switch(KeyCode)
 {
 case KeyEvent.KEYCODE_DPAD_CENTER:
 if(!m_locationLoopActive)
 {
 m_locationLoopActive = true;

84 Android Essentials

 startLocationThread();
 }
 return true;
 break;
 }

return false;
}

Taking Stock
If you’ve followed along thus far, you should see, when you press the
center key, that the map moves to a location in the Bay Area near San
Francisco. Additionally, over time, the map will move in parallel with the
movement of the fictional handset. Congratulations—if your application
were running on a real phone, you’d be looking down at the top of your
head…figuratively.
If you cheated and downloaded the example code, 5 points for ingenuity
but 20 points off for lack of creativity. You cheaters will notice that a blue
tack is drawn at the current location of the handset (the center of the screen
if you haven’t moved the map around by clicking your mouse). This blue
tacky-blobby thing, aside from being a testament to my poor Photoshop
skills, is the final part of the Google Maps example. Half the fun of
displaying a map is marking things on it. This example, because this book
is called Android Essentials and not I’ll Write Your Mobile Application for
You, OK?, will be straightforward and simple. You’ll draw a tack overlay
on the current user’s position.

It’s a Bird, It’s a Plane...Nope, It’s Bad Photoshoping
Correctly rendering an overlay is a little more complicated than you might
think at first. It requires two major components, the OverlayController
object and an extended Overlay object. The overlay controller manages
each overlay and ensures that its draw function is called after the MapView
redraws itself. If you’ll recall, and I’ll insert it here because you probably

 Android Essentials 85

don’t want to, you had to create an overlay controller in the onCreate
method. Here’s the line:
m_overlayController =
 m_mapView.createOverlayController();

Each drawable Overlay must be added to the OverlayController.
Again, here’s the line you used earlier in the example:
m_overlayController.add(new TackOverlay(this), true);

The TackOverlay is an extension of the Overlay object. Anytime you
want to draw your own “tack,” you’ll have to extend the Overlay object.
Granted, one custom Overlay with a little efficient creative programming
could draw all your overlays. For the purpose of this example, you’ll
extend the Overlay object and add the required draw method. The draw
method will be called after the map redraws itself. Here’s the
TackOverlay declaration, class variables, and constructor; you’ll declare it
inline within the MapActivity so it has access to your MapActivity’s
variables and functions:
classTackOverlay extends Overlay
{
 MapExampleActivity ctx;
 Bitmap tack;

 TackOverlay(MapExampleActivity c)
 {
 super();
 BitmapDrawable b = (BitmapDrawable)
 c.getResources().
 getDrawable(R.drawable.tack);
 tack = b.getBitmap();
}

As you can see, the TackOverlay looks like just about any other Android
object extension. Using the context pointer, you’ll stash aside the tack
bitmap resource so you won’t have to load it every time when drawing. The
code gets a little more interesting when you crack into the draw method.

86 Android Essentials

public void draw(Canvas canvas, PixelCalculator calculator,
boolean shadow)
{
 super.draw(canvas, calculator, shadow);
 intxy[] = newint[2];

 try{
 //Convert the center point to an XY coordinate.
 //We could hard-code this,
 //but where's the fun in that?
 if(m_curLocation == null)
 return;

 calculator.getPointXY(m_curLocation, xy);

 inttackX = xy[0] - (tack.getWidth()/2);
 inttackY = xy[1] - (tack.getHeight());

 canvas.drawBitmap(tack ,tackX, tackY, new Paint());
 }
 catch (Exception e)
 {
 Log.e("Crap!");
 }
}

There’s nothing mind-bending in the previous code. The only tricky bit to
keep in mind is that you’ll need to translate the latitude/longitude
coordinates stored in the m_curLocation Point object into an XY
coordinate to draw onscreen. To do this, the Overlay object passes in a
PixelCalculator object with the draw method. This object is responsible
for giving you an XY coordinate that maps to the latitude/longitude
position. Because the TackOverlay object is defined inline within the
MapExampleActivity, it has access to the m_curLocation point variable.
You’ll convert that point into an XY location. Because the tack-blob-
thingy’s point is at the bottom and middle of the image, you’ll have to
move it up by the height of the tack resource and left by half the width.

 Android Essentials 87

This should put the point of the tack in line with the XY calculated
location.
Also worth noting, even though I haven’t implemented it, is the existence
of the shadow boolean. This will tell you whether your overlay should
draw a shadow. Ignore it or not; it’s up to you.
With that, you’ve completed the example. You can now draw a somewhat
misshapen tack on the map at the GPS location of the phone. Granted,
you’re drawing a faked stub GPS location, but your new cutting-edge LBS
application has to start somewhere.

Wrapping Up
My goal in this chapter was not to provide a soup-to-nuts explanation of all
that’s available in Google Maps for Android. My hope was to provide you
with a framework that will let you explore all those things on your own. I
covered how to get the handset’s location from the LocationManager and
how to take those values and convert them into a Google Maps location.
Then, I covered how to start up a MapActivity and draw a map onscreen.
Last, you learned how to animate the map around the country and how to
draw an overlay, or tack object.
This should give you a solid foundation for what you might want to do
next. I recommend exploring the searching capabilities, drawing multiple
overlays, and installing the Google map view inside a frame (possibly with
explanations, graphics, or control indicators).

 Android Essentials 89

Chapter 5: Taking Android Out for a Walk
In this chapter, you’ll move past the basics, loosen the leash, and let
Android stretch its legs a little bit. More and more as the mobile software
field progresses, it’s become less and less possible to make an application
that doesn’t rely heavily on the Web. In many ways, fully featured Internet
access has become one of the essentials in the mobile world. The depth and
breadth of Android’s network layer makes it impossible to cram into one
small chapter of one small book. With this in mind, I’ll try to, as I have
before, arm you with the basics you’ll need to make production-level
applications. Along the way, as in previous examples, you’ll explore a few
tangential pieces of Android’s technology.
Starting with the essentials, you’ll learn how to use a simple HTTP
connection to download, parse, and list the elements of a remote XML file.
These elements, in your sample application, will be Internet radio stations
contained in a basic XML file. Indeed, your entire sample application will
be focused on building a simple Internet radio player. Sadly, the state of
Android’s streaming audio does not live up to its documentation. So, this
chapter will be more of an exercise and less of a fully functioning
application.

Loading a List from the Web
To make your snazzy example application, you’ll have to fetch, parse, and
display a simple list of radio stations. Doing this will require me to cover a
range of subjects from HTTP transactions to ListViews. Pulling down a
list down from the Web and displaying them onscreen is something I find
myself, as an engineer on many mobile projects, doing nearly constantly.
From pulling down a “friends list” on a social network to a “high score list”
from an online game element, there’s something universal about
downloading, parsing, and displaying a list.

90 Android Essentials

Although I realize you might not be making a streaming music application
anytime soon, this example is general enough that it should serve as a guide
for both basic network operations and handling selection menus. Also of
note is that you’re performing almost the same task you did with the
custom widget work back in Chapter 3. Frankly, I’m not sure this method
is a whole lot easier, but perhaps that’s because I’m using it in a fairly
rudimentary way and have missed some of the more complicated bits it
would help with. In any case, enough gabbing—let’s get into the basics of
network connectivity.

First Things…First?
Your first task will be to pull the XML file off the server. I’ve made a
simple XML example file (which, in your final application, would be
provided by a PHP script or a Java servlet) and hosted it on my web site.
Before we get any further, I’ll list a few variable declarations you’re going
to need later. Both for network connectivity and for our eventual selectable
list, Code Listing 5-1 shows the class declaration and variable dump.

Code Listing 5-1. Essential Class Variables

public class StationPicker extendsActivity {

//Uncomment the next lines after we've
//defined the StationData class
//Vector<StationData> stationListVector =
//new Vector<StationData>();
SAXParser parser = null;
XMLReader reader = null;
//You'll have to check the code for the following line.
//XMLHandler handler = new XMLHandler();
ArrayAdapter<StationData> adapter = null;

 Android Essentials 91

What you see in the previous listing is the buffet of objects you’ll need to
complete your little sample application. You have the Vector to hold the
station list, a SAX parser, a reader, and a handler for XML parsing. Last
you have the ArrayAdapter, which, at some point, you’ll fill with
elements to render for your onscreen menu.
Additionally, Code Listing 5-2 shows how things are initialized within
your onCreate function.

Code Listing 5-2. Setting Up for XML Parsing

{
 super.onCreate(icicle);
 try
 {
 //This can be just about
 //anything at this point
 setContentView(R.layout.main);
 SAXParserFactory f =
 SAXParserFactory.newInstance();
 parser = f.newSAXParser();
 reader = parser.getXMLReader();
 reader.setContentHandler(handler);
 //We'll get to the contents of the
 //following function later.
 // If you're following along
 //just stub it to return null
 initList();
 }
 catch (Exception e)
 {
 Log.e("StationPicker", "Parser FAIL!");
 }

}Again, because I’m assuming you’re comfortable with Java, I’m not going
to walk through all the steps required. If you want the full context and
associated code, feel free to grab the project online. As for the initList
method, I’ll define that in a later section. For now, if you’re following
along, you can follow the comment’s advice and stub it to return null.

92 Android Essentials

Getting the Network in Gear
I’ve elected to kick off the network connection during the onStart method
inside the ListActivity. Normally you would probably do this once on
startup and then, using an intent, move to a new activity for showing the
list. But for the sake of keeping this example as simple as possible, I’m
going to do as much as I can within the single activity. It’ll keep you from
having to deal with intent management, and it’ll give me a chance to show
you how to use the UI thread. You’ll learn more about that later; for now,
the Web! See Code Listing 5-3.

Code Listing 5-3. Creating and Using a Simple HTTP Connection

public void onStart()
{
super.onStart();
Thread t = new Thread()
 {
 public void run()
 {
 HttpUriRequest request = null;
 HttpResponse resp = null;
 InputStream is = null;

 DefaultHttpClient client =
 new DefaultHttpClient();

 try{
 //Build the request
 request =
 new HttpGet(
 "http://www.wanderingoak.net/stations.xml");
 //Execute it using the default
 //HTTP Client settings;
 resp = client.execute(request);
 //Pull out the entity
 HttpEntity entity= resp.getEntity();

http://www.wanderingoak.net/stations.xml

 Android Essentials 93

 //Snag the response stream from the entity
 is = entity.getContent();
 //Parse the incoming data
 reader.parse(new InputSource(is));
 } catch (Exception e)
 {
 Log.e("LoadStations","FAIL!");
 }
 }
 };
 t.start();
}

You first need an instance of the DefaultHttpClient. You can obtain this
by simply creating it with new. Next, you’ll create a new HttpGet object,
passing in the location of your XML feed. You can then execute the HTTP
request on the default client with your new request object. This is a
blocking operation (hence the new thread), and once the execute method
returns, you can get the HttpEntity. Out of this object you can retrieve an
InputStream containing the body of the response.
If that final reader call makes no sense to you at all, that’s because it
shouldn’t, because I haven’t told you what it does yet. Yes, I know your
sample code won’t compile without it. Hold on a second, and I’ll get to
that.

Note The DefaultHttpConnection object seems to spool up and
run, at least with the current version of the emulator, hideously slowly. You
can probably get better performance by tinkering with the various
subclasses of the HttpClient class. Your mileage may vary, but if you
need a fast and easy proof-of-concept demonstration, the default one may
be the way to go.

94 Android Essentials

Putting the Data in Its Place
As you can see in the previous code, pulling down a bit of XML data from
a server or any data, for that matter, is a pretty simple process. That
reader.parse line you’ve been pestering me about is a simple call to a
SAX parser. Android rolls out the door with a few XML parsers to choose
from, and since I’m assuming you’re comfortable with Java and for the
sake of time, I’m not going to spell it out for you.
If you absolutely must know what’s going on, you’re welcome to grab the
sample code and check it out. For now, however, it’s enough to know that
the parser fills a Vector full of StationData objects. Code Listing 5-4
shows the definition.

Code Listing 5-4. Defining the Data-Housing Class

class StationData
{
 public String title = "";
 public String url = "";
 public String toString()
 {
 return title;
 }
}

For simplicity’s sake, I’ve avoided the common encapsulation practice of
defining getters and setters on private String elements. Instead, you’ll just
access the elements within the class directly. If you’re a C/C++
programmer, this looks more like a “struct” than a “class.” Take special
note of that toString method. It may look useless at this moment, mostly
because it is right now, but its function will become much more apparent in
a few paragraphs. Each station from the XML file will get its own
StationData object. Again, just for the sake of example, Code Listing 5-5
shows what a single station element in the XML looks like.

 Android Essentials 95

Code Listing 5-5. Sample Network Data

<xml>
<stationList>
<station>
<title>Pop Rock Top 40</title>
<audioUrl>
http://scfire-nyk-aa02.stream.aol.com:80/stream/1074
</audioUrl>
</station>
</stationList>
</xml>

Since, at this point, you’ll let the XML parser take care of things with that
reader.parse line, you can get on with making your list of selectable
elements. Your parser will fill the StationData vector with a few
elements. Your next few tasks are to pull them out of the vector and place
them on the screen in a way the user can interact with.

Making a List and Checking It…
Making your list menu function correctly will require a few steps. You’ll
first have to convert your activity to a ListActivity and do all the
housework that switch demands. Next, you’ll actually insert the elements
from the vector you built previously. Last, you’ll react to select events and
begin streaming some theoretical audio. Again, in a production version of
this application, you would probably use more than one activity, but for the
sake of simplicity, you’ll just to cram it all into one.

The Setup: Embracing the List
Your first task, if you’re going to display the selectable list of stations, is to
switch your humdrum activity to a shiny new ListActivity. Here’s the
class declaration in its new and pristine form:
public class StationPicker extends ListActivity

http://scfire-nyk-aa02.stream.aol.com:80/stream/1074

96 Android Essentials

This conversion carries with it a few notable responsibilities. If you don’t
fulfill these obligations, Android will throw a bunch of exceptions at you.
First, you’ll need to add a ListView to that default layout file because each
ListActivity must have an associated ListView. Here’s what the
example main.xml looks like:
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
"http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
>
<TextView
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Loading Stations..."
 android:id="@+id/loadingStatus"
 />
<ListView android:id="@+id/android:list"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 />
</LinearLayout>

Adding the Adapter
Second, you’ll need to add an adapter to the list widget. You need to define
what each element is going to look like. You’ll make a simple XML file
containing a single text element. Call it list_element.xml; it should look
like Code Listing 5-6.

Code Listing 5-6. res/layout/list_element.xml

<?xml version="1.0" encoding="utf-8"?>
<TextView id="@+id/textElement"
xmlns:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="wrap_content"/>

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

 Android Essentials 97

This TextView describes, to Android, what each element in the list should
look like. This is the place for fonts, colored texts, and background
resources. More complicated list elements are possible, but I’ll get into that
variation a little bit later.
Remember that initList method I told you to stub out earlier? Rather
than just returning null, Code Listing 5-7 is what it should look like.

Code Listing 5-7. Must Do: Adding an Adapter to the ListView

privatevoid initList()
{
 adapter = new ArrayAdapter<StationData>(
 StationPicker.this, R.layout.list_element);
 setListAdapter(adapter);
}

Every ListView must have a corresponding adapter. Adapters come in a
few sizes and flavors. Table 5-1 gives a brief description of the most
important among them.

Table 5-1. List Adapters

LIST ADAPTER DESCRIPTION

Cursor
adapter

A simple adapter that is perfect for listing the contents of SQL
databases, search results, or any other data that is commonly
formatted in a cursor. In fact, the Google documentation has
an excellent example of using a cursor adapter:
http://code.google.com/android/intro/tutorial
-ex1.html.

Resource
cursor
adapter

The perfect adapter for building a selectable list from a static
XML file. If your menu/list is a list of known elements, such
as a main menu, list of help topics, or other well-known
catalog of information, this is the adapter for you.

 continued

http://code.google.com/android/intro/tutorial

98 Android Essentials

Table 5-1. continued

LIST ADAPTER DESCRIPTION

Array adapter The adapter we’re using in this example. If you don’t know
what’s going to be in your list at compile time, because you
won’t know what your station list will be, then this is the
easiest way to convert a list of XML elements into a
selectable list.

For now, you have a fully functioning, while extremely ugly, menu list
ready to go. Now all you need is some data!

Stuffing Data into the Adapter
Placing the data in the adapter is simple but for one thing: it must take
place inside the UI thread. What, you may ask, am I talking about? The UI
thread is a specific thread of execution, which controls the redraw loop.
You’ll notice that if you start a new generic Java thread and then try to
change the current view, add data elements to a list adapter, or any other UI
task, Android will get really grumpy with you. By grumpy, I mean it won’t
work, or it’ll throw a stack of exceptions at you.

Reclaiming the UIThread

Since you started a new inline Java thread to handle your blocking network
connection, you’ll now have to define another “runnable” to get back into
the good graces of the UI gods. Thankfully, activities contain a method for
scheduling code for the UI thread. You’ll add it to the bottom of your
network code (see Code Listing 5-8). I’ll repeat the last few lines for
context.

 Android Essentials 99

Code Listing 5-8. Recovering the UI Thread

Thread t = new Thread()
{
 //---------
 //Skipping a bunch of
 //Code here
 reader.parse(new InputSource(is));
 //Run our code on the UI Thread.
 UIThreadUtilities.runOnUIThread(
 StationPicker.this,r);

Note Don’t try to paste the previous code into your project and
compile it just yet. You need to define that runnable r object first. Bear with
me for just a few minutes, or paragraphs, depending on how fast you read.

The object UIThreadUtilities is a mostly static class, which is a
member of the Activity class. You’ll have to pass in a context object to
runOnUIThread, and since this is a pointer to your currently running
Thread instead of your ListActivity, you’ll have to grab your
ListActivity (a subclass of Context) from StationPicker.this.
That r reference is a “runnable” that you’ll define in just a minute.

At Last, Adding the Data
You’re finally ready to start shoveling StationData elements into your
ArrayListAdapter. You’ll do that inside that runnable r object you heard
me talk about earlier (Code Listing 5-9).

100 Android Essentials

Code Listing 5-9. Adding Elements to the Adapter

Runnable r = new Runnable()
{
public void run()
{
 TextView t =
 (TextView) findViewById(
 R.id.loadingStatus);
 t.setText("Stations Loaded");
 try{
 for(int i=0;
 i < stationListVector.size();
 i++)
 adapter.addObject(
 stationListVector.elementAt(i));
 }catch (Exception e) {}
 getListView().invalidate();
 }
};

Because you’re now on the UI thread, it’s possible to modify the contents
of the loading status text. Once you’ve changed the status message, you can
begin adding elements to the ArrayAdapter. You’ll just loop through the
size of the vector and add each item to the adapter. How, you may ask,
does the list element know what text to insert into the TextView that
comprises each visual element in the list? Simple, look back to that
toString method you overrode in your StationData class. When
building the list, the ArrayAdapter calls toString on each element in the
array and displays that text onscreen.

Selection…
You now have a functioning, selectable list of radio stations! Of course,
you don’t do anything when an item is selected, so you’ll have to do
something about that. Thankfully, the ListView’s tight integration with the
ListActivity makes this a breeze. Simply override the protected method:

 Android Essentials 101

protectedvoid onListItemClick(
 ListView l, View v, int position, long id)
{
 StationData selectedStation =
 stationListVector.elementAt(position);
 MediaPlayer player = new MediaPlayer();
 try
 {
 player.setDataSource(selectedStation.url);
 player.start();
 }
 catch (Exception e)
 {
 Log.e("PlayerException", "SetData");
 }
}

I’ve included the audio code that is, as far as I can tell, correct according to
the documentation. Just because the documentation says that it works
doesn’t, however, mean that it actually will work. In fact, the previous
code, which links to a Shoutcast MP3 link, doesn’t throw an exception but
doesn’t play. I can only hope the Android engineers resolve this issue
before the application launches.
There’s been lively debate and lots of example code running around on the
Web. A little work with Google’s search engine will unfold the multitude
of hacky workarounds.

Caution Nowhere in this example application have I done any useful
error handling. Mostly I’ll catch exceptions and print something to a log.
Your eventual mobile app will have to be better about errors than I’m
currently being, because, trust me, networking on the mobile can be a bit
touch-and-go.

102 Android Essentials

The Next Step
The final step in this chapter is to give the ListView a little panache.
You’ll want to add a background to the entire screen. Doing this should
look a little familiar, because you’ve done it before in a previous example
(see Code Listing 5-10).

Code Listing 5-10. Linear Layout XML Block Inside Main.xml

<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/bg"
>

@drawable/bg refers, of course, to an image inside the /res/drawable/
directory. You’ll also want to adjust the width of the list widget:
<ListView android:id="@+id/android:list"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 />

This will keep the menu elements from changing size element by element,
which, I think you can agree, looks pretty horrendous. Setting a list view
layout width or height to wrap_content causes it to wrap each menu item
individually. Go figure.

Dressing Up the Menu
There is one more major change you can make to the menu that will give
you a little more control over rendering it.
Android allows you, when defining the UI elements for the adapter, to
specify a large menu item object and then point to a TextView inside that
you’d like edited. Before, you would point to a single, predefined

http://schemas.android.com/apk/res/android

 Android Essentials 103

TextView. Code Listing 5-11 shows what your new list element layout file
will look like.

Code Listing 5-11. The New and Improved list_element.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="22dip”
 android:background="@drawable/listbg"
>
<TextView android:id="@+id/textElement"
 xmlns:android=
 "http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:textAlign="center"
 />
</LinearLayout>

In this code, you’ve added a linear layout with some specific dimensions.
You’ve also given it the background listbg.png. Interestingly enough,
Android will rescale your background image to fit the space of the
calculated background size. You may wonder, if you’ve done your
homework, why you’re using a linear layout instead of just adding a
background and dimensions to the previous text view. You’re doing this
simply for demonstrative reasons. I want you, when you make an
application that’s much better than mine, to see how complex lists can be
put together. Before I wrap up, there’s one more line in the code you need
to update to make this change. It’s within the initList method:
private void initList()
{
adapter = new ArrayAdapter<StationData>(
 StationPicker.this, R.layout.list_element,
 R.id.textElement);
...............

http://schemas.android.com/apk/res/android
http://schemas.android.com/apk/res/android

104 Android Essentials

setListAdapter(adapter);
}

In the previous Adapter initializer, you specified only the layout element.
Now you need to point to a file in the /res/folder/ that contains the
more complicated list element as well as a pointer that tells Android where
to place the text pulled from the toString function of the StationData
object.
Now, if you’ve done everything correctly (or you’ve cheated and
downloaded the sample file), you should see the layout looking like
Figure 5-1.
Frankly, thanks to my abysmal graphic designer skills, this version of the
UI couldn’t be described as pretty. It probably also couldn’t be described as
good. The point is not to make fun of my poor sense of graphical design,
although you’re more than welcome to do so. The point is that this example
should show you how to make your application look better than my
example. Now you can use nearly anything to construct this menu.

 Android Essentials 105

Figure 5-1. The dressed-up station list

106 Android Essentials

Looking Back
Over the course of this chapter, you’ve had a chance to let Android stretch
its legs a little bit. I covered basic networking, some more in-depth UI
layout, and a little XML parsing to boot.
The HTTP layer is straightforward and easy to use at this point, despite
being cumbersome and slow (at least on the OS X emulator). Android
clearly has the ability to delve into proxies, cookies, socket-level
connections, and much more advanced web-fu. You were able to get into
downloading data, using XML data, and using a SAX parser to stuff it into
a vector. From this Vector, you built up a list that, when an item is
selected, launched into some theoretical media streamer. Sadly, the media-
streaming capabilities don’t live up to its documentation, but, over time,
this is something that should be remedied.

 Android Essentials 107

Chapter 6: Tying on a Bow
It’s almost time to stop reading and start writing your Android application.
Before I let you go, I’ll quickly run through where you went and how you
got there.

The Making of an Application
My first task was to cover the basic building blocks of an Android
application. I also had to cover creating a new project and the logistics of
building and running it. As I discussed, an application consists of a series
of activities, intent receivers, services, and content resolvers. I used a
splash screen implementation to demonstrate activities, an SMS-triggered
prank application to explore intent receivers and services, and finally some
simple bookmaking code to get into content resolvers.
Thankfully, Android provides a series of clear and simple building blocks
with which to create your application. Activities form the backbone of any
Android app, with intents and intent receivers acting as the communication
officers. Services and content resolvers cater to very specific needs such as
background processes and formatted data transmission. Put all these pieces
together, and you’re left with a robust system for quickly turning around
mobile applications.

Looks Aren’t Everything, Except, of Course, When They Are
Once you’ve developed a working application platform, you can make it
look like something users might be interested in actually paying for, or not,
as you choose. You can build a UI in Android in two general ways. You
can use the built-in widgets or views in combination with view groups to
create a tiered hierarchy of UI elements. Or, you can toss these custom-
built tools aside and do it yourself using nothing but a canvas and some
simple line, circle, and bitmap image-rendering tools. Android provides an

108 Android Essentials

XML layout with which you can build your UI widget hierarchy.
Additionally, you can build, manipulate, and tweak these very same views
and view groups inside your code.
By using these two methods in combination, you can predesign all your
static pieces (preformatted menus, backgrounds, help screens) while adding
and manipulating these elements within the code to react to network and
dynamic data. Lastly, you can specify canvas areas both in code and in
XML where data can be drawn by hand. Although Android’s views and
view groups can be overcomplicated and difficult to use at first, in some
rare cases it mostly leaves us developers with more power and flexibility
than any other platform I’ve known.
To explore this raw opportunity and flexibility, you wrote a simple
login/password screen, created a main menu using only raw Java code and
TextView objects, and finally fiddled with some auditory illusions using
the raw canvas.

Location Isn’t Too Important, Except When You Need Pizza
at 4 a.m.
Once you have the solid foundations of the application logic and the user
interface, you can move on to much more interesting and exciting topics.
You can explore subjects such as Android’s GPS and Google Maps service.
Android gives you multiple ways to access the location of the handset.
Although the emulated implementation is rather crude, the documentation
suggests that much more is possible with the final running version. To get a
taste for these two powerful mobile functions, you made a slightly less
powerful location-tracking example. A blue tack would, assuming you got
everything right, follow along with the emulator’s imaginary tromp through
Silicon Valley. The example should, when run on an actual handset, choose
a rather more efficient method of position determination and follow the
user with that same annoying tack.

 Android Essentials 109

Taking Off Android’s Leash and Letting It Romp Around the
Internet
Last, you took the opportunity to let Android roam the Internet at large.
You pulled down a simple XML file, parsed it, pushed its contents into a
list, and then failed, thanks to Android’s incomplete networking layer, at
making Android stream audio over the network. Along the way, you
discovered the joys of adapters and list views in both their primitive and
somewhat more complex forms.

Overall
Over the course of all these chapters, I’ve tried to arm you with a general
foundation from which to create your own mobile application. It’s simply
impossible, in the short time we have together, to convey and explain every
option available to you, the Android developer. Instead, I’ve tried to give
you a grasp of the fundamentals and the essential building blocks and
understanding required to create your next killer application.

Other Sources of Information
As Android gains popularity, I’m sure you’ll see more sources of
information begin to spring up. There are already several blogs, websites,
wikis, forums, and other information resources out there. A few good
Google searches should get you on your way. For now, make sure you
bookmark the Android online documentation found here:
http://code.google.com/android/documentation.html

There’s also a team building the Android documentation into Javadoc
format here:
http://www.androidjavadoc.com/

You can find more information in Google’s “Getting Started Guide” here:
http://code.google.com/android/intro/index.html

http://code.google.com/android/documentation.html
http://www.androidjavadoc.com
http://code.google.com/android/intro/index.html

110 Android Essentials

Last, a few more advanced (now that you’ve mostly covered the basics)
topics in the tutorials can further help you on your way. Be sure to check
them out here:
http://code.google.com/android/intro/tutorial.html

Getting Help
Google also provides a few helpful resources for when you get stuck.
Here’s a link to the Android beginners forum:
http://groups.google.com/group/android-beginners

Also, as a developer, your main stomping grounds will be over in the more
general form area:
http://groups.google.com/group/android-developers

Be sure to check the other Google groups as well. They can be an
invaluable resource.

It’s Time to Stop Reading and Start Helping
Seriously, we, as a community of mobile developers, need help. Currently,
our achievements include sending picture messages, downloading MP3
ringtones, and browsing a small, walled garden of the Web. We need you,
your abilities, your gumption, and your creativity to turn this proverbial bus
around. The cracks are beginning to show. Verizon and AT&T are now
vying for the title of “Most Open Network.” People are hacking the iPhone
SDK, and indeed, Apple is making its own official SDK available, as
limited and confining as it is.
Geeks are starting to do to the mobile world what they did for the desktop
computing one. They’re starting to innovate in spite of the blocks put up to
prevent them from doing so. Android, in my opinion, represents the highest
level of access to a handset second only to Qualcomm’s BREW SDK. This
is one of the major reasons I agreed to write this book (well, that and I
didn’t want to learn Objective-C).

http://code.google.com/android/intro/tutorial.html
http://groups.google.com/group/android-beginners
http://groups.google.com/group/android-developers

 Android Essentials 111

Android, if allowed to flourish by OEMs and carriers, represents the
potential for a breakthrough we mobile developers have waited for. Please,
step up, and take the tools the Open Handset Alliance and Google have
given us and make something amazing with it. We’re counting on you.
Good luck.

Copyright
Android Essentials

© 2008 by Chris Haseman

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (electronic): 978-1-4302-1063-4

ISBN-13 (paperback): 978-1-4302-1064-1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233
Spring Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-
Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-
ny.com, or visit http://www.springer-ny.com. Outside the United States: fax +49 6221 345229,
e-mail orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2855 Telegraph Ave, Suite
600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or
visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor Apress
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the information contained in this work.

mailto:orders@springer-ny.com
mailto:orders@springer-ny.com
mailto:orders@springer-ny.com
http://www.springer-ny.com
mailto:orders@springer.de
http://www.springer.de
mailto:info@apress.com
http://www.apress.com

	Android Essentials
	Copyright
	Contents
	Chapter 1: Introduction
	What You Need to Know to Start
	How to Best Use This Book
	Getting Started
	Installing Eclipse
	Getting the Android SDK
	Installing the Eclipse Plug-In

	The Android Project
	Running, Debugging, and Causing General Mayhem

	Chapter 2: The Application
	Getting Active
	Android vs. Java ME vs. BREW
	Functionality
	Getting Splashy
	Adding the Image Resource
	Creating an XML Layout File
	Drawing the Splash Screen
	Timing Is Almost Everything
	Pause, Resume, Rinse, Repeat
	Basic Key Handling
	Clear Intent
	Running It
	The Life Cycle of an Activity
	Thus Far

	Creating the Intent Receiver
	Setting It Up
	What Practical Use Could This Possibly Have?
	Using Intent Receivers
	Building the Intent Receiver
	Permissions
	Send Me SMS Too!

	Seeing the Intent Receiver in Action
	What’s in an SMS?

	Triggering the Activity
	Rigging the Activity

	Who Do You Want to Humiliate Today?
	Nervous with the Service
	Creating a Service
	Starting the Service
	Starting the Music
	An Act of Mercy
	Manifestation

	Zen and the Art of Getting Even
	Getting It Done

	Moving Data in Android
	Shameless Self-Promotion
	Fetching the User’s Bookmarks
	Searching the Results

	Adding Evil Corporate URLS with a Content Resolver

	Part of This Balanced Breakfast

	Chapter 3: User Interface
	Easy and Fast, the XML Layout
	Laying Out
	LinearLayout
	RelativeLayout
	AbsoluteLayout
	TableLayout

	Scrolling, Text Entry, Buttons, and All the Simple Things in Life
	Scrolling
	Prying Open the TextView
	XML Layout

	Waking Up the Widgets
	Getting a Handle on Things
	Reeling in the Text
	Widgets in Java
	Getting Under the Hood
	The Main Menu
	Laying Out, Java-Style
	Adding a Title
	Laying Out Menu Entries
	Focus Young Grasshopper….
	Click and Select Events
	Looking Back

	Custom UI Rendering with the Canvas
	Customizing the View
	Creating the Game Loop
	Loading Audio and Images
	Implementing the Loop, Implementing the Loop, Implementing the…
	Adding and Controlling Sound

	Bringing It All Together

	Using the User Interface

	Chapter 4: Location, Location, Location
	Where Am I?
	Building the LocationManager Object
	One Must-Have Standard

	Look Up, Wave, the Satellites Are Watching…

	Google Maps
	A Metric Ton of Map Objects
	Moving the Map
	Taking Stock
	It’s a Bird, It’s a Plane...Nope, It’s Bad Photoshoping
	Wrapping Up

	Chapter 5: Taking Android Out for a Walk
	Loading a List from the Web
	First Things…First?
	Getting the Network in Gear
	Putting the Data in Its Place

	Making a List and Checking It…
	The Setup: Embracing the List
	Adding the Adapter
	Stuffing Data into the Adapter
	Reclaiming the UIThread

	At Last, Adding the Data
	Selection…

	The Next Step
	Dressing Up the Menu

	Looking Back

	Chapter 6: Tying on a Bow
	The Making of an Application
	Looks Aren’t Everything, Except, of Course, When They Are
	Location Isn’t Too Important, Except When You Need Pizza at 4 a.m.
	Taking Off Android’s Leash and Letting It Romp Around the Internet
	Overall

	Other Sources of Information
	Getting Help

	It’s Time to Stop Reading and Start Helping

