Google

Writing Real Time Games
For Android

Chris Pruett
May 2009

Google @@

Did You See That Awesome Fade?

e Holy Crap!
— The text was all sliding before that too.
— How do they do that?!

* Right, this slide is about me, the presenter. Chris Pruett.
That's me.

* I'm a Developer Advocate for Android.

— That means | advocate development for Android. Please make
something. Maybe | can help you.

— Iwork in Japan. EULK BFEWLWL £,
» Before that, | wrote code for Lively.

* Prior to working at Google, | made video games.
— | shipped about 10 titles for lots of platforms: GBA, PS2, PSP,

Wii.
= [0

Making Games on Android

e Writing games is awesome, and Android is awesome, SO
writing games on Android must be awesome?.

* This theory required testing. So | made a game. Many
lessons learned.

* Topics to cover today:
— Why games? Why Android? | mean, besides awesome?.
— Game engine architecture.

— Writing Java code that is fast. Forserious.
— Drawing stuff on the screen efficiently.

— Tips, tricks, and pitfalls.

= [0
4

Who Cares About Games on Mobile Devices?

e Dude, what rock have you been living under?

— iPhone: 79% of users have downloaded at least one game.
(According to a report by Compete, Inc.)

— There are more than 700 million Nintendo DS devices

th roug hout the world. (According to Nintendo, see http://www.nintendo.co.jp/ir/pdf/
2009/090507e.pdf)

— Sony’s Playstation Portable has just passed 50 million devices
(see: http://www.computerandvideogames.com/article.php?id=208211%3fcid)

— The Nintendo Game Boy and Game Boy Advance together
account for about 200 million devices (see http:/mww.nintendo.co.jpir/library/
historical _data/pdf/consolidated_sales e0806.pdf).

e Portable games appeal to a huge audience, but traditional
phones have not been good game devices.

 Game tech is extremely specific.

— If your platform can support good video games, other apps
should be a walk in the park.

= [0

Why Games on Android?

 Traditional PC and console game markets have been come
so high-risk that only a few companies can even compete.

 Smaller games on non-traditional platforms are steadily

gaining popularity with both traditional gamers and folks new
to the medium.

— See also: Nintendo Wii, iPhone, Flash, XBLA, etc.
— Lower risk = more interesting and diverse content!

e Android provides an avenue for innovative games across a
wide, internet-savvy audience.

= [0

Why This Game for Android?

My goal is three-fold:
— To produce a fun game for Android.

— To produce a reusable, open source game engine to allow
others to make fun games for Android.

— To stress test our platform with regards to games; only
publically-available code and tools are to be used.

| went for an orthodox 2D side-scroller.
— Parallax layers, tile-based worlds, animated sprites, etc.

— Pushes all the right hardware buttons: input systems, OpenGL
ES, sound, etc.

— Proper game is feasible with one 20% engineer (that’'s me) for
six months and 1 full time artist for four months.

— Tools are pretty easy to write.
— Popular and recently under-served genre.

= [0

Agenda 2: The Return

* Topics to cover today:
— Why-games? Why-Android?
— Game engine architecture.
— Writing Java code that is fast.
— Drawing stuff on the screen efficiently.
— Tips, tricks, and pitfalls.

Insert Here: Picture of
man holding giant gun
that is also a chainsaw.

Quick Demo

(video goes here)

Note that this is a work in progress. All bugs are mine.

= [0
9

Game Engine Architecture

 Lots of approaches, but the basic problems are similar.

My approach is a “game graph” that can be traversed every
frame, taking time and motion events as input and resulting
in a list of things to draw to the screen.

— The root of the graph is the “main loop.”
— Children of the main loop get called once per frame.

— Children further down the tree might get called once per frame,
depending on their parent.

— “Game objects” are children of a “game manager” node, which
only visits children within a certain activity bubble around the
camera.

— Game objects themselves are sub-graphs of “game
components,” each implementing a single characteristic or
feature of the object.

= [0

Game Graph

MainLoop

1 Gaén eObject ’ 1 CameraSystem ,
ystem

RenderSystem

1 InputSystem ’

= [0
1"

Game Graph

MainLoop

RenderSystem

Player Game
Object

CameraSystem

@:amq OoBco:m@
e

©
W £ Scroller Component
o2
QO PN
E@
o o .w Render Component -
3o
°0
2o
8 m Scroller Component -
0 G

Render Component -

@o__mﬂ OoBvo:m@

InputSystem

Layer 2 Layer 3

Layer 1

= [0

Render Component -

Sprite Component -

Animation Component -

__»| Physics Component -

Collision Component -

Movement Component -

Gravity Component -

Player Component -

12

Game Engine Architecture

e At least, that's how | do it.

e Important point: time is passed to each node in the graph so
that framerate independent motion is possible.

e Second important point: this system collects things to draw in
a draw list each frame, but it doesn’t actually draw anything
to the screen.

= [0
13

Game Engine Architecture - Nice Threads, Yo

* | have three threads:

— The main thread spawned by the
Android activity.

» Responsible for bootstrapping the game
and receiving input events.

* Mostly dormant.

— The game thread.

» Handles all non-rendering parts of the
game: physics, Al, collision detection,
animation, etc.

* Owns the game graph.

— The rendering thread.
e Controlled by a SurfaceHolder.

» Just runs through its draw list and fires
off commands to OpenGL every frame--
knows nothing about the game content.

14

Main Thread

Input Events

S

Surface Holder

Game
Thread

/BTocking /

X

Rendering
Thread

F
Blocking

/

(Hardware)

= [0

Agenda lll: The Series Continues

* Topics to cover today:
— Why-games? Why-Android?
— Game-engiheoarchitecture:
— Writing Java code that is fast.
— Drawing stuff on the screen efficiently.
— Tips, tricks, and pitfalls.

= [0
15

| Love Coffee, | Love Tea

* | am pretty much a C++ engineer.
— In fact, | wrote my first line of Java ever for this project.

— So you should take my advice on the topic of Java-specific
optimization with a grain of salt.

— Still, I have done a lot of optimization work in the last six
months, and maybe at a level that most Java apps do not
require, so maybe | can offer some useful tidbits.

e Writing real-time games is an exercise in finding the perfect
balance between flexibility and performance.
* My (non-language-specific) approach is:

— Start with the simplest possible implementation, but design for
future rework.

— Choose flexibility over speed every day of the week... until the
gameplay is damaged.

— Profile early and constantly. Google m@

Step One: Memory Management

* Never allocate memory. Or release it.
— Well, never allocate during gameplay.

— The GC will stop your game for 100 ~ 300 ms. That's death for
most real-time games.

* Revised: Allocate as much as possible up front, don’t release
things until you have natural pause time. Invoke the GC
manually when you know it to be safe.

* Use DDMS to track allocations.

— Hey, Java allocates memory CONSTANTLY. Ugh!

— Hidden allocations in things like enum.values(),
Class.getClassName(), Iterator, HashMap, Arrays.sort() etc etc
etc.

— Some of these are not really avoidable.

= [0

Allocation-Related Java Language Contortions

* Treat Java like C++

 Lots of the standard Java utility objects allocate memory.
— Collections are out, as are iterators.

— Forget about enums (they are really heavy-weight anyway).
— Arrays.sort() and similar functions

— Anything returning a String that needs to be read-only (like
Class.getXXX(); man, | miss me some const).

« DDMS is your tool to name and blame.

* Better Java engineers than | might be able to supplement
existing frameworks with non-allocating implementations.

= [0

Step Two: Don'’t Call Functions

* Ok, that's extreme. But function calls are not cheap and you
can’t rely on inlining.

» Use static functions whenever possible.

e Don't call functions through an interface. 30% slower than
regular virtual functions!

* Accessors and Mutators are my bestest friends in C++, but
they have no place in your Java inner loop.

* Be wary of JNI functions.
— In particular: lots of gl.gIXX() functions.

= [0
19

Don’t Call Functions: A Graph

 Take this with a grain of salt, not a very scientific test.

Local

Derived

Source: Some hack test | wrote under Android
1.1 and ran on my G1.

Virtual

via Interface

JNI

20

Step Three: Other Tips

* Use local variables, especially in inner loops.

Use the final keyword on fields whenever you possibly can.

Some hardware (like the G1) has no FPU, so avoid float math.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Always use Log.d() or similar =
rather than |
System.out.print(). Printing
takes time!

Use Traceview!

Agenda Part 4: Even More Agenda

» Topics to cover today:

— Drawing stuff on the screen
efficiently.

— Tips, tricks, and pitfalls.

Screenshot from SpriteMethodTest, 1000
sprites, OpenGL DrawTexture extension.
Runs at around ~10 fps on the G1.

22

Android Drawing Methods

e Canvas:
— CPU-based 2D drawing. Used for most of the Android Ul.

— Fast for a small number of blits. (~ 10 sprites < 16 ms in my
tests)

— Very straightforward and easy to use.

* OpenGL ES
— 2D and 3D drawing.
— Hardware accelerated on some platforms (like the G1).
— Scales to much more complex scenes than Canvas.
— Various 2D drawing methods:
* Quads with orthographic projection

» VBO quads (on supported platforms)
» draw_texture extension (on supported platforms)

— Only OpenGL ES 1.0 is guaranteed. Google m@

OpenGL vs Canvas for 2D drawing (G1)

draw_texture
10 B VBOs
50 Bl Basic Quads
Bl Canvas

100
500 application ranning on the G1 under Aniroid
SBK 11
1000
0O ms 91 ms 181 ms 272 ms 362 ms
y Google m@

Which Method is Best?

e Clearly, OpenGL ES + the draw_texture extension is fastest
for 2D drawing on the G1.

— But that extension isn’'t guaranteed to be supported on all
platforms. You MUST check
glGetString(GL10.GL_EXTENSIONS) before using it.

 However, Canvas isn’t bad if...
— You have very few things to draw every frame, or
— You don’t have to draw every frame (puzzle games, etc).

e SpriteMethodTest provides a framework for swapping
between drawing methods (and timing them) based on my
game code.

— http://code.google.com/p/apps-for-android/

= [0

http://code.google.com/p/apps-for-android/
http://code.google.com/p/apps-for-android/

Case Study: Drawing Tiled Backgrounds

* Replica Island uses three background layers: one large static
image, one mid ground tile-map, and the foreground tile
map.

e The tile map layers are regular grids of 32x32 tiles. That
means 150 tiles to draw per layer on any given frame (worst
case).

* More layers would be nice, but drawing the background is
the single most expensive operation in the Replica Island
code.

— Actually, the single static image is quick. It's just one 512x512
texture.

— It's the tile maps that eat frame time, either on the CPU or the
GPU, depending on the drawing method.

= [0

Layered Parallax Backgrounds

= [0

Layered Backgrounds Composited

)

. AN
ANy \{nxﬁkE\x\
e R oL RN

SRR ' '_\\\txkkxﬁk\\

By ey T, LN N Y

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

= [0
28

Case Study: Drawing Tiled Backgrounds

 First idea: use a single atlas texture as the tile map, use
draw_texture to draw, and adjust cropping of the texture to
select individual tiles.

— Only one gIBindTexture() call needed, which is good.
— Otherwise, this was a terrible idea. glTexParameteriv() is

expensive.
— Remember kids, state change is costly on fixed-function
hardware!
L) M ‘W 377 W
LN '& l M .
e %

XXX

>

= [0

Case Study: Drawing Tiled Backgrounds

e Second idea: draw the tiles individually with draw_texture
extension using a bunch of really small textures.

— This actually works pretty well once some easy optimizations
are made (RLE the tile map, etc).

— But it’s still a lot of calls to OpenGL. 400 calls to
glDrawTexfOES() in the worst case, plus lots of superfluous
glBindTexture calls.

— Average case is good: less than 16 ms for the hardware to draw
everything. But the actual submission of tiles to OpenGL is
variable depending on the sparseness of the layer: 2 - 10 ms.

— Worst case is bad: 9 - 13 ms to make GL calls and 19 - 23 ms
to draw. Way unacceptable.

= [0

Case Study: Drawing Tiled Backgrounds

* Third idea: Make “meta tiles” out of vertex arrays, uv them to
the atlas texture, and project them using orthographic
projection.

— Initial results were in line with the “basic vert quads” test in
SpriteMethodTest: terrible.

— Switching to VBOs sped things up a lot.

— Lots of advantages to this approach: only one gIBindTexture()
call, very few total calls to other GL commands (only four meta

tiles to draw per layer per frame).

— Worst case situation (two layers with no empty tiles) is much
faster than the draw_texture approach. CPU spends only 3 -5
ms submitting to GL and drawing takes less than 16 ms.

— Average case is the same! This makes it slightly slower than
draw_texture in the average case (most maps are very sparse).

= [0

Case Study: Drawing Tiled Backgrounds

 Last ditch idea: pre-render the tile map and cut it up into
meta tile textures, which can be drawn with VBO quads or
draw_texture.

| haven’t actually implemented this yet.

Level size will be restricted by total amount of VRAM if | use this
method (unless | dynamically load textures).

High main memory cost too.

But, given all available information, drawing this way should be
blazing fast.

I’'m close enough to 60hz now that this probably won'’t be
necessary.

e Future improvements to Android’s GL interface (or the G1
GL driver) might render these optimizations unnecessary.

= [0

Requiem for Agenda #5

 Topics to cover today:

— Tips, tricks, and pitfalls.

33

= [0

Performance Tips

* Touching the screen causes your app to be flooded with
MotionEvents.

— This will kill your framerate.

— Sleep in the onTouchEvent callback to slow the flood. 16 ms is
a good place to start.

* The mechanics of pausing and resuming are complicated
when it comes to OpenGL, as the contents of VRAM are not
always maintained. GLSurfaceView solves this for you.

— GLSurfaceView handles the state machine correctly.

e ATITC texture compression (supported on the G1) can be a
big win if you are bus-bound.

e Android 1.0 - 1.5 failed to throw errors if you try to use VBOs
with indirect buffers. Result: unpredictable crashes.

— Solution is to just use direct buffers.

= [0

Game Design Tips

e Keep your application as small as possible. 2~3 mb is
ideal.

* Now is the time for competent games. Customers are
hungry for them and the platform is capable!

 As of right now there are already Android devices without a
hardware keyboard (HTC Magic) or trackball (Samsung
i7500). Don't rely on these input devices for game play (or
support them all).

* The key to success Android Market is quality. Making a
high-quality game is the way to be considered for the
Featured Apps section too. Polish polish polish!

* You have always-on internet at your disposal. Use it!

= [0

Google

