

0

TECHNICAL ARTICLE

DEVELOPING AN INTERNATIONALIZED WEBUI APPLICATION
V 1.0

Technical Article Page 1

ECCN 5E991.NR: In accordance with United States Export Administration Regulations (EAR), and specifically the
Commerce Control List (CCL), this item has been classified 5E991.NR. Export or re-export of this commodity and
compliance with the U.S. Export Administration Regulations is ultimately the responsibility of the exporter. For more
detailed information related to export or re-export of this item, please consult the EAR at
http://www.access.gpo.gov/bis/ear/ear_data.html.

Copyright © 2008, Motorola, Inc.

This documentation may be printed and copied solely for use in developing products for Motorola products. In
addition, two (2) copies of this documentation may be made for archival and backup purposes. Except for the
foregoing, no part of this documentation may be reproduced or transmitted in any form or by any means or used to
make any derivative work (such as translation, transformation, or adaptation) without express written consent from
Motorola, Inc.

Motorola reserves the right to make changes without notice to any products or services described herein. "Typical"
parameters, which may be provided in Motorola Data sheets and/or specifications, can and do vary in different
applications and actual performance may vary. Customer's technical experts will validate all "Typicals" for each
customer application.

Motorola makes no warranty in regard to the products or services contained herein. Implied warranties, including
without limitation, the implied warranties of merchantability and fitness for a particular purpose, are given only if
specifically required by applicable law. Otherwise, they are specifically excluded.

No warranty is made as to coverage, availability, or grade of service provided by the products or services, whether
through a service provider or otherwise. No warranty is made that the software will meet your requirements or will
work in combination with any hardware or application software products provided by third parties, that the operation
of the software products will be uninterrupted or error free, or that all defects in the software products will be
corrected.

In no event shall Motorola be liable, whether in contract or tort (including negligence), for any damages resulting from
use of a product or service described herein, or for any indirect, incidental, special or consequential damages of any
kind, or loss of revenue or profits, loss of business, loss of information or data, or other financial loss arising out of or
in connection with the ability or inability to use the Products, to the full extent these damages may be disclaimed by
law.

Some states and other jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, or
limitation on the length of an implied warranty, therefore the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights, which vary from jurisdiction to
jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as components in systems intended
for surgical implant into the body, or other applications intended to support or sustain life, or for any other application
in which the failure of the Motorola product or service could create a situation where personal injury or death may
occur.

Should the buyer purchase or use Motorola products or services for any such unintended or unauthorized
application, the buyer shall release, indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the designing or manufacturing of the product or
service.

Motorola recommends that if you are not the author or creator of the graphics, video, or sound, you obtain sufficient
license rights, including the rights under all patents, trademarks, trade names, copyrights, and other third party
proprietary rights.

If this documentation is provided on compact disc, the other software and documentation on the compact disc are
subject to the license agreement accompanying the compact disc.

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. Java and all other Java-
based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the US and other countries. All
other product and service names are the property of their respective owners.

Developing an Internationalized WebUI Application

Version 1.0

December 2008

For the latest version of this document, visit http://developer.motorola.com

Motorola, Inc. http://www.motorola.com

http://developer.motorola.com
http://www.motorola.com/

Technical Article Page 2

Contents
Introduction ...3
Phase1: Initial application development ...4

View Component ...5
Model Component ...7
Controller Component ...8

Soft Keys.. 8
Phase 2: Internationalization..13
Phase 3: Utilizing an external web service ...16
Summary ...21
Glossary ...22
Appendix A ...24

Introduction
The purpose of this article is to demonstrate a simple Planner application which retrieves
information from the Mobile Calendar using the APIs exposed by WebUI application
environment. The application demonstrates the use of internationalization. The Integrated
Development Environment (IDE) used for development of this application is MOTODEV
Studio for WebUI.

This article discusses the development of a WebUI application which does the following:

 Access platform APIs exposed by the WebUI application environment
 Access external web services (demonstrate usage of APIs on the internet)

By combining the above two functionalities, a developer can develop appealing applications
using WebUI.

The application is a simple Planner application which retrieves information from the built in
Calendar on the mobile device. The application also provides the additional feature of being
internationalized for multiple languages.

The demo application accesses platform APIs like Calendar, Date, i18n, etc., and displays the
information via the user interface.

An external web service is required to perform the language translation of user text.

The data to be presented via the example UI is as shown below:

If the above is the UI data to be presented for a multi language application, it can normally
handle the translation of headings such as "Time" and "Event" in the code using a lookup to
reflect correctly in multiple languages. However, it is more difficult to handle the semantic
correctness of “Fill in Petrol on way back home” in another language.

With WebUI, using an external language conversion Web Service, the developer can handle
the user entered text (“Fill in Petrol on way back home”) dynamically for a better translation
equivalent in the language the application end user chooses.

The application would also require navigation capabilities to check more events existing in the
Calendar on the mobile device.

The article introduces the development in phases. The first phase covers the development of
the application for a single language. The second phase covers internationalization of the
application. The third phase covers the use of an external web service for achieving dynamic
translation to provide better translation (semantic meaningfulness) for the application.

Technical Article Page 3

Phase1: Initial application development
Open MOTODEV Studio for WebUI and create a new WebUI Application Project. This can be
done by clicking on File > New > WebUI Application Project. This presents a screen
requesting the Project name, workspace location and WDK options. Populate the fields
presented and select the checkbox ‘Blank Application’ under ‘MOTOMAGX WDK’. This step
requests a ‘Blank Application Name’ to be filled in. Provide the name ‘Planner’. After clicking
finish, the project is created.

The above dialog box appears the very first time you create the project using MOTODEV
Studio for WebUI. Select the checkbox – “Remember my decision” and click on the button
‘Yes’.

Directory structure of a WebUI application project

The generated project has two main folders ‘dist’ and ‘src’. The folder ‘src’ has the subfolder
‘Planner’ which contains the main source code for the application. The other files ‘.project’
and ‘project.properties’ have information regarding the project.

The ‘Planner’ folder contains the following:

 ‘index.html’ - the main start up file containing the UI presentation
 ‘SKMenu.xml’ - a configuration file for defining SoftKeys
 ‘WebUIApplication_app.descriptor’ - the metadata for the Planner application
 ‘resource’ subfolder - for logically grouping all the resource files associated with the

project

Technical Article Page 4

Technical Article Page 5

 ‘scripts’ subfolder - to logically group all the JavaScript files used for the WebUI
application

 ‘style’ subfolder - to logically group all the style sheets associated with the application
project

The coding for the application follows the Model View Controller (MVC) design pattern.

The ‘Model’ component contains a JavaScript file which provides the interface to the platform
API and also any web service request and response handling. This requires creating a new
JavaScript file ‘scriptEngine.js’ This can be done by right clicking on the scripts folder, New >
File. When prompted, name it ‘scriptEngine.js’.

The ‘View’ component contains:

 the ‘index.html’ file,
 any number of CSS files (style folder) to add to the aesthetic appeal of the UI, and
 any number of images (res folder) to be used for display

The ‘Controller’ component is comprised of a JavaScript file ‘script.js’. This has all the control
logic of the application including the configuration settings for the soft keys.

View Component
For Display Handling (html file):

1 Double click index.html to open it.

2 Add the following Code (Containers) to handle Date:

<div id="dateDisplay" style="display:block">

<h4 id="dateConst">DATE</h4>

<p id="dateFormat"></p>

</div>

 The Div tag with id "dateDisplay" is a self contained display area to display Date in
the html code.

 The h4 tag with id "dateConst" is a header tag to display the header "DATE".
 The p tag with id "dateFormat" is a tag to display the actual date in appropriate format

DD/MM/YYYY dynamically populated by JavaScript code.

3 Similarly add the following Code to handle Time:

<div id="timeDisplay" style="display:block">

<h4 id="timeConst">TIME</h4>

<p id="timeFormat"></p>

</div>

 The Div tag with id "timeDisplay" is a self contained display area to display Time in
the html code.

 The h4 tag with id "timeConst" is a header tag to display the header "TIME".
 The p tag with id "timeFormat" is a tag to display the actual start time and end time in

appropriate format HH:MM (24 Hour format) dynamically populated by JavaScript
code.

Technical Article Page 6

4 Similarly add the following Code to handle Event:

<div id="eventDisplay" style="display:block">

<h4 id="eventConst">EVENT</h4>

<p id="eventFormat"></p>

</div>

 The Div tag with id "eventDisplay" is a self contained display area to display the
Event in the html code.

 The h4 tag with id "eventConst" is a header tag to display the header "EVENT".
 The p tag with id "eventFormat" is a tag to display the actual event stored in mobile

calendar dynamically populated by JavaScript code.

For Display Styling (CSS file):

CSS file defines the rules on how to display the tags defined in the above html.

1 Double click ‘style.css’ to open it.

2 Enter the following lines of code:

#dateConst
{
 text-align:left;
}
#timeConst
{
 text-align:left;
}
#eventConst
{
 text-align:left;
}

The above code sets the text alignment of text to be displayed as left-justified for all the text
under the tags with these IDs dateConst, timeConst, eventConst.

3 Enter the following lines of code:

#dateFormat
{
 text-align:center;
}
#timeFormat
{
 text-align:center;
}
#eventFormat
{
 text-align:center;
}

The above code sets the text alignment of text to be displayed as centre justified for all the
text under the tags with id's dateFormat, timeFormat, eventFormat.

Technical Article Page 7

For background colour, type the below code:

body
{
 background-color: #0f0faf;
}

Model Component
The Model Component (‘scriptEngine.js’) interfaces with the internal WebUI application
environment APIs and external Web Services. For Specific API details via MOTODEV Studio
for WebUI, Go to Status bar click on Help > Help Contents > MOTODEV Studio for WebUI
User Guide > Reference > API Reference.

For the application, the following details are required:

 List of Events
 Start Date of Event
 Start Time and End Time of Event
 Event Summary

To obtain a List of Events, create a method getEventsList(). This method queries the
WebUI application environment’s Calendar Object, getEvents(). This platform method,
getEvents(), takes two arguments, starttime and endtime, which must be supplied.
The date objects to be supplied can be obtained by querying the current time. The WebUI
application environment provides the method, getCurrentTime(), which returns an
instance of Date Object similar to the standard W3C Date Object. The following tasks are
performed in the getEventsList method:

1. Obtain the current time by using the code snippet below:

var currentDate = webui.system.util.time.getCurrentTime();

2. Manipulate the instance of Date object for a future date (7 days) by using code
snippet below:

var futureDate = webui.system.util.time.getCurrentTime();
futureDate.setDate(futureDate.getDate()+7);

3. The platform method getEvents can now be invoked as below:

var eventsList = webui.calendar.getEvents(currentDate,
futureDate);

The eventsList thus obtained contains a list of all the mobile calendar events which fall
within a week timeframe.

For StartDate, create a method getEventStartDate(). This method makes use of the
eventsList obtained earlier and gets the start date of the event. The following is the code
snippet to use where eventIndex is the index of the event in the obtained eventsList.

eventsList[eventIndex].getStart();

To obtain the individual day, create a method getEventStartDate() which performs the
internal operation as below:

eventsList[eventIndex].getStart().getDate();

Technical Article Page 8

To obtain individual month, create a method getEventStartMonth() which performs the
internal operation as below:

((eventsList[eventIndex].getStart().getMonth())+1);

The addition of the number ‘1’ is required as Month is indexed from 0. For example, January
corresponds to 0 and December corresponds to 11 in Javascript.

To obtain the individual year, create a method getEventStartYear() which performs the
internal operation as below:

eventsList[eventIndex].getStart().getFullYear();

To obtain individual hour, create a method getEventStartHour() which performs the
internal operation as below:

eventsList[eventIndex].getStart().getHours();

To obtain individual minutes, create a method getEventStartMinute() which performs
the internal operation as below:

eventsList[eventIndex].getStart().getMinutes();

To obtain the end time details of the event, the following code snipped can be used:

eventsList[eventIndex].getEnd();

Similarly Events end Hour can be obtained by creating a method getEventEndHour():

eventsList[eventIndex].getEnd().getHours();

Similarly Events end Hour can be obtained by created a method getEventEndHour():

eventsList[eventIndex].getEnd().getMinutes();

To obtain the event summary, create a method getEventSummary() which performs the
internal operation as below:

eventsList[eventIndex].summary;

Controller Component
The Controller Component controls what gets displayed at what time. All the Navigation
handling is controlled. The code goes into the ‘script.js’ file.

The onLoadAction() method has control over what is displayed on the UI when the
application is first launched. On launch, the first event should be displayed if available, else a
screen with “No Events” should be displayed. For navigation purposes, soft keys must be
displayed on the User Interface.

Soft Keys
Soft Keys are used for navigation and controlling the UI of the application. Soft keys are the
top two buttons on the keypad of a Motorola phone which aid in easy interacting with device.
The navigation in the application being developed requires Transitioning from one event to
another and exiting the application. Hence the possible transitions are Next, Previous and
Exit. Different screen contexts would have different soft key menus. To provide soft key
menus, two methods can be followed – either the Graphical editor of ‘SKMenu.xml’ or the text
based editor of ‘SKMenu.xml’ file.

For a UI when navigation requires ‘Next’ and ‘Exit’, then the following has to be done:

Technical Article Page 9

<ScreenContext id="Planner">
<item>

<name>Next</name>
<action>getNext</action>

</item>
<item>

<name>Exit</name>
<action>goExit</action>

</item>
</ScreenContext>

Here ‘item’ is the soft key while ‘name’ is the option that is associated with the soft key to
appear on the UI. The ‘action’ is what needs to be performed when the soft key is pressed.

For a UI when no events exist, then only one soft key is required, namely exit. This can be
done as follows:

<ScreenContext id="Planner4">
<item>

<name/>
<action/>

</item>
<item>

<name>Exit</name>
<action>goExit</action>

</item>
</ScreenContext>

Similarly for a UI that needs all actions (Next, Previous and Exit) the following has to be
added:

<ScreenContext id="Planner2">
<item>

<name>Options</name>
<action/>

<item>
<name>Next</name>
<action>getNext</action>

</item>
<item>

<name>Previous</name>
<action>getPrevious</action>

</item>
</item>
<item>

<name>Exit</name>
<action>goExit</action>

</item>
</ScreenContext>

The left Soft Key shows Options and when pressed, opens a sub menu showing the two
items.

The Graphical View of the ‘SKMenu.xml’ file helps to easily create the above xml file without
the need to remember the xml structure.

Initial definition of screen context

Figure: Definition of Soft Key

Technical Article Page 10

Adding more soft keys

Right clicking on the screen content gives more options to add/remove soft keys.

Initializing the Soft Key menu in the ‘script.js’ file can be done as follows:

var menu = webui.softKeys.loadMenu(“Planner”);

To activate the menu, the following has to be done:

webui.softKeys.setActiveMenu(menu);

To listen to the Soft Key events, a Listener is needed and a handler to handle those events.
The listener can be coded as below:

var listener = webui.softKeys.createListener();

A handler function must be associated with the listener:

listener.handle = handleSoftKeys;

The menu must be associated with the listener:

menu.addListener(listener);

The function handleSoftKeys() contains the logic associated with the necessary action to
be performed when a soft key is pressed. The skeleton of which is as follows:

function handleSoftKeys(action)
{
if (action == 'getNext')
{
//Action to be performed
}
}

The control logic decides the contents populated to the UI. The UI is populated using the
methods exposed by the Model Component ‘ScriptEngine.js’. The html pages are dynamically
populated as follows:

Technical Article Page 11

Technical Article Page 12

document.getElementById("dateFormat").innerHTML =
" "+getEventStartDate()+"/"
+getEventStartMonth()+"/"
+getEventStartYear();

The HTML Document Object Model (DOM) structure is parsed for the tag with the ID
‘dateFormat’ and the contents are inserted with the necessary formatting done.

The Code at the end of phase 1 is a full fledged working sample of the simple planner
application. The sample files at the end of phase1 are shown in Appendix A.

Phase 2: Internationalization
The application designed so far only caters to a select audience of English speaking people.
Generally for any application developer, the desire for the application to reach out to the
maximum number of users spanning the whole world is a key goal. Reaching out to the global
audience in an appeakubg manner means the developer essentially has to understand the
key user requirement that “not everyone speaks and understands a single language". Hence
the developer must take care to design the application to cater to various languages by
employing internationalization. Internationalization is the process of designing a software
application so it can be adapted to various languages and regions without additional
engineering changes. There are advantages and disadvantages to note for this approach.
The disadvantage is internationalization could mean a trade-off on some usability for people
in certain localities/cultures/languages. The advantage is a significant reduction in the
development and maintenance costs for customized applications.

Internationalizing applications using MOTODEV Studio for WebUI is a simple job. The
following tasks need to be done:

1. Select the folder ‘Planner’ which is under ‘src’ folder of the project.

2. Go to the Status bar and choose MOTODEV > Localization > Externalize Strings

3. The above step presents a new form. Select the language and variation for

externalization purpose. For this example, let the language be ‘French’ and the
variation be ‘Canadian’ and click ‘Next’

Technical Article Page 13

4. The tool presents a form with all the hard coded strings in the project for

externalization purposes. Select the appropriate ones and deselect the others (e.g.,
Debug Print Statements) and click finish.

5. The above generates code replacing all the hard coded strings and also creates a

separate ‘lang’ folder with ‘.po’ files containing the externalized strings.

Technical Article Page 14

The hard coded strings are replaced by the code as follows:

webui.i18n.localize("DATE");

The webui.i18n string is an object exposed by the WebUI application environment for
performing internationalization operations. This object exposes an API, localize(), which
can be used for localization purposes.

6. Populate the string translations in the msgstr fields as appropriate.

7. For externalizing, the name which appears on the “Planner” menu, Open the
“WebUIApplication_app.descriptor” file and go to the text editing mode by clicking on
the ‘WebUIApplication_app.descriptor’ tab.

8. Under <AppName> tag in the xml representation add a new tag <ResourceID> and

Planner as the value between the nodes. The resulting <AppName> tag is shown:

 <AppName>
<default>Planner</default>
<ResourceID>Planner</ResourceID>

</AppName>

9. Add an additional line in the ‘fr-ca.po’ file to incorporate “Planner” as follows:

#: WebUIApplication_app.descriptor:9
msgid "Planner"
msgstr "Planificateur"

The above application is now localized to handle the user option of French. Similarly the
same steps could be repeated (except Step 8) for other languages.

Technical Article Page 15

Technical Article Page 16

Phase 3: Utilizing an external web service
The application coded so far handles the language translation for all the hard coded strings.
However, the Events have data in the Calendar which are based on the language used when
they were entered into the mobile calendar. However, if the user has chosen a different
language at a later point in time, then the translation performed could be meaningless. To
make the application semantically more appropriate, make use of a language translation web
service available for performing the appropriate translation. One such service is offered by
Google - Language Translation Ajax API. The following modifications have to be done to the
above code to make use of this feature:

1. In ‘index.html’ file, add the following line along with other script tags:

<script type="text/javascript"
src="http://www.google.com/jsapi"></script>

2. In the ‘script.js’ file, perform the language load api:

google.load("language", "1",
{
callback:function()
{

println("Google Language Load Completed");
}
});

3. In ‘scriptEngine.js’ file, perform the following operations to handle language
translation:

• Obtain the language on the device using the call:

var currentLanguage; //Holds the current language set
currentLanguage =
webui.system.util.resources.getCurrentLocale().language;

• Perform the Google translate api call as follows:

google.language.translate(summary, '', currentLanguage,
function(result)
{
if (!result.error)
{
translatedSummary = result.translation;
}
});

4. The above ‘translatedSummary’ variable holds the translated text returned by the
WebService.

To deploy the application under a specific device menu, it must be specified in the
‘WebUIApplication_app.descriptor’ file. This can be done on the ‘configuration tab’ of the file
under ‘Application Installation Folder’ options. Select the folder from the drop down menu
option and save the file.

The application can be deployed by right-clicking on the project folder and choosing Run As >
MOTODEV Application.

When selected, the following screen is presented:

Give a name to the runtime configuration “DemoPlanner” and click on Apply and then “Run”.
This will deploy the application on the emulator.

To test the application, write the following test code to insert some calendar events:

var testEvt = webui.calendar.createEvent();
var stdt = webui.system.util.time.getCurrentTime();
stdt.setDate(stdt.getDate()+2);
testEvt.setStart(stdt);
stdt.setHours(stdt.getHours()+1);
testEvt.setEnd(stdt);

Technical Article Page 17

testEvt.summary = "test event one";

webui.calendar.addEvent(testEvt, false);

Similarly create a few more events and then run the application to see the results. Below are
the screenshots of the application running on the MOTODEV Studio for WebUI emulator:

Application screen with more than one event

Technical Article Page 18

Application screen with an event before and after the current event

Application screen with the last event

Technical Article Page 19

Application screen when the user changes language preference on the phone. The language
preference can be modified by going to the Main Menu > Settings > Phone Settings >
Language and Input > Language.

Technical Article Page 20

Technical Article Page 21

Summary
The article has demonstrated developing a simple WebUI application. The aspects covered
include:

• Accessing information on the mobile phone using APIs exposed by the WebUI application
environment. The API’s covered are:

 Calendar

 Date

 I18n

• Accessing an external web service

• Configuring Soft Key Menus

• Internationalization

The example gives shows about how easy it is to use WebUI for creating a semantically
meaningful application which could appeal to a wide audience.

Technical Article Page 22

Glossary
API – Application Programming Interface

AJAX – Asynchronous JavaScript and XML

CSS – Cascading Style Sheets

Design Pattern - Solution or computing framework for a known problem

DOM – Document Object Model

UI – User Interface

W3C – World Wide Web Consortium

WDK – Web Development Kit

Web Service - Web services share business logic, data and processes through a
programmatic interface across a network. The web service is an applications interface, not a
user interface. Developers can then add the Web service to a GUI (such as a Web page or an
executable program) to offer specific functionality to users.

WebUI - WebUI is an application environment for creating widgets and rich mobile web
applications (WebUI Apps)

XML – eXtensible Markup Language

Technical Article Page 23

Technical Article Page 24

Appendix A
The ‘index.html’ file at the end of phase1:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>

<head>
<meta http-equiv="Content-Type" content="text/html;
charset=iso-8859-1">
<link href="style/style.css" rel="stylesheet"
type="text/css">
<script src="scripts/script.js"
type="text/javascript"></script>
<script src="scripts/scriptEngine.js"
type="text/javascript"></script>

</head>
<body onload="onLoadAction();">

<div id="dateDisplay" style="display:block">
<h4 id="dateConst">DATE</h4>
<p id="dateFormat"></p>
</div>

<div id="timeDisplay" style="display:block">
<h4 id="timeConst">TIME</h4>
<p id="timeFormat"></p>
</div>

<div id="eventDisplay" style="display:block">
<h4 id="eventConst">EVENT</script></h4>
<p id="eventFormat"></p>
</div>

 </body>
</html>

The ‘script.js’ file at the end of phase1:

var menu; //Holds the soft key menu being choosen to be displayed

/* On Initial Display, fetch the list of Events and Display the first
Event on Screen */
function onLoadAction()
{

println("In onLoadAction");

getEventsList();
println("get events list api called");
println("Got list size= "+ noOfEvents);

if (noOfEvents == 0)
{

Technical Article Page 25

TestAddEvents();
getEventsList();
println("get events list api called after adding test

events");
println("Got list size= "+ noOfEvents);

}

currEventCtr = 0;

if (noOfEvents > 0)
{

displayScreen();
}
else
{

displayEmptyScreen();
}

}

/* Handler Function to handle soft key events */
function handleSoftKeys(action)
{

if (action == 'getNext')
{

currEventCtr = currEventCtr+1;
displayScreen();

}
else if (action == 'getPrevious')
{

currEventCtr = currEventCtr-1;
displayScreen();

}
else if (action == 'goExit')
{

webui.terminate(0);
}

}

/* Display the Screen Populating the Event Details */
function displayScreen()
{

document.getElementById("dateFormat").innerHTML =
" "+getEventStartDate()+"/"
+getEventStartMonth()+"/"
+getEventStartYear();

document.getElementById("timeFormat").innerHTML =
" "+getEventStartHour()+":"
+getEventStartMinute()+" - "
+getEventEndHour()+":"
+getEventEndMinute();
getEventSummary();
setTimeout('displayEvent()', 2000);

Technical Article Page 26

println("nofevents = "+noOfEvents);
println("currEventCtr = "+currEventCtr);

if ((noOfEvents-1) > currEventCtr)
{

if (currEventCtr == 0)
{

println("displaying planner menu");
// Set the Menu with Options to Display More Events
menu = webui.softKeys.loadMenu("Planner");

}
else
{

println("displaying Planner2 menu");
// Set the Menu with Options to Display More Events
menu = webui.softKeys.loadMenu("Planner2");

}
}
else
{

if (noOfEvents == 1)
{

println("displaying Planner4 menu");
// Set the Simple Exit Menu
menu = webui.softKeys.loadMenu("Planner4");

}
else
{

println("displaying Planner3 menu");
// Set the Simple Exit Menu
menu = webui.softKeys.loadMenu("Planner3");

}
}
setMenus();

}

function displayEvent(translatedSummary)
{

println("Translated Summary In disp Event="
+translatedSummary);

document.getElementById("eventFormat").innerHTML =
translatedSummary;

}

/* Sets the chosen Menu for Display Purposes */
function setMenus()
{

webui.softKeys.setActiveMenu(menu);
listener = webui.softKeys.createListener();
listener.handle = handleSoftKeys;
menu.addListener(listener);

}

Technical Article Page 27

/* Displays a screen mentioning no events exist in the calendar */
function displayEmptyScreen()
{

document.getElementById("dateFormat").innerHTML = “No Events”;
document.getElementById("timeFormat").innerHTML = "No Events";
document.getElementById("eventFormat").innerHTML = "No Events";

// Set the Simple Exit Menu
menu = webui.softKeys.loadMenu("Planner4");
setMenus();

}

The file ‘scriptEngine.js’ at the end of phase1:

var eventsList; // List of Events Holder
var noOfEvents = 0; // Counter to know the Number of Events
var currEventCtr = 0; // Counter to track the current Event

/* Fetch the list of Events in the next one week originating from the
current Time */
function getEventsList()
{

var currDate, newDate;
currDate = webui.system.util.time.getCurrentTime();
newDate = webui.system.util.time.getCurrentTime();
newDate.setDate(newDate.getDate()+7);
eventsList = webui.calendar.getEvents(currDate, newDate);
noOfEvents = eventsList.size;

}

/* Particular Event Details Fetching apis */

/* Fetch the Events Day of the Month */
function getEventStartDate()
{

return eventsList[currEventCtr].getStart().getDate();
}

/* Fetch the Events Month of Occurence*/
function getEventStartMonth()
{

// Month Values are 0-11 hence the addition of 1
return ((eventsList[currEventCtr].getStart().getMonth()) + 1);

}

/* Fetch the Events Year of Occurence*/
function getEventStartYear()
{

return eventsList[currEventCtr].getStart().getFullYear();
}

Technical Article Page 28

/* Fetch the Events Hour of Occurence */
function getEventStartHour()
{

return eventsList[currEventCtr].getStart().getHours();
}

/* Fetch the Events Minute of Occurence */
function getEventStartMinute()
{

return eventsList[currEventCtr].getStart().getMinutes();
}

/* Fetch the Events Hour of Completion */
function getEventEndHour()
{

return eventsList[currEventCtr].getEnd().getHours();
}

/* Fetch the Events Minute of Completion */
function getEventEndMinute()
{

return eventsList[currEventCtr].getEnd().getMinutes();
}

/* 1.Fetch the Events Summary Description.
 2.Perform the language conversion to the current Language Selected
on the Device.
*/

function getEventSummary()
{

var summary = eventsList[currEventCtr].summary;
println("summary = "+summary);
displayEvent(summary);

}

/* Test Function to insert events in the emulator */
function TestAddEvents()
{

var testEvt = webui.calendar.createEvent();
var stdt = webui.system.util.time.getCurrentTime();
stdt.setDate(stdt.getDate()+2);
testEvt.setStart(stdt);
stdt.setHours(stdt.getHours()+1);
testEvt.setEnd(stdt);
testEvt.summary = "test event one";

var testEvt2 = webui.calendar.createEvent();
stdt.setDate(stdt.getDate()+1);
testEvt2.setStart(stdt);
stdt.setHours(stdt.getHours()+2);
testEvt2.setEnd(stdt);
testEvt2.summary = "test event two";

var testEvt3 = webui.calendar.createEvent();
stdt.setDate(stdt.getDate()+2);
testEvt3.setStart(stdt);
stdt.setHours(stdt.getHours()+3);
testEvt3.setEnd(stdt);
testEvt3.summary = "test event three";

webui.calendar.addEvent(testEvt, false);
webui.calendar.addEvent(testEvt2, false);
webui.calendar.addEvent(testEvt3, false);

}

The file ‘style.css’ at the end of phase1:

body
{

background-color: #0f0faf;
}
#dateConst
{

text-align:left;
}
#timeConst
{

text-align:left;
}
#eventConst
{

text-align:left;
}
#dateFormat
{

text-align:center;
}
#timeFormat
{

text-align:center;
}
#eventFormat
{

text-align:center;
}

For Complete Source Code, Double click below:

DemoPlanner.zip

Technical Article Page 29

http://developer.motorola.com/docstools/technicalarticles/Internationalized_WebUI_App.pdf/DemoPlanner.zip/

	Contents
	Introduction
	Phase1: Initial application development
	View Component
	Model Component
	Controller Component
	Soft Keys

	Phase 2: Internationalization
	Phase 3: Utilizing an external web service
	Summary
	Glossary
	Appendix A

