

Writing Real Time Games
For Android
Chris Pruett
May 2009

3

Did You See That Awesome Fade?

• Holy Crap!
– The text was all sliding before that too.
– How do they do that?!

• Right, this slide is about me, the presenter. Chris Pruett.
That’s me.

• I’m a Developer Advocate for Android.
– That means I advocate development for Android. Please make

something. Maybe I can help you.
– I work in Japan. 宜しくお願いします。

• Before that, I wrote code for Lively.
• Prior to working at Google, I made video games.

– I shipped about 10 titles for lots of platforms: GBA, PS2, PSP,
Wii.

4

Making Games on Android

• Writing games is awesome, and Android is awesome, so
writing games on Android must be awesome2.

• This theory required testing. So I made a game. Many
lessons learned.

• Topics to cover today:
– Why games? Why Android? I mean, besides awesome2.
– Game engine architecture.
– Writing Java code that is fast. For serious.

– Drawing stuff on the screen efficiently.
– Tips, tricks, and pitfalls.

5

Who Cares About Games on Mobile Devices?

• Dude, what rock have you been living under?
– iPhone: 79% of users have downloaded at least one game.

(According to a report by Compete, Inc.)

– There are more than 100 million Nintendo DS devices
throughout the world. (According to Nintendo, see http://www.nintendo.co.jp/ir/pdf/
2009/090507e.pdf)

– Sony’s Playstation Portable has just passed 50 million devices
(see: http://www.computerandvideogames.com/article.php?id=208211%3fcid)

– The Nintendo Game Boy and Game Boy Advance together
account for about 200 million devices (see http://www.nintendo.co.jp/ir/library/
historical_data/pdf/consolidated_sales_e0806.pdf).

• Portable games appeal to a huge audience, but traditional
phones have not been good game devices.

• Game tech is extremely specific.
– If your platform can support good video games, other apps

should be a walk in the park.

6

Why Games on Android?

• Traditional PC and console game markets have been come
so high-risk that only a few companies can even compete.

• Smaller games on non-traditional platforms are steadily
gaining popularity with both traditional gamers and folks new
to the medium.
– See also: Nintendo Wii, iPhone, Flash, XBLA, etc.
– Lower risk = more interesting and diverse content!

• Android provides an avenue for innovative games across a
wide, internet-savvy audience.

7

Why This Game for Android?

• My goal is three-fold:
– To produce a fun game for Android.
– To produce a reusable, open source game engine to allow

others to make fun games for Android.
– To stress test our platform with regards to games; only

publically-available code and tools are to be used.

• I went for an orthodox 2D side-scroller.
– Parallax layers, tile-based worlds, animated sprites, etc.
– Pushes all the right hardware buttons: input systems, OpenGL

ES, sound, etc.
– Proper game is feasible with one 20% engineer (that’s me) for

six months and 1 full time artist for four months.
– Tools are pretty easy to write.
– Popular and recently under-served genre.

8

• Topics to cover today:
– Why games? Why Android?
– Game engine architecture.
– Writing Java code that is fast.
– Drawing stuff on the screen efficiently.
– Tips, tricks, and pitfalls.

Agenda 2: The Return

Insert Here: Picture of
man holding giant gun
that is also a chainsaw.

9

Quick Demo

(video goes here)

Note that this is a work in progress. All bugs are mine.

10

Game Engine Architecture

• Lots of approaches, but the basic problems are similar.
• My approach is a “game graph” that can be traversed every

frame, taking time and motion events as input and resulting
in a list of things to draw to the screen.
– The root of the graph is the “main loop.”
– Children of the main loop get called once per frame.
– Children further down the tree might get called once per frame,

depending on their parent.
– “Game objects” are children of a “game manager” node, which

only visits children within a certain activity bubble around the
camera.

– Game objects themselves are sub-graphs of “game
components,” each implementing a single characteristic or
feature of the object.

MainLoop

InputSystem
GameObject
System

CameraSystem RenderSystem

11

Game Graph

MainLoop

InputSystem
GameObject

System
CameraSystem

Background
Game Object

Player Game
Object

RenderSystem

S
c
ro

lle
r C

o
m

p
o
n
e
n
t

R
e
n
d
e
r C

o
m

p
o
n
e
n
t

S
c
ro

lle
r C

o
m

p
o
n
e
n
t

R
e
n
d
e
r C

o
m

p
o
n
e
n
t

S
c
ro

lle
r C

o
m

p
o
n
e
n
t

R
e
n
d
e
r C

o
m

p
o
n
e
n
t

P
la

y
e
r C

o
m

p
o
n
e
n
t

G
ra

v
ity

 C
o
m

p
o
n
e
n
t

M
o
v
e
m

e
n
t C

o
m

p
o
n
e
n
t

C
o
llis

io
n
 C

o
m

p
o
n
e
n
t

P
h
y
s
ic

s
 C

o
m

p
o
n
e
n
t

S
p
rite

 C
o
m

p
o
n
e
n
t

R
e
n
d
e
r C

o
m

p
o
n
e
n
t

A
n
im

a
tio

n
 C

o
m

p
o
n
e
n
t

Layer 1 Layer 2 Layer 3

12

Game Graph

13

Game Engine Architecture

• At least, that’s how I do it.
• Important point: time is passed to each node in the graph so

that framerate independent motion is possible.
• Second important point: this system collects things to draw in

a draw list each frame, but it doesn’t actually draw anything
to the screen.

14

Game Engine Architecture - Nice Threads, Yo

• I have three threads:
– The main thread spawned by the

Android activity.
• Responsible for bootstrapping the game

and receiving input events.
• Mostly dormant.

– The game thread.
• Handles all non-rendering parts of the

game: physics, AI, collision detection,
animation, etc.

• Owns the game graph.

– The rendering thread.
• Controlled by a SurfaceHolder.
• Just runs through its draw list and fires

off commands to OpenGL every frame--
knows nothing about the game content.

Main Thread

Game
Thread

Rendering
Thread

Hardware

Blocking

Blocking

Input Events

Surface Holder

15

• Topics to cover today:
– Why games? Why Android?
– Game engine architecture.
– Writing Java code that is fast.
– Drawing stuff on the screen efficiently.
– Tips, tricks, and pitfalls.

Agenda III: The Series Continues

16

I Love Coffee, I Love Tea

• I am pretty much a C++ engineer.
– In fact, I wrote my first line of Java ever for this project.
– So you should take my advice on the topic of Java-specific

optimization with a grain of salt.
– Still, I have done a lot of optimization work in the last six

months, and maybe at a level that most Java apps do not
require, so maybe I can offer some useful tidbits.

• Writing real-time games is an exercise in finding the perfect
balance between flexibility and performance.

• My (non-language-specific) approach is:
– Start with the simplest possible implementation, but design for

future rework.
– Choose flexibility over speed every day of the week... until the

gameplay is damaged.
– Profile early and constantly.

17

Step One: Memory Management

• Never allocate memory. Or release it.
– Well, never allocate during gameplay.
– The GC will stop your game for 100 ~ 300 ms. That’s death for

most real-time games.

• Revised: Allocate as much as possible up front, don’t release
things until you have natural pause time. Invoke the GC
manually when you know it to be safe.

• Use DDMS to track allocations.
– Hey, Java allocates memory CONSTANTLY. Ugh!
– Hidden allocations in things like enum.values(),

Class.getClassName(), Iterator, HashMap, Arrays.sort() etc etc
etc.

– Some of these are not really avoidable.

18

Allocation-Related Java Language Contortions

• Treat Java like C++
• Lots of the standard Java utility objects allocate memory.

– Collections are out, as are iterators.
– Forget about enums (they are really heavy-weight anyway).
– Arrays.sort() and similar functions
– Anything returning a String that needs to be read-only (like

Class.getXXX(); man, I miss me some const).

• DDMS is your tool to name and blame.
• Better Java engineers than I might be able to supplement

existing frameworks with non-allocating implementations.

19

Step Two: Don’t Call Functions

• Ok, that’s extreme. But function calls are not cheap and you
can’t rely on inlining.

• Use static functions whenever possible.
• Don’t call functions through an interface. 30% slower than

regular virtual functions!
• Accessors and Mutators are my bestest friends in C++, but

they have no place in your Java inner loop.
• Be wary of JNI functions.

– In particular: lots of gl.glXX() functions.

20

Don’t Call Functions: A Graph

• Take this with a grain of salt, not a very scientific test.

Local

Derived

Virtual

via Interface

JNI

Source: Some hack test I wrote under Android
1.1 and ran on my G1.

21

Step Three: Other Tips

• Use local variables, especially in inner loops.
• Use the final keyword on fields whenever you possibly can.
• Some hardware (like the G1) has no FPU, so avoid float math.
• Always use Log.d() or similar

rather than
System.out.print(). Printing
takes time!

• Use Traceview!

22

• Topics to cover today:
– Why games? Why Android?
– Game engine architecture.
– Writing Java code that is fast.
– Drawing stuff on the screen

efficiently.
– Tips, tricks, and pitfalls.

Agenda Part 4: Even More Agenda

Screenshot from SpriteMethodTest, 1000
sprites, OpenGL DrawTexture extension.
Runs at around ~10 fps on the G1.

23

Android Drawing Methods

• Canvas:
– CPU-based 2D drawing. Used for most of the Android UI.
– Fast for a small number of blits. (~ 10 sprites < 16 ms in my

tests)
– Very straightforward and easy to use.

• OpenGL ES
– 2D and 3D drawing.
– Hardware accelerated on some platforms (like the G1).
– Scales to much more complex scenes than Canvas.
– Various 2D drawing methods:

• Quads with orthographic projection
• VBO quads (on supported platforms)
• draw_texture extension (on supported platforms)

– Only OpenGL ES 1.0 is guaranteed.

24

OpenGL vs Canvas for 2D drawing (G1)

10

50

100

500

1000

0 ms 91 ms 181 ms 272 ms 362 ms

draw_texture
VBOs
Basic Quads
Canvas

Source: Results of the SpriteMethodTest
application running on the G1 under Android
SDK 1.1.

25

Which Method is Best?

• Clearly, OpenGL ES + the draw_texture extension is fastest
for 2D drawing on the G1.
– But that extension isn’t guaranteed to be supported on all

platforms. You MUST check
glGetString(GL10.GL_EXTENSIONS) before using it.

• However, Canvas isn’t bad if...
– You have very few things to draw every frame, or
– You don’t have to draw every frame (puzzle games, etc).

• SpriteMethodTest provides a framework for swapping
between drawing methods (and timing them) based on my
game code.
– http://code.google.com/p/apps-for-android/

http://code.google.com/p/apps-for-android/
http://code.google.com/p/apps-for-android/

26

Case Study: Drawing Tiled Backgrounds

• Replica Island uses three background layers: one large static
image, one mid ground tile-map, and the foreground tile
map.

• The tile map layers are regular grids of 32x32 tiles. That
means 150 tiles to draw per layer on any given frame (worst
case).

• More layers would be nice, but drawing the background is
the single most expensive operation in the Replica Island
code.
– Actually, the single static image is quick. It’s just one 512x512

texture.
– It’s the tile maps that eat frame time, either on the CPU or the

GPU, depending on the drawing method.

27

Layered Parallax Backgrounds

28

Layered Backgrounds Composited

29

Case Study: Drawing Tiled Backgrounds

• First idea: use a single atlas texture as the tile map, use
draw_texture to draw, and adjust cropping of the texture to
select individual tiles.
– Only one glBindTexture() call needed, which is good.
– Otherwise, this was a terrible idea. glTexParameteriv() is

expensive.
– Remember kids, state change is costly on fixed-function

hardware!

30

Case Study: Drawing Tiled Backgrounds

• Second idea: draw the tiles individually with draw_texture
extension using a bunch of really small textures.
– This actually works pretty well once some easy optimizations

are made (RLE the tile map, etc).
– But it’s still a lot of calls to OpenGL. 400 calls to

glDrawTexfOES() in the worst case, plus lots of superfluous
glBindTexture calls.

– Average case is good: less than 16 ms for the hardware to draw
everything. But the actual submission of tiles to OpenGL is
variable depending on the sparseness of the layer: 2 - 10 ms.

– Worst case is bad: 9 - 13 ms to make GL calls and 19 - 23 ms
to draw. Way unacceptable.

31

Case Study: Drawing Tiled Backgrounds

• Third idea: Make “meta tiles” out of vertex arrays, uv them to
the atlas texture, and project them using orthographic
projection.
– Initial results were in line with the “basic vert quads” test in

SpriteMethodTest: terrible.
– Switching to VBOs sped things up a lot.
– Lots of advantages to this approach: only one glBindTexture()

call, very few total calls to other GL commands (only four meta
tiles to draw per layer per frame).

– Worst case situation (two layers with no empty tiles) is much
faster than the draw_texture approach. CPU spends only 3 - 5
ms submitting to GL and drawing takes less than 16 ms.

– Average case is the same! This makes it slightly slower than
draw_texture in the average case (most maps are very sparse).

32

Case Study: Drawing Tiled Backgrounds

• Last ditch idea: pre-render the tile map and cut it up into
meta tile textures, which can be drawn with VBO quads or
draw_texture.
– I haven’t actually implemented this yet.
– Level size will be restricted by total amount of VRAM if I use this

method (unless I dynamically load textures).
– High main memory cost too.
– But, given all available information, drawing this way should be

blazing fast.
– I’m close enough to 60hz now that this probably won’t be

necessary.

• Future improvements to Android’s GL interface (or the G1
GL driver) might render these optimizations unnecessary.

33

• Topics to cover today:
– Why games? Why Android?
– Game engine architecture.
– Writing Java code that is fast.
– Drawing stuff on the screen efficiently.
– Tips, tricks, and pitfalls.

Requiem for Agenda #5

34

• Touching the screen causes your app to be flooded with
MotionEvents.
– This will kill your framerate.
– Sleep in the onTouchEvent callback to slow the flood. 16 ms is

a good place to start.

• The mechanics of pausing and resuming are complicated
when it comes to OpenGL, as the contents of VRAM are not
always maintained. GLSurfaceView solves this for you.
– GLSurfaceView handles the state machine correctly.

• ATITC texture compression (supported on the G1) can be a
big win if you are bus-bound.

• Android 1.0 - 1.5 failed to throw errors if you try to use VBOs
with indirect buffers. Result: unpredictable crashes.
– Solution is to just use direct buffers.

Performance Tips

35

• Keep your application as small as possible. 2 ~ 3 mb is
ideal.

• Now is the time for competent games. Customers are
hungry for them and the platform is capable!

• As of right now there are already Android devices without a
hardware keyboard (HTC Magic) or trackball (Samsung
i7500). Don’t rely on these input devices for game play (or
support them all).

• The key to success Android Market is quality. Making a
high-quality game is the way to be considered for the
Featured Apps section too. Polish polish polish!

• You have always-on internet at your disposal. Use it!

Game Design Tips

Questions?

