
PPSM
Personal

Portable
System

Manager

Motorola Semiconductor Products Sector

Copyright 1995-1998 by Motorola, Inc.

Produced by DragonBall Operation, WSSG, Motorola

Fax: (852) 2666-6551

Email: portable@email.sps.mot.com

Website: http://www.apspg.com/products/ppsm/ppsm.html

Document Number PPSM Version Release Date Comment

PDAPSM01U18-10 2.0 November 15, 1995

PDAPSM01U18-11 2.1 May 13, 1996 Addendum to PPSM V2.0

PDAPSM03SPM1-10 3.0 March 5, 1997

PDAPSM03SPM1-11 3.1 November 15, 1998

Motorola reserves the right to make any modifications or updates to this product or any component
thereof for any reason whatsoever without further notice to anyone. Motorola does not assume any
liability arising out of the application or use of this product nor any component thereof; neither does it
convey nor license under its patent rights or copyrights nor the patent rights or copyrights of others
all or any portion of this product. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, other applications intended to
support or sustain life, or for any other application in which the failure of the Motorola product could
create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims,
costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any
claim of personal injury or death associated with such unintended or unauthorized use, even if such
claims alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola
and are registered trademarks of Motorola, Inc. All Rights Reserved.

PDA Personal Portable System Manager
Programmer Manual

Table of Contents i

Table of Contents

Table of Contents . i
Preface . xvii

Part I
PPSM
Architecture

Chapter 1 Introduction . 1-1

1.1 What is PPSM? . 1-1

1.2 Strengths and Features . 1-2

1.3 Software Development Environment . 1-3

1.4 Hardware Development Environment . 1-3

Chapter 2 PPSM System Overview . 2-1

2.1 Interrupt Handling . 2-1

2.2 Error Handling . 2-2

2.3 I/O Devices . 2-2

Pen Input . 2-3
Screen Format . 2-4
Hardware Cursor . 2-4

2.4 Data Storage . 2-4

2.5 Font Management . 2-5

2.6 Memory Management . 2-5

2.7 Power Management . 2-5

Direct Control . 2-6
Automatic Control . 2-6

2.8 Task Management . 2-6

PPSM Tasks . 2-6
Application State Transition . 2-7
Task Swapping . 2-8

2.9 Timer Management . 2-8

Chapter 3 PPSM Programming . 3-1

ii Table of Contents

PDA Personal Portable System Manager
Programmer Manual

3.1 PPSM Initialization and Applications Integration 3-1

PPSM Initialization . 3-1
Task Registration . 3-2

3.2 PPSM Application Programming . 3-2

Active Area Registration . 3-3
Messages from PPSM . 3-4

3.3 Data Representation . 3-4

3.4 Naming Convention . 3-5

Procedure . 3-5
Constants and Labels . 3-5
Local Variables . 3-6
Global Variables . 3-6
Local Pointer Variables . 3-6
Global Pointer Variables . 3-6

Part II
Writing
PPSM
Applications

Chapter 4 Pen Input Handling . 4-1

4.1 Active Area . 4-1

Icon Area . 4-1
Input Area . 4-2

4.2 Creating an Active Area. . 4-2

4.3 Removing an Active Area . 4-3

4.4 Suspending an Active Area . 4-3

4.5 Active Area Enquiry . 4-4

4.6 Put Active Area to Front of List . 4-4

4.7 Pen Echoing . 4-4

4.8 Pen Color and Pen Size . 4-4

4.9 Creating a Control Active Area . 4-4

4.10 Removing a Control Active Area . 4-6

4.11 Push Active Area List into Background . 4-6

4.12 Pop Active Area List to Foreground . 4-6

PDA Personal Portable System Manager
Programmer Manual

Table of Contents iii

Chapter 5 Character Input Methods . 5-1

5.1 Soft Keyboard . 5-1

Starting Soft Keyboard Character Input . 5-2
Auto-Key-Repeat . 5-3
Terminating Soft Keyboard Character Input 5-3
Suspend Soft Keyboard Character Input 5-3

5.2 Handwriting Recognition Input Pad . 5-4

The Input Pad Mechanism . 5-5
Starting Handwriting Character Input . 5-5
Terminating Handwriting Character Input 5-6

Chapter 6 Using Graphics Tools . 6-1

6.1 Display Screen Format . 6-2

LCD Display Screen . 6-2
Panning Display Screen . 6-3

6.2 Screen Initialization . 6-3

LCD Display Screen in relation to the Touch Panel 6-3
Screen Resolution . 6-4

6.3 Sample LCD Display Screen . 6-4

6.4 1 bit-per-pixel Graphics . 6-5

Drawing Operators . 6-6

6.5 2 bits-per-pixel Graphics . 6-7

Drawing Operators . 6-7

6.6 Graphics Tools . 6-10

6.7 Get LCD Display Screen Width . 6-11

6.8 Get LCD Display Screen Height . 6-11

6.9 Get Panning Screen Width . 6-12

6.10 Get Panning Screen Height . 6-12

6.11 Set Pattern Fill . 6-12

6.12 Set Dot Width . 6-13

6.13 DisplayMove . 6-13

6.14 Direct All Graphics Output to off-screen memory 6-13

6.15 Change Panning Screen Parameters . 6-14

6.16 Fill the whole Panning Screen . 6-17

6.17 Draw a Dot . 6-17

6.18 Draw a Horizontal Line . 6-19

6.19 Draw a Vertical Line . 6-20

iv Table of Contents

PDA Personal Portable System Manager
Programmer Manual

6.20 Draw a Line . 6-22

6.21 Draw a Rectangle . 6-23

6.22 Draw a Circle . 6-25

6.23 Draw an Ellipse . 6-26

6.24 Draw an Arc . 6-27

6.25 Draw a Vector from a List of Points . 6-30

6.26 Put a Rectangular Area on Panning Screen 6-30

Special cases of PutRec() . 6-31

6.27 Save a Rectangular Area from Panning Screen 6-33

6.28 Exchange a Rectangular area with memory 6-33

6.29 Fill a Rectangular Area . 6-34

6.30 Inverse a Rectangular Area . 6-34

6.31 Hardware Cursor . 6-35

Set Hardware Cursor Size . 6-35
Set Hardware Cursor Position . 6-36
Set Hardware Cursor Status . 6-36
Get Hardware Cursor Status . 6-36
Set Hardware Cursor Blinking Frequency 6-37
Turn Hardware Cursor Off . 6-37

6.32 Display Other Region of Panning Screen . 6-37

6.33 Get LCD Display Origin on Panning Screen 6-37

6.34 Allocate memory for Panning Screen . 6-38

Chapter 7 Database Management . 7-1

7.1 Data Format . 7-1

Formatted Data . 7-1
Unformatted Data . 7-2

7.2 The Database Manipulation Tools . 7-2

7.3 Creating and Editing a Database . 7-3

7.4 Searching and Retrieving Data . 7-4

7.5 Navigating along a Record List . 7-4

Chapter 8 Text Display Management . 8-1

8.1 Text Representation . 8-1

8.2 Text Display Area . 8-1

8.3 Text Templates . 8-2

PDA Personal Portable System Manager
Programmer Manual

Table of Contents v

Creating text templates . 8-2
Deleting text templates . 8-3

8.4 Text Properties . 8-3

Setting Text Display Layout . 8-3
Setting Text Outlook . 8-3
Setting Font Attributes . 8-4

8.5 Text Mapping . 8-7

Displaying text . 8-7
Removing text . 8-7

8.6 Text character cursor position . 8-8

Setting the character cursor position . 8-8
Reading the character cursor position . 8-8

Chapter 9 Timer Management . 9-1

9.1 Reading System Date and Time . 9-1

9.2 Setting System Date and Time . 9-1

9.3 Reading Clock Alarm . 9-1

9.4 Setting Clock Alarm . 9-2

9.5 Clearing Clock Alarm . 9-2

9.6 Setting Periodic Alarm . 9-2

9.7 Setting Timeout . 9-3

9.8 Setting Input Timeout . 9-3

9.9 Continuous Reference Timer . 9-4

9.10 Read The Reference Timer . 9-4

9.11 Set Reference Timer Alarm . 9-4

9.12 Compute Reference Times Differences . 9-4

Chapter 10 Memory Management . 10-1

10.1 Allocating Memory . 10-1

10.2 Freeing Memory . 10-1

10.3 Reallocating Memory . 10-2

10.4 Copying Memory . 10-2

10.5 Inquiring Memory . 10-2

Chapter 11 Power Management . 11-1

11.1 Power Control Module . 11-1

vi Table of Contents

PDA Personal Portable System Manager
Programmer Manual

11.2 Power Modes . 11-2

11.3 System Internal Modes . 11-2

Initialization Mode . 11-3
System Mode . 11-3
Wake-up Mode . 11-3

11.4 Application Modes . 11-3

Normal Mode . 11-4
Doze Mode . 11-4
Sleep Mode . 11-5

11.5 Power Management Tools . 11-6

Setting Duty Cycle . 11-6
Setting Doze Period . 11-6
Setting Sleep Period . 11-6
Going Into Doze Mode . 11-7
Going Into Sleep Mode . 11-7

11.6 I/O Ports Control . 11-7

Disabling I/O Port Before Doze Mode . 11-7
Enabling I/O Port After Doze Mode . 11-7
Disabling I/O Port Before Sleep Mode . 11-7
Enabling I/O Port After Sleep Mode . 11-8

Chapter 12 UART Communication Support . 12-1

12.1 UART Communication Architecture . 12-1

UART hardware flow control . 12-1
UART Interface Constraints . 12-2
UART Interface Interrupt Message . 12-7

12.2 UART Configurations . 12-7

Configuring the UART . 12-8
Inquiring the UART Configurations . 12-9
Setting Data Transmission Time Out . 12-9
Setting Data Transmission Delay . 12-9

12.3 Sending Data to the UART . 12-10

Initiating a Send Request . 12-10
Terminating a Send Request . 12-11

12.4 Receiving Data from the UART . 12-11

Initiating a Receive Request . 12-12
Reading Received Data . 12-12
Terminating a Receive Request . 12-12
Setting Data Reception Time Out . 12-13

12.5 UART hardware flow control . 12-13

Enabling RTS/CTS hardware flow control 12-13
Disabling RTS/CTS hardware flow control 12-13

PDA Personal Portable System Manager
Programmer Manual

Table of Contents vii

12.6 Data reception with hardware flow control 12-14

Pause data reception . 12-14
Continue data reception . 12-14

12.7 Data transmission with hardware flow control 12-14

Pause data transmission . 12-14
Continue data transmission . 12-15

Chapter 13 Task Management . 13-1

13.1 Main Task . 13-1

System Task . 13-1

13.2 Sub-task . 13-2

Sub-task Management . 13-3

13.3 Task Switching . 13-3

13.4 Message Broadcasting . 13-4

13.5 Task Control . 13-4

13.6 Task Swapping Example . 13-5

13.7 Creating a Task . 13-6

13.8 Creating a Task with Specific Task Parameters 13-6

13.9 Creating a Sub Task . 13-7

13.10 Starting a Task . 13-7

13.11 Termination of a Task . 13-8

13.12 Task Reinitialization . 13-8

13.13 Task Hook . 13-8

13.14 Stop task swapping . 13-9

Chapter 14 Inter-Task Messaging . 14-1

14.1 Message Passing . 14-1

With Delayed Task Swapping . 14-2
With Immediate Task Swapping . 14-2
With Immediate Task Swapping and Delayed Swap Back 14-2
Message Passing without Task Swapping 14-3

14.2 Message Structure . 14-3

14.3 Sending Message . 14-3

14.4 Advanced Sending Message . 14-4

14.5 Deleting Message for Current Task . 14-4

14.6 Deleting Message for any Task . 14-4

viii Table of Contents

PDA Personal Portable System Manager
Programmer Manual

14.7 Receiving Message . 14-4

Chapter 15 Interrupt Handling . 15-1

15.1 System Interrupts . 15-1

IRPT_AUDIO . 15-2
IRPT_PEN . 15-2
IRPT_INPUT_STATUS . 15-2
IRPT_ICON . 15-3
IRPT_KEY . 15-4
IRPT_RTC . 15-5
IRPT_TIMER . 15-5
IRPT_HWR . 15-5
IRPT_UART . 15-5

15.2 Device Interrupts . 15-5

User Defined Interrupt Handlers . 15-6
Device Interrupt Identifiers . 15-7
Application Access to Handlers . 15-7
Request and Release Interrupt Handler Service 15-7

15.3 Message Handling . 15-8

Example . 15-9

Chapter 16 Using System Tools . 16-1

16.1 PPSM Initialization . 16-1

Motorola Logo . 16-2

Chapter 17 Audio Tools . 17-151

17.1 Audio Playing . 17-151

17.2 Tone playing . 17-151

17.3 Wave playing (DragonBall-EZ only) . 17-152

17.4 Stop the audio playing . 17-153

Part III
API Toolset

Chapter 18 Pen Input Tools . 18-1

18.1 ActiveAreaDisable . 18-1

18.2 ActiveAreaEnable . 18-1

18.3 ActiveAreaRead . 18-2

PDA Personal Portable System Manager
Programmer Manual

Table of Contents ix

18.4 ActiveAreaSuspend . 18-3

18.5 ActiveAreaToFront . 18-4

18.6 ActiveListPop . 18-4

18.7 ActiveListPush . 18-5

18.8 AreaEchoDisable . 18-6

18.9 AreaEchoEnable . 18-6

18.10 ActiveAreaPosition . 18-7

18.11 CtrlIconDisable . 18-7

18.12 CtrlIconEnable . 18-8

18.13 IconScanOff . 18-9

18.14 IconScanOn . 18-10

18.15 PenCalibration . 18-10

18.16 PenEchoParam . 18-11

18.17 PenGetInput . 18-11

18.18 PenSetInputMax . 18-12

18.19 PenSetInputOrg . 18-13

18.20 PenSetRate . 18-13

18.21 ScanningOff . 18-14

18.22 ScanningOn . 18-14

Chapter 19 Character Input Tools . 19-1

19.1 AdvOpenInputPad . 19-1

19.2 AdvOpenSoftKey . 19-2

19.3 CloseInputPad . 19-3

19.4 CloseSoftKey . 19-4

19.5 OpenInputPad . 19-5

19.6 OpenSoftKey . 19-6

Chapter 20 Graphics Tools . 20-1

20.1 ChangePanning . 20-1

20.2 ChangeWindow . 20-3

20.3 ClearRec . 20-4

20.4 ClearScreen . 20-5

x Table of Contents

PDA Personal Portable System Manager
Programmer Manual

20.5 CursorGetOrigin . 20-5

20.6 CursorGetPos . 20-6

20.7 CursorGetStatus . 20-7

20.8 CursorInit . 20-7

20.9 CursorOff . 20-8

20.10 CursorSet . 20-8

20.11 CursorSetBlink . 20-9

20.12 CursorSetOrigin . 20-10

20.13 CursorSetPos . 20-10

20.14 CursorSetStatus . 20-11

20.15 DisplayMove . 20-12

20.16 DrawArc . 20-13

20.17 DrawCircle . 20-13

20.18 DrawDot . 20-14

20.19 DrawEllipse . 20-15

20.20 DrawHorz . 20-16

20.21 DrawLine . 20-17

20.22 DrawRec . 20-18

20.23 DrawVector . 20-19

20.24 DrawVert . 20-20

20.25 ExchangeRec . 20-21

20.26 GetDisplayX . 20-22

20.27 GetDisplayY . 20-23

20.28 GetLogicalX . 20-23

20.29 GetLogicalY . 20-24

20.30 GetScreenMem . 20-24

20.31 InvRec . 20-25

20.32 LCDContrast . 20-26

20.33 LCDRefreshRate . 20-27

20.34 LCDScreenMove . 20-27

20.35 PutChar . 20-28

20.36 PutRec . 20-29

PDA Personal Portable System Manager
Programmer Manual

Table of Contents xi

20.37 SaveRec . 20-30

20.38 SetDotWidth . 20-31

20.39 SetPatternFill . 20-31

Chapter 21 Database Management Tools . 21-1

21.1 DBAdd . 21-1

21.2 DBAddRecord . 21-1

21.3 DBAddRecToTop . 21-2

21.4 DBAppendRecord . 21-3

21.5 DBChangeStdData . 21-4

21.6 DBChangeUnfData . 21-5

21.7 DBDelete . 21-6

21.8 DBDeleteRecord . 21-6

21.9 DBGetFirstRecID . 21-7

21.10 DBGetNextRecID . 21-8

21.11 DBGetPrevRecID . 21-8

21.12 DBReadData . 21-9

21.13 DBReadTotalNumber . 21-10

21.14 DBReadTotalNumberRecords . 21-11

21.15 DBReadUnfData . 21-11

21.16 DBRecordSecret . 21-12

21.17 DBSearchData . 21-13

21.18 DBSecretFlag . 21-14

21.19 DBSetRecordSecretFlag . 21-15

21.20 DBSetSecretFlag . 21-15

Chapter 22 Text Tools . 22-1

22.1 TextCreate . 22-1

22.2 TextDelete . 22-1

22.3 TextMap . 22-2

22.4 TextReadCursor . 22-2

22.5 TextSetCursor . 22-3

22.6 TextSetDisplay . 22-4

xii Table of Contents

PDA Personal Portable System Manager
Programmer Manual

22.7 TextSetFont . 22-5

22.8 TextSetOutlook . 22-6

22.9 TextSetup . 22-7

22.10 TextUnmap . 22-9

Chapter 23 Timer Tools . 23-1

23.1 AlarmClear . 23-1

23.2 AlarmClearId . 23-1

23.3 AlarmRead . 23-2

23.4 AlarmReadId . 23-2

23.5 AlarmSet . 23-3

23.6 AlarmSetId . 23-4

23.7 DateTimeRead . 23-5

23.8 DateTimeSet . 23-6

23.9 DeleteTimer . 23-7

23.10 InputTimeout . 23-7

23.11 RefFineTimeAlarm . 23-8

23.12 RefFineTimeAlarmId . 23-8

23.13 RefFineTimeDiff . 23-9

23.14 RefFineTimeRead . 23-10

23.15 RefTimeAlarm . 23-10

23.16 RefTimeAlarmId . 23-11

23.17 RefTimeDiff . 23-11

23.18 RefTimeRead . 23-12

23.19 SetPeriod . 23-12

23.20 SetPeriodId . 23-13

23.21 Timeout . 23-14

23.22 TimeoutId . 23-15

Chapter 24 Memory Management Tools . 24-1

24.1 Lcalloc . 24-1

24.2 Lfree . 24-1

24.3 Lmalloc . 24-2

PDA Personal Portable System Manager
Programmer Manual

Table of Contents xiii

24.4 Lrealloc . 24-3

24.5 MoveBlock . 24-3

24.6 TaskMemUsed . 24-4

24.7 TaskStackAvail . 24-4

24.8 TotalMemSize . 24-5

24.9 TotalMemUsed . 24-5

Chapter 25 Power Management Tools . 25-1

25.1 SetDozeMode . 25-1

25.2 SetDozePeriod . 25-1

25.3 SetDutyCycle . 25-2

25.4 SetSleepMode . 25-3

25.5 SetSleepPeriod . 25-3

Chapter 26 UART Communication Tools . 26-1

26.1 UARTConfigure . 26-1

26.2 UARTFlowCtrl . 26-3

26.3 UARTInquire . 26-3

26.4 UARTRcvCtrl . 26-4

26.5 UARTReadData . 26-6

26.6 UARTReceive . 26-6

26.7 UARTSend . 26-7

26.8 UARTSendAbort . 26-8

26.9 UARTSendCtrl . 26-9

26.10 UARTSetDelay . 26-10

26.11 UARTTimeout . 26-11

Chapter 27 Task Handling Tools . 27-1

27.1 AdvTaskCreate . 27-1

27.2 AppSwap . 27-2

27.3 SubTaskCreate . 27-3

27.4 TaskCreate . 27-4

27.5 TaskHook . 27-5

xiv Table of Contents

PDA Personal Portable System Manager
Programmer Manual

27.6 TaskReInit . 27-5

27.7 TaskStart . 27-6

27.8 TaskTerminate . 27-7

Chapter 28 Inter-Task Messaging Tools . 28-1

28.1 AdvMessageDelete . 28-1

28.2 AdvSendMessage . 28-1

28.3 MessageDelete . 28-3

28.4 SendMessage . 28-3

Chapter 29 Interrupt Handling Tools . 29-1

29.1 IrptGetData . 29-1

29.2 IrptRelease . 29-3

29.3 IrptRequest . 29-4

29.4 IrptSendData . 29-6

Chapter 30 System Tools . 30-1

30.1 PPSMInit . 30-1

30.2 ReadSMVersion . 30-3

Chapter 31 Audio Tools . 31-1

31.1 AdvAudioPlayWave (DragonBall-EZ only) . 31-1

31.2 AudioInUse . 31-2

31.3 AudioPlayTone . 31-2

31.4 AudioPlayWave (DragonBall-EZ only) . 31-3

31.5 AudioStopTone . 31-4

31.6 AudioStopWave (DragonBall-EZ only) . 31-4

Part IV
System
Integrator
Guide

PDA Personal Portable System Manager
Programmer Manual

Table of Contents xv

Chapter 32 How to make ROM? . 32-1

32.1 Boot Strap Code (boot.s) . 32-1

68K Start-up . 32-1
Chip Selects . 32-3
Peripheral Devices . 32-3

32.2 Linker Supplications File for ROM . 32-3

32.3 Generating S-Record File . 32-4

Loader Options . 32-4
Loader Commands . 32-5

Chapter 33 Device Drivers . 33-1

33.1 System Configuration Drivers . 33-1

Boot Strap Driver (boot.s) . 33-1
User Interrupt Handler Installation Driver (irptdev.c) 33-1

33.2 Pen Input Device Driver (pendev.c) . 33-3

Pen Initialization . 33-4
Pen Interrupt Enable . 33-5
Pen Interrupt Disable . 33-6
Pen Read Device . 33-7

33.3 Pen Calibration(PenInit.c) . 33-8

33.4 LCD Device Drivers (lcddev.s) . 33-8

1 bit/pixel Initialization . 33-8
2 bits/pixel Initialization . 33-9

33.5 Handwriting Recognition Engine Driver (hwr.c) 33-9

Handwriting Recognition Engine Reset 33-9
Handwriting Recognition Engine Initialization 33-10
Process One Stroke of Handwriting Input Data 33-10
Initiate Character Recognition for the Handwriting Input 33-11

33.6 Font Driver (font.c) . 33-11

Font Library Information . 33-12
Font Library or Font Generation Engine Initialization 33-12
Font Accessing . 33-13

33.7 UART Device Driver (uartdev.c) . 33-14

Sending the BREAK Character . 33-14

33.8 Power Management Driver (iodev.c) . 33-14

Enabling I/O ports when leaving from doze mode 33-15
Disabling I/O ports when going to doze mode 33-15
Enabling I/O ports when leaving from sleep mode 33-15
Disabling I/O ports when going to sleep mode 33-16

Chapter 34 Linker Specification File . 34-1

xvi Table of Contents

PDA Personal Portable System Manager
Programmer Manual

34.1 .SPC File for a RAM-only System . 34-1

34.2 .SPC File for a ROM-RAM System . 34-2

34.3 For SingleStep Debugging System (SDS) user 34-2

Chapter 35 Trap Usage in PPSM . 5

35.1 PPSM Tools Calling Structure . 5

35.2 TRAP Implementation . 5

Application . 6
Stub Library . 6
TRAP Service Handler . 7

Appendices

A Error Code Definition . A-1

B List of References. B-1

C Index of PPSM Tools . C-1

Personal Portable System Manager
Programmer Manual

xvii

What is PPSM?

Audience & Purpose

Part I

Part II

Part III

Part IV

Appendices

Preface

Personal Portable System Manager (PPSM) is a compact operating system
designed specifically for the DragonBallTM family of the micro-controllers. This
operating system enables most handheld electronic products with LCD displays
such as advanced pagers, advanced cellular phones, game machines, GPS,
instruments, organizers, and Personal Digital Assistants (PDA).

The first three parts of this manual are oriented to those software engineers want-
ing to learn the important "rules" of PPSM programming. Each chapter concen-
trates on a specific aspect of the PPSM Application Programming Interface (API).

The forth part of this manual is oriented to system integrators who are responsible
for building and configuring PPSM systems.

"PPSM Architecture" describes the PPSM environment and architecture.

"Writing PPSM Applications" concentrates on the features supported by PPSM for
application development. Examples are given to better illustrate the methodology.
This part is targeted particularly to beginners who are exploring the use of PPSM
tools. Therefore, the tools in each chapter are arranged in the suggested order of
tools for writing PPSM applications.

"API Toolset" details the usage of each of the tools. This part is targeted particu-
larly to those experienced engineers who are familiar with the PPSM program-
ming methodology. Therefore, the tools in each chapters are arranged in
alphabetical order for quick referencing.

"System Integrator Guide" focuses on assisting the system integrators to build
and configure PPSM system by providing the necessary background information.

At the end of the manual, "Appendices" is included to supplement the manual with
information.

xviii

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Part I
PPSM
Architecture

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Introduction 1-1

Chapter 1 Introduction

1.1 What is PPSM?

Personal Portable System Manager (PPSM) is a compact operating system
designed specifically for the DragonBallTM family of the microcontrollers. This
operating system enables most handheld electronic products with LCD displays
such as advanced pagers, advanced cellular phones, game machines, GPS,
instruments, organizers, and Personal Digital Assistants (PDA).

PPSM is a real time 32-bit kernel with prioritized interrupt scheduling. All tasks are
interrupt-driven, e.g. applications are activated by selecting the corresponding
icons. Because PPSM is written in C, it’s highly portable. It contains thorough,
configurable, and easy to learn toolsets which aid developers in their application
development process.

The PPSM Tools consist of Pen Input, Graphics, Database, Text, Character Input,
System and Communication. Application developers have the freedom to design
a sophisticated User-Interface and to configure DragonBallTM with easy-to-use
API for LCD based products. The PPSM Toolset, together with its Device Drivers,
provides the basic control of the LCD, the drawing functions, the real time clock
and the UART.

The PPSM kernel does not access hardware devices directly. All peripheral
devices are controlled by the kernel indirectly through software device drivers. By
supplying the appropriate device drivers with each peripheral, it gives system
integrators greater flexibility to use various types of hardware devices without
changing the core of the software. Figure 1-1 shows the architecture of PPSM on
the DragonBallTM family platform.

1-2 Introduction

Personal Portable System Manager
Programmer Manual

1.2 Strengths and Features

PPSM is modularly designed to speed the application development cycle time by
shielding the developer from the intricacies of the DragonBallTM hardware and
providing a good toolset for the application software developer to concentrate on
their specific product design. Perfect for handheld devices, PPSM is a resource
effective system which requires very small memory space and is pen-centric.

Strengths:

` SPEEDS up application development cycle time
` COMPACT ROM size perfect for handheld devices
` MODULAR Software Architecture
` PEN-CENTRIC
` Third party applications successfully ported on PPSM such as

MULTILINGUAL HANDWRITING RECOGNITION, SCALABLE and
BITMAP FONTS, Infrared and Email COMMUNICATION.

` Application code is completely DEVICE INDEPENDENT
` Microsoft Windows based ANSI C development tools for RAPID

application development

Features:

` Pen / touch panel input support
` 32-bit Real Time Operating System
` Real Time Interrupt Handling
` Power Management
` 16-bit text data representation for multilingual support

Figure 1-1 Architecture of PPSM on the MC68328 Platform

Application

PPSM kernel

PPSM Tools

Pen Input
Driver

LCD
Driver

PC Card
Driver

IrDA
Driver

FLEXstackTM

Driver

Pen
Input LCD

PC
Card IrDA FLEXTM

DragonBallTM based Portable System

Software

Hardware

Personal Portable System Manager
Programmer Manual

Introduction 1-3

` High Level API Toolsets
` Multiple grey levels and software configurable LCD display support
` LCD hardware cursor and panning support

1.3 Software Development Environment

ANSI C is the main programming language, with M68K assembly language for
implementation of low level routines, such as interrupt, trap vector initialization
and hardware device driver. The development environment is on IBM-compatible
PC running under Windows 3.1 and Windows 95 with SingleStep Compiler/
Debugger, from Software Development Systems, Inc. SingleStep provides source
level and instruction debugging on the hardware target machine, as well as a
simulator running on the host PC.

1.4 Hardware Development Environment

The M68328 and M68EZ328 Application Development System (ADS) is used as
the reference development platform throughout this manual. The A/D convertor
used is a 10-bit component, giving a resolution of 1024 in X and 1024 in Y
direction.

For details on the hardware configuration, please refer to M68328 ADS User
Manual V2.0 and M68EZ328 ADS User Manual V1.1.

1-4 Introduction

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

PPSM System Overview 2-1

Chapter 2 PPSM System Overview

2.1 Interrupt Handling

An application will always be running under the PPSM at any given time. It will
either be the active task, or a suspended task while PPSM is servicing an
interrupt. An application is scheduled out under any one of the following
conditions:

` Interrupt from pen
` Interrupt from a communication device
` Interrupt from power management
` Interrupt from timer
` Interrupt from messages

Application
Execution

Pen Input
Handler

Timer
HandlerHandler

Handler

Communication

Message

Swap Task

Swap Task

Pen Sampling

Power Mode

Pen-down
Detection

A/D

Doze/Sleep
Timer

Interrupt
Device

Interrupt

Message
Passing

Pen
Interrupt

Figure 2-1 Task Execution States

Handwriting
Recognition

Direct Doze/Sleep

2-2 PPSM System Overview

Personal Portable System Manager
Programmer Manual

2.2 Error Handling

Unless otherwise specified, all PPSM tools return PPSM_OK upon successful
completion. A value other than PPSM_OK is the error code, indicating an error
has occurred.

Each error code uniquely defines the cause and nature of the error.

Refer to Appendix A - Error Code Definition for a complete error code listing.

2.3 I/O Devices

This section describes the LCD display screen and the touch sensitive panel.

Figure 2-2 shows the screen format for the PPSM system. There are three major
areas:

` Pen Input Area
` Display Screen
` Panning Screen

Figure 2-2 An example of PPSM V3.0 coordinate system

(0,0)

LCD Panel

(319,239)

(379,259)

(-59,-29) (379,-29)

(-59,259)

(0,239)

(319,0)

LCD Origin

(xInputOrigin, yInputOrigin)

- ve

- ve + ve

+ ve Touch Panel

(xInputMax, yInputMax)

(xLCDMax, yLCDMax)

Administrator
Unless otherwise specified, all PPSM tools return PPSM_OK upon successful
completion.

Personal Portable System Manager
Programmer Manual

PPSM System Overview 2-3

2.3.1 Pen Input

2.3.1.1 Pen Input Area

This is the touch sensitive panel input area. The coordinate system used for the
touch panel is the same as that for the LCD display screen. The reference point,
(0,0) or the origin, is at the top-left corner of the LCD display screen. As you can
see from Figure 2-3, the input coordinates outside of the LCD display screen can
have a negative value. PPSM allows negative coordinates for pen input. This
allows applications to implement features such as off screen icon and off screen
writing area.

If the LCD display screen physical size is exactly the same as the touch panel, all
coordinates from the pen input will always be positive.

2.3.1.2 Active area

An active area is defined as a rectangular region of the pen input area where an
application or an action will execute if the region is pressed. An example of this is
an icon, or an action button.

Active areas are classified into two groups, icon area and input area. Please refer
to Section 4.1 - Active Areafor full details on active area definition.

LCD Display Panel

Origin (0,0)

Negative Coordinates

Positive Coordinates

Touch Panel

Figure 2-3 PPSM Coordinate System

2-4 PPSM System Overview

Personal Portable System Manager
Programmer Manual

2.3.2 Screen Format

2.3.2.1 LCD Display Screen

The display screen is the LCD display area where applications can display
images. The LCD module can handle both 1 bit per pixel and 2 bits per pixel
graphics, giving black and white display or 4 grey levels display respectively.
Display data, such as graphics and text, can only be seen within the display
screen area.

2.3.2.2 Panning Screen

The Panning Screen is an extension to the LCD Display Screen. Its main purpose
is to allow applications to write data to an area outside of the actual display area.
Although applications can write to this area, data will not be displayed on the
screen unless this area is being mapped to the LCD Display Screen. Pen Input
areas on the panning screen will receive pen input data only when they overlap
with the LCD display screen.

2.3.3 Hardware Cursor

The maximum hardware cursor size is 31 pixels wide by 31 pixels high. During
task swapping, the hardware cursor status, size, position and the offset of display
origin on panning screen in current task will be saved and the new task cursor
status, position, size and the offset of display origin on panning screen will be
used.

2.4 Data Storage

Databases are the main means of data storage in PPSM. A set of database tools
is available in PPSM to support data storage and manipulation.

PPSM database are in global database which can be shared among different
tasks.

When a database is created, PPSM will pass back a unique database identifier to
the application. Application will need to use this identifier as the key for
subsequent access to that particular database. A PPSM database does not have
any limit in number of database nor record in database except the memory
limitation in creating these database and record.

The PPSM database tools provides basic operations such as add, delete, modify
and search for particular data. Additional tools are provided to help manipulate the
record list. In particular, the tool DBGetFirstRecID(), DBGetNextRecID(), and
DBGetPrevRecID() are meant to facilitate the implementation of more
sophisticated searching algorithm. The description, calling convention, and
example usage of each database tool will appear in Chapter 7 - Database
Management and Chapter 21 - Database Management Tools

Administrator
The LCD module can handle both 1 bit per pixel and 2 bits per pixel
graphics,

Personal Portable System Manager
Programmer Manual

PPSM System Overview 2-5

2.5 Font Management

PPSM supports 8x10 English, 16x20 English, 16x16 BIG5 Chinese and 16x16 GB
Chinese bitmap fonts, and BIG5 Chinese scalable fonts. The English bitmap fonts
are included in PPSM. The other fonts are provided by third party vendors.
System integrators need to work with third party vendors about the availability of
these fonts.

The font bitmap lookup or generation is handled by a font driver, refer to Section
33.6 - Font Driver (font.c), and is transparent to the applications. Applications gain
access to these fonts for displaying text using the PPSM text tools.

2.6 Memory Management

PPSM provides a set of memory management tools for application to access local
memory space. A heap is managed by PPSM which allows callers to dynamically
allocate memory from the system. When using PPSM, the standard memory tools
provided by the compiler will be disabled.

Four memory management tools are available:

` Lcalloc() memory allocation with initialization with zero
` Lmalloc () memory allocation
` Lrealloc() memory re-allocation
` Lfree() memory release

PPSM also provides a set of memory inquiry tools for application to get the run-
time memory size.

Three memory inquiry tools are available:

` TaskMemUsed() memory used by a task through Lmalloc()
` TotalMemUsed() memory used by the whole system through

Lmalloc()
` TotalMemSize() memory available through Lmalloc()
` TaskStackAvail() stack can be used by the current task

The size of the largest chunk of memory can be allocated through Lmalloc() can
be known by calling Lmalloc(LARGEST_MALLOC_SIZE).

The size of the heap memory depends very much on the amount of memory
available in the hardware system, please refer to Chapter 32 - How to make
ROM? on how memory size is specified in PPSM.

For SingleStep Debugging System (SDS) user, please refer to Chapter 34.3 for
further description in how to set an optimum size for malloc space.

2.7 Power Management

PPSM utilizes the power control module of DragonBallTM to implement a set of
power management tools to achieve system power saving. Applications can

Administrator
The other fonts are provided by third party vendors.

Administrator
dynamically
allocate memory from the system.

2-6 PPSM System Overview

Personal Portable System Manager
Programmer Manual

choose to control the system’s power management features directly, or use the
PPSM’s automatic power management features.

2.7.1 Direct Control

A set of tools provide the applications the ability to directly control the following
during Normal mode:

` switch into any of the power saving modes
` the duty cycle of the processor for each application

2.7.2 Automatic Control

A set of tools are available for the caller to set the parameters for automatic power
management features provided by PPSM:

` to switch automatically to a lower power saving mode when system
is idle

` to control user defined I/O ports during transitions of the power
saving modes

2.8 Task Management

Each application running on PPSM is considered as a task. Only one of these
tasks can be actively running at anytime.

2.8.1 PPSM Tasks

There are two types of PPSM tasks: application task that are stand alone (main
task) and tasks that are spawned off by another task (sub-task).

2.8.1.1 Main Task

Most applications fall into the main task category. Main tasks run independently of
each other. There cannot be more than 1 main task running at anytime. They are
created by the system tool TaskCreate() or AdvTaskCreate(). Once a main task is
created, it can be started in one of the following ways:

` By using the system tool TaskStart()
` By pressing the application icon
` By messages sent by another task

2.8.1.2 Sub-task

Sub-task, on the other hand, can be active at the same time as the parent task
that generated the sub-task. Message passing is possible between the sub-task
and its parent. Sub-task uses the display resource of its parent and can only be
started with the system tool SubTaskCreate().

Sub-tasks are tied to the parent task. If the parent task is swapped out or

Administrator
Only one of these
tasks can be actively running at anytime.

Administrator
There are two types of PPSM tasks: application task that are stand alone (main
task) and tasks that are spawned off by another task (sub-task).

Administrator
TaskCreate()

Administrator
AdvTaskCreate().

Administrator
TaskStart()

Administrator
the application icon

Administrator
messages sent by another task

Administrator
Message passing is possible between the sub-task
and its parent.

Administrator
SubTaskCreate().

Administrator
If the parent task is swapped out or

Personal Portable System Manager
Programmer Manual

PPSM System Overview 2-7

terminated, the sub-task will be swapped out or terminated too. Sub-task inherits
the input pad and panning screen properties from the parent task at creation.

2.8.2 Application State Transition

Application tasks have three states. Figure 2-4 shows the three states of an
application.

` Active
` Suspended
` Stopped

2.8.2.1 Active State

This is the state when an application is actively being accessed by the user. All
hardware resources are available to an active task.

2.8.2.2 Suspended State

An application task is put into suspended state when the kernel is interrupted
during active state execution. The interrupt service routine, running in supervisor
mode, will become the active task. During the active-to-suspended transition, only
the registers that are used by the interrupt handler are saved.

The suspended task will return to active state if no other application is selected,
otherwise it will be put into stopped state.

2.8.2.3 Stopped State

An application changes from suspended state to stopped state when another
application is selected. In this execution state, all registers and application display
bitmap image are stored by the kernel.

A task will exit from the stopped state to active state when the application is re-

Figure 2-4 Application State Transitions

Active

Suspended

Stopped

Interrupt

Application Selected

Interrupt

Return
from

Return
from Interrupt

Application Terminated

Administrator
terminated, the sub-task will be swapped out or terminated too.

Administrator
Sub-task inherits
the input pad and panning screen properties from the parent task at creation.

Administrator
All
hardware resources are available to an active task.

Administrator
the kernel is interrupted

Administrator
supervisor
mode,

Administrator
only
the registers that are used by the interrupt handler are saved.

Administrator
it will be put into stopped state.

Administrator
An application changes from suspended state to stopped state when another
application is selected.

Administrator
all registers and application display
bitmap image are stored by the kernel.

2-8 PPSM System Overview

Personal Portable System Manager
Programmer Manual

selected. It will continue execution from the point when it was put into stopped
state.

2.8.3 Task Swapping

Task swapping is performed by PPSM transparent to the application programmer.
A task swapping is executed when an application, other than the actively running
application, needs to become active. This normally occurs when PPSM kernel
receives an interrupt, such as timer or user pen-down.

For example, when an application icon for a new application is pressed, the task
that is actively running will be put into stopped state and the new task will become
active.

2.9 Timer Management

PPSM maintains a reprogrammable clock that is defaulted to 9:00am 1st of
January, 1997 upon start up. This clock is incremented in 1 second interval and
never stops.

A set of timer tools are available for time management. This allows the
programmer to set system clock, clock alarm, time-out, and input time-out in their
application.

Administrator
reprogrammable clock

Administrator
in 1 second interval

Personal Portable System Manager
Programmer Manual

PPSM Programming 3-1

Chapter 3 PPSM Programming

PPSM programming mainly consists of two parts:

` PPSM initialization and applications integration
` Individual PPSM application programming

3.1 PPSM Initialization and Applications Integration

A PPSM system must first be initialized before any PPSM tools and resources can
be assigned and used. System integrators may choose to integrate multiple
individual PPSM applications into one PPSM system. For example, a simple
PPSM organizer may consist of applications such as address book, calendar,
scheduler and calculator.

Figure 3-1 shows a typical PPSM system start up flow. First, PPSM must be
initialized, then applications to be integrated onto the system must be registered
with PPSM individually. The last step to get the system going is to start the
application which is chosen to run first.

3.1.1 PPSM Initialization

The PPSMInit() tool performs all the internal resources initialization and interrupt

Register Task 1

Figure 3-1 PPSM System Start Up Flow Chart

Start Chosen Task

Initialize PPSM

Register Task 2

Register Task n

.

.

.

Administrator
PPSM initialization and applications integration

Administrator
Individual PPSM application programming

Administrator
First, PPSM must be
initialized, then applications to be integrated onto the system must be registered
with PPSM individually. The last step to get the system going is to start the
application which is chosen to run first.

Administrator
PPSMInit()

3-2 PPSM Programming

Personal Portable System Manager
Programmer Manual

handler assignment. It must be called before any other PPSM tool. As an option, it
can also perform the pen to screen calibration. This should only be done once at
system start-up.

3.1.2 Task Registration

An application is treated as a task in PPSM. After PPSM is initialized, each
application task on the system must be registered with PPSM before the
application can make use of the PPSM tools.

When integrating the individual applications onto the system, the system
integrator must first call one of the task creation tools for each application. There
are two types of tasks, main task or sub task (refer to Section 13.1 - Main Task
and Section 13.2 - Sub-task). This registration of tasks ensures that the run time
memory and stack required for each application are allocated within PPSM’s
memory system.

Associated with each main application task is an optional application launch icon.
This launch icon position on the touch panel can be specified in the task creation
tool. The application is put to the foreground whenever this application icon is
selected by the pen input device.

When writing an application task, the developer can treat each task as a stand
alone procedure as PPSM resources are individually allocated. This
implementation of tasks allow a number of applications to be written
independently and linked together at the end to form a single system.

For details of the task creation tools, please refer to Section 13.7 - Creating a
Task, Section 13.8 - Creating a Task with Specific Task Parameters and Section
13.9 - Creating a Sub Task.

After all applications have been registered, the first application task can be started
by calling the tool TaskStart(). This tool never returns and other applications within
the system will be started when the corresponding application launch icon is
pressed.

3.2 PPSM Application Programming

This section describes the general flow for most applications operating under the
PPSM environment. The typical flow for most PPSM applications is shown in
Figure 3-2. After the application initializes itself and registers icons and draw
areas with PPSM, it would continuously call IrptGetData() to check for incoming
events. When an event occurs, the application would process the event and then
loop back to IrptGetData() to wait for more events.

Administrator
As an option, it
can also perform the pen to screen calibration. This should only be done once at
system start-up.

Administrator
the system
integrator must first call one of the task creation tools for each application.

Administrator
main task or sub task

Administrator
TaskStart().

Administrator
IrptGetData()

Personal Portable System Manager
Programmer Manual

PPSM Programming 3-3

3.2.1 Active Area Registration

PPSM is designed as a pen-centric system. Input from the input panel is through

Initialize other
application specifics

Any
Interrupt

Pending?

Figure 3-2 Application Flow Chart

Call IrptGetData

Is interrupt

IRPT_ICON?

Is interrupt

IRPT_PEN?

Is interrupt

IRPT_XXX?

NO

NO

NO

NO

YES

YES

YES

YES

Process Icon

Process Pen

Process XXX

.

.

.

.

.

.
.
.
.

Register Icons and
Draw Areas

Administrator
PPSM is designed as a pen-centric system.

3-4 PPSM Programming

Personal Portable System Manager
Programmer Manual

regions defined in PPSM as active areas. Active area provides an easy method
for applications to receive pen input samples from the input panel without the
need to monitor the hardware constantly. PPSM uses interrupt to perform pen
sampling, maximizing processor power utilization.

An active area is defined as a rectangular region of the input panel where interrupt
messages are generated to the application when the region is pressed. Active
areas only generate messages to the application that created the area. An
example of an active area is an icon, an action button, scratch pad or drawing
area.

When application needs to perform pen input, it must define the area location and
register each active area with PPSM before the area can respond to a pen input.
All remaining areas on the input panel not registered with PPSM will not generate
any information to the application. For details on active areas and input methods,
please refer to Chapter 4 - Pen Input Handling and Chapter 5 - Character Input
Methods.

3.2.2 Messages from PPSM

PPSM application should take a pro-active role, i.e., an event driven approach.
When external events occur, such as pressing of the input panel, PPSM system
automatically intercepts and interprets the event. If the events require attention
from the application, such as an active area being pressed, or incoming data from
UART, PPSM will package the data in the pre-defined message format and send
to the waiting application interrupt buffer (please refer to Chapter 15 - Interrupt
Handling). However, if the event is not intended for the application, such as
pressing of input panel that is not defined as active area, or timeout for going into
power saving mode, the event is handled by PPSM internally without any
message sent to the application.

Upon receiving soft interrupt messages sent from PPSM, application tasks should
act upon the nature of the message. There are a set of pre-defined messages
types for different types of interrupts (refer to Section 15.1 - System Interrupts and
Section 15.2 - Device Interrupts).

Application tasks can receive the soft interrupt messages by using the system tool
IrptGetData(). The application task should call this tool periodically in the
program flow to check for any incoming events (refer to Section 29.1 -
IrptGetData).

3.3 Data Representation

PPSM is a 32-bit system. Table 3-1 shows the data types used in PPSM

Table 3-1 Data type definition used in PPSM

Data Type Description Size (in bytes)

U8 unsigned byte 1

P_U8 unsigned byte pointer 4

Administrator
PPSM uses interrupt to perform pen
sampling,

Administrator
All remaining areas on the input panel not registered with PPSM will not generate
any information to the application.

Administrator
IrptGetData().

Personal Portable System Manager
Programmer Manual

PPSM Programming 3-5

3.4 Naming Convention

For consistency, a set of guidelines is set up for the naming conventions during
software development. This is not a fixed requirement, but a recommendation.

3.4.1 Procedure

All procedure names are in lower case except the first letter of each word within
the name will be in upper case.

Example 3-1 Procedure names

` PenInit()
` PagerCheck()
` DrawDot()

3.4.2 Constants and Labels

All constants and labels are in upper case, underscores are permitted.

Example 3-2 Constants and labels

` DISPLAY_MODE
` DEFAULT_MODE

S8 signed byte 1

P_S8 signed byte pointer 4

U16 unsigned short 2

P_U16 unsigned short pointer 4

S16 signed short 2

P_S16 signed short pointer 4

U32 unsigned int 4

P_U32 unsigned int pointer 4

S32 signed int 4

P_S32 signed int pointer 4

STATUS unsigned short 2

TEXT unsigned short 2

P_TEXT unsigned short pointer 4

P_VOID void pointer 4

Table 3-1 Data type definition used in PPSM

Data Type Description Size (in bytes)

3-6 PPSM Programming

Personal Portable System Manager
Programmer Manual

` OK
` UNKNOWN

3.4.3 Local Variables

All local variables start with lower case, with capitalised words in the variable
names. There are no underscores between words.

Example 3-3 Local variable names

` xPos
` yPos
` dataLen
` temp
` rate

3.4.4 Global Variables

Same as local variables, except that all global variable names starts with a lower
case ?

Example 3-4 Global variable names

` gCurrentTask
` gIrptMask
` gSystemClock

3.4.5 Local Pointer Variables

All local pointer variables start with a lower case ? with capitalised words in the
variable names. There are no underscores between words.

Example 3-5 Local pointer variable names

` pSourceAddr
` pDestAddr
` pTaskTable
` pReturnSize

3.4.6 Global Pointer Variables

Same as local pointer variables, except that all global variable names starts with a
lower case p`

Example 3-6 Global pointer variable names

` gpSysList
` gpPhoneBook
` gpSrcMem

Administrator
There are no underscores between words.

Administrator
with a lower
case ?

Administrator
There are no underscores between words.

Personal Portable System Manager
Programmer Manual

Part II
Writing
PPSM
Applications

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Pen Input Handling 4-1

Chapter 4 Pen Input Handling

The Pen Input Tools enable application to:

` define active areas to control pen input
` control ink echoing

Refer to Section 6.2.2 - Screen Resolution.

4.1 Active Area

Active area provides an easy method for applications to receive pen input
samples from the touch panel without the need to monitor the hardware
constantly. PPSM uses interrupt to perform pen sampling, maximizing processor
utilization.

An active area is defined as a rectangular region of the touch panel where
interrupt messages are generated to the creator task when the region is pressed.
An example of this is an icon, an action button, scratch pad or drawing area.

Active areas are only "active" for the task which the pen down has occurred until
the corresponding pen up. For example, a main task created active areas "A" and
"B", and one of its sub-task(Chapter 13 - Task Management) created active areas
"C" and "D". When a user taps on active area "A"(i.e. a pen down on "A"), only
active areas "A" and "B", but not "C" nor "D", will receive messages if the pen
moves across them. By the same token, if pen down is made on "C", only "C" and
"D" will receive messages.

If active areas are overlapping, only the active areas of current task will be able to
receive pen messages.

There are two types of active areas, icon area and input area. Input area types
have three different modes of operation.

4.1.1 Icon Area

Icon area is for the purpose of selection only. When an icon area is pressed,
either from a pen-down or drag in from another area on the touch panel, PPSM
generates a soft interrupt and returns the active area identifier to the application.

Type Mode Description

ICON_AREA N/A Icon area has only one mode

INPUT_AREA STROKE_MODE Stroke input mode

CONTINUOUS_MODE Pen position sampling mode

CONFINED_MODE Strokes confined within the area

Administrator
define active areas to control pen input

Administrator
control ink echoing

Administrator
interrupt messages are generated to the creator task when the region is pressed.

Administrator
If active areas are overlapping, only the active areas of current task will be able to
receive pen messages.

Administrator
soft interrupt

Administrator
active area identifier

4-2 Pen Input Handling

Personal Portable System Manager
Programmer Manual

Upon release, either by pen-up or drag out of the area into another part of the
touch panel, another soft interrupt is sent to the application to notify the user of the
event. This type of area is designed for buttons and selection icons.

4.1.2 Input Area

Input area is an area where writing or drawing is performed. Once defined, PPSM
will monitor the area with the given pen input characteristics such as sampling
rate, pen echoing and pen position sampling. Pen echoing is programmable.
Three modes of operation are available for this type of area, STROKE,
CONFINED or CONTINUOUS.

4.1.2.1 Stroke Mode

Drawing on STROKE type of input area will produce a list of the x and y
coordinate integers to the application at the end of the drawing input sequence,
usually with a pen-up. This list consists of all points of that single stroke from the
pen-input device. When the pen leaves the active area, or pen-up is detected,
then the stroke data ends.

4.1.2.2 Confined Mode

CONFINED mode is very much like STROKE mode excepts that when the pen
input moves out of the defined active area, the coordinates for those points
outside the region are truncated to the value defined by the boundary of the active
area. This means a stroke will not be broken until pen-up is detected.

4.1.2.3 Continuous Mode

Drawing on CONTINUOUS type of input area will continuously produce individual
x and y coordinates to the application as the pen moves across the pen input
panel. With this type of input, soft interrupt is generated for each individual point.
The last input point will be a set of (-1, -1) for pen-up. Developers using this type
of area must ensure the soft interrupts are acknowledged as their number can be
very significant.

4.2 Creating an Active Area.

STATUS ActiveAreaEnable(P _U32 areaId, U32 type, U32 mode, S16 xSrc,
S16 ySrc, S16 xDest, S16 yDest)

This tool creates a new active area for reading pen input. It returns an identifier of
the new area to the caller. Once created, the new active area identifier will be
returned to the application.

The argument type is used to specify whether an icon area or an input area is
required. Mode specifies the input mode for input area.

Example 4-1 Create an active area

49 U32 nextWinId;/* NextWin’s id */
.

Administrator
STATUS ActiveAreaEnable(P _U32 areaId, U32 type, U32 mode, S16 xSrc,
S16 ySrc, S16 xDest, S16 yDest)

Personal Portable System Manager
Programmer Manual

Pen Input Handling 4-3

.

.
104 /* Create an active area for the NextWin icon with the coordinates
105 * as specified below.
106 */
107
108 if (ActiveAreaEnable(&nextWinId, ICON_AREA, 0, NEXT_WIN_XSRC,
109 NEXT_WIN_YSRC, NEXT_WIN_XDEST, NEXT_WIN_YDEST)
110 != PPSM_OK)
111 return PPSM_ERROR;
112

4.3 Removing an Active Area

STATUS ActiveAreaDisable(U32 areaId)

Removes a valid active area from the application. The argument supplied into this
tool must be a valid active area identifier that was generated by the
ActiveAreaEnable tool.

Once removed, the region of touch panel that was previously defined by the
identifier will no longer respond to pen input.

Example 4-2 Remove an active area

74 U32 backId;
.
.
.

262 if (ActiveAreaDisable(backId) != PPSM_OK)
263 return (PPSM_ERROR);

4.4 Suspending an Active Area

STATUS ActiveAreaSuspend(U32 areaId, U32 flag)

Activate or deactivate a valid active area. Once an active area has been created,
it can be suspended from pen input response at anytime.

To suspend, call this tool with the AREA_SUSPEND flag. Once suspended, the
active area no longer sends out interrupt messages to the application when
writing in the region.

To re-enable the active area, simply call this tool with the AREA_REENABLE flag.

Example 4-3 Suspend an active area

if ((rv = ActiveAreaSuspend(iconId, AREA_SUSPEND))
{ /* error */

return (rv);
}

Example 4-4 Re-enable an active area

if ((rv = ActiveAreaSuspend(iconId, AREA_REENABLE))
{ /* error */

return (rv);
}

Administrator
STATUS ActiveAreaDisable(U32 areaId)

Administrator
a valid active area

Administrator
AREA_SUSPEND

Administrator
Suspending

Administrator
AREA_REENABLE

4-4 Pen Input Handling

Personal Portable System Manager
Programmer Manual

4.5 Active Area Enquiry

STATUS ActiveAreaRead(U32 areaId, P_S16 xSrc, P_S16 ySrc, P_S16
xDest, P_S16 yDest)

Given a valid active area identifier, this tool will return to the caller the coordinates
of the active area.

Example 4-5 Enquire coordinates of the active area

85 U32 id, size;
86 P_U16 inData;
87 S16 xSrc, ySrc, xDest, yDest;

.

.

.
180 ActiveAreaRead(id, &xSrc, &ySrc, &xDest, &yDest);

4.6 Put Active Area to Front of List

STATUS ActiveAreaToFront(U32 areaId)

Given the active area identifier, this tool will extract the element from the active
area linked list and insert the element at the front of the list.

Once the element is at the front of the list, it will be the active area to receive pen
input if there are other active areas that overlaps the same physical area.

4.7 Pen Echoing

STATUS AreaEchoEnable(U32 areaId)

STATUS AreaEchoDisable(U32 areaId)

For input active areas, echoing can be disabled. By default, ink echoing is
enabled when input active areas are created. The argument to both tools must be
valid active area identifier generated from ActvieAreaEnable tool.

4.8 Pen Color and Pen Size

STATUS PenEchoParam(U16 echoCol, U16 echoWidth)

PPSM allows the application developer to set the echoing pen width and echo pen
color. This tool only sets the echoing property of the calling task, and will not affect
other applications within the system.

4.9 Creating a Control Active Area

STATUS CtrlIconEnable(P_U32 iconId, S16 xSrc, S16 ySrc, U16 iconType)

A pre-defined group of direction control icons are available in PPSM for the

Administrator
Given a valid active area identifier, this tool will return to the caller the coordinates
of the active area.

Administrator
Given the active area identifier, this tool will extract the element from the active
area linked list and insert the element at the front of the list.

Administrator
This tool only sets the echoing property of the calling task, and will not affect
other applications within the system.

Administrator
A pre-defined group of direction control icons are available in PPSM for the

Personal Portable System Manager
Programmer Manual

Pen Input Handling 4-5

purpose of scrolling. They are basically icon areas with specific bitmaps mapped
to the icon area. Two sets of icons are defined; 8x8 icons and 16x16 icons.

An identifier is returned to the caller for the new control icon.

Example 4-6 Create a control active area

80 U32 sendButton, rcvButton, abortSend, abortRcv;
.
.
.

102 /* create control buttons with UP/DOWN ARROW and DONE */
103 if (CtrlIconEnable(&sendButton, BUTTON_X, BUTTON_Y, PPSM_ICON_16_UP)
104 != PPSM_OK)
105 return (PPSM_ERROR);
106
107 if (CtrlIconEnable(&abortSend, BUTTON_X+20, BUTTON_Y, PPSM_ICON_16_DONE)
108 != PPSM_OK)
109 return (PPSM_ERROR);
110
111 if (CtrlIconEnable(&rcvButton, BUTTON_X, BUTTON_Y+30, PPSM_ICON_16_DOWN)
112 != PPSM_OK)
113 return (PPSM_ERROR);

Icon Type Description

PPSM_ICON_8_UP 8 x 8 icon with up arrow bitmap

PPSM_ICON_8_DOWN 8 x 8 icon with down arrow bitmap

PPSM_ICON_8_LEFT 8 x 8 icon with left arrow bitmap

PPSM_ICON_8_RIGHT 8 x 8 icon with right arrow bitmap

PPSM_ICON_8_DONE 8 x 16 icon with rectangle bitmap

PPSM_ICON_16_UP 16 x 16 icon with up arrow bitmap

PPSM_ICON_16_DOWN 16 x 16 icon with down arrow bitmap

PPSM_ICON_16_LEFT 16 x 16 icon with left arrow bitmap

PPSM_ICON_16_RIGHT 16 x 16 icon with right arrow bitmap

PPSM_ICON_16_DONE 16 x 32 icon with rectangle bitmap

Figure 4-1 Control Icon bitmaps

Administrator
purpose of scrolling.

4-6 Pen Input Handling

Personal Portable System Manager
Programmer Manual

114 if (CtrlIconEnable(&abortRcv, BUTTON_X+20, BUTTON_Y+30, PPSM_ICON_16_DONE)
115 != PPSM_OK)
116 return (PPSM_ERROR);

4.10 Removing a Control Active Area

STATUS CtrlIconDisable(U32 iconId)

Remove the control icon from PPSM. This will remove the icon and the icon will
no longer generate icon interrupt to the application.

4.11 Push Active Area List into Background

STATUS ActiveListPush(void)

PPSM maintains a stack for storing active area lists. When this tool is called, all
the active areas that have been created so far will be pushed into background,
and a new list begins. A new list has no element by default. Subsequent active
area created will belong to the new active list.

This tool allow applications to create a temporary active area list, and return to the
original active areas when the temporary list is no longer required.

Example 4-7 Push active area list into background

/* Push all existing active areas to background */
If (rv = ActiveListPush())
{ /* error */

return (rv);
}

/* create new set of active areas */
GenerateNew();

/* Call subroutine */
ScratchPad();

/* restore original active areas */
if (rv = ActiveListPop())
{ /* error */

return (rv);
}

4.12 Pop Active Area List to Foreground

STATUS ActiveListPop(void)

PPSM maintains a stack for storing active area lists. When this tool is called, the
least recently pushed in active area list becomes the current active area list. This
tool must be called after an ActiveListPush() call has been made previously.
Otherwise, an error will be returned.

Administrator
PPSM maintains a stack for storing active area lists.

Administrator
pushed into background,

Administrator
a new list begins.

Administrator
A new list has no element by default.

Administrator
Subsequent active
area created will belong to the new active list.

Administrator
This tool allow applications to create a temporary active area list, and return to the
original active areas when the temporary list is no longer required.

Administrator
This
tool must be called after an ActiveListPush() call has been made previously.

Personal Portable System Manager
Programmer Manual

Character Input Methods 5-1

Chapter 5 Character Input Methods

PPSM supports two types of input methods for applications to receive character
input from the user. There is a soft keyboard for typed English character and
numeric input, and an input pad for handwritten character input. The input pad will
support any coded language that the handwriting recognition engine supports.

This chapter describes the mechanism of the input methods and the Character
Input Tools provided by PPSM to support them.

5.1 Soft Keyboard

A default QWERTY soft keyboard with key size of 15x15 pixels can be opened at
any position within the panning screen. There are two soft keyboard layouts: one
for upper case letters and numbers (refer to Figure 5-1); the other for lower case
letters and symbols (refer to Figure 5-2). The user can toggle between the two
layouts by pressing one of the SHIFT buttons.

As an alternative, an user may define its own keyboard with required number of
column and row in number of keys, key width and height in number of pixels, user
defined return keycode and the bitmap needed to be used for the soft keyboard.

1 2 3 4 5 6 7 8 9 0
Q W E R T Y U I O P
A S D F G H J K L BACK

SHIFT Z X C V B N M RET

Figure 5-1 Upper Case Soft Keyboard Layout

Figure 5-2 Lower Case Soft Keyboard Layout

SHIFT z x c v b n m RET

a s d f g h j k l BACK

q w e r t y u i o p
! @ # $ & ; : * , .

Administrator
a soft keyboard

Administrator
input pad

Administrator
handwriting recognition engine supports.

Administrator
one
for upper case letters and numbers (refer to Figure 5-1); the other for lower case
letters and symbols (refer to Figure 5-2).

Administrator
the bitmap needed to be used for the soft keyboard.

5-2 Character Input Methods

Personal Portable System Manager
Programmer Manual

For both of the above keyboards, together with the keycode, the coordinate (S16,
S16) of the pen on the key is also returned to users.

Only one soft keyboard can be opened within each task.

5.1.1 Starting Soft Keyboard Character Input

STATUS OpenSoftKey(U16 xPos, U16 yPos)

OpenSoftKey() opens the soft, or pseudo, keyboard input module. A soft
keyboard (as shown in Figure 5-1 above) is drawn on the panning screen, with its
upper-left corner position specified by the caller. When this function is called,
PPSM saves the display area covered by the soft keyboard and monitors the input
keys automatically. The soft keyboard is now ready for user input.

When the user presses a key on the soft keyboard, the ASCII code for that key will
be returned to the calling application by way of IRPT_KEY messages when the
application calls IrptGetData(). (Refer to Section 29.1 - IrptGetData). One
IRPT_KEY interrupt message is generated for each key pressed by the user. The
ASCII code returned is of type TEXT, i.e. 2-byte format with zero extended in high
byte.

Example 5-1 Open soft keyboard for input

118 /* open soft keyboard for input */
119 if (OpenSoftKey(KEYBD_X, KEYBD_Y) != PPSM_OK)
120 return (PPSM_ERROR);

STATUS AdvOpenSoftKey(U16 xPos, U16 yPos, U16 keyWidth, U16
keyHeight, U16 numCol, U16 numRow, P_U16 keyMap, P_U8
bitmap)

AdvOpenSoftKey() opens the soft keyboard input module with advanced
configurable details.

` Location of the soft keyboard
` Width and height of the keys in number of pixels
` Number of rows and columns of keys
` The return code of each key (keycode)
` The bitmap user interface for the soft keyboard

The return codes are defined in an array(keymap). The order of the keys in the
array is from top left key across to the right, then next row and so on, until the
bottom right key. The contents of this array should not be changed after
AdvOpenSoftKey() has been called. The bitmap has to be either a NULL pointer
or it must fit to cover the entire soft keyboard area. Hence, the width and height of
this soft keyboard must be (keyWidth*numCol) and (keyHeight*numRow) in
number of pixels. For the NULL pointer case, it will not draw anything on the
screen.

Example 5-2 Open soft keyboard for input

/* 7, 8, 9, 4, 5, 6, 1, 2, 3, *, 0, # */
static const U16 keyMap[] = {55, 56, 57 ,52, 53, 54, 49, 50, 51, 42, 48, 35};

Administrator
the coordinate (S16,
S16) of the pen on the key is also returned to users.

Administrator
Only one soft keyboard can be opened within each task.

Administrator
IRPT_KEY

Administrator
TEXT,

Administrator
The order of the keys in the
array is from top left key across to the right,

Administrator
then next row and so on,

Administrator
The bitmap has to be either a NULL pointer
or it must fit to cover the entire soft keyboard area.

Personal Portable System Manager
Programmer Manual

Character Input Methods 5-3

/* open user specified soft keyboard for input like below */
/* with 10x10 key size and 3 col. x 4 rows. */
/* 7 8 9 */
/* 4 5 6 */
/* 1 2 3 */
/* * 0 # */
if (AdvOpenSoftKey(KEYBD_X, KEYBD_Y, 10, 10, 3, 4, (P_U16)keyMap, bitMap) != PPSM_OK)

return (PPSM_ERROR);

5.1.2 Auto-Key-Repeat

Continually pressing a key would result in auto-key-repeat. The time between the
first and second returned key is called AUTO_REPEAT_LIMIT. It is currently set
to be 20. The time duration between returned keys after the second one is called
AUTO_REPEAT_RATE. It is 5. They are actually the number of pen sampling
tick. For example, a 32Hz pen sampling would result in the second key after 20/32
sec, then, for every 5/32 sec each.

5.1.3 Terminating Soft Keyboard Character Input

STATUS CloseSoftKey(void)

CloseSoftKey() closes the soft keyboard which is opened by either OpenSoftKey()
or AdvOpenSoftKey(). PPSM will restore the display area that was covered by the
soft keyboard automatically.

5.1.4 Suspend Soft Keyboard Character Input

STATUS ActiveListPop(void)

STATUS ActiveListPush(void)

ActiveListPush() pushes the current active area list and the soft keyboard of the
current task into background. ActiveListPop() pops the top background active list
and soft keyboard of the current task from the active area stack. The active list
that is currently being used is destroyed, replaced by the top background active
list. For more details, please see Section 4.1 - Active Area.

Example 5-3 Display characters received from soft keyboard

if (rv = OpenSoftKey(50, 50))
{ /* error */

return (rv);
}
while (running)
{

switch(IrptGetData((P_U32)&id, (P_U32*)&inData, (P_U32)&size))
{

/* Any key pressed */
case IRPT_KEY:

/* User writing in soft keyboard */
DisplayKey((U16) (size >> 1), (P_U16)inData);

/* (x, y) store the position of the key being pressed */
x=*(++inData);
y=*(++inData);
DisplayXY(x, y);

Administrator
AUTO_REPEAT_LIMIT.

Administrator
AUTO_REPEAT_RATE.

Administrator
PPSM will restore the display area that was covered by the
soft keyboard automatically.

5-4 Character Input Methods

Personal Portable System Manager
Programmer Manual

break;
/* Close keyboard icon selected */
case IRPT_ICON:

if (id == CloseIconId)
CloseSoftKey();
break;

 /* no more interrupt */
default:

break;
} /* switch */

} /* while */

5.2 Handwriting Recognition Input Pad

The handwriting recognition input pad consists of a number of square boxes in a
row by column format layout (refer to Figure 5-3).

It serves as an interface between the user and the underlying handwriting
recognition engine. It captures the stroke data generated from the user
handwriting input, and passes these data to the handwriting recognition engine for
processing. (Refer to Figure 5-4 for the flow of input and output data passing
through the input pad).

Figure 5-3 An Example Input Pad with 1 row by 4 columns layout

Personal Portable System Manager
Programmer Manual

Character Input Methods 5-5

5.2.1 The Input Pad Mechanism

The user writes a character within an input box to input it into the system. The
system proceeds to recognize a character when the user starts writing in a
different box, or when a predefined time has passed since the user lifts the pen,
whichever occurs first. The characters are recognized in the order they are
entered, independent of the box location. The application must define its own
mechanism to determine when character input is finished and close the input pad
(e.g. the user clicks on a close input pad button created by the application).

The input pad is a subtask. Once it is opened, handwriting recognition interrupt
messages, IRPT_HWR, are generated to its main task when characters are being
recognized. Each individual recognized character generates an individual
IRPT_HWR interrupt message. Through this interrupt message, the system
returns the recognized character candidates to the main task which opened the
input pad. (Refer to Section 15.1.8 - IRPT_HWR).

Only ONE instance of the input pad is supported per main task(ie. shared among
parent and sub-tasks). If the user opened an input pad in one of the tasks, an
attempt to open the input pad in any other task in its parent/sub-tasks chain would
fail. If the user switches to another task chain while an input pad has been opened
in the current task. The handwriting recognition engine is reset and the input box
area is cleaned if the areaClean(see below) flag has been set to be 1 (TRUE).

5.2.2 Starting Handwriting Character Input

STATUS OpenInputPad(U16 xPos, U16 yPos, U16 numRow, U16 numCol,
U16 areaSize)

An application can open the input pad anywhere within the panning screen. The

Handwriting
Recognition
Engine

User handwriting

Stroke data

Character candidates

Application
PPSM

Input Pad

Open/Close

Character candidates
and error code

Figure 5-4 Data flow of Handwriting Recognition Input

5-6 Character Input Methods

Personal Portable System Manager
Programmer Manual

application needs to specify the xy-coordinate of the upper left corner of the input
pad, the number of rows and columns of input boxes, and the size of each input
box (in units of pixel). If the input pad is not already opened by another application
and that the specified layout fits within the panning screen, it will be displayed at
the specified location ready for user input.

The area of the panning screen covered by the input pad is saved at the time this
function is called. Any changes to this covered area by the application after this
function is called will not be recorded by the system.

The default length of timeout for OpenInputPad() after the last stroke is 1sec.

STATUS AdvOpenInputPad(U16 xPos, U16 yPos, U16 numRow, U16
numCol, U16 areaWidth, U16 areaHeight, U16 echoCol, U16
echoWidth, U32 timeOut, U16 samplingRate, U8 areaClean, U16
stackSize)

AdvOpenInputPad is similar to the tool OpenInputPad but with advanced
configurable details. It allows the caller to specify:

` position of the input pad
` number of rows and columns of input boxes
` the width and the height of the input boxes
` the echo ink colour and dot width
` the length of time out after a stroke(no more than 1sec)
` the sampling rate of the pen
` if the system should clean the input box for the user after each

character is written
` the stack size for the input pad subtask

5.2.3 Terminating Handwriting Character Input

STATUS CloseInputPad(void)

CloseInputPad() closes the input pad that has been opened either by
OpenInputPad() or AdvOpenInputPad(). After it is closed, no more handwriting
recognition messages will be generated from the system to the application. The
original image covered by the input pad is restored by the system if the areaClean
flag has been set to be 1(TRUE) before.

Example 5-4 Display characters receive from Input Pad

/* open an input pad at location (50, 50) that has 1 row of 4 boxes with the boxes
being 64x64 pixels each */

if (rv = OpenInputPad(50, 50, 1, 4, 64))
{ /* error */

return (rv);
}
while (running)
{

switch(IrptGetData((P_U32)&id, (P_U32*)&inData, (P_U32)&size))
{

/* Any icon pressed or handwritten character input */

Personal Portable System Manager
Programmer Manual

Character Input Methods 5-7

case IRPT_HWR:
/* Code here to handle the IRPT_HWR interrupt to receive the

recognized character candidates from the system */
DisplayKey((U16) (size >> 1), (P_U8)inData);
break;

/* Close keyboard icon selected */
case IRPT_ICON:

if (id == CloseIconId)
CloseInputPad();

break;
 /* no more interrupt */

break;
} /* switch */
} /* while */

5-8 Character Input Methods

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-1

Chapter 6 Using Graphics Tools

PPSM supports LCD modules with capabilities such as multiple grey levels,
hardware cursor, hardware panning and software configurable display size.

The Graphics Tools enable applications to:

` draw lines and shapes (e.g. dotted line, circle, etc.)
` display and manipulate bitmap images
` swap bitmap images
` control and restore bitmap images
` control hardware cursor
` set grey levels
` get information about the LCD display screen and panning screen.
` change the panning screen size
` direct all drawing effect to memory area apart from panning screen

area
` hardware cursor in inverse and/or blinking mode
` allocate memory for panning screen
` set dot width in pixels for drawing dot, line, rectangle, circle, ellipse,

arc and vector
` set pattern fill mode for drawing rectangle, circle, ellipse and arc
` draw vector by connecting consecutive points in a list

This chapter will describe the display screen format, graphics routines and
hardware cursor control provided by PPSM.

6-2 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

6.1 Display Screen Format

Figure 6-1 shows the general screen architecture for the PPSM system. There are
three major areas:

` Pen Input Area
` LCD Display Screen
` Panning Display Screen

6.1.1 LCD Display Screen

The Display Screen is the region of the LCD display where applications can
display output data. Its size will depend on manufacturer, e.g. 320 pixels wide by
200 pixels high or 320 pixels wide by 240 pixels high, etc.

The LCD module is capable of 1 bit per pixel or 2 bits per pixel output, giving 2
grey levels or 4 grey levels respectively. Hence, there are WHITE and BLACK for
1 bit per pixel and WHITE, LIGHT_GREY, DARK_GREY and BLACK for 2 bits per

Figure 6-1 Generic Screen Format

LCD Display Panel

Origin (0,0)

Negative Coordinates

Positive Coordinates

Touch Panel

Administrator
Hence, there are WHITE and BLACK for
1 bit per pixel and WHITE, LIGHT_GREY, DARK_GREY and BLACK for 2 bits per

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-3

pixel.

The reference coordinate point for the LCD Display Screen is at the top left
corner, the Display Origin. This has the values of (0, 0) initially. Coordinates
associated with the LCD Screen are referred to as the display coordinates.

6.1.2 Panning Display Screen

The Panning Screen is an extension to the LCD Display Screen. Its main purpose
is to allow applications to write data to an area outside of the actual display area.
Although applications can write to this area, data will not be displayed on the
screen unless this area is being mapped to the LCD Display Screen. Pen Input
areas on the panning screen will receive pen input data only when they overlap
with the LCD display screen.

Panning Screen has a similar coordinate system as the LCD Display Screen with
different origin. It is configurable but limited by the following:

` The maximum memory size for a panning screen is limited to 64K
byte.

` In 1 bit per pixel mode, the width of the panning screen must be
divisible by 16 and limited to a maximum of 4096 pixels. In 2 bits
per pixel mode, the width must be divisible by 8 and limited to a
maximum of 2048 pixels.

` The height of the display is only limited by the amount of memory
that is available for a given width.

6.2 Screen Initialization

Because every hardware system will not be identical, a screen initialization
procedure is required when PPSM is first activated. This is essential for the
calibration of the alignment between the pen input device and LCD display
screen.

Screen initialization is implemented when PPSMInit() is called.

Example 6-1 Initialize screen through PPSMInit()

57 main()
58 {

.

.

.
62 /* Initialize PPSM with pen calibration */
63 PPSMInit(TRUE);

6.2.1 LCD Display Screen in relation to the Touch Panel

The touch panel can be larger than the LCD Display Screen. However, the PPSM
tools will only return LCD display screen coordinate. When a pen is touching
outside the LCD display region, the display coordinate returned may be negative
or even greater than the display screen size.

Administrator
This is essential for the
calibration of the alignment between the pen input device and LCD display
screen.

Administrator
Screen initialization is implemented when PPSMInit() is called.

Administrator
the display coordinate returned may be negative
or even greater than the display screen size.

6-4 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

6.2.2 Screen Resolution

LCD display screen resolution is the number of pixels that are available on the
hardware. This is normally a fixed figure for each LCD hardware panel. The touch
panel resolution must be equal to or greater than the LCD resolution or the pen
cannot point at every pixel of the LCD display.

6.3 Sample LCD Display Screen

The following two figures show example systems used by the M68328ADS
hardware platform.

The LCD Display Screen area has two sizes, 320 pixels wide by 240 pixels high
and 320 pixels wide by 200 pixels high. The touch panel resolution is 1024x1024.

Figure 6-2 320x240 LCD Panel with a larger touch panel

320 pixels

240
pixels

Pen Input Area

Graphics & Text

X pixels

Y

pixels

For

Panning Screen

Display Origin (0,0)
Input Origin (0,0)

(319, 239)
Display coordinate

LCD Display Screen

Panning Screen Origin (0,0)

340 pixels

Input coordinate (1023,1023)

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-5

6.4 1 bit-per-pixel Graphics

The graphics routines will handle drawing of BLACK and WHITE pixels on the
panning screen.

The byte and bit within byte ordering are both in big-endian format. For example:

The above image will be represented by 1000101010001000 in binary and
0x8A88 in hexadecimal.

Figure 6-3 320x200 LCD Panel with a same size touch panel

320 pixels

200
pixels

Pen Input Area

Graphics & Text

X pixels

Y

pixels

For

Panning Screen

Display Origin (0,0)
Input Origin (0,0)

(319, 199)
Display coordinate

LCD Display Screen

Panning Screen Origin (0,0)

Input coordinate (1023,1023)

BLACK (1) WHITE (0)

 1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 0

6-6 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

6.4.1 Drawing Operators

PPSM supports drawing operators in DrawDot(), DrawHorz(), DrawVert(),
DrawLine(), DrawCircle(), DrawEllipse(), DrawArc(), DrawVector(), DrawRec(),
PutRec(), and ClearRec().

The following tables show the grey level result of a pixel after a drawing operator
is applied.

X is the existing grey level on the screen. Y is the grey level to be put on screen
and R is the final grey level on screen after implementation.

AND_STYLE

OR_STYLE

EXOR_STYLE

Table 6-1 R = X AND Y

X Y R

0 0 0

1 0 0

0 1 0

1 1 1

Table 6-2 R = X OR Y

X Y R

0 0 0

1 0 1

0 1 1

1 1 1

Table 6-3 R = X EXOR Y

X Y R

0 0 0

1 0 1

0 1 1

1 1 0

Administrator
The following tables show the grey level result of a pixel after a drawing operator
is applied.

Administrator
AND_STYLE

Administrator
OR_STYLE

Administrator
EXOR_STYLE

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-7

REPLACE_STYLE

INVERT_STYLE

6.5 2 bits-per-pixel Graphics

The graphics routine will handle drawing of 4 grey levels: WHITE, LIGHT GREY,
DARK GREY and BLACK.

The byte and bit within byte ordering are both in big-endian format. For example:

The above image will be represented by 11010000100011001100010010000000
in binary and 0xD08CC480 in hexadecimal.

6.5.1 Drawing Operators

PPSM supports drawing operators in DrawDot(), DrawHorz(), DrawVert(),
DrawLine(), DrawCircle(), DrawEllipse(), DrawArc(), DrawVector(), DrawRec(),

Table 6-4 R = Y

X Y R

0 0 0

1 0 0

0 1 1

1 1 1

Table 6-5 R = NOT X

X R

0 1

1 0

BLACK (11) DARK GREY (10)

LIGHT GREY (01) WHITE (00)

11 01 00 00 10 00 11 00 11 00 01 00 10 00 00 00

Administrator
REPLACE_STYLE

Administrator
INVERT_STYLE

6-8 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

PutRec(), and ClearRec().

The following tables show the grey level result of a pixel after a drawing operator
is applied.

X is the existing grey level on the screen. Y is the grey level to be put on screen
and R is the final grey level on screen after implementation.

AND_STYLE

OR_STYLE

Table 6-6 R = X AND Y

X Y R

00 00 00

01 00 00

10 00 00

11 00 00

00 01 00

01 01 01

10 01 00

11 01 01

00 10 00

01 10 00

10 10 10

11 10 10

00 11 00

01 11 01

10 11 10

11 11 11

Table 6-7 R = X OR Y

X Y R

00 00 00

01 00 01

10 00 10

11 00 11

00 01 01

Administrator
AND_STYLE

Administrator
OR_STYLE

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-9

EXOR_STYLE

01 01 01

10 01 11

11 01 11

00 10 10

01 10 11

10 10 10

11 10 11

00 11 11

01 11 11

10 11 11

11 11 11

Table 6-8 R = X EXOR Y

X Y R

00 00 00

01 00 01

10 00 10

11 00 11

00 01 01

01 01 00

10 01 11

11 01 10

00 10 10

01 10 11

10 10 00

11 10 01

00 11 11

01 11 10

10 11 01

11 11 00

Table 6-7 R = X OR Y

X Y R

Administrator
EXOR_STYLE

6-10 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

REPLACE_STYLE

INVERT_STYLE

6.6 Graphics Tools

The following sections explain each graphics tool with examples.

Top left corner of the panning screen is (0, 0) which is the panning screen origin.
Top left corner of the LCD display screen is an offset from the panning screen

Table 6-9 R = Y

X Y R

00 00 00

01 00 00

10 00 00

11 00 00

00 01 01

01 01 01

10 01 01

11 01 01

00 10 10

01 10 10

10 10 10

11 10 10

00 11 11

01 11 11

10 11 11

11 11 11

Table 6-10 R = NOT X

X R

00 11

01 10

10 01

11 00

Administrator
REPLACE_STYLE

Administrator
INVERT_STYLE

Administrator
Top left corner of the panning screen is (0, 0) which is the panning screen origin.

Administrator
Top left corner of the LCD display screen is an offset from the panning screen

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-11

origin. All co-ordinates given to the graphics routines are referred to the panning
screen origin. There is no negative co-ordinate for panning screen.

Some of the graphics routines need to draw dotted line where one of the
argument in calling the routine specifying the length of the dot, e.g. 5 means
drawing 5 dots with specifying grey level and then skipping 5 dots and so on.
Those graphics routines providing dotted line function are DrawHorz(),
DrawVert(), DrawLine() and DrawRec().

DrawDot(), DrawHorz(), DrawVert(), DrawLine(), DrawRec(), DrawCircle(),
DrawEllipse(), DrawArc(), ClearRec() and PutRec() provides function of style
which is described above as OR_STYLE, EXOR_STYLE, AND_STYLE, etc.

For all the following examples in this chapter, the panning screen size is 640x480,
LCD display screen size is 320x240 and the LCD display origin is at an offset of
(50, 50) from panning screen origin.

6.7 Get LCD Display Screen Width

U16 GetDisplayX(void)

GetDisplayX() returns to the caller the physical width, in terms of pixels, of the
LCD display panel being used.

When writing an application, this routine should be used instead of using specific
numbers for the width of the LCD display screen as it will make the code more
flexible to run on different LCD panels.

6.8 Get LCD Display Screen Height

U16 GetDisplayY(void)

GetDisplayY() returns to the caller the physical height, in terms of pixels, of the
LCD display panel being used.

When writing an application, this routine should be used instead of using specific
numbers for the height of the LCD display as it will make the code more flexible to
run on different LCD panels.

Example 6-2 Get LCD display screen width and height

362 STATUS DrawTextIcon(P_U32 areaId, U16 xSrc, U16 ySrc, U16 width, U16 height,
363 U16 font, P_TEXT message)
364 {
365
366 U16 xDest, yDest;

.

.

.
375 /* Check to see if the coordinates are fall within the LCD screen */
376 if ((xSrc < 0) || (xDest >= GetDisplayX()) || (ySrc < 0) ||
377 (yDest >= GetDisplayY()))
378 return PPSM_ERROR;

Administrator
origin.

Administrator
There is no negative co-ordinate for panning screen.

6-12 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

6.9 Get Panning Screen Width

U16 GetLogicalX(void)

GetLogicalX() returns to the caller the panning screen width, in terms of pixels, of
the current application.

The panning screen width is dynamically configurable at run time and it is
recommended to use this tool to obtain the panning screen width for panning
purposes.

6.10 Get Panning Screen Height

U16 GetLogicalY(void)

GetLogicalY() returns to the caller the panning screen height, in terms of pixels, of
the current application.

The panning screen height is dynamically configurable at run time and it is
recommended to use this tool to obtain the panning screen height for panning
purposes.

6.11 Set Pattern Fill

STATUS SetPatternFill(U16 mode, U16 backGrey, U16 borderMode, U16
fillSpace)

This routine allows application programmers to decide on the fill pattern settings.
These settings include the pattern mode, the spacing between the pattern lines,
the background grey level, and the existence of a border. Once SetPatternFill() is
called, the settings will be applied to all subsequent DrawRec(), DrawCircle(),
DrawEllipse(), and DrawArc().

The pattern will be drawn with the specified grey level in the parameter of
DrawRec(), DrawCircle(), DrawEllipse(), and DrawArc().

The argument fillSpace lets application developers define the size of the gap
between the pattern lines. The size of the gap equals to 2fillSpace number of pixels.

There are 8 fill patterns available (mode 0 will turn off the pattern fill feature):

1 2 3 4

5 6 7 8

Administrator
The panning screen width is dynamically configurable at run time

Administrator
There are 8 fill patterns available

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-13

The pattern fill mode 0 will turn off the pattern fill feature.

6.12 Set Dot Width

STATUS SetDotWidth(U16 newWidth, P_U16 oldWidth)

After this routine is called, the new dot width will take effect in all subsequent
DrawDot(), DrawHorz(), DrawVert(), DrawRec(), DrawLIne(), DrawCircle(),
DrawEllipse(), DrawArc(), and DrawVector().

If the dot width is larger than 1, a thick dot, thick line, thick circle, thick ellipse,
thick arc and thick vector lines can be drawn.

Example 6-3 Set dot width

160 * Drawing1 - Draw a LINE and then an ELLIPSE with pattern filled on Screen1.
161 * Both have a dot width = 6, but no border on the ellipse is
162 * drawn as the bordermode in SetPatternFill is set to 0.

.

.

.
170 SetDotWidth(6, 0);
171 SetPatternFill(2, WHITE, 0, 3);

6.13 DisplayMove

STATUS DisplayMove(U16 xPos, U16 yPos)

This function is to set the relative coordinate of top left corner of LCD in panning
screen. It sets the display region on LCD from panning screen. Whenever this
function is called, the new area in panning screen will be refreshed on LCD.

6.14 Direct All Graphics Output to off-screen memory

STATUS ChangeWindow(U32 addr, U16 width, U16 height, P_U32 oldAddr,
P_U16 oldWidth, P_U16 oldHeight)

Run-time computation intensive image generation and display could be slow.
Users may see the graphics output appears slowly on the LCD display screen.
ChangeWindow() allows applications to direct all output from PPSM graphics
routines to an off-screen memory area temporarily, so that no changes will appear
on the LCD display screen while the image is being built. Once the image is
generated, it can be displayed onto the panning screen. This will give the effect
that the image is displayed instantaneously.

ChangeWindow() assumes that all input parameters are valid. No zero or invalid
values are supposed to be passed as input to this routine.

Example 6-4 Use ChangeWindow() to draw image

U32 oldScreen1, oldScreen2;
U16 oldWidth1, oldHeight1;

Administrator
Whenever this
function is called, the new area in panning screen will be refreshed on LCD.

Administrator
off-screen

Administrator
memory

6-14 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

U16 oldWidth2, oldHeight2;
U32 tempScreen = (U32)GetScreenMem(64, 64);

/* Direct all graphic routine to memory area pointed by
 tempScreen with width 64 pixels and height 64 pixels */
ChangeWindow(tempScreen, 64, 64, &oldScreen1, &oldWidth1, &oldHeight1);

/* This may be any routine for calculating the co-ordinates to
 be drawn or drawing anything by calling graphics routines */
DoCalculation();

/* Direct all graphic routine back to original panning screen */
ChangeWindow(oldScreen1, oldWidth1, oldHeight1, &oldScreen2, &oldWidth2,

&oldHeight2);

6.15 Change Panning Screen Parameters

STATUS ChangePanning(P_PAN_SCREEN newPanning, U16 flag,
P_PAN_SCREEN oldPanning)

ChangePanning() allows applications to change the active panning screen to
another memory area during run-time. The flag is to indicate whether the old
panning screen is still needed or it will be destroyed.

P_PAN_SCREEN is a pointer to structure PAN_SCREEN which has the following
elements:

Table 12-11 Panning Screen Parameters

Name Description

panAddress The memory address where panning
screen origin is located. All graphics
routines will draw in the area relative to
this address.

horzSize The panning screen width in number of
pixels.

vertSize The panning screen height in number of
pixels.

displayXOrigin The x-coordinate of the LCD display
screen relative to the panning screen.

In normal case, when ChangeWindow() is
not called, displayXOrigin and
displayYOrigin are used to calculate the
value of displayScreenAddr and
regPOSR.

displayYOrigin The y-coordinate of the LCD display
screen relative to the panning screen.

In normal case, when ChangeWindow() is
not called, displayXOrigin and
displayYOrigin are used to calculate the
value of displayScreenAddr and
regPOSR.

Administrator
P_PAN_SCREEN is a pointer to structure PAN_SCREEN which has the following
elements:

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-15

Upon start-up, panAddress equals displayScreenAddr, regPOSR is 0,
displayXOrigin and displayYOrigin are 0 and regPSW equals horzSize/8 for a 2
bits per pixel display or horzSize/16 for a 1 bit per pixel display.

When DisplayMove() is called, both displayScreenAddr and regPOSR will be
modified so that the system will know from which word and from which pixel
position within the word the LCD display screen should start mapping.

When ChangeWindow() is called, panAddress, horzSize and vertSize will be
changed so that all graphics routines will use these 3 parameters for calculation
and image processing.

If all or several tasks in a system want to share a common panning screen to save
memory, the following steps can be followed:

1) In main()
` call GetScreenMem() to create a memory area for the common

panning screen
` call ChangePanning() to free the PPSM system panning screen
` for each task that shares the common panning screen, call

AdvTaskCreate() with parameter PPSM_NOSCREEN to create
the task with no panning screen

2) for each corresponding task that shares the common panning
screen
` during initialization, call ChangePanning() with flag parameter

displayScreenAddr The memory address where the LCD
display screen origin is located.
In normal case, when ChangeWindow() is
not called, this is calculated from
panAddress, displayXOrigin and
displayYOrigin. This is where the system
will retrieve the first word to display on
LCD display screen. This is used in the
Screen Starting Address Register (SSA)
described in 4.7.1.1 of MC68328/
MC68EZ328 Integrated Processor User
Manual.

regPOSR This is the pixel offset within the word
pointed to by displayScreenAddr where
the first pixel on LCD display screen will
be retrieved. This is used in the Panning
Offset Register (POSR) in 4.7.5.5 of
MC68328/MC68EZ328 Integrated
Processor User Manual.

regPSW This is the panning screen width in
number of words. This is used in the
Virtual Page Width Register (VPW) in
4.7.1.2 of MC68328/MC68EZ328
Integrated Processor User Manual.

Table 12-11 Panning Screen Parameters

Name Description

Administrator
PPSM_NOSCREEN

6-16 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

equals to FALSE to copy all properties of the common panning
screen to the task own context

Example 6-5 Use ChangePanning() to let all tasks share the same
panning screen

#include <ppsm.h>
#include <errors.h>
#include <proto.h>

PAN_SCREEN newScreen;

STATUS TestApp()
{
 /* use the common panning screen in this task */
 ChangePanning(&newScreen, FALSE, 0);

 /* draw a circle with center at (100, 100) and radius 80 pixels */
 DrawCircle(BLACK, 100, 100, 80, REPLACE_STYLE);

}

main()
 {
 U32 taskId;
 P_U8 newPanning;

 PPSMInit(FALSE);

 /* create a common panning screen with size 640x400 */
 newPanning = (P_U8)GetScreenMem(640, 400);

 newScreen.panAddress = (U32)newPanning;
 newScreen.displayScreenAddr = (U32)newPanning;
 newScreen.horzSize = 640;
 newScreen.vertSize = 400;
 newScreen.displayXOrigin = 0;
 newScreen.displayYOrigin = 0;
 newScreen.regPOSR = 0;
 newScreen.regPSW = 80;/* as the LCD panel used is 2 bits per pixel,
 PSW = 640/8 = 80. */

 /* destroy the system panning screen and use the new panning screen created above
*/

 ChangePanning(&newScreen, FALSE, 0);

 /* clear whole panning screen */
 ClearScreen(WHITE);

 /* draw a circle with center at (100, 100) and radius 20 pixels to the new panning
screen */

 DrawCircle(BLACK, 100, 100, 20, REPLACE_STYLE);

 /* create a new task with no panning screen */
 AdvTaskCreate(&taskId, (P_VOID)TestApp, 0, 0, 0, 0, 3048, PPSM_NOSCREEN, 0, 0, 0);

 TaskStart(taskId);
 }

In the example above, both the system task in main() and task TestApp() share
the same panning screen. So whatever done on the panning screen by the
system task or task TestApp() will have effect on the panning screen.

If a panning screen is shared among tasks. Calls ChangePanning() to free the
screen in one of the task can also free/corrupt the others?scr een me mo r y ar ea.

Administrator
FALSE

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-17

6.16 Fill the whole Panning Screen

STATUS ClearScreen(U16 greyLevel)

This routine will fill the whole panning screen with the specified grey level.

Example 6-6 Fill the whole screen with WHITE

STATUS ret;

/* fill the whole panning screen with white */
ret = ClearScreen(WHITE);

6.17 Draw a Dot

STATUS DrawDot(U16 greyLevel, U16 xPos, U16 yPos, U16 style)

This routine will draw a dot at the specified position (xPos, yPos).

If dot width is 1, a pixel will be drawn. If dot width is 2, a square dot of length 2 will
be drawn with top left pixel position as the dot co-ordinate, (xPos, yPos). When
the dot width is greater than 2, a circular disc with radius to be truncated integer
value of (dot width - 1)/2 will be drawn. The center of the disc will be the dot co-
ordinate, (xPos, yPos).

Example 6-7 Draw a black dot

STATUS ret;

/* draw a dot at (52, 52) */
ret = DrawDot(BLACK, 52, 52, REPLACE_STYLE);

The calling of DrawDot(BLACK, 52, 52) will draw a black pixel at (52, 52) in
panning screen. As the LCD display screen origin is at (50, 50), the point drawn
on screen is at (2, 2) in display co-ordinate. Hence, the expected outcome will
have a dot which is very close to the display origin.

Example 6-8 Draw a dot with dot width 2

STATUS ret;

Figure 6-4 Screen output for Example 6-6

LCD

Panning Screen

6-18 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

/* set dot width to 2 */
SetDotWidth(2, 0);

/* draw a dot at (52, 52) */
ret = DrawDot(BLACK, 52, 52, REPLACE_STYLE);

When the dot width equals 2, a square dot with length of 2 will be drawn.

Example 6-9 Draw a dot with dot width 3

STATUS ret;

/* set dot width to 3 */
SetDotWidth(3, 0);

/* draw a dot at (52, 52 */
ret = DrawDot(BLACK, 52, 52, REPLACE_STYLE);

When the dot width is 3, a circular disc with radius of (3-1)/2 (which is 1) will be
drawn.

Example 6-10 Draw a dot with dot width 4

STATUS ret;

Figure 6-5 Screen output for Example 6-7

LCD

Panning Screen(52, 52)(50, 50)

(0, 0)

Figure 6-6 Screen output for Example 6-8

(52, 52)

Figure 6-7 Screen output for Example 6-9

(52, 52)

Administrator
SetDotWidth(3, 0);

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-19

/* set dot width to 4 */
SetDotWidth(4, 0);

/* draw a dot at (52, 52) */
ret = DrawDot(BLACK, 52, 52, REPLACE_STYLE);

When the dot width is 4, a circular disc with radius of (4-1)/2 (which is 1) will be
drawn.

6.18 Draw a Horizontal Line

STATUS DrawHorz(U16 greyLevel, U16 xSrc, U16 ySrc, U16 width, U16
dotLine, U16 style)

This routine will draw a horizontal line from (xSrc, ySrc) to (xSrc + width - 1, ySrc).

If the dot width is greater than 1, the specified horizontal line will have integer
truncated of (dot width - 1)/2 horizontal lines above it, and (dot width)/2 horizontal
lines below it. The length of each of these lines will be extended by (dotwidth - 1)/
2 pixels to the left of the source, and by (dotwidth/2) pixels to the right of the end
point.

If the width of the horizontal line is 1, a square dot will be drawn.

Example 6-11 Draw a horizontal black line

STATUS ret;

/* draw a black horizontal line from (30, 60) with width 551 */
ret = DrawHorz(BLACK, 30, 60, 551, 0, REPLACE_STYLE);

In this example, the dot width is 1. The calling of DrawHorz(BLACK, 30, 60, 551,
0, REPLACE_STYLE) will draw a black horizontal line from (30, 60) to (580, 60)
on panning screen. Only the portion of (50, 60) to (369, 60) will be seen on LCD
display.

Figure 6-8 Screen output for Example 6-10

(52, 52)

6-20 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

Example 6-12 Draw a thick horizontal line

STATUS ret;

/* set dot width to 4 */
ret = SetDotWidth(4, 0);

if (ret !=PPSM_OK)
return ret;

/* draw a black horizontal line from (60, 60) with width 2 */
ret = DrawHorz(BLACK, 60, 60, 2, 0, REPLACE_STYLE);

if (ret != PPSM_OK)
return ret;

In the above example, a thick horizontal line will be drawn as follow:

6.19 Draw a Vertical Line

STATUS DrawVert(U16 greyLevel, U16 xSrc, U16 ySrc, U16 height, U16
dotLine, U16 style)

This routine will draw a vertical line from (xSrc, ySrc) to (xSrc, ySrc + height - 1).

Figure 6-9 Screen output for Example 6-11

LCD

Panning Screen(50, 50)

(0, 0)

(50, 60) (580, 60)(369, 60)

Figure 6-10 Screen output for Example 6-12

(61, 60)
(60, 60)

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-21

If the dot width is greater than 1, the specified vertical line will have integer
truncated of (dot width - 1)/2 vertical lines to its left, and (dot width)/2 vertical lines
at right. The height of each of these lines will be extended by (dotwidth - 1)/2
pixels above the source and by (dot width)/2 below the end point.

If the height of the vertical line is 1, a square dot will be drawn.

Example 6-13 Draw a vertical black line

STATUS ret;

/* draw a black vertical line from (60, 60) with height 361 */
ret = DrawVert(BLACK, 60, 60, 361, 2, REPLACE_STYLE);

In this example, the dot width is 1. The calling of DrawVert(BLACK, 60, 60, 361, 0,
REPLACE_STYLE) will draw a black line from (60, 60) to (60, 420) on panning
screen. However, only the portion of the line on LCD display screen will be seen
which is (60, 60) to (60, 289). Since the parameter for dotted line is 2, the line is
drawn in the form of 2 BLACK pixels and then 2 WHITE pixels and then 2 BLACK
pixels, and so on.

Example 6-14 Draw a thick vertical line

STATUS ret;

/* set dot width to 4 */
ret = SetDotWidth(4, 0);

if (ret !=PPSM_OK)
return ret;

/* draw a black thick horizontal line from (10, 10) with height 2 */
ret = DrawVert(BLACK, 10, 10, 2, 0, REPLACE_STYLE);

if (ret != PPSM_OK)
return ret;

Figure 6-11 Screen output for Example 6-13

LCD

Panning Screen(50, 50)

(0, 0)

(60, 60)

(60, 420)

(60, 289)

6-22 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

In the above example, a thick vertical line will be drawn as follow:

6.20 Draw a Line

STATUS DrawLine(U16 greyLevel, U16 xSrc, U16 ySrc, U16 xDest, U16
yDest, U16 dotLine, U16 style)

This routine will draw a line from (xSrc, ySrc) to (xDest, yDest).

If dot width is greater than 1, each dot on the specified line will be represented by
a thick square dot. Each of the thick square dot is generated by extending integer
truncated (dot width - 1)/2 pixels above, (dot width)/2 below, (dot width - 1)/2
pixels to the left and (dot width)/2 pixels to the right of the original dot. The thick
line is then generated by overlapping these thick dots accordingly.

Example 6-15 Draw a black line

STATUS ret;

/* draw a black line from (60, 240) to (630, 470) */
ret = DrawLine(BLACK, 60, 240, 630, 470, 0, REPLACE_STYLE);

Figure 6-12 Screen output for Example 6-14

(10, 11)

(10, 10)

Figure 6-13 Screen output for Example 6-15

LCD

Panning Screen(50, 50)

(0, 0)

(60, 240)

(630, 470)

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-23

In this example, the dot width is 1. The calling of DrawLine(BLACK, 60, 240, 630,
470, 0, REPLACE_STYLE) will draw a black line from (60, 240) to (630, 470) on
panning screen. However, only the portion of the line on LCD display screen will
be seen.

Example 6-16 Draw a thick line

STATUS ret;

/* set dot width to 4 */
ret = SetDotWidth(4, 0);

if (ret !=PPSM_OK)
return ret;

/* draw a black thick line from (10, 10) to (11, 11) */
ret = DrawLine(BLACK, 10, 10, 11, 11, 0, REPLACE_STYLE);

if (ret != PPSM_OK)
return ret;

In the above example, a thick horizontal line will be drawn as follow:

6.21 Draw a Rectangle

STATUS DrawRec(U16 greyLevel, U16 xSrc, U16 ySrc, U16 xDest, U16
yDest, U16 dotLine, U16 style)

This routine draws a rectangle with top left corner at (xSrc, ySrc) and bottom
corner at (xDest, yDest).

If the dot width is greater than 1, integer truncated (dot width - 1)/2 lines are drawn
inside the rectangle and (dot width)/2 lines drawn outside the rectangle.

If both fill pattern mode and border mode are set, those area inside the rectangle
which is not covered by the border will be filled.

If fill pattern mode is set and border mode is off, the area inside and on the
rectangle border will be filled.

Figure 6-14 Screen output for Example 6-16

(10, 10)

(11, 11)

Administrator
If both fill pattern mode and border mode are set, those area inside the rectangle
which is not covered by the border will be filled.

6-24 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

Example 6-17 Draw a rectangle with black outline

STATUS ret;

/* draw a black rectangle with top left corner at (310, 250) and bottom right corner
at (500, 400) */

ret = DrawRec(BLACK, 310, 250, 500, 400, 0, REPLACE_STYLE);

In this example, the dot width is 1. The calling of DrawRec(BLACK, 310, 250, 500,
400, 0, REPLACE_STYLE) will draw a rectangle with top left corner at (310, 250)
and bottom right corner at (500, 400) on panning screen. However, only a
horizontal line from (310, 250) to (369, 250) and a vertical line from (310, 250) to
(310, 289) will be seen on the LCD display screen.

Example 6-18 Draw a rectangle with black outline in dot width 3 and
fill pattern mode 1

STATUS ret;

/* set dot width to 3 */
ret = SetDotWidth(3, 0);

if (ret !=PPSM_OK) return ret;

/* set pattern fill mode to 1 which is solid fill */
ret = SetPatternFill(1, WHITE, TRUE, 1);

if (ret !=PPSM_OK) return ret;

/* fill a rectangle from top left corner at (310, 250) to (500, 400) */
ret = DrawRec(BLACK, 310, 250, 500, 400, 0, REPLACE_STYLE);

Figure 6-15 Screen output for Example 6-17

LCD

Panning Screen(50, 50)

(0, 0)

(310, 250)

(500, 400)

(369, 250)

(310, 288)

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-25

In this example, the dot width is 3 and fill Pattern mode is 1. The calling of
DrawRec(BLACK, 310, 250, 500, 400, 0, REPLACE_STYLE) will fill a rectangle
with top left corner at (309, 249) and bottom right corner at (501, 401) on panning
screen. However, only a smaller rectangular area from (309, 249) to (369, 289)
will be seen on the LCD display screen.

6.22 Draw a Circle

STATUS DrawCircle(U16 greyLevel, U16 xCenter, U16 yCenter, U16 radius,
U16 style)

This routine will draw a circle centering at (xCenter, yCenter) with the specified
radius and grey level.

If the dot width is greater than 1, integer truncated (dot width - 1)/2 lines are drawn
inside the circle and (dot width)/2 lines drawn outside the circle.

If both fill pattern mode and border mode are set, those area inside the circle
which is not covered by border will be filled.

If fill pattern mode is set and border mode is off, the area inside and on the circle
border will be filled.

Example 6-19 Draw a circle with black outline

STATUS ret;

/* draw a black outlined circle with center at (560, 290) and radius 150 */
ret = DrawCircle(BLACK, 560, 290, 150, REPLACE_STYLE);

Figure 6-16 Screen output for Example 6-17

LCD

Panning Screen(50, 50)

(0, 0)

(310, 250)

(500, 400)

(369, 250)

(310, 288)

6-26 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

In this example, the dot width is 1. The calling of DrawCircle(BLACK, 560, 290,
150, REPLACE_STYLE) will draw a circle centering at (560, 290) with radius 150.
As the circle is drawn outside the LCD display screen, nothing will be seen on the
LCD.

6.23 Draw an Ellipse

STATUS DrawEllipse(U16 greyLevel, U16 xCenter, U16 yCenter, U16
xLength, U16 yLength, U16 style)

This routine will draw a ellipse centering at (xCenter, yCenter) with the specified
size.

If the dot width is greater than 1, integer truncated (dot width - 1)/2 lines are drawn
inside the ellipse and (dot width)/2 lines drawn outside the ellipse.

If both fill pattern mode and border mode are set, those area inside ellipse which
is not covered by the border will be filled.

If fill pattern mode is set and border mode is off, the area inside and on the ellipse
border will be filled.

Example 6-20 Draw an ellipse with black outline

STATUS ret;

/* draw an ellipse with center at (560, 290), horizontal length 150 and vertical
length 100 */

ret = DrawEllipse(BLACK, 560, 290, 150, 100, REPLACE_STYLE);

Figure 6-17 Screen output for Example 6-19

LCD

Panning Screen(50, 50)

(0, 0)

(560, 290)

150

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-27

In this example, the dot width is 1. The calling of DrawEllipse(BLACK, 560, 290,
150, 100, REPLACE_STYLE) will draw an ellipse centering at (560, 290) with the
longest distance on y axis from center to border is 100 pixels and the longest
distance on x axis from center to border is 150 pixels.

6.24 Draw an Arc

STATUS DrawArc(U16 greyLevel, U16 x1, U16 y1, U16 x2, U16 y2, U16
style)

This routine will draw an arc connecting (x1, y1) and (x2, y2).

DrawArc() will draw a quarter of an ellipse centering at (x2, y1). If
DrawArc(BLACK, x1, y1, x2, y2, REPLACE_STYLE) is called, the following arcs
will be drawn according to the values of (x1, y1) and (x2, y2):

Figure 6-18 Screen output for Example 6-20

LCD

Panning Screen(50,50)

(0,0)

(560,290)

100

150

6-28 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

If the dot width is greater than 1, integer truncated (dot width - 1)/2 lines are drawn
inside the arc and (dot width)/2 lines drawn outside the arc.

If both fill pattern mode and border mode are set, those area inside arc which is
not covered by the border of the arc will be filled.

If fill pattern is set and border is off, those area inside and on the arc border will be
filled.

(x1 < x2) and (y1 < y2)

(x1 < x2) and (y1 > y2)

(x1 > x2) and (y1 < y2)

(x1 > x2) and (y1 > y2)

Figure 6-19 Cases of DrawArc

(x1, y1)

(x2, y2)

(x1, y1)

(x2, y2)

(x2, y2)

(x1, y1)

(x1, y1)

(x2, y2)

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-29

Example 6-21 Draw a black arc with OR style

STATUS ret;

/* draw an arc from (240, 150) to (100, 100) */
ret = DrawArc(BLACK, 240, 150, 100, 100, OR_STYLE);

In this example, the dot width is 1. The calling of DrawArc(BLACK, 100, 100, 50,
50, OR_STYLE) will draw an arc from (100, 100) to (240, 150) on panning screen.
The arc is actually a quarter of an ellipse centering at (100, 150) with the longest
distance of 141 pixels in x axis and the longest distance of 51 pixels in y axis. The
center is determined by the x axis value of the second point and the y axis value
of the first point which is 100 and 150 respectively.

Example 6-22 Draw a black arc with EXOR style

/* draw an arc from (100, 100) to (240, 150) */
ret = DrawArc(BLACK, 100, 100, 240, 150, EXOR_STYLE);

In this example, the dot width is 1. As the LCD display screen is all BLACK and
the calling of DrawArc() is in exclusive OR style, the arc turns out to be WHITE on
a black background.

Figure 6-20 Screen output for Example 6-21

LCD

Panning Screen(50, 50)

(0, 0)

(100, 100)

(240, 150)

Figure 6-21 Screen output for Example 6-22

LCD

Panning Screen(50, 50)

(0, 0)

(100, 100)

(240, 150)

6-30 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

6.25 Draw a Vector from a List of Points

STATUS DrawVector(U16 greyLevel, U16 numberOfPoints, P_POINT
pointPtr, U16 style, U16 mode)

This routine will draw lines to connect the points in the given list. It has options on
whether the first point and last point need to be connected.

6.26 Put a Rectangular Area on Panning Screen

STATUS PutRec(P_U8 bitmap, U16 xSrc, U16 ySrc, U16 width, U16 height,
U16 style, U16 reserved)

This routine puts an image from memory to panning screen.

PutRec() supports style such as REPLACE_STYLE, OR_STYLE, EXOR_STYLE
and AND_STYLE. There is error checking done on the argument style, but not on
the value of bitmap.

Example 6-23 Put a bitmap on screen with REPLACE_STYLE

/* put an image on panning screen with top left corner at (0, 0), width 640 and
height 480 */

ret = PutRec(bitmap, 0, 0, 640, 480, REPLACE_STYLE, 0);

The calling of PutRec(bitmap, 0, 0, 640, 480, REPLACE_STYLE, 0) copies the
image from the memory area pointed to by bitmap onto the panning screen.

Figure 6-22 Screen output for Example 6-23

LCD

Panning Screen(50, 50)

(0, 0)

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-31

6.26.1 Special cases of PutRec()

The following are the few special cases of PutRec().

Example 6-24 Display one bit per pixel image on 2 bits per pixel LCD
setting

Two similar images will be seen horizontally.

Example 6-25 LCD Display screen crosses the right boundary of the
panning screen

Figure 6-23 Screen output for Example 6-24

LCD Display Screen

(0, 0)

Figure 6-24 Screen output for Example 6-25

LCD

Panning Screen

(0, 0)

6-32 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

The following will be seen on LCD display screen:

Example 6-26 When LCD Display screen crosses the bottom bound-
ary of the panning screen

The following will be seen:

The pattern of the noise part of the display depends on the content of the memory
that follows the panning screen. If the memory following the panning screen is all
0, the noise will appear as a blank image. If the memory following the panning

Figure 6-25 Screen output for Example 6-25

LCD Display Screen

Figure 6-26 Screen output for Example 6-26

LCD
Panning Screen

(0, 0)

Figure 6-27 Screen output for Example 6-26

LCD Display Screen

Noise

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-33

memory is invalid, a bus address error will be generated.

6.27 Save a Rectangular Area from Panning Screen

STATUS SaveRec(P_U8 bitmap, U16 xSrc, U16 ySrc, U16 width, U16 height,
U16 reserved)

This routine saves an image from the panning screen to memory.

Example 6-27 Save a bitmap

/* save the portion of image on panning screen from top left corner at (50, 50),
width 320 and height 120 */

ret = SaveRec(bitmap, 50, 50, 320, 120, 0);

The calling of SaveRec(bitmap, 50, 50, 320, 120, 0) will save the top half of LCD
display image into memory area pointed to by bitmap.

6.28 Exchange a Rectangular area with memory

STATUS ExchangeRec(U16 xSrc, U16 ySrc, U16 width, U16 height, P_U8
reserved)

This routine exchanges images between the panning screen and memory.

Example 6-28 Save a bitmap

/* exchange the image on panning screen with top left corner at (50, 50), width 320
and height 120 to the image in memory pointed by bitmap */

ret = ExchangeRec(bitmap, 50, 50, 320, 120);

This example swaps the image pointed to by bitmap with the image in the
rectangular region from top left corner at (50, 50) to bottom right corner at (369,
169). After this call, bitmap now points to the original image of the rectangular
region (50, 50) to (369, 169), while the image pointed to by bitmap is now
displayed on the rectangular region (50, 50) to (369, 169) on the panning screen.

Figure 6-28 Screen output for Example 6-27

Panning Screen(50, 50)

(0, 0)

LCD

6-34 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

6.29 Fill a Rectangular Area

STATUS ClearRec(U16 greyLevel, U16 xSrc, U16 ySrc, U16 width, U16
height, U16 style)

This routine fills an rectangular area with the specified grey level.

Example 6-29 Fill a rectangular region with BLACK and OR style

STATUS ret;

/* fill a rectangular area with top left corner at (300, 240), width 261 and height
161 */

ret = ClearRec(BLACK, 300, 240, 261, 161, OR_STYLE);

This example fills the rectangular region from top left corner at (300, 240) on
panning screen with width 261 pixels and height 161 pixels.

6.30 Inverse a Rectangular Area

STATUS InvRec(U16 xSrc, U16 ySrc, U16 width, U16 height)

This routine will inverse the grey level of the rectangular area with top left corner
at (xSrc, ySrc) and bottom right corner at (xSrc + width - 1, ySrc + height - 1).

Example 6-30 Inverse a rectangular region

STATUS ret;

/* inverse a rectangular area with top left corner at (250, 200), width 200 and
height 100 */

ret = InvRec(250, 200, 200, 100);

Figure 6-29 Screen output for Example 6-29

LCD

Panning Screen(50, 50)

(0, 0)

(560, 400)

(300, 240)

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-35

In this example, the LCD display screen is black and the rest of the panning
screen is white. After inverting the rectangular region with top left corner at (250,
200) and 200 pixels wide by 100 pixels high, a white box can be seen in the LCD
screen at bottom right position.

6.31 Hardware Cursor

When there is no hardware cursor in current task, the creation of hardware cursor
requires to set the cursor characteristic and follows by calling
CursorSetStatus(PPSM_CURSOR_ON).

When hardware cursor is created and it needs to be turned off, the application
should call CursorOff(). If the application needs to turn on the cursor once again. It
has to set the cursor characteristic and follows by calling
CursorSetStatus(PPSM_CURSOR_ON) again.

When hardware cursor is to be suspended, the application should call
CursorSetStatus(PPSM_CURSOR_OFF).

A application can change the hardware cursor to new position. It can inquire the
hardware cursor status from the system. When the hardware cursor is ON, the
calling of functions to change the size or position of the hardware cursor will have
immediate effect.

6.31.1 Set Hardware Cursor Size

STATUS CursorInit(U16 cursorWidth, U16 cursorHeight)

This routine will change the hardware cursor width and height. The valid range for
both width and height is from 1 through 31.

Example 6-31 When there is no hardware cursor in current task:

/* set hardware cursor position at (150, 150) */
CursorSetPos(150, 158);

Figure 6-30 Screen output for Example 6-30

LCD

Panning Screen(50, 50)

(0, 0)

Administrator
CursorSetStatus(PPSM_CURSOR_ON).

Administrator
CursorOff().

6-36 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

/* set hardware cursor width to 15 and height to 15 pixels */
CursorInit(15, 15);

/* turn on the hardware cursor in full density mode */
CursorSetStatus(PPSM_CURSOR_ON);

The above will create a cursor at (150, 158) with 15 pixels wide by 15 pixels high,
and will turn the cursor on.

6.31.2 Set Hardware Cursor Position

STATUS CursorSetPos(U16 xPos, U16 yPos)

This routine will set the hardware cursor top left corner position at (xPos, yPos).

Example 6-32 When the hardware cursor needs to be changed to
other position:

/* set hardware cursor position to (15, 150) */
CursorSetPos(15, 150);

This will change cursor to new position at (15, 150)

6.31.3 Set Hardware Cursor Status

STATUS CursorSetStatus(U16 status)

This routine will change the hardware cursor status to one of the following states:
PPSM_CURSOR_OFF, PPSM_CURSOR_ON or
PPSM_CURSOR_REVERSED.

Example 6-33 When hardware cursor is turned off after creation and
it needs to be on with reverse video mode:

U16 x, y;

/* turn on hardware cursor in reverse video mode */
CursorSetStatus(PPSM_CURSOR_REVERSED);

6.31.4 Get Hardware Cursor Status

STATUS CursorGetStatus(P_U16 status)

This routine will return the current hardware cursor status. The status will be one
of the following states: PPSM_CURSOR_OFF, PPSM_CURSOR_ON or

Table 6-12

Status name Descriptions

PPSM_CURSOR_OFF Temporarily turn cursor off

PPSM_CURSOR_ON Turn cursor on

PPSM_CURSOR_REVERSED Reverse cursor

Personal Portable System Manager
Programmer Manual

Using Graphics Tools 6-37

PPSM_CURSOR_REVERSED.

Example 6-34 When the hardware cursor status is needed:

U16 status;

/* get the hardware cursor status */
CursorGetStatus(&status);

6.31.5 Set Hardware Cursor Blinking Frequency

STATUS CursorSetBlink(U16 frequency)

This routine will set the hardware cursor blinking frequency to requency?numb er
of blinks per 10 seconds.

6.31.6 Turn Hardware Cursor Off

STATUS CursorOff(void)

This routine will turn off the hardware cursor permanently. In order to turn on the
hardware cursor again, the application has to set the characteristics of the cursor
and follows by calling CursorSetStatus(PPSM_CURSOR_ON).

6.32 Display Other Region of Panning Screen

STATUS CursorSetOrigin(U16 xPos, U16 yPos)

STATUS LCDScreenMove(U16 x, U16 y)

These two routines together will move the LCD display origin to (x, y) so that
different regions of the panning screen can be displayed instantaneously. These
two routines must be used together. In PPSM V3.1, these 2 routines are replaced
by DisplayMove().

Example 6-35 Display other region of panning screen

U16 x=50, y=50;

/* set the LCD display screen origin to be (50, 50) on panning screen */
CursorSetOrigin(x, y);

/* change the hardware register to display the rectangular on panning screen with
top left corner at (50, 50) */

LCDScreenMove(x, y);

The LCD Display screen will now display the rectangular region of the panning
screen with top left corner at (50, 50).

6.33 Get LCD Display Origin on Panning Screen

STATUS CursorGetOrigin(P_U16 xPos, P_U16 yPos)

This routine will return the current LCD display screen origin relative to the

6-38 Using Graphics Tools

Personal Portable System Manager
Programmer Manual

panning screen.

Example 6-36 Get LCD display origin on panning screen

U16 x, y;

/* get the position of LCD display screen on panning screen */
CursorGetOrigin(&x, &y);

6.34 Allocate memory for Panning Screen

P_VOID GetScreenMem(U16 width, U16 height)

This routine will allocate memory for panning screen with specified size. However,
the size of the new panning screen area cannot be larger than 64K. If no memory
is available, it will return NULL.

Example 6-37 Allocate memory for panning screen

P_U8 screenPtr;

/* allocate memory for panning screen with width 320 and height 240 */
screenPtr = (P_U8)GetScreenMem(320, 240);

Administrator
the size of the new panning screen area cannot be larger than 64K.

Personal Portable System Manager
Programmer Manual

Database Management 7-1

Chapter 7 Database Management

PPSM supports global database for applications to store and manage data. Data
type may be formatted or unformatted.

The Database Tools enable applications to:

` create and delete multiple databases
` add and delete records from databases
` store, retrieve and modify data
` search for particular data in a database
` get status about a database

This chapter gives some example usages of the database tools to help user
getting up to speed fast.

7.1 Data Format

PPSM database tools support two types of data, formatted and unformatted.

7.1.1 Formatted Data

Formatted data means text data, and is field accessible. Seven fields, as labeled
in Table 7-1, will be used frequently in the PDA environment and have been
predefined. Other Formatted Data fields can be defined by an application should
need arise. When a new record is created, the number of Formatted Data fields is
seven by default. PPSM allows users to add additional user-defined fields in a
record. The number of maximum user defined field allowed in PPSM is defined by
PPSM at compile time, currently it is five. Notice that searching is only done on
Formatted Data, not Unformatted Data.

There is a size limit of 60 bytes imposed on each formatted data field.

Table 7-1 Predefined field format used in the PDA environment

Field Index Field Name Max. Field Size

DB_LAST Last Name 60

DB_FIRST First Name 60

DB_HOME Home Phone 60

DB_OFFICE Office Phone 60

DB_ADDRESS Address 60

DB_FAX Fax 60

DB_COMPANY Company 60

Administrator
PPSM supports global database for applications to store and manage data.

Administrator
formatted and unformatted.

Administrator
text data,

Administrator
currently it is five.

7-2 Database Management

Personal Portable System Manager
Programmer Manual

7.1.2 Unformatted Data

Unformatted data is data that has to be accessed as one complete block. There is
only one unformatted data field allowed per record. The unformatted data can be
one of the following eight types defined as follows:

` type 0 text (ASCII code record)
` type 1 decompressed PPSM LCD bitmap
` type 2 compressed PPSM LCD bitmap
` type 3 mixed text and graphics
` type 4 reserved
` type 5 text followed by decompressed PPSM LCD bitmap
` type 6 text followed by compressed PPSM LCD bitmap
` type 7 text followed by mixed text and graphics

PPSM will keep track of the size of the unformatted data field of a record in the
record information field.

7.2 The Database Manipulation Tools

PPSM provides a set of tools to operate on databases and records. Conceptually,
they can be grouped together in the following way:

1) Operate at the database level:
` Add or delete a database.
` Inquire the total number of database present in the current

environment.
` Set or clear the database secret flag.
` Interrogate the database secret flag.

2) Operate at the individual record level:
` Add or delete a record.
` Add a blank record to the top of the record list.
` Append a blank record after a specified record in the record list.
` Write or read formatted data of a record.
` Write or read unformatted data of a record.
` Get the ID of the first record in the list.
` Get the ID of the previous or next record in the list.
` Search for a record using a formatted data field as a key.
` Set or clear the record secret flag.
` Interrogate the record secret flag.
` Inquire the total number of record present in a particular

database.

1,2,3,4,5 5 additional fields 60

Table 7-1 Predefined field format used in the PDA environment

Field Index Field Name Max. Field Size

Administrator
There is
only one unformatted data field allowed per record.

Personal Portable System Manager
Programmer Manual

Database Management 7-3

7.3 Creating and Editing a Database

Whenever a record is created, PPSM will pass back a unique record identifier.
Application will need to use this identifier as the key for subsequent access of that
particular record.

The following example illustrates a routine build database and its associated
memory variables which create a database, add new record and initialize four
formatted data field in a record.

Note that user must have already declared the variable gAddBkDBaseID before
calling DBAdd(). It is important that the database ID must remain intact since
access to the database need this as the key.

Note also that in the example, recID is used as a temporary variable only, the
creation of the next record will overwrite the former recID. This is permissible
because of the linked list structure of the record list, we can traverse the list to
retrieve the record that we need without needing you keep track of every record
ID. However, for those frequently called record, it would be better to allocate a
memory variable to keep its record ID for speedy access.

Example 7-1 Create a database, add record, write data to record, and read
number of records in database

/* Database identifier *
U32 gAddBkDBaseID;
 /* Data to be written in RECORD 1 */
TEXT grec1LName[5]={’A’,’d’,’a’,’m’,0};
TEXT grec1FName[4]={’K’,’e’,’n’,0};
TEXT grec1Phone[9]={’2’,’2’,’2’,’-’,’6’,’7’,’8’,’9’,0};
TEXT grec1Add[17]={’1’,’0’,’ ’,’M’,’a’,’v’,’e’,’n’,’ ’,’A’,’v’,’e’,0};

 /* Data to be written in RECORD 2 */
TEXT grec2LName[8]={’A’,’p’,’p’,’l’,’e’,0};
TEXT grec2FName[4]={’J’,’o’,’e’,0};
TEXT grec2Phone[9]={’6’,’6’,’6’,’-’,’1’,’3’,’3’,’1’,0};
TEXT grec2Add[17]={’1’,’2’,’ ’,’M’,’a’,’i’,’n’,’ ’,’S’,’t’,’r’,’e’,’e’,’t’,0};

 STATUS buildDBase(void)
 {
 STATUS ret;
 U32 recID;
 S32 numRec;

 ret = DBAdd(&gAddBkDBaseID);
 if(ret != PPSM_OK) return(-1);
 /* Add Record 1 */
 DBAddRecord(gAddBkDBaseID,&recID, 0);
 DBChangeStdData(gAddBkDBaseID,recID, DB_LAST,grec1LName);
 DBChangeStdData(gAddBkDBaseID,recID, DB_FIRST,grec1FName);
 DBChangeStdData(gAddBkDBaseID,recID, DB_HOME,grec1Phone);
 DBChangeStdData(gAddBkDBaseID,recID, DB_ADDRESS,grec1Add);

 /* Add Record 2 */
 DBAddRecord(gAddBkDBaseID,&recID, 0);
 DBChangeStdData(gAddBkDBaseID,recID, DB_LAST,grec2LName);
 DBChangeStdData(gAddBkDBaseID,recID, DB_FIRST,grec2FName);
 DBChangeStdData(gAddBkDBaseID,recID, DB_HOME,grec2Phone);
 DBChangeStdData(gAddBkDBaseID,recID, DB_ADDRESS,grec2Add);
 /* Read back no of record in the database, should be 2*/
 DBReadTotalNumberRecords(gAddBkDBaseID, &numRec);

}

Administrator
PPSM will pass back a unique record identifier.

Administrator
gAddBkDBaseID

Administrator
DBAdd().

Administrator
recID

Administrator
record, it would be better to allocate a
memory variable to keep its record ID for speedy access.

7-4 Database Management

Personal Portable System Manager
Programmer Manual

7.4 Searching and Retrieving Data

The following example uses the database created from Example 7-1, and
searches for a particular record using a formatted data field as the key. It is good
programming practice to check the returned status of the call DBSearchData()
ensuring that a match is found before using the recID returned for subsequent
operation.

Example 7-2 Search a database record list using a formatted data field and
retrieve record data

/* Global database identifier */
U32 gAddBkDBaseID;
/* This is the search key */
TEXT grec1FName[4]={’K’,’e’,’n’,0};
 STATUS searchRec(void)
 {
 STATUS ret;
 U32 recID;
 /* Pointers to the formatted data field to be read out */
 P_TEXT tempLname, tempFname, tempPhone, tempAddress;

 /* Search for a record in the record list with the DB_FIRST
 formatted data field matching the key string grec1FName */
 ret = DBSearchData(gAddBkDBaseID,DB_FIRST,grec1FName,&recID);

 if (ret != PPSM_OK) return (-1); /* Search unsuccessful! */
 /* recID now is the record which match the search key */
 /* We can now access the data contained in the record via recID */
 DBReadData(gAddBkDBaseID, recID, DB_LAST, &tempLname);
 DBReadData(gAddBkDBaseID, recID, DB_FIRST, &tempFname);
 DBReadData(gAddBkDBaseID, recID, DB_HOME, &tempPhone);
 DBReadData(gAddBkDBaseID, recID, DB_ADDRESS, &tempAddress);
 /* tempLname, tempFname, tempPhone, tempAddress now points to
 data field stored in the record identified by recID */

} /* end searchRec() */

7.5 Navigating along a Record List

The following example uses the record list navigation tools to access record
sequentially. It is assumed that a database with the identifier gAddBkDBaseID has
already existed. Initially, the first record ID in the record list is retrieved. Then a
while loop is set up to access record in the list sequentially. Termination of the loop
is by using the botFlag passed to the routine DBGetNextRecID(). When this flag is
set to 1, it signifies that the current record is the last record of the record list.

Example 7-3 Use the record list navigation tools to access record sequen-
tially

/* Global database identifier */
U32 gAddBkDBaseID;

 STATUS seqAccessofRec(void)
 {
 U32 RecId,nextRecId;
 S32 srchToken = 1;
 U16 botFlag = 0;
 P_TEXT stdDataOut;
 STATUS ret;

 /* Get the first record ID for the database */
 ret = DBGetFirstRecID(gAddBkDBaseID, &RecId);

Administrator
DBSearchData()

Administrator
botFlag

Administrator
DBGetNextRecID().

Administrator
When this flag is
set to 1, it signifies that the current record is the last record of the record list.

Personal Portable System Manager
Programmer Manual

Database Management 7-5

 /* Check if the database record list is empty */
 if (ret == PPSM_ERROR) return(-1);

 /* Read back data */
 DBReadData(gAddBkDBaseID, RecId, DB_FIRST, &stdDataOut);
 .
 /* Do something here */
 .
 /* Get next record */

 while(srchToken)
 {
 DBGetNextRecID(gAddBkDBaseID, RecId, &nextRecId, &botFlag);
 /* The RecId passed is already at the end of list, exit loop */
 if(botFlag == 1){ srchToken = 0; break;}

/* Read back data */
 DBReadData(gAddBkDBaseID, nextRecId, DB_FIRST, &stdDataOut);

.
 /* Do something here */
 .
 /* Continue search */
 RecId = nextRecId;
 } /* end while (srchToken) */
 } /* end of seqAccessofRec() */

7-6 Database Management

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Text Display Management 8-1

Chapter 8 Text Display Management

Applications must map the text with its properties described in a text template to
an area on the display screen, called the text display area, before any text can be
seen. This chapter describes the set of text tools provided by PPSM to manage
the display of text on the panning display screen.

PPSM supports 16-bit text data representation which allows the support of any
coded languages. The default is the support for various font types and sizes of
Asian and English characters display. The low level font driver supports both the
scalable and bitmap font technologies. PPSM provides a set of default English
fonts with size 8 x 10 and 16 x 20. If other fonts are needed, please contact the
ISV.

8.1 Text Representation

Both ASCII and Asian characters are stored internally as 16-bit values (type
TEXT) system-wide. For 8-bit ASCII, they are zero-extended to 16-bit. For
Chinese, both GB and BIG-5 code formats are supported.

The most significant byte of a 16-bit word is used to distinguish between 16-bit
zero-extended ASCII and Asian codes; all 16-bit ASCII characters have a zero
most significant byte while all Asian codes will have a non-zero most significant
byte.

8.2 Text Display Area

Text can be displayed anywhere within the panning screen (refer to Section
2.3.2.2 - Panning Screen). Text is displayed starting at a specified location in a
row by column format one character at a time as shown in Figure 8-1.

Administrator
PPSM supports 16-bit text data representation which allows the support of any
coded languages.

Administrator
The low level font driver supports both the
scalable and bitmap font technologies.

8-2 Text Display Management

Personal Portable System Manager
Programmer Manual

8.3 Text Templates

A text template refers to a collection of text properties that describes the text to be
displayed. These text properties include font type, font size, grey level, output
style, coordinates and size of the text display, and the position of the display soft
cursor. These text templates are independent of the text itself and provide the
flexibility for applications to change the appearance of text in a collective and
efficient manner. Applications can create and delete the text templates at their
discretion on an as needed basis. The soft cursor in text is an invisible position
indicator showing where the text should be mapped.

8.3.1 Creating text templates

STATUS TextCreate(P_U32 templateId)

A text template needs to be created before any text can be displayed. A unique
unsigned 32-bit text template identifier is returned from the system for each text
template created. This text template identifier is used for future references to the
created text template. Refer to Table 8-4 for the default values of the text
properties when a text template is created.

Example 8-1 Create a text template

336 U32 tId; /* textId for the text template */
337
338 if(TextCreate(&tId) != PPSM_OK)

...........

...........

....

....
0 1 2 n-1...............................

0

1

2

m-1

...............

n COLUMNS

m ROWS

y-coord

x-coord
a b c

Figure 8-1 A Text Display Area on the Panning Display Screen

Panning Display Screen Width

P
an

ni
ng

 D
is

pl
ay

 S
cr

ee
n

H
ei

gh
t

Administrator
and the position of the display soft
cursor.

Administrator
The soft cursor in text is an invisible position
indicator showing where the text should be mapped.

Personal Portable System Manager
Programmer Manual

Text Display Management 8-3

339 return PPSM_ERROR;
340

8.3.2 Deleting text templates

STATUS TextDelete(P_U32 templateId)

When a text template is not needed anymore, applications should delete it to free
up space that is being used to store the text properties. The text template identifier
returned by TextCreate() is used to specify which text template to be deleted.

Example 8-2 Delete a text template

352 /* Delete the text when it’s no longer needed */
353 if(TextDelete(tId) != PPSM_OK)
354 return PPSM_ERROR;

8.4 Text Properties

Text properties describes the layout and appearance of the text to be displayed on
the panning display screen. These text properties, stored collectively in a text
template, include the position and size of the text display area, the outlook of the
text characters, the font attributes, and the position of the text soft cursor within
the text display area. Refer to Table 8-4 for the default values of these properties
of a text template when it is created.

8.4.1 Setting Text Display Layout

STATUS TextSetDisplay(U32 templateId, U16 xPos, U16 yPos, U16 width,
U16 height, U16 cursor)

The text display layout of a text template is rectangular and must reside within the
boundary of the panning screen. The layout is anchored by the xy-coordinate of
the upper left corner, and the width and height of the area in number of
characters. The size of the text display area in number of pixels will vary according
to the size of the selected font type. The specified cursor positions must lie within
the range of 0 and one less than the number of characters the text display area
can display.

In Figure 8-1, the text display area is located at location (x, y) and it is m rows by n
columns in size. This text display area can be moved around as the application
wishes.

8.4.2 Setting Text Outlook

STATUS TextSetOutlook(U32 templateId, U16 outputStyle, U16 greyLevel)

The text outlook of a text template are the output style and the grey level of the text
to be displayed on the text display area. The new output style and grey level will
take effect on subsequent text mapped using the text template after it been
modified.

Administrator
The size of the text display area in number of pixels will vary according
to the size of the selected font type.

Administrator
This text display area can be moved around as the application
wishes.

8-4 Text Display Management

Personal Portable System Manager
Programmer Manual

8.4.2.1 Text output style

The output style defines an operation between the text bitmap and the existing
image at a specified display location. Five output styles are supported. The text
bitmap can replace, OR with, AND with, exclusive OR with, or be inverted to
replace the existing image.

8.4.2.2 Text Grey Levels

Depending on the hardware system, up to four grey levels (0 to 3) can be
supported. For details about the grey levels, refer to Section 6.4 - 1 bit-per-pixel
Graphics and Section 6.5 - 2 bits-per-pixel Graphics.

8.4.3 Setting Font Attributes

STATUS TextSetFont(U32 templateId, P_FONTATTR pFontAttr)

Font attributes includes font type, font size (where applicable), and any attributes
(e.g. outline) that related to a particular font type.

A font attribute data structure, called FONTATTR, needs to be filled with the
desired values in order for these font attributes to be modified. These new font
attributes will take effect when text is displayed using the text template which has
these new values set. The following is the font attribute structure defined in
ppsm.h:

typedef struct
{

U16 type; /* font type */
U16 width; /* font width (in #pixels) */
U16 height; /* font height (in #pixels) */
U16 attrib; /* other font attributes */

Table 8-1 Supported Output Styles

Output Styles Operation

REPLACE_STYLE Replace

OR_STYLE Or with

AND_STYLE And with

EXOR_STYLE Exclusive-Or with

INVERSE_STYLE Invert and replace

Table 8-2 Supported Grey Levels

Grey Level Values Color

BLACK Black

DARK_GREY Dark Grey

LIGHT_GREY Light Grey

WHITE White

Administrator
FONTATTR,

Personal Portable System Manager
Programmer Manual

Text Display Management 8-5

P_U8 bitmap; /* pointer to character bitmap */

} FONTATTR, *P_FONTATTR;

8.4.3.1 Font Types

Eight font types are supported. Small Normal and Small Italic are 8 x 10 pixels
English fonts. Large Normal and Large Italic are 16 x 20 pixels English fonts. GB
Normal is 16 x 16 Chinese font in GB code format. Chinese Normal is the same
as GB Normal (for backward compatibility). BIG5 Normal is 16 x 16 Chinese font
in BIG5 code format. BIG5 Variable is a variable size font in BIG5 code format.

Note: Asian fonts are supplied by third parties.

8.4.3.2 Font Sizes

If a scalable font engine is available, the BIG5_VARIABLE_FONT font type allows
an application to specify the font width and height of the characters in a text
template. The minimum and maximum width and height supported depend on the
particular scalable font engine being provided.

All the other font types are fixed size fonts. Any attempt to modify the font width
and height of those font types is ignored.

8.4.3.3 Special font attributes

No other special font attributes are currently being supported. So, attempts to
modify the font attributes field of a text template is ignored. The attribute field is

Table 8-3 Supported Font Types and Sizes

Output Styles Operation

SMALL_NORMAL_FONT 8 x 10 English Normal

SMALL_ITALIC_FONT 8 x 10 English Italic

LARGE_NORMAL_FONT 16 x 20 English Normal

LARGE_ITALIC_FONT 16 x 20 English Italic

GB_NORMAL_FONT 16 x 16 GB Normal

CHINESE_NORMAL_FONT same as
GB_NORMAL_FONT

BIG5_NORMAL_FONT 16 x 16 BIG5 Normal

BIG5_VARIABLE_FONT Variable size BIG5

Administrator
Eight font types are supported.

Administrator
BIG5_VARIABLE_FONT

Administrator
All the other font types are fixed size fonts. Any attempt to modify the font width
and height of those font types is ignored.

Administrator
The attribute field is

8-6 Text Display Management

Personal Portable System Manager
Programmer Manual

reserved for future extensions and is set to zero.

Example 8-3 Setting text properties

U32 tId; /* text template id */
/* text to be displayed */

TEXT moto[] = {’M’, ’o’, ’t’, ’o’, ’r’, ’o’, ’l’, ’a’, 0};
/* this is to initialize every ASCII character in
 2-byte format with high byte being zero */

U16 len; /* # chars to be displayed */
FONTATTR fontAttr; /* font attributes */
.
.
.
/* create a text template */
TextCreate(&tId);

/* calculate # chars to be displayed */
len = Strlen(moto);

/* subsequent text displayed with text template tId will be located at (102, 0),
length of moto characters wide and 6 characters high, starting at text cursor
position zero. */

TextSetDisplay(tId, 102, 0, len, 6, 0);

/* subsequent text displayed with text template tId will be exclusive OR d with
the existing image on screen, with grey level BLACK. */

TextSetOutlook(tId, EXOR_STYLE, BLACK);

/* set up font attributes */
fontAttr.type = BIG5_VARIABLE_FONT;
fontAttr.width = fontAttr.height = 20;
fontAttr.attrib = 0;

/* subsequent text displayed with text template tId will be of BIG5 Variable font
type of size 20x20 pixels. */

TextSetFont(tId, &fontAttr);

/* delete unused text template */

Table 8-4 Text Properties Default Values

Text Properties Default Value

(x,y)-coordinate of the origin (top left corner) of the
text display area

(0, 0)

Width of text display area in number of characters 0

Height of text display area in number of characters 0

Character cursor position relative to origin of text
display area

0

Font type SMALL_NORMAL_FONT

Font width 8

Font height 10

Special font attributes 0

Text grey level value BLACK

Text output style OR_STYLE

Administrator
reserved for future extensions and is set to zero.

Personal Portable System Manager
Programmer Manual

Text Display Management 8-7

TextDelete(tId);
.
.
.

8.5 Text Mapping

Mapping functions are provided for applications to display and remove text on the
panning display screen area. The display and removal of text are tied to a text
template.

8.5.1 Displaying text

STATUS TextMap(U32 templateId, P_TEXT buffer, U16 numChar)

The given text is displayed, one character at a time, starting at the current
character cursor position of the text display area and with text attributes as
described by the specified text template.

There is no word-wrap function. Text is treated as individual characters, i.e.
characters of a word that extends beyond a row will appear on the next row of the
text display area. Text displaying stops when the character cursor position is at the
end of the text display area, when all characters supplied by the application are
mapped, or when numChar characters are mapped. After displaying characters
on panning screen, character cursor position will be advanced to the next
available position, or (the end of the template + 1) if the last character displayed is
at the end of the template. Any out standing characters are going to be ignored
without returning any error.

Example 8-4 Display text on text display area

333 STATUS DisplayString(U8 font, U8 style, U8 greylev, U16 xSrc, U16 ySrc, TEXT str[])
334 {
335 U16 len; /* length of the string */
336 U32 tId; /* textId for the text template */

.

.

.
341 /* get the string length */
342 if (len = Strlen(str))
343 {
344 /* Set up the text attributes */
345 if(TextSetup(tId, font, style, greylev, xSrc, ySrc, len, 1) != PPSM_OK)
346 return PPSM_ERROR;
347
348 /* Map the text to the screen */
349 if(TextMap(tId, (P_TEXT)str, len) != PPSM_OK);
350 return PPSM_ERROR;

8.5.2 Removing text

STATUS TextUnmap(U32 templateId)

The unmapping of text means clearing the entire text display area. The location
and size of the text display area to be cleared is specified in the given text
template.

Administrator
Text is treated as individual characters,

Administrator
character cursor position will be advanced to the next
available position,

8-8 Text Display Management

Personal Portable System Manager
Programmer Manual

8.6 Text character cursor position

The character cursor position determines where within the text display area text
will be displayed next. This position is relative to the origin of the text display area
specified in the given text template. The range of valid cursor positions is zero
through one less than the size of the text display area in number of characters.

In Figure 8-1, the range of valid cursor positions is zero through (m * n - 1), and
the current cursor position is 3 after bc?is di spl ayed

8.6.1 Setting the character cursor position

STATUS TextSetCursor(U32 templateId, U16 cursor)

Setting the character cursor position of the text display area of the specified text
template to the given value. Subsequent displaying of text start at this new
character cursor position.

Example 8-5 Set character cursor position

53 static U32 gTextId, gTmpTextId;
.
.
.

279 /* Clear the text on the display and reset cursor */
280 TextUnmap(gTextId);
281 TextSetCursor(gTextId, 0);

8.6.2 Reading the character cursor position

STATUS TextReadCursor(U32 templateId, P_U16 cursor)

Applications can inquire the current character cursor position of a text display area
specified by a text template. The returned character cursor position is where text
will be displayed next.

Example 8-6 Set and read the character cursor position

U32 tId; /* text template id */
TEXT moto[] = {’M’, ’o’, ’t’, ’o’, ’r’, ’o’, ’l’, ’a’, 0};/* text to be displayed

*/
U16 len; /* # chars to be displayed */
U16 curPos;/* cursor position */
.
.
.
/* create a text template */
TextCreate(&tId);

/* calculate # chars to be displayed */
len = Strlen(moto);

/* set up text properties. */
TextSetup(tId, LARGE_NORMAL_FONT, EXOR_STYLE, 3, 102, 0, len, 6);

/* set current character cursor position to beginning of 2nd row in the text template
*/

TextSetCursor(tId, len);

/* display otorola?using the modified text properties */

Personal Portable System Manager
Programmer Manual

Text Display Management 8-9

TextMap(tId, (P_TEXT)moto, len);

/* read current character cursor position (should be at beginning of 3rd row in this
case) */

TextReadCursor(tId, &curPos);
.
.
.

8-10 Text Display Management

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Timer Management 9-1

Chapter 9 Timer Management

PPSM uses one DragonBallTM family timer to maintain a continuous 32-bit system
reference timer and the system clock. The reference timer has a resolution of 100
microseconds and the system clock has a resolution of 1 second. A set of timer
tools are included for applications to set the system clock, system date, periodic
alarm, clock alarm and time-out.

PPSM manages all the timer devices. The tools allow the application to set a
specific time-out or alarm, then continue with other operations. When the
appropriate alarm time or time-out period is reached, PPSM generates the soft
interrupt to notify the application of the event.

The system default time at power reset is at 9:00am, 1st of January, 1997.

Two types of interrupt messages are defined for timer functions:

` IRPT_RTC
` IRPT_TIMER

IRPT_RTC message is sent to the application for clock alarm and periodic alarm.

IRPT_TIMER message is sent to the application for time-out.

If the timeout or alarm happens when the current task is not the timer nor the
alarm task, the timer or alarm task will be swapped in once all messages in
current task are handled.

9.1 Reading System Date and Time

STATUS DateTimeRead(P_U16 year, P_U16 month, P_U16 day, P_U16 hour,
P_U16 minute, P_U16 second)

Read the system date and time.

9.2 Setting System Date and Time

STATUS DateTimeSet(U16 year, U16 month, U16 day, U16 hour, U16 minute,
U16 second)

Set the system date and time. The year cannot be set less than 1900.

9.3 Reading Clock Alarm

STATUS AlarmRead(P_U16 year, P_U16 month, P_U16 day, P_U16 hour,
P_U16 minute, P_U16 second)

Administrator
The reference timer has a resolution of 100
microseconds and the system clock has a resolution of 1 second.

Administrator
The system default time at power reset is at 9:00am, 1st of January, 1997.

Administrator
IRPT_RTC

Administrator
IRPT_TIMER

Administrator
IRPT_RTC message is sent to the application for clock alarm and periodic alarm.

Administrator
IRPT_TIMER message is sent to the application for time-out.

Administrator
The year cannot be set less than 1900.

9-2 Timer Management

Personal Portable System Manager
Programmer Manual

STATUS AlarmReadId(U32 alarmId, P_U16 year, P_U16 month, P_U16 day,
P_U16 hour, P_U16 minute, P_U16 second)

Read the coming clock alarm time using AlarmRead() and read the specific clock
alarm time by using AlarmReadId(). If no alarm is set, all arguments will return
zero.

9.4 Setting Clock Alarm

STATUS AlarmSet(U16 year, U16 month, U16 day, U16 hour, U16 minute, U16
second)

STATUS AlarmSetId(P_U32 alarmId, U16 year, U16 month, U16 day, U16
hour, U16 minute, U16 second)

Set the clock alarm. When the alarm time is reached, PPSM will generate a soft
interrupt to the application that called this tool. The interrupt message type will be
IRPT_RTC. If AlarmSetId() is used, the alarm id. will be returned with the
IRPT_RTC when time is reached.

9.5 Clearing Clock Alarm

void AlarmClear(void)

void AlarmClearId(U32 alarmId)

Clear the clock alarm in current task using AlarmClear() or clear specific alarm
using AlarmClearId(). PPSM will no longer generate the IRPT_RTC message to
the application.

9.6 Setting Periodic Alarm

STATUS SetPeriod(U16 period)

STATUS SetPeriodId(P_U32 alarmId, U16 period)

Set or clear the periodic alarm. PPSM generates periodic interrupts to the
application that calls this tool. The HOUR periodic interrupt is applicable to
MC68EZ328 only. If SetPeriodId() is used to set a periodic alarm, the alarm id. will
be returned. The period that is allowed are:

RTC_PERI_NONE Disable periodic interrupt

RTC_PERI_SECOND Second periodic interrupt

RTC_PERI_MINUTE Minute periodic interrupt

RTC_PERI_HOUR Hour periodic interrupt

RTC_PERI_MIDNIGHT Midnight periodic interrupt

Administrator
Read the coming clock alarm time using AlarmRead() and read the specific clock
alarm time by using AlarmReadId().

Personal Portable System Manager
Programmer Manual

Timer Management 9-3

9.7 Setting Timeout

STATUS Timeout(U32 millisecond)

STATUS TimeoutId(P_U32 timerId, U32 millisecond)

General time-out tool. PPSM will generate a single soft interrupt message to the
caller once the time-out period has elapsed. An input value of zero will
immediately disable the time-out function for the current task including those
timeout set by reference timer alarm tools. TimeoutId() will output the timerId
which will be returned in IrptGetData() if time elapsed.

IRPT_TIMER is the interrupt message sent to the caller application when time-out
occurs.

9.8 Setting Input Timeout

STATUS InputTimeout(U32 millisecond)

Set the repetitive time-out period for data input from the touch panel. This time-out
routine is an explicit time-out routine dedicated for the pen input device.

Once this time-out is activated, the specified time-out period count down begins
immediately after a valid pen input stroke. If the time-out period expires before the
next pen input occurs, PPSM will generate a timer interrupt to the caller;
otherwise, the time-out period is reset for the next pen input. This is a repetitive
time-out because once activated, the timer will continuously be set for time-out
after each pen input stoke until the time-out is cancelled.

IRPT_TIMER is the interrupt message sent to the caller application. The timer id.
returned in IrptGetData() will be 0xFFFFFFFF to distinguish it from the normal
timer set by Timeout(), TimeoutId(), RefTimeAlarm(), etc.

To cancel the input time-out for current task, call this function with zero as the
argument.

RTC_PERI_NO_SECOND Disable second interrupt for
current task

RTC_PERI_NO_MINUTE Disable minute interrupt for
current task

RTC_PERI_NO_HOUR Disable hour interrupt for current
task

RTC_PERI_NO_MIDNIGHT Disable midnight interrupt for
current task

Administrator
An input value of zero will
immediately disable the time-out function for the current task including those
timeout set by reference timer alarm tools.

Administrator
IRPT_TIMER is the interrupt message sent to the caller application.

Administrator
The timer id.
returned in IrptGetData() will be 0xFFFFFFFF to distinguish it from the normal
timer set by Timeout(), TimeoutId(), RefTimeAlarm(), etc.

Administrator
call this function with zero as the
argument.

9-4 Timer Management

Personal Portable System Manager
Programmer Manual

9.9 Continuous Reference Timer

PPSM provides a continuous 32-bit reference timer to applications. This 32-bit
value wraps around about every 5 days, but PPSM takes care of the wrap-around
condition, making it transparent to the application. Applications can select to use
either a resolution of 1 millisecond unit or 100 microsecond unit. The following
tools allow the user to make use of this reference timer for functions, such as time-
stamping and time-out.

Note that there are two sets of timer tools, one for millisecond resolution, one for
100 microsecond resolution. The reference value returned by these two separate
sets of tools should NOT be mixed. That is, values returned from the millisecond
tools cannot be used in the 100 microsecond tools.

The millisecond resolution timer tools are named with prefix "RefTime", and the
100 microsecond resolution tools are named with prefix "RefFineTime".

9.10 Read The Reference Timer

U32 RefTimeRead(void)

U32 RefFineTimeRead(void)

Read the reference timer value. The return value is an unsigned 32-bit integer
representing the current reference timer value, either in millisecond resolution for
RefTimeRead(), or in 100 microsecond resolution for RefFineTimeRead().

9.11 Set Reference Timer Alarm

STATUS RefTimeAlarm(U32 alarmTime)

STATUS RefFineTimeAlarm(U32 alarmTime)

STATUS RefTimeAlarmId(P_U32 alarmId, U32 alarmTime)

STATUS RefFineTimeAlarmId(P_U32 alarmId, U32 alarmTime)

Set the alarm time, using the reference value as reference. This is a relative alarm
tool. When using this tool, the input argument is the time that the system will
generate an alarm interrupt to the caller application. This value can easily be
obtained by calling the respective RefTimeRead() or RefFineTimeRead() tool. The
alarmId output from this functions will be returned in IrptGetData() once the alarm
time is reached.

9.12 Compute Reference Times Differences

U32 RefTimeDiff(U32 beginTime, U32 endTime)

U32 RefFineTimeDiff(U32 beginTime, U32 endTime)

Administrator
one for millisecond resolution, one for
100 microsecond resolution.

Administrator
RefTime",

Administrator
RefFineTime".

Personal Portable System Manager
Programmer Manual

Timer Management 9-5

Compute the difference in time for the given two reference times. The return value
is in millisecond resolution for RefTimeDiff(), and in 100 microsecond for
RefFineTimeDiff().

Example 9-1 Timer Usage

U32 (*TimeRead)();

STATUS (*TimeAlarm)(U32 alarmTime);
U32 (*TimeDiff)(U32 beginTime, U32 endTime);
.
.
STATUS RefTimer(void)
{

.

.
while (1)
{

 /* Initialize all the variable for holding the time value */

 gOldTime = 0;
 gNewTime = 0;
 gDiffTime = 0;

 /* Set up time function for reference timer to read the time,
 * to start the alarm and to calculate the time difference.
 */
 if (gUnit == MILLI_SECOND) /* Unit in millisecond */

{
 /* Assign the function pointer to its corresponding reference

 * timer function.
 */

 TimeRead = RefTimeRead;
 TimeAlarm = RefTimeAlarm;
 TimeDiff = RefTimeDiff;
}

 else if (gUnit==MICRO_SECOND) /* Unit in microsecond */
{

 TimeRead = RefFineTimeRead;
 TimeAlarm = RefFineTimeAlarm;
 TimeDiff = RefFineTimeDiff;
}
SetUnit(MILLI_SECOND); /* use RefTime toolset */
.
if (*inData == PPSM_ICON_PEN_UP)
{

.

.
if (id == readTimerId)
{
 /* Put the previous time to the gOldTime buffer, then read
 * the latest time and store in the gNewTime. Get the
 * difference of both and store in the gDiffTime.
 */

 gOldTime = gNewTime;
 gNewTime = (*TimeRead)();
 gDiffTime= (*TimeDiff)(gOldTime, gNewTime);
 DisplayTime();
}/*if readTimerId*/
.
.

}
}/*while*/

}/*RefTimer*/

9-6 Timer Management

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Memory Management 10-1

Chapter 10 Memory Management

In order for PPSM to manage system memory usage, the standard memory
management tools provided by the compiler are disabled. PPSM provides a set of
its own memory tools that allow the application programmers to dynamically
allocate memory from the system. The size of this dynamic memory available to
PPSM is specified in the Linker Specification File (Refer to Chapter 34 - Linker
Specification File).

Note: For allocating memory to panning screen, a special memory
allocation function called GetScreenMem() in Chapter 6 - Using
Graphics Tools is used.

10.1 Allocating Memory

void *Lmalloc(U32 size)

void *Lcalloc(U32 size)

Memory can be allocated to the application at run time. PPSM returns to the caller
a pointer to a block of available memory of the specified size. The memory
returned to the caller is not initialized if Lmalloc() is called, or is initialized to zero if
Lcalloc() is used. No automatic boundary checking is performed on the memory
when used by the caller. The size of the largest block of memory can be allocated
through Lmalloc() can be found by calling Lmalloc(LARGEST_MALLOC_SIZE).

If no memory is left in the system, these routines return a NULL.

The actual size of memory allocated by the system is larger than the size
requested by user. A header is embedded in the allocated memory block for
memory management. Nevertheless, it is transparent to user. User can directly
use the required size of memory block start at the returned address if the returned
value is not NULL.

10.2 Freeing Memory

void Lfree(void *ptr)

When an application finishes with a block of dynamically allocated memory, the
memory can be recycled by using the Lfree() tool. It puts the memory block back
into the system heap and the memory is ready for allocation again.

The pointer passed into this routine must be a valid pointer returned from
Lmalloc() ,Lcalloc() or Lrealloc().

Administrator
The memory
returned to the caller is not initialized if Lmalloc() is called, or is initialized to zero if
Lcalloc() is used.

Administrator
Lmalloc(LARGEST_MALLOC_SIZE).

Administrator
The actual size of memory allocated by the system is larger than the size
requested by user.

Administrator
heap

Administrator
The pointer passed into this routine must be a valid pointer returned from
Lmalloc() ,Lcalloc() or Lrealloc().

10-2 Memory Management

Personal Portable System Manager
Programmer Manual

10.3 Reallocating Memory

void *Lrealloc(void *src, U32 size)

Moving of memory. This routine re-allocates the memory that is being used in the
system from one location to another. It allocates a new area, then copies the
content from the old location to the new area and free up the old memory, putting
it back into the system heap. The purpose of this routine is for defragmentation of
the system memory.

10.4 Copying Memory

STATUS MoveBlock(P_U32 srcAddr, P_U32 destAddr, U32 size)

Copying memory from one region to another. This tool can cope with over-lapping
area. It performs memory copy in 32-bit operations whenever possible.

10.5 Inquiring Memory

STATUS TaskMemUsed(U32 taskId, P_U32 pSizeUsed)

U32 TotalMemUsed(void)

U32 TotalMemSize(void)

S32 TaskStackAvail(void)

Memory allocated to the application and the whole system can be inquired at run
time. PPSM returns to the caller the total number of bytes of memory allocated to
the task with the given task identifier when calling TaskMemUsed(), or number of
bytes of memory allocated to the whole system when calling TotalMemUsed().
PPSM returns the number of bytes of memory on the system can be allocated
through Lmalloc(), Lcalloc() or Lrealloc() when calling TotalMemSize().

PPSM returns to the caller the total number of bytes of stack can still be used by
current task when calling TaskStackAvail(). Positive returned value indicates stack
has not been used up, negative value implies stack has already overflowed.

User can inquire the size of the largest continuous memory block by calling
Lmalloc() with input flag LARGEST_MALLOC_SIZE.

Administrator
Moving of memory.

Administrator
This routine re-allocates the memory that is being used in the
system from one location to another.

Administrator
The purpose of this routine is for defragmentation of
the system memory.

Administrator
PPSM returns the number of bytes of memory on the system can be allocated
through Lmalloc(), Lcalloc() or Lrealloc() when calling TotalMemSize().

Administrator
Positive returned value indicates stack
has not been used up, negative value implies stack has already overflowed.

Administrator
User can inquire the size of the largest continuous memory block by calling
Lmalloc() with input flag LARGEST_MALLOC_SIZE.

Personal Portable System Manager
Programmer Manual

Power Management 11-1

Chapter 11 Power Management

PPSM utilizes the power control module of DragonBallTM to implement a set of
power management tools to achieve system power saving.

The Power Management Tools enable applications to:

` switch to one of the power saving modes
` control the duty cycle of the processor for each application in

Normal mode
` switch automatically to a lower power saving mode when system is

idle
` control user defined I/O ports in any of the power saving mode

transition

Applications can choose to:

` control the system power management features directly, or
` use the PPSM automatic power management features.

By default, the system will go to doze mode if there is no more task swapping nor
message waiting to be served in current task. So the default state is 0 sec. doze
period and sleep period counting will start if it set in SetSleepPeriod().

11.1 Power Control Module

PPSM makes use of the Power Control Module, PCM, to improve system power
efficiency. It allows the allocation of system clock cycles to the CPU core under
software control. System clocks generated from the phase locked loop are sent to
the CPU via the PCM. By controlling the PCM register, clocks can be bursted to
the CPU core from a minimum of 3% to the full 100% in steps of 3%. This is
referred to as the CPU core duty cycle.

` While the CPU demand is low, for example in a calculator
application, the clock can be bursted with a low duty cycle.

` While the CPU demand is high, for example in a handwriting
recognition application, the clock can be running continuously at a
100% duty cycle.

The PCM uses a period of 32 clock cycles to burst the CPU core.

` For example, with a low duty cycle value of 12%, in any given
period of time, the CPU core is active for 4 clock cycles (12% of 32
clock cycles), followed by 28 clock cycles of idle CPU core.

Please refer to the MC68328 User's Manual for full details on the operation of the
PCM.

When using the PCM to control power management, the system clock from the
Phase Locked Loop remains in high frequency. Since all peripherals on MC68328

Administrator
PCM,

Administrator
clocks can be bursted to
the CPU core from a minimum of 3% to the full 100% in steps of 3%.

Administrator
When using the PCM to control power management, the system clock from the
Phase Locked Loop remains in high frequency. Since all peripherals on MC68328

11-2 Power Management

Personal Portable System Manager
Programmer Manual

are driven by the system clock, power saving on the CPU core can be achieved
without sacrificing peripheral response time.

11.2 Power Modes

Figure 11-1 shows the state diagram for the power modes. There are six modes
defined in PPSM.

System Internal Modes:

` Initialization mode
` System mode
` Wake-up mode

Application Modes:

` Normal mode
` Doze mode
` Sleep mode

11.3 System Internal Modes

Initialization, System and Wake-up modes are only used internally by PPSM.

 Doze Sleep

Wake-up

Power On / Reset

Normal

System

Initialization

Figure 11-1 PPSM Power Modes

Application ModesSystem Internal Modes

Administrator
are driven by the system clock, power saving on the CPU core can be achieved
without sacrificing peripheral response time.

Administrator
Initialization, System and Wake-up modes are only used internally by PPSM.

Personal Portable System Manager
Programmer Manual

Power Management 11-3

Applications need not be concerned with the three System Internal Modes. They
are included in this chapter as a reference on the design of PPSM Power Man-
agement. All of these are intermediate modes among the Application Modes,
where PPSM takes control to perform necessary system operations, such as task
swapping, message passing and power management decisions.

11.3.1 Initialization Mode

This is the power on or system reset mode. Boot strapping and initialization of
PPSM occur in this mode. The system never enters into this mode again once
PPSM is initialized, unless system reset occurs.

11.3.2 System Mode

PPSM performs all of its task swapping, message passing, interrupt handling,
power module controlling and modes switching in the System mode. This mode is
frequently invoked, only for a very short duration, when the system is actively run-
ning, for example, to handle pen sampling, task swapping and message passing.
To minimize the actual time spent in this mode, the duty cycle is set to 100%
regardless of its set value prior to entering System mode. When the system
leaves System mode, it will restore the duty cycle of the previous mode.

11.3.3 Wake-up Mode

This is invoked either from Doze or Sleep mode. When the system is in Doze or
Sleep mode, only internal or external interrupts can wake up the system (please
refer to Section 11.4.2.3 - Waking up from Doze and Section 11.4.3.3 - Waking up
from Sleep for the Wake-up conditions).

In Wake-up mode, the system determines

` which of the interrupts occurred,
` where the interrupt messages, if any, should be sent to,
` which application, if any, needs rescheduling, and
` which mode the system should go into next.

For example, mid-night interrupt from the Real Time Clock, the system will:

1) Go into Wake-up mode from Sleep
2) Determine that the interrupt is intended for system only
3) Update the system date
4) Go directly back to Sleep mode

11.4 Application Modes

Normal, Doze and Sleep modes are the application modes. These are the modes
that an application sees and can have control over.

Administrator
This is the power on or system reset mode.

Administrator
PPSM performs all of its task swapping, message passing, interrupt handling,
power module controlling and modes switching in the System mode.

11-4 Power Management

Personal Portable System Manager
Programmer Manual

11.4.1 Normal Mode

In this mode, applications can make use of the Power Control Module to control
the CPU duty cycle value, please refer to Section 11.5.1 - Setting Duty Cycle. The
Phase Locked Loop is on, all peripherals are active, LCD controller is enabled.
Application is actively executing code.

PPSM is designed as an event driven system. It determines interrupt activities by
monitoring the calls to the system tool IrptGetData().

` When there are interrupts, IrptGetData() returns to the application
with interrupt messages. These messages are processed by the
application accordingly.

` When there is no more interrupt pending for processing, a special
message, IRPT_NONE is returned to the application.

11.4.2 Doze Mode

In this mode, the CPU is disabled to save power consumption. The LCD control-
ler, Real Time Clock, Timer and Phase Locked Loop remain operational but all
other peripherals are disabled. System is waiting for interrupts to wake up the
CPU for more activities.

There are two ways for applications to enter Doze mode:

` direct system call
` automatic time-out

11.4.2.1 Direct System Call To Doze Mode

Application can go into Doze mode directly by calling SetDozeMode(), please
refer to Section 11.5.4 - Going Into Doze Mode. In this operation, PPSM will put
the system into Doze mode immediately, until a Wake-up condition is met.

11.4.2.2 Automatic Time-out To Doze Mode

Application can set a time-out period for the system to go into Doze mode from
Normal mode. When PPSM detects that there are no more interrupt activities,
either from the pen, timers, real time clock or external I/O, it will start this time-out
period countdown. When this time-out expires, it will switch the system to Doze
mode.

PPSM uses IRPT_NONE as an indication that the application is waiting for events
and is ready to go into Doze mode. The doze time-out countdown, if set, begins.

However, if a Wake-up condition occurs before the doze time-out has expired, the
doze time-out countdown is reset, and PPSM will return to the monitoring stage.

This automatic Doze mode time-out monitoring is repeatedly performed in Normal
mode until the Doze mode period is set to zero, i.e. disabling Doze mode transi-
tion.

Administrator
SetDozeMode(),

Administrator
Application can set a time-out period for the system to go into Doze mode from
Normal mode.

Administrator
it will start this time-out
period countdown.

Administrator
IRPT_NONE

Personal Portable System Manager
Programmer Manual

Power Management 11-5

11.4.2.3 Waking up from Doze

Any one of the following internal or external interrupts can wake up PPSM from
Doze mode in MC68328. The interrupts are:

` Pen Interrupt
` Real Time Clock Alarm, Periodic and Mid-night Interrupts
` Timer 1 and Timer 2 Interrupts
` External Interrupts from IRQ1, IRQ2, IRQ3, IRQ6, INT0-7

For MC68EZ328, whatever active interrupt before going to doze will be able to
wake up the system.

The kind of interrupt to wake up the system can also be changed in PortDozeDis-
able() and restored in PortDozeEnable() in device driver.

The system can also be waked up by using SendMessage() or AdvSendMes-
sage() to send message to the current task.

For Mid-night interrupt, system will wake up from Doze mode, update system date
and time and then go back to Doze mode. For other interrupts existed above, sys-
tem will wake up from Doze mode and go to Normal mode.

11.4.3 Sleep Mode

In this mode,

` CPU, Phase Locked Loop, LCD controller, and all peripherals are
disabled.

` Only the Real Time Clock and Interrupt Handler Module are active.

This is the mode where power consumption is kept to a minimum as the most
power consuming parts of the system, CPU and LCD, are off.

There are two ways for applications to enter Sleep mode:

` direct system call
` automatic time-out

11.4.3.1 Direct System Call To Sleep Mode

Application can go into Sleep mode directly by calling SetSleepMode(), please
refer to Section 11.5.5 - Going Into Sleep Mode. In this operation, PPSM will put
the system into Sleep mode immediately, until a Wake-up condition is met.

11.4.3.2 Automatic Timeout To Sleep Mode

Application can set a time-out period for the system to go from Doze mode to
Sleep mode.

When PPSM puts the system into Doze mode, it will automatically start the Doze
to Sleep time-out countdown, if set.

` When this time-out expires, PPSM will put the system into Sleep

Administrator
PortDozeDisable()

Administrator
PortDozeEnable()

Administrator
SendMessage()

Administrator
AdvSendMessage()

Administrator
CPU, Phase Locked Loop, LCD controller, and all peripherals are
disabled.

Administrator
Only the Real Time Clock and Interrupt Handler Module are active.

Administrator
direct system call

Administrator
automatic time-out

Administrator
SetSleepMode(),

11-6 Power Management

Personal Portable System Manager
Programmer Manual

mode.
` If a Wake-up condition is met anytime during Doze mode before the

time-out countdown for Sleep is reached, PPSM will reset the
countdown and return the system to Wake-up mode.

This automatic Sleep mode time-out countdown is repeatedly performed in Doze
mode until the Sleep mode period is set to zero, i.e. disabling Sleep mode transi-
tion.

11.4.3.3 Waking up from Sleep

Any one of the following internal or external interrupts can wake up PPSM from
Sleep mode. The interrupts are:

` Pen Interrupt
` Real Time Clock Alarm, Periodic and Mid-night Interrupts
` External Interrupts from IRQ1, IRQ2, IRQ3, IRQ6, INT0-7, UART

and PWM

For Mid-night interrupt, system will wake up from Sleep mode, update system
date and time and then go back to Sleep mode. For other interrupts listed above,
system will wake up from Sleep mode and go to Normal mode.

11.5 Power Management Tools

11.5.1 Setting Duty Cycle

U16 SetDutyCycle(U16 percentage)

This tool allows the application task to set the duty cycle level for itself in Normal
mode. Applications within a system can have different duty cycle percentages.
PPSM automatically changes the PCM accordingly when an application task
becomes active.

11.5.2 Setting Doze Period

STATUS SetDozePeriod(U16 millisecond)

Sets the countdown period, in units of millisecond, to switch the system from Nor-
mal mode to Doze mode. A value of PPSM_NO_DOZE disables the system from
going into Doze mode automatically which implies no automatically to sleep mode.
A value of zero will bring back the system to default doze setting. The default doze
setting is to go to doze mode whenever there is no task swap nor message in cur-
rent task to be handled.

11.5.3 Setting Sleep Period

STATUS SetSleepPeriod(U16 second)

Sets the countdown period, in units of second, to switch the system from Doze

Administrator
in Normal
mode.

Administrator
PPSM_NO_DOZE

Administrator
The default doze
setting is to go to doze mode whenever there is no task swap nor message in current
task to be handled.

Personal Portable System Manager
Programmer Manual

Power Management 11-7

mode to Sleep mode. A value of zero disables the system from going into Sleep
mode.

11.5.4 Going Into Doze Mode

VOID SetDozeMode(VOID)

System goes directly to Doze mode. System will stay in Doze mode until a Wake-
up condition is met.

11.5.5 Going Into Sleep Mode

VOID SetSleepMode(VOID)

System goes directly to Sleep mode. System will stay in Sleep mode until a Wake-
up condition is met.

11.6 I/O Ports Control

For those I/O ports that are used by the hardware system, special handling will be
required as PPSM does not have any knowledge of usage of these I/O ports. The
system integrator will need to supply specific device routines that PPSM can call
to disable and enable these I/O ports during Normal, Doze and Sleep mode tran-
sitions.

11.6.1 Disabling I/O Port Before Doze Mode

VOID PortDozeDisable(VOID)

Just before PPSM goes into Doze mode, it will call this routine to disable any user
defined I/O ports that are not handled internally by PPSM. User must add in the
code to disable the I/O ports in this routine.

11.6.2 Enabling I/O Port After Doze Mode

VOID PortDozeEnable(VOID)

When PPSM wakes up from Doze mode, it will call this routine to re-enable any
user defined I/O ports that are not handled internally by PPSM. User must add in
their own I/O initialization code in this routine.

11.6.3 Disabling I/O Port Before Sleep Mode

VOID PortSleepDisable(VOID)

Just before PPSM goes into Sleep mode, it will call this routine to disable any user
defined I/O ports that are not handled internally by PPSM. User must add in the
code to disable the I/O ports in this routine.

Administrator
A value of zero disables the system from going into Sleep
mode.

Administrator
User must add in the
code to disable the I/O ports in this routine.

Administrator
User must add in
their own I/O initialization code in this routine.

Administrator
PPSM. User must add in the
code to disable the I/O ports in this routine.

11-8 Power Management

Personal Portable System Manager
Programmer Manual

11.6.4 Enabling I/O Port After Sleep Mode

VOID PortSleepEnable(VOID)

When PPSM wakes up from Sleep mode, it will call this routine to re-enable any
user defined I/O ports that are not handled internally by PPSM. User must add in
their own I/O initialization code in this routine.

Personal Portable System Manager
Programmer Manual

UART Communication Support 12-1

Chapter 12 UART Communication Support

PPSM supports serial communication through the UART in both normal mode and
IrDA mode. A set of interface tools is provided for applications to send and receive
data through the UART.

12.1 UART Communication Architecture

The UART interface tools provide an easy-to-use API for applications to send and
receive data serially with or without hardware flow control. Refer to Figure 12-1
and Figure 12-2 for an overview of the UART communication architecture between
a calling application and PPSM at system start up and during data transmission.

PPSM monitors the use of the UART among applications through IrptRequest()
and IrptRelease() (refer to Chapter 15 - Interrupt Handling). The UART interface
tools will have effect only after the calling application has been granted permission
to access the UART. The data transmission is interrupt-driven.

Once permission is granted, the calling application can configure the UART, send
or receive data through the UART, and be notified of the result of the send or
receive operation. The same set of API tools is used for IrDA communication if the
UART hardware is configured to run in IrDA mode.

12.1.1 UART hardware flow control

In PPSM v3.1, data communication between DragonBall and other
communication devices using UART supports RTS, CTS hardware flow control.
RTS is asserted automatically by calling UARTSend() and UARTReceive() when
hardware flow control is enabled. In null modem configuration, when Dragonball is
sender, receiver needs to acknowledge Dragonball ready to receive by asserting
it RTS pin. When Dragonball is receiver, it acknowledges the sender side by
asserting RTS pin. Thus, if both RTS pins of DragonBall and the other
communication device are asserted, data transfer can be full-duplex.

Three APIs are available for RTS, CTS hardware flow control. They are
UARTFlowCtrl(), UARTRcvCtrl() and UARTSendCtrl(). Hardware flow control can
be enabled or disabled by calling UARTFlowCtrl(). By calling UARTRcvCtrl() and
UARTSendCtrl(), PPSM can pause or continue data reception and data
transmission respectively.

An API, UARTSendAbort(), is used for returning the current position of software
send buffer and number of bytes have been transmitted by DragonBall. Also, this
API can abort the transmission with appropriate input flag.

Administrator
IrptRequest()

Administrator
IrptRelease()

Administrator
interrupt-driven.

Administrator
UARTSend()

Administrator
UARTReceive()

Administrator
RTS pin.

Administrator
RTS pin.

Administrator
UARTFlowCtrl(), UARTRcvCtrl() and UARTSendCtrl().

Administrator
UARTFlowCtrl().

Administrator
UARTRcvCtrl()

Administrator
UARTSendCtrl(),

Administrator
UARTSendAbort(),

Administrator
Also, this
API can abort the transmission with appropriate input flag.

12-2 UART Communication Support

Personal Portable System Manager
Programmer Manual

12.1.2 UART Interface Constraints

Only one task in the system can access the UART at any one time. Except for
inquiring current settings, an error code will be returned to the application if it
attempts to use the UART interface tools before permission is granted.

Applications swapping is inhibited during UART data transmission and reception.
Once a data transmission or reception request has been initiated by an
application, pen touches on application icons will be ignored. This constraint
prevents data loss due to suspension of the application which initiated the
request.

The enforcement of these constraints requires cooperation among applications in
initiating a request only when it is needed, and cancelling a request as soon as
data transmission or reception is completed.

Administrator
Only one task in the system can access the UART at any one time.

Administrator
Applications swapping is inhibited during UART data transmission and reception.

Administrator
Once a data transmission or reception request has been initiated by an
application, pen touches on application icons will be ignored.

Personal Portable System Manager
Programmer Manual

UART Communication Support 12-3

Data Receive

APPLICATION PPSM H/W

Figure 12-1 UART Communication Architecture - Data Receive

Request
Access

Check
Access

Permission

Release
Access &

Acknowledge

Read Data
& Determine
End of Data

Abort
Read
Data

Read
Data From
Hardware

Request
Receive

Access Permission Request
(if not already)

Granted / Denied

Receive Request

Granted / Denied

Data Read / Error

Data Receive Request

Data Requested

Abort Read Data Request

Release Access Request

Read Request

Data / Error

Acknowledge

Release
Access

Check
Receive

Permission

12-4 UART Communication Support

Personal Portable System Manager
Programmer Manual

Data Transmit

APPLICATION PPSM H/W

Figure 12-2 UART Communication Architecture - Data Transmit

Request
Access

Check
Access

Permission

Release
Access &

Acknowledge

Send Data To
Hardware &

Acknowledge

Request
Transmit

Access Permission Request
(if not already)

Granted / Denied

Transmit Request & Data

Complete / Error

Release Access Request

Data Sent

Acknowledge

Release
Access

Personal Portable System Manager
Programmer Manual

UART Communication Support 12-5

Data Receive

APPLICATION PPSM H/W

Figure 12-3 UART Communication Architecture - Data Receive with RTS/CTS flow control

Request
Access

Check
Access

Permission

Release
Access &

Acknowledge

Read Data
& Determine
End of Data

Abort
Read
Data

Read
Data From
Hardware

Request
Receive

Access Permission Request
(if not already)

Granted / Denied

Receive Request

Granted / Denied

Data Read / Error

Data Receive Request

Data Requested

Abort Read Data Request

Release Access Request

Read Request

Data / Error

Acknowledge

Release
Access

Check
Receive

Permission

with RTS/CTS
flow control

Assert RTS
and

Initiate RX
timeout

Negate RTS
and

Clear RX
timeout

Pull Low RTS pin

Pull High RTS pin

12-6 UART Communication Support

Personal Portable System Manager
Programmer Manual

Data Transmit

APPLICATION PPSM H/W

Figure 12-4 UART Communication Architecture - Data Transmit with RTS/CTS flow control

Request
Access

Check
Access

Permission

Release
Access &

Acknowledge

Send Data To
Hardware &

Acknowledge

Request
Transmit

Access Permission Request
(if not already)

Granted / Denied

Complete / Error

Release Access Request

Data Sent

Acknowledge

Release
Access

with RTS/CTS
flow control

Assert RTS
and

Initiate TX
timeout

Pull Low RTS pin

Check
transmit

Permission
Granted / Denied

Wait for end
of

transmission

Transmit Request & Data

Negate RTS
and

Clear TX
timeout

Pull High RTS pin

Personal Portable System Manager
Programmer Manual

UART Communication Support 12-7

12.1.3 UART Interface Interrupt Message

The UART interface communicates with an application via an interrupt message
returned by IrptGetData(), called IRPT_UART. Please refer to Chapter 15 -
Interrupt Handling for details about IrptGetData().

After an application is granted permission to use the UART, it can initiate a data
transmission request. As the data transmission progressed, it will receive the
IRPT_UART interrupt message with the corresponding message data under the
following circumstances.

` An error condition has occurred. The interrupt message data,
UART_ERROR, appended with an error code will be returned to the
calling application. The error codes are:
` UART_ERR_TMOUT for data transmission time out condition

once the transmission has started.
` UART_ERR_FRAME for frame error condition during data

receive.
` UART_ERR_PARITY for parity error condition during data

receive.
` UART_ERR_OVERRUN for overrun error condition during data

receive.
` UART_ERR_NODATA for prematurely requesting PPSM for

data before data has been received.
` Data has been received from the UART. The interrupt message

data, UART_DATA_RECEIVED, will be returned to the calling
application.

` Data send request has been completed. The interrupt message
data, UART_DATA_SENT, will be returned to the calling application.

Table 12-1 shows the new UART interrupt message and the related data returned
with it during IrptGetData().

12.2 UART Configurations

PPSM allows applications to configure the UART to operate in normal or IrDA
mode, various baud rates, parity settings, stop bit settings, character length

Table 12-1 UART Interrupt Message and related Message Data

Interrupt Message Data Returned Data Type

IRPT_UART UART_ERROR followed by the actual
error code:

` UART_ERR_TMOUT
` UART_ERR_FRAME
` UART_ERR_PARITY

` UART_ERR_OVERRUN
` UART_ERR_NODATA
UART_DATA_RECEIVED

UART_DATA_SENT

16-bit integer

Administrator
IrptGetData(),

Administrator
IrptGetData().

Administrator
it will receive the
IRPT_UART interrupt message with the corresponding message data under the
following circumstances.

Administrator
UART_ERROR,

Administrator
UART_ERR_TMOUT

Administrator
UART_ERR_FRAME

Administrator
UART_ERR_PARITY

Administrator
UART_ERR_OVERRUN

Administrator
UART_ERR_NODATA

Administrator
UART_DATA_RECEIVED,

Administrator
UART_DATA_SENT,

Administrator
IrptGetData().

12-8 UART Communication Support

Personal Portable System Manager
Programmer Manual

settings, and data transmission time out settings. When configured to operate in
normal mode, the minimum and maximum baud rates supported are 300 bps (bits
per second) and 115200 bps respectively. When configured to operate in IrDA
mode, only the 115200 bps baud rate is guaranteed.

Upon system start-up, the default UART configuration is to run in normal mode at
9600 bps, with no parity, 8-bit characters, one stop bit, and no data transmission
time out.

Please note that the application must have the permission to access the UART
before it can configure the UART. Refer to Chapter 15 - Interrupt Handling
regarding the usage of IrptRequest() to request permission.

12.2.1 Configuring the UART

STATUS UARTConfigure(U8 mode, U16 baudRate, U8 parity, U8 stopBits, U8
charLen)

Applications can use UARTConfigure() to reconfigure the UART to the required
settings. Any on-going data transmission request will be aborted and the data
transmission time out reset to the default. The actual baud rate will be the closest
approximation to the specified baud rate.

Table 12-2 shows the list of configurations and settings supported, and the
corresponding selection flag to be used with UARTConfigure(). (Refer to Section
26.1 - UARTConfigure for details)

Table 12-2 UART Configurations and Supported Settings

Configurations Supported Settings

Operating Mode ` Normal NRZ mode
` IrDA mode

Baud Rate ` 300 bps
` 600 bps
` 1200 bps

` 2400 bps
` 4800 bps
` 9600 bps

` 14400 bps
` 19200 bps
` 28800 bps

` 38400 bps
` 57600 bps
` 115200 bps

Parity ` No parity
` Odd parity
` Even parity

Number of Stop Bits ` 1 stop bit
` 2 stop bit

Administrator
300 bps (bits
per second) and 115200 bps respectively.

Administrator
only the 115200 bps baud rate is guaranteed.

Administrator
Upon system start-up, the default UART configuration is to run in normal mode at
9600 bps, with no parity, 8-bit characters, one stop bit, and no data transmission
time out.

Administrator
Please note that the application must have the permission to access the UART
before it can configure the UART.

Administrator
UARTConfigure()

Administrator
UARTConfigure().

Personal Portable System Manager
Programmer Manual

UART Communication Support 12-9

12.2.2 Inquiring the UART Configurations

void UARTInquire(P_U8 mode, P_U32 baudRate, P_U8 parity, P_U8
stopBits, P_U8 charLen)

UARTInquire() provides the interface for applications to inquire the current
configuration settings of the UART. UARTInquire() returns the selection flag for the
corresponding configuration setting as shown in Table 12-2, except for baud rate.
The actual baud rate in bps is returned instead.

Note: UARTInquire() is the only UART API tool that does NOT require
UART access permission.

12.2.3 Setting Data Transmission Time Out

STATUS UARTTimeout(U16 tmout)

The data transmission time out is defined to be the time interval between two
hardware UART interrupts. This time out is set to safe-guard the application from
deadlocking itself when the data stream terminates unexpectedly.

If RTS/CTS is enabled, after called UARTSend() to initiate transmission,
application will receive a time out error if CTS is not asserted within the time out
period. If CTS is asserted, application will receive a time out error if the time
interval between two hardware UART interrupts is larger than the time out period.

The range of time out values supported is zero to 60,000.

` Zero means disabling the time out function.
` 1 to 60,000 means allowing the time interval between two hardware

UART interrupts to be 1 millisecond to 1 minute.

12.2.4 Setting Data Transmission Delay

STATUS UARTSetDelay(U8 type, U16 delay)

In order to communicate with application in PC, such as HyperTerminal and Telix,
transmitting data in a burst of pulses periodically would greatly increase the
accuracy of transmission. This function allows user to set a delay, in unit of 100us,
between each transmission of all data in transmit FIFO (between two hardware
interrupts). In Example 12-1, an application is going to transmit data through
UART to HyperTerminal under Window95. A 400 microseconds delay is set
between each UART hardware interrupt.

The range of delay values supported is 1 to 60,000.

Character Length ` 7-bit character
` 8-bit character

Table 12-2 UART Configurations and Supported Settings

Configurations Supported Settings

Administrator
UARTInquire() is the only UART API tool that does NOT require
UART access permission.

Administrator
UARTInquire() is the only UART API tool that does NOT require
UART access permission.

Administrator
The range of time out values supported is zero to 60,000.

Administrator
Zero means disabling the time out function.

Administrator
The range of delay values supported is 1 to 60,000.

12-10 UART Communication Support

Personal Portable System Manager
Programmer Manual

` UART_TXDELAY_CLEAR means clear the delay during
transmission

` 1 to 60,000 means allowing the delay interval between two
hardware UART interrupts to be 100 microsecond to 6 seconds.

Example 12-1 Setting delay within transmission

.....
IrptRequest(IRPT_UART_FLAG);
/* Enable RTS/CTS flow control */

 UARTFlowCtrl(UART_RCTS_ENABLE);
/* Configure UART */
UARTConfigure(UART_NORMAL_MODE, UART_115200_BPS, NO_PARITY, ONE_STOP_BIT,
EIGHT_BIT_CHAR);
/* Set a 600 us delay between each hardware interrupt */
_UARTSetDelay(UART_TXHALF_DELAY, 6);
/* release irpt */
IrptRelease(IRPT_UART_FLAG);

.....

12.3 Sending Data to the UART

STATUS UARTSend(U8 sendFlag, P_U8 data, U16 dataLen)

Refer to Figure 12-2 and Figure 12-4 for an overview of the data transmit
architecture.

12.3.1 Initiating a Send Request

Applications can send data out to the UART by calling UARTSend() to
initiate send requests. A send request will be accepted if both of the
following are true:

` the application has permission to access the UART (refer to
Chapter 15 - Interrupt Handling)

` there is no other on-going send request

Actual data sending does not happen within the scope of UARTSend(). If
UARTSend() returns success for the request, PPSM will handle the UART
interrupts and start sending data in the background. The application will be able to
handle other interrupts (e.g. pen interrupts) in the foreground.

The calling application cannot modify the content of the data buffer during the
entire course of the send request.

If RTS/CTS hardware flow control is enabled, PPSM only transmits data through
UART when CTS pin is asserted by receiver.

For power saving reason, system is in Doze mode during transmission. However,
transmission speed is reduced. For fast data transmission, it is recommended to
disable the Doze mode before calling UARTSend() which is shown in Example 12-
2.

Note: Application swapping is disabled when there is an on-going
data transmission.

Administrator
UART_TXDELAY_CLEAR

Administrator
UARTSend(). If
UARTSend() returns success for the request, PPSM will handle the UART
interrupts and start sending data in the background.

Administrator
The application will be able to
handle other interrupts (e.g. pen interrupts) in the foreground.

Administrator
system is in Doze mode during transmission. However,
transmission speed is reduced. For fast data transmission,

Administrator
it is recommended to
disable the Doze mode before calling UARTSend()

Administrator
Application swapping is disabled when there is an on-going
data transmission.

Personal Portable System Manager
Programmer Manual

UART Communication Support 12-11

Example 12-2 Initiating a Send request

.....
IrptRequest(IRPT_UART_FLAG);
SetDozePeriod(PPSM_NO_DOZE);
UARTSend(UART_SEND_REQUEST,gSendMsg,gSendDataLen);

.....

12.3.2 Terminating a Send Request

A send request will be terminated under the following circumstances:

` After PPSM finishes sending all data, it will post an IRPT_UART
interrupt message with message data UART_DATA_SENT to the
calling application. This marks the completion of the send request.
(Refer to Section 15.1.9 - IRPT_UART for details about the UART
interrupt message).

` If a timed out error condition occurs during the course of sending
data, PPSM will post the IRPT_UART interrupt message with
message data UART_ERROR and the corresponding error code.
This marks a failed send request, and the calling application should
determine the recovery actions. The current transmission is aborted
after time out happened.

` An application aborts the on-going send request by calling
UARTSend() or UARTSendAbort() with the abort flag.

The calling application should release the UART access permission by calling
IrptRelease() as soon as it is not needed anymore.

It is recommended to force system to Doze mode after terminated a transmission
or a transmission is completed which is illustrated in Example 12-3.

Note: Application swapping is re-enabled after a transmission is
completed or aborted.

Example 12-3 Terminating a transmission

.....
/* Abort send. Store the pointer of send buffer and no. of bytes have been..*/
/* .. sent in gpSendbuf and gSendbyte respectively */
UARTSendAbort(UART_SEND_ABORT, &gpSendbuf, &gSendbyte);
IrptRelease(IRPT_UART_FLAG); /* release interrupt */
SetDozePeriod(0); /* go to Doze mode */

.....

12.4 Receiving Data from the UART

STATUS UARTReceive(U8 receiveFlag)

STATUS UARTReadData(P_U8 data, U16 bufSize, P_U16 sizeRead)

Refer to Figure 12-1 and Figure 12-3 for an overview of the data receive
architecture.

Administrator
IRPT_UART

Administrator
UART_DATA_SENT

Administrator
IrptRelease()

Administrator
UARTSend()

Administrator
UARTSendAbort()

Administrator
The calling application should release the UART access permission by calling
IrptRelease() as soon as it is not needed anymore.

Administrator
It is recommended to force system to Doze mode after terminated a transmission
or a transmission is completed which is illustrated in Example 12-3.

12-12 UART Communication Support

Personal Portable System Manager
Programmer Manual

12.4.1 Initiating a Receive Request

Applications can receive data from the UART by calling UARTReceive() to
initiate receive requests. A receive request will be accepted if both of the
following is true:

` the application has permission to access the UART (refer to
Chapter 15 - Interrupt Handling)

` there is no other on-going receive request

Actual data receiving does not happen within the scope of UARTReceive(). If
UARTReceive() returns success for the request, PPSM will handle the UART
interrupts and start waiting for data in the background. The application will be able
to handle other interrupts (e.g. pen interrupts) in the foreground.

For power saving reason, system is in Doze mode during data reception. For fast
data reception, it is recommended to disable the Doze mode before calling
UARTReceive().

Note: Application swapping is disabled when there is an on-going
receive request.

12.4.2 Reading Received Data

When PPSM has received data from the UART, it will post an IRPT_UART
interrupt message with message data UART_DATA_RECEIVED to the calling
application. The calling application should then call UARTReadData() as soon as
possible to read the received data from PPSM.

As PPSM is receiving data from the UART, the following error conditions may
arise:

` a frame error generated by the UART hardware
` a parity error generated by the UART hardware
` an overrun error when PPSM or the calling application is falling

behind in reading the received data

In any of the above error conditions, PPSM will post the IRPT_UART interrupt
message with message data UART_ERROR and the corresponding error code.
These error related interrupt messages only serve as a notification to the calling
application, and does NOT stop PPSM from continuing the receive request. The
calling application should determine the appropriate recovery actions. (Refer to
Section 15.1.9 - IRPT_UART for details about the UART interrupt message).

If RTS/CTS is enabled, RTS pin is negated when PPSM running
UARTReadData() and asserted after data reading completed.

12.4.3 Terminating a Receive Request

A receive request will be terminated under the following circumstances:

` If a timed out error condition occurs during the course of receiving
data, PPSM will post the IRPT_UART interrupt message with
message data UART_ERROR and the corresponding error code.

Administrator
UARTReceive() to
initiate receive requests.

Administrator
For power saving reason, system is in Doze mode during data reception. For fast
data reception, it is recommended to disable the Doze mode before calling
UARTReceive().
Note: Application swapping is disabled when there is an on-going
receive request.

Administrator
IRPT_UART

Administrator
UARTReadData()

Administrator
UART_ERROR

Administrator
These error related interrupt messages only serve as a notification to the calling
application, and does NOT stop PPSM from continuing the receive request.

Personal Portable System Manager
Programmer Manual

UART Communication Support 12-13

This marks a failed receive request, and the calling application
should determine the recovery actions. The current data reception
is aborted after time out happened.

` An application aborts the on-going receive request by calling
UARTReceive() with the abort flag.

The calling application should release the UART access permission as soon as it
is not needed anymore.

It is recommended to force system to Doze mode after terminated a data
reception or a reception is completed for power saving.

Note: Application swapping is re-enabled after a receive request is
terminated.

12.4.4 Setting Data Reception Time Out

If RTS/CTS is enabled, after UARTReceive() is called, application may receive a
time out error depends on whether CTS is asserted or not. If CTS is negated,
application will not receive time out error because the other communication device
is off. On the other hand, if CTS is asserted, application will receive time out error
if no data arrived within the time out period. For the former case, application
programmer is prefer to set a timeout by RefTimeAlarmId() after called
UARTReceive() to avoid deadlocking as shown in Example 12-4.

Example 12-4 Setting initial time out for data reception

.....
IrptRequest(IRPT_UART_FLAG); /* request interrupt */
UARTTimeout(1000); /* set 1 sec time out between two receive interrupts */
UARTReceive(UART_RECEIVE_REQUEST); /* request to receive */
RefTimeAlarmId(&RxAlarmId, RefTimeRead()+2000); /* initiate 2 sec time out */
.....

if(*inData==UART_DATA_RECEIVED)
 { DeleteTimer(gRxAlarmId); /* data arrived, delete init time out */

UARTReadData(gpBuf, gRcvBufSize, &gSizeRead); /* read data */
.....
}

12.5 UART hardware flow control

12.5.1 Enabling RTS/CTS hardware flow control

Applications can enable RTS/CTS hardware flow control by calling
UARTFlowCtrl(UART_RCTS_ENABLE). If hardware flow control is not enabled
when calling RTS/CTS flow control APIs, error code PPSM_ERR_RCTS_IDLE is
returned to the application. RTS is asserted after enabled RTS/CTS flow control.

12.5.2 Disabling RTS/CTS hardware flow control

Applications can disable RTS/CTS hardware flow control by calling
UARTFlowCtrl(UART_RCTS_DISABLE). System negates RTS pin immediately
after disabled hardware flow control. Any further changes in RTS or CTS pin are

Administrator
The current data reception
is aborted after time out happened.

Administrator
UARTReceive() with the abort flag.

Administrator
RefTimeAlarmId()

Administrator
UARTFlowCtrl(

Administrator
PPSM_ERR_RCTS_IDLE

Administrator
UARTFlowCtrl(UART_RCTS_DISABLE).

12-14 UART Communication Support

Personal Portable System Manager
Programmer Manual

ignored by the system. RTS is asserted after disabled RTS/CTS flow control.

12.6 Data reception with hardware flow control

12.6.1 Pause data reception

After RTS/CTS hardware flow control is enabled, PPSM automatically pauses
data reception once internal UART buffer (not FIFO) is full. Data reception is
resumed after data is read out by UARTReadData() in application. If the interval of
CTS remain negated is longer than the time out period, time out error will occur.

Applications can pause data reception of UART when hardware flow control is
enabled. Error code PPSM_ERR_RCTS_IDLE is returned if hardware flow control
is not enabled. Applications can resume data reception by calling
UARTRcvCtrl(UART_RCTS_CONT).

There will be no receive timeout error occur after pausing the data reception.
Because the purpose of UARTTimeout() is mainly for avoiding the system stays in
dead loop when transmitting or receiving data. User can set a timeout by calling
RefTimeAlarmId(). The receive timeout is restarted when data reception is
resumed by calling UARTRcvCtrl(UART_RCTS_CONT).

12.6.2 Continue data reception

Applications can continue data reception which has been paused by
UARTRcvCtrl(UART_RCTS_PAUSE) when hardware flow control is enabled.
Error code PPSM_ERR_RCTS_IDLE is returned if hardware flow control is not
enabled.

12.7 Data transmission with hardware flow control

12.7.1 Pause data transmission

Applications can pause data transmission of UART when hardware flow control is
enabled. Error code PPSM_ERR_RCTS_IDLE is returned if hardware flow control
is not enabled. Applications can resume data transmission by calling
UARTSendCtrl(UART_RCTS_CONT).

There will be no transmit timeout error occur after pausing the data transmission.
Because the purpose of UARTTimeout() is mainly for avoiding the system stays in
dead loop when transmitting or receiving data. User can set a timeout by calling
RefTimeAlarmId(). The transmit timeout is restarted when data transmission is
resumed by calling UARTSendCtrl(UART_RCTS_CONT).

Administrator
PPSM_ERR_RCTS_IDLE

Administrator
UARTRcvCtrl(UART_RCTS_CONT).

Personal Portable System Manager
Programmer Manual

UART Communication Support 12-15

12.7.2 Continue data transmission

Applications can continue data transmission which has been paused by
UARTSendCtrl(UART_RCTS_PAUSE) when hardware flow control is enabled.
Error code PPSM_ERR_RCTS_IDLE is returned if hardware flow control is not
enabled.

12-16 UART Communication Support

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Task Management 13-1

Chapter 13 Task Management

Each application running on PPSM is considered as a task. There are two types
of PPSM tasks:

` main task - application task that is stand alone
` sub-task - task that is spawned off by another task either main or

sub task.

The task management tools enable applications to:

` Create a main task or a sub-task
` Start execution of a task
` Terminate execution of a task

This chapter describes how applications can make use of PPSM tools to generate
PPSM tasks.

Message passing or task swapping are possible among any sub tasks, its parent
task and any other main tasks. Changing of panning screen in main task will affect
the panning screen parameter of its sub tasks. Changing of panning screen in sub
task will affect the panning screen parameter of its main task and other sub tasks
belonging to the same main task.

13.1 Main Task

Most applications fall into the main task category. Main tasks run independently of
each other. There cannot be more than 1 main task running at any given time.
They are created by the system tool TaskCreate() or AdvTaskCreate(). Once a
main task is created, there are three ways it can be started:

` By using the system tool TaskStart()
` By pressing the application icon
` By messages sent from another task

13.1.1 System Task

System task is a special main task which is created in PPSMInit(). It never
terminated since creation. The stack used in this task comes from the stack
defined in SPC file so it cannot be freed. The panning screen created in this task
can be deleted and replaced by another global panning screen by the following
method:

Example 13-1 Sharing system task panning screen using global
variable

/* Global variable for sharing panning screen */
U32 gPanScreen;

STATUS TaskApp()

Administrator
Each application running on PPSM is considered as a task.

Administrator
Message passing or task swapping are possible among any sub tasks,

Administrator
Changing of panning screen in main task will affect
the panning screen parameter of its sub tasks. Changing of panning screen in sub
task will affect the panning screen parameter of its main task and other sub tasks
belonging to the same main task.

Administrator
There cannot be more than 1 main task running at any given time.

Administrator
By using the system tool TaskStart()
` By pressing the application icon
` By messages sent from another task

Administrator
PPSMInit().

Administrator
SPC

Administrator
The panning screen created in this task
can be deleted and replaced by another global panning screen by the following
method:

13-2 Task Management

Personal Portable System Manager
Programmer Manual

{
PAN_SCREEN tempScreen;

tempScreen.panAddress = tempScreen.displayScreenAddr = gPanScreen;
tempScren.horzSize = 160;
tempScreen.vertSize = 240;
tempScreen.displayXOrigin = tempScreen.displayYOrigin = 0;
tempScreen.regPOSR = 0;
tempScreen.regPSW = tempScreen.horzSize/PIXELS; /* where PIXELS=8 if the LCD
is set to 2 bits/pixel and PIXELS=16 if the LCD is set to 1 bit/pixel. */

/* Set the panning screen of current task to the sharing panning screen */
ChangePanning(tempScreen, 0);

while(1)
{

....
}

}

main()
{

U32 taskAppId;
PAN_SCREEN tempScreen;

/* PPSM Initialization */
PPSMInit(FALSE);

/* Get screen memory */
gPanScreen = (U32)GetScreenMem(160, 240);

/* Assign panning screen parameters */
tempScreen.panAddress = tempScreen.displayScreenAddr = gPanScreen;
tempScren.horzSize = 160;
tempScreen.vertSize = 240;
tempScreen.displayXOrigin = tempScreen.displayYOrigin = 0;
tempScreen.regPOSR = 0;
tempScreen.regPSW = tempScreen.horzSize/PIXELS; /* where PIXELS=8 if the LCD

/* Delete the default system panning screen and assign the new panning screen
to system task */
ChangePanning(tempScreen, 0);

/* Create a main task without application icon nor panning screen */
AdvTaskCreate(taskAppId, TaskApp, 0, 0, 0, 0, 2048, PPSM_SCREEN_NOSCREEN, 0,
0, NULL);

TaskStart(taskAppId);
}

13.2 Sub-task

Sub-task, on the other hand, can be active at the same time as the parent task
that generated the sub-task and other sub tasks with same parent task. A main
task can create multiple sub-tasks. These sub-tasks are queued in the reverse
order they are created initially. However, the order may be changed when any sub
task is swapping in or out by using SendMessage() or AdvSendMessage().

Sub-task uses the display resource, hardware cursor and input pad of its parent
and can only be created with the system tool SubTaskCreate().

Sub-tasks are tied to the parent task. If the parent task is swapped out or
terminated, the sub-task will be swapped out or terminated too. Sub-task inherits
the input pad properties from the parent task at creation. There can only be one
input pad among the main task and its sub-tasks.

Administrator
A main
task can create multiple sub-tasks.

Administrator
These sub-tasks are queued in the reverse
order they are created initially.

Administrator
However, the order may be changed when any sub
task is swapping in or out by using SendMessage() or AdvSendMessage().

Administrator
If the parent task is swapped out or
terminated, the sub-task will be swapped out or terminated too.

Administrator
too. Sub-task inherits
the input pad properties from the parent task at creation.

Personal Portable System Manager
Programmer Manual

Task Management 13-3

13.2.1 Sub-task Management

When the active area of sub task is touched, that sub task will be swapped in as
the current task.

The IrptGetData() tool is another task swapping point. If no interrupt message is
pending among a main task and its sub-task when IrptGetData() is called, the
current main or sub-task remains active. If message is pending in any of the main
task or its sub tasks, task swapping will happen in IrptGetData().

If there are multiple sub-tasks, they will be parsed using round-robin method. The
most recently swapped out sub-task will be put to the end of the queue. When the
system is ready to restart a new sub-task, it always searches from the beginning
of the queue.

13.3 Task Switching

When the task is started for the first time, it will execute from the beginning of the
task application. When the task needs to be swapped out, PPSM will save the
current Program Counter value. Then, when this task is swapped back in, it will
resume execution from where it was left off.

Example 13-2 Task switching

At arrow 1, TaskApp1() is started for the first time. Then, at arrow 2, TaskApp2() is
also started for the first time, so TaskApp1() will be swapped out. At arrow 3,
TaskApp1() is swapped back in and is resumed from where it was left off.

If the task is swapped by pen interrupt or AdvSendMessage() with input parameter
being SWAP_TASK or SWAP_TASK_BACK_LATER.

If the task is swapped by SendMessage() or AdvSendMessage() with input
parameter being SWAP_TASK_LATER , the current task will not be swapped out
immediately. It will be swapped out in IrptGetData() when all messages in current
task are handled. If the target task is a subtask in other family, it will swap to the
parent of the other family before swapping to the target subtask.

All tasks to be swapped in will be in a FIFO queue. The current task to be
swapped out will be put at the end of the queue. However, if the current task

TaskApp1() 2
{
 TaskInit();

 while(TRUE)
 {
 switch(IrptGetData...

 }

TaskApp2()
{
 TaskInit();

 while(TRUE)
3 {
 switch(IrptGetData...

 }

1

Administrator
When the active area of sub task is touched, that sub task will be swapped in as
the current task.

Administrator
Program Counter value.

Administrator
SWAP_TASK

Administrator
SWAP_TASK_BACK_LATER.

Administrator
SWAP_TASK_LATER

Administrator
IrptGetData()

Administrator
If the target task is a subtask in other family, it will swap to the
parent of the other family before swapping to the target subtask.

Administrator
All tasks to be swapped in will be in a FIFO queue.

13-4 Task Management

Personal Portable System Manager
Programmer Manual

needs to be swapped in later by AdvSendMessage() with
SWAP_TASK_BACK_LATER, the current task will be put in the head of the queue
while it swapped out.

If the current task is parent task and there is no more message to be handled, the
system will check whether there is need to swap to next parent task in the queue.
If there is no more main task to be swapped in, the system will check from the
head of subtask to see whether any subtask needs to be swapped in. The subtask
to be swapped in may due to message in the queue or the task swapping flag in
the subtask is on.

If the current task is subtask and there is no more message to be handled, the
system will check whether there is need to swap to the next subtask in the head of
subtask queue. If not, system will check for the parent and then rest of the subtask
to see whether they need to be swapped in or they have message to handle. If no
more message or task to swap in, system will check the head of the main task
queue to see whether it needs to be swapped in.

Task switching can be disabled by calling AppSwap(FALSE). AppSwap() is a
function to stop task swapping while the system is transferring UART data or any
other critical operations. If the AppSwap(FALSE) is called several times, the same
number of times of AppSwap(TRUE) must be called to let the task switching active
again.

13.4 Message Broadcasting

If the application programmer stores the task id, including main and sub tasks, into
a global list, message can be broadcasted to this list of task by using
AdvSendmessage() with or without task switching.

13.5 Task Control

If the application programmer stores the task id, including main and sub tasks, into
a global list, the task swapping sequence can be controlled by using
AdvSendMessage() with or without message passing. However, those task on the
task swapping queue will not be affected. So if a task is already on the task
swapping queue, nothing can be used to change it. For those task not being on
swapping queue, AdvSendMessage() can be used to put it into the task swapping
queue. The earlier the task is put into the task swapping queue, the higher priority
the task will be swapped in.

In task swapping, PPSM will check whether there is other main task to swap to
before checking the sub tasks of current main task.

The system will always check to see whether their are any messages need to be
handled within the family and swap to that member task to finish the job.
Sometimes the message in current task are cleared and SWAP_TASK is called
immediately to other member of the family. This task may be swapped bad later as
the memory for the last message is not free yet. Message is still in the task until
next IrptGetData() is called. And next task swapping for SWAP_TASK_LATER in
that task will be next IrptGetData() after the one freeing last message memory.

Administrator
SWAP_TASK_BACK_LATER,

Administrator
subtask queue.

Administrator
main task
queue

Administrator
If the current task is parent task and there is no more message to be handled, the
system will check whether there is need to swap to next parent task in the queue.

Administrator
AppSwap(FALSE)

Administrator
AppSwap(TRUE)

Administrator
AdvSendmessage()

Administrator
a global list,

Administrator
AdvSendMessage()

Administrator
The earlier the task is put into the task swapping queue, the higher priority
the task will be swapped in.

Administrator
In task swapping, PPSM will check whether there is other main task to swap to
before checking the sub tasks of current main task.

Administrator
SWAP_TASK

Administrator
swapping for SWAP_TASK_LATER

Personal Portable System Manager
Programmer Manual

Task Management 13-5

13.6 Task Swapping Example

TaskAppA()
{

SubTaskCreate(&subTaskA1, ...);
SubTaskCreate(&subTaskA2,....);
AdvSendMessage(taskB, 0, SWAP_TASK_BACK_LATER);
.....
while(1)
{

IrptGetData(...);
....

}
}

TaskAppB()
{

SubTaskCreate(&subTaskB1,...);
SubTaskCreate(&subTaskB2, ...);
.....
While(1)
{

IrptGetData(....);
.....

}
}

SubTaskAppA1()
{

.....
While(1)
{

IrptGetData(....);
.....

}
}

SubTaskAppA2()
{

.....
AdvSendMessage(taskB, 0, SWAP_TASK);
.....
While(1)
{

IrptGetData(....);
.....

}
}

SubTaskAppB1()
{

.....
While(1)
{

IrptGetData(....);
.....

}
}

SubTaskAppB2()
{

.....
AdvSendMessage(taskB, 0, SWAP_TASK_LATER);
AdvSendMessage(taskA1, 0, SWAP_TASK_LATER);
AdvSendMessage(taskB1, 0, SWAP_TASK_LATER);
......
While(1)
{

IrptGetData(....);
.....

}

13-6 Task Management

Personal Portable System Manager
Programmer Manual

}

Task swapping sequence is A->B->A->A1->A2->B->B1->B2->B1->B->A->A1

When task A is created, it will create subtask A1 and subtask A2. These 2
subtasks wouldn be executed until IrptGetData() is called. However,
AdvSendMessage() with SWAP_TASK_BACK_LATER is called before
IrptGetData() so the next task is B. In task B, subtask B1 and subtask B2 are
created. In IrptGetData() of task B2, it will swap back to A as the previous
command is SWAP_TASK_BACK_LATER. Then subtask A1 and subtask A2 will
be executed in sequence. In subtask A2, SWAP_TASK to B is executed so next
task is B. In IrptGetData() of task B, it will swap to B1 as B1 is not executed yet.
Then in IrptGetData() of subtask B1, it will swap to subtask B2. In subtask B2,
SWAP_TASK_LATER is called for task B, subtask A1 and subtask B1. As the
system will check for next subtask first, subtask B1 will be swapped in
IrptGetData() of subtask B2. In IrptGetData() of subtask B1, it will swap to B as it
will check for the parent after checking the next subtask. Then it will swap to task A
and then A1 in IrptGetData() of these tasks as AdvSendMessage() is called for
swapping task to A1 in subtask B2. Whenever SWAP_TASK_LATER is called for
subtask in other family, the parent of the other family will be swapped in first.

13.7 Creating a Task

STATUS TaskCreate(P_U32 taskId, P_VOID procAddr, S16 xSrc, S16 ySrc,
S16 xDest, S16 yDest, P_U8 bitmap)

PPSM needs to know the existence of each application task before the task can
access PPSM resources. The main body of a PPSM system must call this routine
once for each application. PPSM will create the necessary data structure and
memory space required to run the application. An application icon is created for
each application with the coordinates as supplied in the argument list. The
application is put to the foreground whenever this icon is selected. This tool does
not start the execution of the application. It registers the task with PPSM only. If
the user does not want to have an application icon, the user should set either
width or height to be zero(xSrc = xDest or ySrc = yDest). Hence, there is no
application icon to be created.

By default, a screen is created with the task. PPSM uses the system default
physical size as the dimension for this screen. The default physical size is
specified in the Linker Specification File, as described in Chapter 34 - Linker
Specification File.

A 2K byte of memory is allocated for each task as the task stack.

13.8 Creating a Task with Specific Task Parameters

STATUS AdvTaskCreate(P_U32 taskId, P_VOID procAddr, S16 xSrc, S16
ySrc, S16 xDest, S16 yDest, S32 stackSize, U16 newScreen, U16
screenWidth, U16 screenHeight, P_U8 bitmap)

Creation of a new PPSM task. This tool creates a PPSM application task in the

Administrator
An application icon is created for
each application with the coordinates as supplied in the argument list.

Administrator
It registers the task with PPSM only.

Administrator
the user should set either
width or height to be zero(xSrc = xDest or ySrc = yDest).

Administrator
A 2K byte of memory is allocated for each task as the task stack.

Personal Portable System Manager
Programmer Manual

Task Management 13-7

same manner as the existing tool TaskCreate(), with the difference that it also
allows the caller to specify the launch icon position and size, the stack memory
required by the application and the screen memory size, if any is required. Two
settings for the panning screen variable, newScreen, are available:

` PPSM_SCREEN_NOSCREEN will have no screen.
` PPSM_SCREEN_NEW will take the arguments screenWidth and

screenHeight and creates a new screen for the application task.
However, if either one of the arguments, screenWidth and
screenHeight, is zero, the default panning screen size taken from
the linker specification file will be used.

A default of 512 byte of memory is allocated for the task stack if the input
argument is negative.

Example 13-3 Create a task

57 main()
58 {
59 U32 SlideTask; /* Task id for slide */
60 U32 UartDemoTask, TimerTask; /* Task id for uart and reference timer */
.
.
.
66 /* Create the UART application task with a stack size = 2K,
67 * and a panning screen with default width & height is required.
68 */
69 if (AdvTaskCreate(&UartDemoTask, (P_VOID) UartDemo, src_x[UART_ICON],
70 src_y[UART_ICON], dest_x[UART_ICON], dest_y[UART_ICON], 2048,
71 PPSM_SCREEN_NEW, 0, 0, 0))
72 return(PPSM_ERROR);

13.9 Creating a Sub Task

STATUS SubTaskCreate(P_U32 taskId, P_VOID procAddr, U16 stackSize,
U16 numArg, ...)

Creating a sub-task. Any task can use this tool to create sub-tasks. If the calling
task is itself a sub-task, the new sub-task will belong to the calling sub-task
parent(ie. the calling and the created sub-task will become siblings). If the calling
task has already created more than one sub-task, the new sub-task will be added
to the head of the sub-task list. There is currently no limit on the number of sub-
task a parent task can create.

This routine accepts variable length input argument. These arguments are passed
into the sub-task by PPSM, meaning that the actual sub-task routine can accept
input arguments.

Subtask will be started when the current task has no more messages to be
handled and there is no need to swap to the other task. Subtask will be started in
the IrptGetData() routine in current task.

13.10 Starting a Task

STATUS TaskStart(U32 taskId)

Administrator
PPSM_SCREEN_NOSCREEN

Administrator
PPSM_SCREEN_NEW

Administrator
However, if either one of the arguments, screenWidth and
screenHeight, is zero, the default panning screen size taken from
the linker specification file will be used.

Administrator
the new sub-task will be added
to the head of the sub-task list.

Administrator
Subtask will be started in
the IrptGetData() routine in current task.

13-8 Task Management

Personal Portable System Manager
Programmer Manual

This tool launches a task that has been created by the tool TaskCreate() or
AdvTaskCreate(). This routine never terminates. It takes the task identifier as input
argument and begins execution of the task. Since this tool may prevent the
application caller from executing again, it should always be called at the end of
main() to start the first task.

Example 13-4 Start a task

59 U32 SlideTask; /* Task id for slide */
.
.
.
91 /* Slide is the default task to be run when the system starts up */
92 TaskStart(SlideTask);

13.11 Termination of a Task

STATUS TaskTerminate(U32 taskId)

Termination of a task. The task identifier can be of a main or sub-task. All system
memory associated with the task and its sub-tasks that are allocated by PPSM
are freed, such as stack memory and screen, if any. Any memory that was
explicitly allocated by the task through Lmalloc(), Lcalloc() or Lrealloc(), is not
going to be freed by the system because that area may be shared by several
tasks. That area can be freed by calling Lfree() in application program.

A task cannot terminate itself. If it is a sub-task, it cannot terminate its parent task
either.

13.12 Task Reinitialization

STATUS TaskReInit(U32 taskId, U16 flag)

This tool will set the reinit flag in the specified task. If the flag is TRUE, whenever
the task is swapped in, it will start at the beginning of the task function. However,
application programmer needs to handle the cleaning up of memory in task
swapping using TaskHook().

In task swapping, the PC and stack, etc. will be restored to the value when the
task is not executed.

This function must be called immediately after TaskCreate() or AdvTaskCreate()
when the task is created. This function can be called to disable the task
reinitialization at anytime but cannot be called to enable the reinitialization again.

13.13 Task Hook

STATUS TaskHook(U32 taskId, P_VOID entryCallback, P_VOID exitCallback)

This tool will hook the entryCallback() and exitCallback() functions to the specified
task. When the task is swapped in, the entryCallback() will be called after updating
the registers. When the task is swapped out, the exitCallback() will be called

Administrator
because that area may be shared by several
tasks.

Administrator
That area can be freed by calling Lfree() in application program.

Administrator
A task cannot terminate itself. If it is a sub-task, it cannot terminate its parent task
either.

Administrator
TaskHook().

Administrator
entryCallback()

Administrator
exitCallback()

Personal Portable System Manager
Programmer Manual

Task Management 13-9

before storing the registers value. The entryCallback and exitCallback must be an
one input parameter function. The input parameter for entryCallback will be the
task id. for the task just swapped out and the input parameter for exitCallback will
be the task id. for the task swapping in.

e.g. STATUS Entry(U32 previousTaskId); and STATUS Exit(U32 nextTaskId)

This function can be called outside or within the task. However, if it called within
the task, the entry routine is not executed and so it needs to be called after this
function.

Example 13-5 TaskHook() inside task

VOID EntryR(U32 oldId)
{
......
}

VOID ExitR(U32 nextId)
{
......
}

Task1()
{

Task1Init();
TaskHook(task1Id, EntryR, ExitR);
EntryR(0);

While(1)
....

}

If TaskHook() is called outside its task, the entry routine will be executed
automatically once the task is executed.

13.14 Stop task swapping

void AppSwap(U16 flag)

If flag is FALSE, no task swapping will be allowed by any means. If
SendMessage() or AdvSendMessage() is called after calling AppSwap(FALSE),
the message will be sent but no task swap later nor task swap immediately will be
executed. This function will increment a flag for task swapping, if it called with
FALSE several times, the same number of times AppSwap(TRUE) must be called
before task swapping is allowed.

13-10 Task Management

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Inter-Task Messaging 14-1

Chapter 14 Inter-Task Messaging

PPSM supports asynchronous message passing between tasks using the
provided tools. This tool cannot be used to pass message between sub tasks with
different parent tasks.

The sender task sends out the message stored in the pre-defined message
structure using the tool SendMessage() or AdvSendMessage(). It must know the
task identifier of the task that it wants to send the message to.

The receiving task receives the sent message in it software interrupt buffer, in
the same way as other interrupt messages sent from PPSM system. Accessing
this message by the application is done by using the IrptGetData() tool.

The messaging tool enables applications to:

` notify other applications of user defined events
` pass data between tasks within the system
` swap to the specified task immediately or later

The format of the data passed by these tools are not defined. The caller and
receiver must have their own mutual agreement on the form of data being sent.
PPSM only performs the actual message passing and informing the receiving
application task of the arrival of the message.

The AdvSendMessage() can be used to control task swapping sequence with or
without message passing.

This can be used to send message to the task itself. Whenever these functions
are called to send message or control task swapping in interrupt routines when
the system is in doze mode, it will wake up the system.

14.1 Message Passing

Message can be sent between any tasks even the current task itself.
SendMessage() will send message to the target task and set the flag to swap to
the target task once all messages for current task are handled.
AdvSendMessage() has more flexibility. Task swapping can happen without any
message sent to the target task using AdvSendMessage(). AdvSendMessage()
can be used to send message to target task without task swapping which is used
as a purely message passing tool.

Example 14-1 Multiple swap task later

TaskA()
{

......
SendMessage(taskBId, msg);
SendMessage(taskCId, msg);
.....

}

Administrator
This tool cannot be used to pass message between sub tasks with
different parent tasks.

Administrator
The format of the data passed by these tools are not defined.

Administrator
Message can be sent between any tasks even the current task itself.

Administrator
AdvSendMessage()
can be used to send message to target task without task swapping which is used
as a purely message passing tool.

14-2 Inter-Task Messaging

Personal Portable System Manager
Programmer Manual

In the above example, task B will be put on the head of task swapping queue and
then task C will be put after task B. So when all messages in task A are handled,
system will swap to task B. When all messages in task B are handled, system will
swap to task C.

Note: If UARTSend() or UARTReceive() is called, no task swapping
can be happened in any case until transmission or reception is
aborted. It is applied to all task swapping cases discussing in
this chapter.

14.1.1 With Delayed Task Swapping

In the diagram above, TaskApp1() will call SendMessage() to send a message to
TaskApp2(). However, the active TaskApp1() will not be swapped out. It will still be
active until it executes IrptGetData() as in arrow 1. Then, TaskApp2() will be
swapped back in as in arrow 2. Message from TaskApp1() will be received in
IrptGetData() of TaskApp2() as in arrow 3.

The task swapping happens when all messages in TaskApp1() are handled.

This will happen if SendMessage() or AdvSendMessage() with
SWAP_TASK_LATER are used. The target task will be push into the tail of main
task swapping queue if the target task is main task or the tail of sub task swapping
queue otherwise.

14.1.2 With Immediate Task Swapping

In AdvSendMessage(), if the flag is SWAP_TASK, message passing and task
swapping will happen inside AdvSendMessage() immediately.

14.1.3 With Immediate Task Swapping and Delayed Swap Back

In AdvSendMessage(), if the flag is SWAP_TASK_BACK_LATER, message
passing and task swapping will happen immediately inside AdvSendMessage()
and the current task will be put into the head of the task swapping queue. So when
all messages are handled in target task, the current task will be swapped back.

TaskApp1()
{
 TaskInit();

 while(TRUE)
 {
 switch(IrptGetData...

 SendMessage(TaskApp2Id...

 }

TaskApp2()
{
 TaskInit();

 while(TRUE)
 {
 switch(IrptGetData...

 }

1

2

3

Administrator
SWAP_TASK,

Personal Portable System Manager
Programmer Manual

Inter-Task Messaging 14-3

14.1.4 Message Passing without Task Swapping

In AdvSendMessage(), if the flag is NO_SWAP_TASK, it will act as a message
passing only and no task swapping activity will happen.

14.2 Message Structure

A pre-defined structure is used to store and forward messages from the sender.

typedef struct _MESSAGE
{

U16 messageType; /* message type */
U16 message; /* message */
U32 misc; /* short data (32bit) */
P_VOID data; /* associated data, if any */
U16 size; /* size of data in bytes */
U16 reserved; /* for future (broadcast, etc.) */

} PPSM_MESSAGE, *P_MESSAGE;

14.3 Sending Message

STATUS SendMessage(U32 taskId, P_MESSAGE msg)

This tool sends a message to a known task. If the receiver task task identifier is

Table 12-1 Message Structure

Name Description

messageType The type of message being sent.
Currently only one type of message is defined for application
usage. This is MESSAGE_IRPT. Application MUST set this
field to MESSAGE_IRPT, otherwise, the message will not be
sent.

message The interrupt message.

This is passed directly to the receiving application as the
return value when the IrptGetData() tool is called. Default
value should be set to IRPT_USER, as a user-defined
interrupt type. Application developers can set their own 16-
bit value. See Section 14.7 - Receiving Message for details.

misc Unformatted 32-bit value.
This is passed directly to the sData field of the IrptGetData()
tool.

data Pointer to any data that might be passing from the sender to
the receiver.
The data type and format is user defined. PPSM does not
put any protocol into this data format.

size Size of the data in the data pointer list.
This is in number of bytes.

Administrator
This tool sends a message to a known task.

14-4 Inter-Task Messaging

Personal Portable System Manager
Programmer Manual

not known, this tool cannot be used.

All data that the sender wants to send must be stored in the form of MESSAGE
structure. No protocol or data format is put on the message data. The sender and
receiver must have a mutual understanding of the representation of the data being
transferred.

14.4 Advanced Sending Message

STATUS AdvSendMessage(U32 taskId, P_MESSAGE msg, U8 flag)

This is similar to SendMessage() except it enhances the task swapping control.
The flag can control whether the target task is swapped in immediately or later. It
also controls whether the current task will be swapped in again after all messages
in target task are handled.

If msg is NULL, this is a task swapping control function without message passing.

If flag is NO_TASK_SWAP, this is a message passing tool without task swapping
control.

14.5 Deleting Message for Current Task

STATUS MessageDelete(U16 type)

This is for deleting all messages in current task with the same type as the input
parameter such as IRPT_PEN, IRPT_UART, etc.

14.6 Deleting Message for any Task

STATUS AdvMessageDelete(U32 taskId, U16 type, U32 shortData)

This is for deleting messages in specific task matching the type and shortData.
The short data here refers to the area id. for active area, timeout id. for reference
timer, etc. If taskId is 0xFFFFFFFF and the current task is a main task, all
messages in main task queue with matching type and shortData will be deleted. If
the taskId is 0xFFFFFFFF and the current task is a subtask, all messages with
matching type and shortData in current sub task list will be deleted. If the type is
0xFFFF, all messages with matching taskId and shortData will be deleted.

If type is 0xFFFF and shortData is 0xFFFFFFFF, all messages in the specific task
will be deleted.

14.7 Receiving Message

U16 IrptGetData(P_U32 sData, P_U32 *data, P_U32 size)

This tool is used to receive the messages sent by another task, as well as to
receive the standard software interrupt message (see Section 29.1 - IrptGetData).

Administrator
If msg is NULL, this is a task swapping control function without message passing.

Administrator
If flag is NO_TASK_SWAP, this is a message passing tool without task swapping
control.

Administrator
IRPT_PEN, IRPT_UART,

Administrator
The short data here refers to the area id.

Administrator
If taskId is 0xFFFFFFFF and the current task is a main task,

Administrator
If type is 0xFFFF and shortData is 0xFFFFFFFF, all messages in the specific task
will be deleted.

Personal Portable System Manager
Programmer Manual

Inter-Task Messaging 14-5

The arguments returned by this tool can be mapped directly to the data stored in
the MESSAGE structure sent by the SendMessage() tool. They are as follows:

Example 14-2 Receive messages

73 STATUS UartDemo()
74 {
75 P_U16 inData;
76 U8 selected;
77 U32 size, id;

.

.

.
134 while (1)
135 {
136 switch (IrptGetData((P_U32)&id, (P_U32*)&inData, (P_U32)&size))
137 {
138 case IRPT_UART:
139 switch (*inData)
140 {
141 case UART_DATA_RECEIVED:
142
143 /* Data has been received, read data from system */

IrptGetData Data Type Data field in MESSAGE structure Data Type

return value U16 message U16

sData P_U32 misc U32

data P_U32* data P_VOID

size P_U32 size U16

14-6 Inter-Task Messaging

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Interrupt Handling 15-1

Chapter 15 Interrupt Handling

PPSM maintains a set of interrupt handlers internally to handle external and
internal hardware events. PPSM application programmers do not need to be
aware of the characteristics of hardware such as pen device, timer, UART and
real time clock. The kernel intercepts all interrupts and data generated from the
event and send them to the application in a pre-defined format.

PPSM maintains a unique software interrupt buffer for each application. When a
hardware interrupt occurs, the event and data generated from the interrupt are
stored into this software interrupt buffer. This buffer is the interface between
PPSM and the application, making sure that data and interrupt will not be missed
if the application is slow in response to an interrupt. Hence de-coupling the real-
time interrupt of the peripheral devices from the application.

PPSM has two distinct types of interrupts:

` System interrupt
` User defined interrupt

15.1 System Interrupts

These are interrupts that are automatically handled by PPSM system. Application
developers can make use of the services provided by PPSM to manage the
hardware resources such as the touch panel, timer, UART, RTC and screen.

Table 15-1 shows the list of interrupt identifiers that are generated by the system

Hardware

Interrupt

PPSM

Interrupt

Handlers

Interrupt

Buffer 1

Interrupt

Buffer n

App 1

App n

Figure 15-1 PPSM Interrupt Message Handling

Administrator
The kernel intercepts all interrupts and data generated from the
event and send them to the application in a pre-defined format.

Administrator
PPSM maintains a unique software interrupt buffer for each application.

Administrator
This buffer is the interface between
PPSM and the application,

Administrator
System interrupt

Administrator
User defined interrupt

Administrator
These are interrupts that are automatically handled by PPSM system.

15-2 Interrupt Handling

Personal Portable System Manager
Programmer Manual

to the application.

15.1.1 IRPT_AUDIO

It is a message generated from audio tools. An audio stops after it has finished or
the user has called AudioStopTone() or AudioStopWave(). After audio playing
stops, this interrupt is sent to the task that called AudioPlayTone() or
AudioPlayWave() to indicate that the audio playing is finished.

15.1.2 IRPT_PEN

It is a message generated from a pen active area. When the application defines
an active area as pen area on the display, this message is sent to the application
when pen input sequence occurs over this active area. The message returns the
coordinates of the pen input points.

The data message returned by IRPT_PEN consists of a list of 16-bit words. Each
pair of 16-bit words in the list represents the x and y coordinate of a pen input
point on the touch panel. There will always be at least 1 pair of coordinate. A pair
of (-1,-1) signals the end of the list.

15.1.3 IRPT_INPUT_STATUS

This message is sent to the application to report the pen action status at the
beginning and the end of each pen action within a valid pen active area. For
example, when an active area created for pen input is touched, this message,

Table 15-1 System Interrupt Identifiers

Interrupt Identifier Interrupt Source Data from Handler

IRPT_AUDIO PPSM Audio tools,
indicating audio stopped

N/A

IRPT_HWR Handwriting recognition Data from handwriting
recognition engine

IRPT_ICON Icon input Icon active area identifier and
status

IRPT_INPUT_STATUS Pen input with pen status Pen status information

IRPT_KEY Soft keyboard input Keycode, coordinate of pen
touch

IRPT_NONE No interrupt N/A

IRPT_PEN Pen input Pointer to (x,y) list

IRPT_RTC System clock alarm N/A

IRPT_TIMER Timer timeout and alarm N/A

IRPT_UART UART data transfer Data transmission status

IRPT_USER User User defined

Administrator
AudioStopTone()

Administrator
AudioStopWave().

Administrator
It is a message generated from audio tools.

Administrator
It is a message generated from a pen active area.

Administrator
When the application defines
an active area as pen area on the display,

Administrator
IRPT_PEN

Administrator
There will always be at least 1 pair of coordinate. A pair
of (-1,-1) signals the end of the list.

Administrator
This message is sent to the application to report the pen action status at the
beginning and the end of each pen action within a valid pen active area.

Personal Portable System Manager
Programmer Manual

Interrupt Handling 15-3

together with the pen status, is sent to the application before any of the pen (x, y)
coordinates are sent; then, when the pen stroke is finished and the pen leaves the
touch panel, this message is again sent to the application after the last (x, y)
coordinate to report the pen-up condition. This status allows the application to be
aware of the pen action sequence, whether it has been dragged in from another
area, or it is a pen down, etc. Table 15-2 shows the messages types that are
returned. Figure 15-2 shows the pen actions that would generate these pen

messages.

15.1.4 IRPT_ICON

Icon area is for the purpose of selection only. It does not yield any coordinate data
from the pen interrupt handler. When an icon active area is touched, PPSM sends
a soft interrupt with its identifier to the application interrupt buffer. Two soft
interrupts will be generated from each action: one interrupt for pen-down or pen
drag in, and one interrupt for pen-up or pen drag up. This type of area is designed
for buttons, and selection icons.

Table 15-3 shows the messages types that are returned.

Table 15-2 Messages generated for IRPT_INPUT_STATUS

Message Description

PPSM_INPUT_TOUCH A pen down condition

PPSM_INPUT_DRAG Pen is dragged in from another area

PPSM_INPUT_PEN_UP Pen has left the touch panel

PPSM_INPUT_DRAG_UP Pen is dragged out of the current pen area into
another area

Table 15-3 Messages generated for IRPT_ICON

Message Description

PPSM_ICON_TOUCH An icon pen down condition

PPSM_ICON_DRAG Pen is dragged in from another area

PPSM_ICON_PEN_UP Pen has left the touch panel

PPSM_ICON_DRAG_UP Pen is dragged out of the current pen area into
another area

Administrator
It does not yield any coordinate data
from the pen interrupt handler.

15-4 Interrupt Handling

Personal Portable System Manager
Programmer Manual

15.1.5 IRPT_KEY

PPSM provides a soft keyboard as part of the character input tool. Once
activated, a keyboard is displayed on the display area. Pressing any one of the
keys on the soft keyboard will result in a IRPT_KEY message generated by PPSM
to the application. The message will also include the ASCII code of the key that
was pressed. The ASCII code returned is of type TEXT, i.e. 2-byte format with
zero extended in high byte and the coordinate of pen touch on the key.

PPSM_ICON_TOUCH and
PPSM_INPUT_TOUCH

PPSM_ICON_PEN_UP and
PPSM_INPUT_PEN_UP

PPSM_ICON_DRAG and PPSM_INPUT_DRAG

PPSM_ICON_DRAG_UP and PPSM_INPUT_DRAG_UP

Figure 15-2 ICON and INPUT area pen status messages

Personal Portable System Manager
Programmer Manual

Interrupt Handling 15-5

15.1.6 IRPT_RTC

This is the clock alarm. When an application sets an alarm for a specific time, this
message will be generated by PPSM to the application when the time is reached.
No data is included in this message.

15.1.7 IRPT_TIMER

Time-out message. This message is sent to the application when a specified time-
out period is reached. No data is included in this message.

15.1.8 IRPT_HWR

PPSM provides an input method for handwriting character input (refer to Chapter
5 - Character Input Methods). If a handwriting recognition engine is used, the
resultant characters generated by it are passed on to the application using this
message. The data passed to the application is a list of language codes of the
character candidates and the size of this list in number of bytes.

15.1.9 IRPT_UART

When an application is granted permission to use the UART (see Chapter 12 -
UART Communication Support), this message is generated to the application to
report UART data transmission status.

A 16-bit message data is also sent to the application with this message. It can
have one of the following values:

15.2 Device Interrupts

PPSM supports another set of interrupt identifiers and handlers for hardware

Table 15-4 Messages generated for IRPT_UART

Message Description

UART_DATA_SENT Data sent request has been completed

UART_DATA_RECEIVED Data has been received from the UART

UART_ERROR An UART error condition has occurred.
` UART_ERROR

An additional 16-bit word follows that identifies
the error condition:
` UART_ERR_TMOUT

` UART_ERR_FRAME
` UART_ERR_PARITY
` UART_ERR_OVERRUN

` UART_ERR_NODATA

15-6 Interrupt Handling

Personal Portable System Manager
Programmer Manual

devices. The list of device interrupt identifiers are list in Table 15-5.

15.2.1 User Defined Interrupt Handlers

For each of the external interrupts not used by PPSM system, user can install
their own handler. The generic, or stub, handler source is provided in the PPSM
device library. These are:

` SPI Master
` SPI Slave(DragonBall only)
` IRQ6
` IRQ3
` IRQ2
` IRQ1
` INT0 - INT7
` Watch Dog
` PWM
` UART

Each of the stub handler is associated with an external interrupt. For example,
_IRQ6IrptHandler is associated with the IRQ6 external interrupt. When the
external interrupt event occurs, PPSM automatically calls up the associated
handler as part of the interrupt handling procedure.

For system that uses any of the external interrupts, they can supply their own
handler such that integration into PPSM is possible.

For PPSM source licensee, if _UARTIrptHandler() needs to be used, "-
DNO_UART_HANDLER" needs to be included in the compiler option to indicate
that the internal PPSM UART interrupt handler need not be used.

Table 15-5 Interrupt Identifiers and User Defined Handlers

Interrupt Source Interrupt Identifier PPSM User Defined Handler

SPI Master IRPT_SPIM _SPIMIrptHandler

SPI Slave IRPT_SPIS _SPISIrptHandler(DragonBall only)

IRQ1 IRPT_IRQ1 _IRQ1IrptHandler

IRQ2 IRPT_IRQ2 _IRQ2IrptHandler

IRQ3 IRPT_IRQ3 _IRQ3IrptHandler

IRQ6 IRPT_IRQ6 _IRQ6IrptHandler

INT0 - INT7 IRPT_INT _INTIrptHandler

WatchDog IRPT_WDOG _WatchdogIrptHandler

PWM IRPT_PWM _PWMIrptHandler

UART IRPT_UART _UARTIrptHandler

User Defined IRPT_USER None

Administrator
if _UARTIrptHandler() needs to be used, "-
DNO_UART_HANDLER" needs to be included in the compiler option to indicate
that the internal PPSM UART interrupt handler need not be used.

Personal Portable System Manager
Programmer Manual

Interrupt Handling 15-7

15.2.2 Device Interrupt Identifiers

The device interrupt identifiers listed in Table 15-5 can be used by the interrupt
handlers to send soft interrupt messages from the handler to the application,
much like the system pen and timer interrupt identifiers. PPSM provides a tool,
IrptSendData(), to allow messages be sent from the user installed interrupt
handlers to the application.

For example, user installed IRQ6 handlers can use IrptSendData() to send a
message to the application from the IRQ6 handler to inform the application of the
event, or to pass data from the hardware layer to the application layer.

15.2.3 Application Access to Handlers

By isolating the interrupt handler from the application, multiple applications can
have access to the same hardware resource. However, an interrupt handler can
only be registered with a single application at any one time. If more than one
application is requesting the services of a single handler, it will be granted to the
first application making the request. The other applications cannot access the
handler until it is released by the first application.

To control access conflict between multiple application tasks accessing the same
hardware concurrently, a set of interrupt tools are defined.

` IrptRequest() Requests for an interrupt handler
` IrptRelease() Releases an interrupt handler

15.2.4 Request and Release Interrupt Handler Service

U16 IrptRequest(U16 handlerFlag)

U16 IrptRelease(U16 handlerFlag)

When an application task needs the resource of a particular hardware peripheral,
it must first request for service with the interrupt handler. Once the task
successfully registers with the handler, all messages received from that peripheral
are directed to the registered task until the task releases the service of the
handler.

One application task can request and register with any number of interrupt
handlers in the system, but each of the handlers in the system can only be
attached to one single application task. Because of this, applications tasks must
release the handler after use in order for the peripherals to be fully utilized.

To request or release a handler, the flags in the Table 15-6 below are used in all
the interrupt tools to specify which of the handlers to use. These flags are bit
values representing individual interrupt handlers.

Table 15-6 Interrupt Handler Flags

Interrupt Handler Interrupt Flag

SPI Master IRPT_SPIM_FLAG

Administrator
IrptSendData(),

Administrator
However, an interrupt handler can
only be registered with a single application at any one time.

Administrator
One application task can request and register with any number of interrupt
handlers in the system, but each of the handlers in the system can only be
attached to one single application task.

15-8 Interrupt Handling

Personal Portable System Manager
Programmer Manual

The IRPT_USER is intended for internal software interrupt use. For example, user
defined interrupt messages to inform caller of particular event. Users can specify
their own meanings to this message.

Example 15-1 Request an Interrupt Handler

203 /* request usage of UART */
204 if (IrptRequest(IRPT_UART_FLAG) != IRPT_UART_FLAG)
205 return (PPSM_ERROR);

.

.

.
216 /* Release the handler after use */
217 IrptRelease(IRPT_UART_FLAG);

15.3 Message Handling

STATUS IrptSendData(U16 irptType, U32 sData, P_U32 data, U32 size)

U16 IrptGetData(P_U32 sData, P_U32 *data, P_U32 size)

User can send messages, with or without extra data information, to the application
using IrptSendData(). This tool can only be used within a user installed handler.

When an application requested and has been granted access to a user installed
handler, any messages sent by IrptSendData() from that handler will always be
directed to that application, until the application has released the handler.

IrptSendData() appends the message from the handler at the end of the
application software interrupt buffer. The receiving application retrieves the
message via the system tool IrptGetData(), in the same manner as other system
messages.

SPI Slave IRPT_SPIS_FLAG(DragonBall only)

IRQ1 IRPT_IRQ1_FLAG

IRQ2 IRPT_IRQ2_FLAG

IRQ3 IRPT_IRQ3_FLAG

IRQ6 IRPT_IRQ6_FLAG

INT0 - INT7 IRPT_INT_FLAG

WatchDog IRPT_WDOG_FLAG

PWM IRPT_PWM_FLAG

UART IRPT_UART_FLAG

User Defined IRPT_USER_FLAG

Table 15-6 Interrupt Handler Flags

Interrupt Handler Interrupt Flag

Administrator
User can send messages, with or without extra data information, to the application
using IrptSendData().

Administrator
This tool can only be used within a user installed handler.

Personal Portable System Manager
Programmer Manual

Interrupt Handling 15-9

15.3.1 Example

Assuming that an application has already given access to an IRQ6 handler by
PPSM, when the user defined IRQ6 handler calls IrptSendData(), the data are
sent to the application immediately.

shortMessage = COMMAND_EVENT;
messageSize = 4;
messageData = pInData;
IrptSendData(IRPT_IRQ6, shortMessage, &messageData, messageSize);

The application retrieve the message via the IrptGetdata() call.

switch (IrptGetData(&event, &InData, &InSize))
.
.
.
case IRPT_IRQ6:

/* IRQ6 event has occurred */
if (event == COMMAND_EVENT)
.
.
.
default;

In the above example, the following data are passed from the IRQ6 handler to the
application:

Table 15-7 Data Passed from Handler to Application

IrptSendData IrptGetData

Argument Data Argument Data

irptType IRPT_IRQ6 return value IRPT_IRQ6

sData shortMessage sData event

data messageData data InData

size messageSize size InSize

15-10 Interrupt Handling

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Using System Tools 16-1

Chapter 16 Using System Tools

PPSM provides additional tools for applications to access and control system
resources.

16.1 PPSM Initialization

STATUS PPSMInit(U16 calibration)

PPSM needs to be initialized. PPSMInit() must first be called before any of the
PPSM tools can be called. It performs all the system initialization, hardware
devices initialization and performs calibration for the pen input panel and the LCD
display.

A device driver (PenInit.c) function CalibratePen(U16 logoFlag) is called to set
the touch panel origin and touch panel maximum value if PPSMInit(TRUE) is called.
This function should call PenSetInputOrg(X, Y) and PenSetInputMax(X, Y). The
coordinate of origin is the top left corner of the touch panel in terms of display
screen coordinate. The coordinate of maximum is the bottom right corner of the
touch panel in terms of display screen coordinate.

The default touch panel calculation value is based on a touch panel that has 320
pixels by 240 pixels (physical sizes 12 cm by 9 cm), using a 10-bit A/D convertor.
An offset of 100 (in A/D output unit) is chosen as the A/D non-linear area around
the edge of the touch panel.

The caller of CalibratePen() can specify if logo display is required or not. If the
logoFlag is FALSE, no logo is displayed. By default, a Motorola Logo and two
cross-hairs (one at top right corner and the other at bottom left corner) are
displayed on the LCD screen for calibration. The user must press these two cross-
hairs, in no particular order, before PPSM will continue execution.

Example 16-1 Initialize PPSM

62 /* Initialize PPSM with pen calibration */
63 PPSMInit(TRUE);

LCD Screen
(160 x 240)Touch Panel

Org - (-10, -10)

Max - (169, 249)

Figure 16-1 example of calibarting a system

Administrator
PPSM needs to be initialized.

Administrator
PenSetInputOrg(X, Y)

Administrator
PPSMInit(TRUE)

Administrator
PenSetInputMax(

Administrator
CalibratePen()

16-2 Using System Tools

Personal Portable System Manager
Programmer Manual

16.1.1 Motorola Logo

Depending on the physical LCD size, an appropriate Motorola logo is displayed on
the LCD display during pen calibration stage.

For LCD display that is larger than 280 pixels wide by 150 pixels high, the
standard logo will be displayed. This logo is 256 pixels wide by 97 pixels high,
Figure 16-2.

For LCD display that is larger than 150 pixels wide by 80 pixels high, but smaller
than 280 pixels by 150 pixels, a smaller Motorola logo will be used. This smaller
Motorola logo will be 104 pixels by 25 pixels, Figure 16-3.

For LCD display that is smaller than 150 pixels wide by 80 pixels high, no
Motorola logo will be drawn.

Figure 16-2 Standard Motorola logo

Personal Portable System Manager
Software Licensed

1995-1998 Motorola Inc.
by Motorola Semiconductor H.K. Ltd.

Figure 16-3 Small Motorola logo

Personal Portable System Manager
Programmer Manual

Audio Tools 17-151

Chapter 17 Audio Tools

17.1 Audio Playing

PPSM supports two types of audio, wave playing and tone playing. Due to the
hardware limitation, the wave playing is only available for DragonBall-EZ.

The audio tools have the following properties.

` Only one wave file or tone can be played during a given moment.
` A wave file or tone cannot be played if the PWM(Pulse Width

Modulation) module is in used by another task or application
` An interrupt "IRPT_AUDIO" message will be sent to the task that

called AudioPlayTone() or AudioPlayWave() to indicate the audio
playing has finished.

17.2 Tone playing

STATUS AudioPlayTone(P_U16 toneData, U32 toneSize, U16 toneDuration, U8
autoRepeat)

PPSM supports tone playing for both DragonBall and DragonBall-EZ through the
PWM module. Tone playing can play a melody with user specified fixed duration
and changeable frequencies throughout that duration. For better frequency
resolution, the tone frequency is limited between 31Hz and 4048Hz.

Name Description

toneData The pointer to the tone sequence, with
frequencies between 31Hz and 4048Hz.

toneSize Total number of tone frequencies to be
played.

toneDuration The duration of each tone frequency
For DragonBall-EZ
` TONE_DUR_512Hz

` TONE_DUR_256Hz
` TONE_DUR_128Hz
` TONE_DUR_64Hz

` TONE_DUR_32Hz
` TONE_DUR_16Hz
` TONE_DUR_8Hz

` TONE_DUR_4Hz
For DragonBall
0 to 1000, length of duration in number of
milliseconds.

17-152 Audio Tools

Personal Portable System Manager
Programmer Manual

Example 16-1 PPSM tone playing

/* 100Hz, 1000Hz, 500Hz and 600Hz */
U16 toneData[] = {100, 1000, 500, 600};

/* Play a melody with 4 different tone frequencies, each with 250ms duration */
#ifdef EZ328

AudioPlayTone((P_U16)toneData, 4, TONE_DUR_4HZ, 1);
#else

AudioPlayTone((P_U16)toneData, 4, 250, 1);
#endif

To stop the tone playing, a user can call AudioStopTone(). To check if the Audio
Tools are currently being used, a user can call AudioInUse().

Note: This is impossible to play a tone with value of frequency less than the value
of duration, since the duration of this frequency is longer than the allowed
duration.

17.3 Wave playing (DragonBall-EZ only)

PPSM audio tools can play back a PCM(Pulse Code Modulation) audio wave file
that can be generated by many audio programs. Wave playing can be done by
two PPSM audio tools - AdvAudioPlayWave() and AudioPlayWave().

AdvAudioPlayWave() is provided for users with solid knowledge of PWM who
want to have advanced configuration details over the DragonBall-EZ PWM
module. For most cases, AudioPlayWave should be used.

STATUS AudioPlayWave(P_U8 waveData, U32 waveSize, U8 samplingRate)

Example 16-2 PPSM wave playing

/* Some PWM wave data */
U16 waveData[] = {...};

autoRepeat To indicate if auto-repeat is needed or not
0 - no autorepeat.
1 - autorepeat.

Name Description

waveData The pointer to the PCM audio wave signal

waveSize Total number of data bytes occupied by
the audio signal

samplingRate The requested sampling rate
` SAMPLING_32KHZ

` SAMPLING_16KHZ
` SAMPLING_11KHZ
` SAMPLING_8KHZ

` SAMPLING_4KHZ

Name Description

Personal Portable System Manager
Programmer Manual

Audio Tools 17-153

/* Play a melody with 1000 data bytes at 16kHz sampling/reconstruction rate */
AudioPlayWave((P_U8)waveData, 1000, SAMPLING_16KHZ);

STATUS AdvAudioPlayWave(P_U8 waveData, U32 waveSize, U8 prescaler, U8
repeat, U8 clksel)

The sampling rate can be calculated by the above input parameters.

For more detail information, please refer to the DragonBall-EZ user manual.

Example 16-3 PPSM wave playing

/* Some PWM wave data */
U16 waveData[] = {...};

/* Play a melody with 1000 data bytes at 16kHz sampling/reconstruction rate */
/* 16kHz = 16.58Mz/(2 x 1 x 2 x 256) */
AdvAudioPlayWave((P_U8)waveData, 1000, 0, 2, 0);

The device driver function _PWMIrptHandler() under IrptDev.c should return
TRUE for proper wave playing with PPSM audio tools. If the user is going to use
his/her own PWM interrupt function and wants to disable PPSM audio wave
playing tools, the _PWMIrptHandler() should return FALSE instead.

17.4 Stop the audio playing

An audio stops after it has finished or the user has called AudioStopTone() or
AudioStopWave(). After audio playing stops, an interrupt is sent to the task that
called AudioPlayTone() or AudioPlayWave() to indicate that the audio playing is
finished.

Example 16-4 Stopping an audio play

/* Some PWM wave data */
U16 waveData[] = {...};

/* Play a melody with 1000 data bytes at 16kHz sampling/reconstruction rate */
AudioPlayWave((P_U8)waveData, 1000, SAMPLING_16KHZ);

switch(IrptGetData((P_U32)&id, (P_U32*) &inData, (P_U32) &size))
{
case IRPT_AUDIO:

Name Description

waveData The pointer to the PCM audio wave signal

waveSize Total number of byte of the audio signal

prescaler(see DragonBall-EZ user
manual)

Bit 14~8 of the PWM control register,
value from 0 to 127

repeat(see DragonBall-EZ user
manual)

Bit 2,3 of the PWM control register, value
from 0 to 3

clksel(see DragonBall-EZ user
manual)

Bit 0,1 of the PWM control register, value
from 0 to 3

6DPSOLQJ5DWH �����0+]() SUHVFDODU �+() FONVHO() UHSHDW() ���()=

17-154 Audio Tools

Personal Portable System Manager
Programmer Manual

/* Display message to indicate the audio has stopped */
....
break;

case IRPT_ICON:
/* Click icon to stop the wave playing */
rv = AudioStopWave();
....
break;

}

Personal Portable System Manager
Programmer Manual

Part III
API Toolset

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Pen Input Tools 18-1

Chapter 18 Pen Input Tools

18.1 ActiveAreaDisable

Syntax

STATUS ActiveAreaDisable(U32 areaId)

Description

Removes an active area entry from the active scan list. The identifier areaId
specifies the entry that is to be deleted. This identifier must be a valid identifier
obtained from the ActiveAreaEnable().

Parameter

Return Value

18.2 ActiveAreaEnable

Syntax

STATUS ActiveAreaEnable(P _U32 areaId, U32 code, U32 mode, S16 xSrc,
S16 ySrc, S16 xDest, S16 yDest)

Description

Creates and enables an active area onto the application list of active input
area. An active area is defined as a rectangular region of the display panel
where a software interrupt message will be sent to the application that created
the area when the region is pressed. For the type of messages that are
returned to the application, see the tool IrptGetdata().

Active areas can be created on or off the LCD display area but must be within
the boundary of the touch panel. The properties of the areas on and off the
display area are the same except for those areas that are outside the LCD
display area, echoing is NOT allowed.

Name Description

areaId Identifier of the active area to be removed
from the active area list

Name Description

PPSM_OK Successful operation

PPSM_ERR_AREA_ID Invalid active area identifier

18-2 Pen Input Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

18.3 ActiveAreaRead

Syntax

Name Description

areaId Returns an active area identifier. This
identifier is used by the PPSM to refer to
the active area until it is removed from the
list.

code Type of active area. It takes either one of
the following two value:
` ICON_AREA

Area for icon
` INPUT_AREA

Area for pen input

mode This argument is valid only if
INPUT_AREA is selected. It can take one
of the following modes:
` STROKE_MODE

One interrupt per input stroke
` CONTINUOUS_MODE

One interrupt per sampled
points

` CONFINED_MODE
same as STROKE_MODE but
pen confined within active area

xSrc Top left x-coordinate of the active area

ySrc Top left y-coordinate of the active area

xDest Bottom right x-coordinate of the active
area

yDest Bottom right y-coordinate of the active
area

Name Description

PPSM_OK Successful operation

PPSM_ERR_AREA_ID Invalid active area identifier pointer

PPSM_ERR_AREA_CODE Invalid area code

PPSM_ERR_COORDINATE Invalid coordinates

PPSM_ERR_NO_MEMORY Not enough memory

Personal Portable System Manager
Programmer Manual

Pen Input Tools 18-3

STATUS ActiveAreaRead(U32 areaId, P_S16 xSrc, P_S16 ySrc, P_S16
xDest, P_S16 yDest)

Description

Reads the area coordinates of an active area entry in the active scan list. The
identifier areaId specifies the entry that is to be read.

Parameter

Return Value

18.4 ActiveAreaSuspend

Syntax

STATUS ActiveAreaSuspend(U32 areaId, U32 flag)

Description

Suspend or re-enable an active area that has already been created. When an
active area is suspended, it will no longer response to pen-input interrupt but it
will remain in the active list. When an active area is re-enabled, it will once
again respond to pen-input.

Parameter

Name Description

areaId Active area identifier

xSrc Returns the top left x-coordinate of the
active area

ySrc Returns the top left y-coordinate of the
active area

xDest Returns the bottom right x-coordinate of
the active area

yDest Returns the bottom right y-coordinate of
the active area

Name Description

PPSM_OK Successful operation

PPSM_ERR_AREA_ID Invalid active area identifier

Name Description

areaId Active area identifier, must be a valid
identifier returned by PPSM.

18-4 Pen Input Tools

Personal Portable System Manager
Programmer Manual

Return Value

18.5 ActiveAreaToFront

Syntax

STATUS ActiveAreaToFront(U32 areaId)

Description

Given the active area identifier, this tool will extract the element from the active
area linked list and insert the element at the front of the list.

Once the element is at the front of the list, it becomes the active area to receive
pen input if other active areas that are overlapping the same physical area.

Parameter

Return Value

18.6 ActiveListPop

Syntax

STATUS ActiveListPop(void)

flag Flag to indicate whether to suspend or re-
enable the active area:

` AREA_SUSPEND
Suspend the active area

` AREA_REENABLE
Re-enable the active area

Name Description

PPSM_OK Successful operation

PPSM_ERR_AREA_ID Invalid active area identifier

Name Description

areaId Active area identifier. Must be a valid
identifier returned by PPSM

Name Description

PPSM_OK Successful operation

PPSM_ERR_AREA_ID Invalid active area identifier

Name Description

Personal Portable System Manager
Programmer Manual

Pen Input Tools 18-5

Description

Pops the top background active list of the current task from the active area
stack. The active list that is currently being used is destroyed, replaced by the
top background active list.

Parameter

Return Value

18.7 ActiveListPush

Syntax

STATUS ActiveListPush(void)

Description

Pushes the current active area list of the current task into background and
creates a new empty active area list. Once in the background, scanning on
these areas is disabled. Any new active areas registering to PPSM will belong
to the new active list.

The number of active lists in the background is restricted to 8 levels. They are
stored internally in an active area stack.

Parameter

Return Value

Name Description

None

Name Description

PPSM_OK Successful operation

PPSM_ERROR Active list stack empty

Name Description

None

Name Description

PPSM_OK Successful operation

PPSM_ERR_ACTIVE_PUSH Unable to push active list

18-6 Pen Input Tools

Personal Portable System Manager
Programmer Manual

18.8 AreaEchoDisable

Syntax

STATUS AreaEchoDisable(U32 areaId)

Description

Disables active area pixel echoing mode. Once disabled, all pen-input device
selected pixels will not be echoed back on the LCD display. Echoing is
disabled for all active input area by default.

Parameter

Return Value

18.9 AreaEchoEnable

Syntax

STATUS AreaEchoEnable(U32 areaId)

Description

Enables active area pixel echoing mode. Once enabled, all pen-input device
selected pixels will be echoed back on the LCD display. Echoing is disabled for
all active input area by default.

Parameter

Return Value

Name Description

areaId Active area identifier

Name Description

PPSM_OK Successful operation

PPSM_ERR_AREA_ID Invalid active area identifier

Name Description

areaId Active area identifier

Name Description

PPSM_OK Successful operation

PPSM_ERR_AREA_ID Invalid active area identifier

Personal Portable System Manager
Programmer Manual

Pen Input Tools 18-7

18.10 ActiveAreaPosition

Syntax

STATUS ActiveAreaPosition(U32 areaId, S16 xSrc, S16 ySrc, S16 xDest,
S16 yDest)

Description

This function will change the position and the size of the active area specified
by areaId.

Parameter

Return Value

18.11 CtrlIconDisable

Syntax

STATUS CtrlIconDisable(U32 iconId)

Description

Removes a predefined icon area from an application. The argument iconId
must be a valid active area identifier supplied by PPSM.

Name Description

areaId Existing valid active area id.

xSrc Top left corner x coordinate

ySrc Top left corner y coordinate

xDest Bottom right x coordinate

yDest Bottom right y coordinate

Name Description

PPSM_OK Successful operation

PPSM_ERR_AREA_ID Error if area id is invalid

PPSM_ERR_COORDINATE Error if any point is outside touch panel or
the active area lies in the boundary
between LCD area and touch panel only
area.

Administrator
supplied by PPSM.

18-8 Pen Input Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

18.12 CtrlIconEnable

Syntax

STATUS CtrlIconEnable(P_U32 iconId, S16 xSrc, S16 ySrc, U16 iconType)

Description

Adds a predefined icon area to an application. The icon area can be placed
anywhere on the application display area. The argument (xSrc, ySrc)
specifies the position of the icon top left corner. An area identifier is returned
to the caller.

Parameter

Name Description

iconId The identifier of the predefined icon area
to be removed

Name Description

PPSM_OK Successful operation

PPSM_ERR_AREA_ID Invalid active area identifier

Name Description

iconId Returns an area identifier. This identifier is
used by the PPSM to refer to the
predefined icon area until it is removed
from the list.

xSrc X coordinate for the predefined icon top
left corner

ySrc Y coordinate for the predefined icon top
left corner

Personal Portable System Manager
Programmer Manual

Pen Input Tools 18-9

Return Value

18.13 IconScanOff

Syntax

void IconScanOff(void)

Description

Switches off system application icon scanning of all icon active areas of the
current task.

Parameter

iconType The type of predefined icon to use. It can
be any of the followings:

` PPSM_ICON_8_UP
8x8 Up Icon

` PPSM_ICON_8_DOWN
8x8 Down Icon

` PPSM_ICON_8_LEFT
8x8 Left Icon

` PPSM_ICON_8_RIGHT
8x8 Right Icon

` PPSM_ICON_8_DONE
8x16 Done Icon

` PPSM_ICON_16_UP
16x16 Up Icon

` PPSM_ICON_16_DOWN
16x16 Down Icon

` PPSM_ICON_16_LEFT
16x16 Left Icon

` PPSM_ICON_16_RIGHT
16x16 Right Icon

` PPSM_ICON_16_DONE
16x32 Done Icon

Name Description

PPSM_OK Successful operation

PPSM_ERR_ICON_TYPE Invalid predefined icon type

PPSM_ERR_COORDINATE Invalid coordinates

PPSM_ERR_AREA_ID Invalid active area identifier pointer

Name Description

None

Name Description

18-10 Pen Input Tools

Personal Portable System Manager
Programmer Manual

Return Value

18.14 IconScanOn

Syntax

void IconScanOn(void)

Description

Switches on system application icon scanning for the current task. This is on
by default.

Parameter

Return Value

18.15 PenCalibration

Syntax

STATUS PenCalibration(U16 logoFlag)

Description

This function performs pen calibration routine. It calls CalibratePen()(in
peninit.c of the device driver library) to calibrate the touch panel. User may use
different calibration method by changing CalibratePen() in peninit.c. The
default driver will clear the screen and wait for pen data until 2 valid points for
pen calibration are captured.

Parameter

Name Description

None

Name Description

None

Name Description

None

Name Description

logoFlag TRUE - Put a Motorola logo on screen
FALSE - No Motorola logo will be put.

Personal Portable System Manager
Programmer Manual

Pen Input Tools 18-11

Return Value

18.16 PenEchoParam

Syntax

STATUS PenEchoParam(U16 echoCol, U16 echoWidth)

Description

This tool allows the application to set the color and the drawing width for
system pen echoing.

Parameter

Return Value

18.17 PenGetInput

Syntax

STATUS PenGetInput(P_S16 xPos, P_S16 yPos)

Description

Name Description

PPSM_OK Successful operation

Name Description

echoCol Pen echo color.

For 1bit/pixel graphics, can be:
` WHITE
` BLACK.

For 2bit/pixel graphics, can be:
` WHITE
` LIGHT_GREY

` DARK_GREY
` BLACK

echoWidth Pen echo width in number of pixels

Name Description

PPSM_OK Successful operation

PPSM_ERR_COLOUR Invalid pen color

PPSM_ERROR Unsuccessful operation

18-12 Pen Input Tools

Personal Portable System Manager
Programmer Manual

Returns a single pair of X and Y coordinates of the pen-touch panel contact
point. A set of -1 will be returned from this module if the pen is out of the touch
panel range, i.e. pen up.

Parameter

Return Value

18.18 PenSetInputMax

Syntax

STATUS PenSetInputMax(S16 x, S16 y)

Description

It allows the user to define the bottom-right corner of the touch panel
coordinate in terms of screen display coordinate. It is usually called when the
system is doing calibration/re-calibration and should only be called by
CalibratePen(U16 logoFlag) at the device driver level.

Parameter

Return Value

Name Description

xPos Returns the X position of pen input point

yPos Returns the Y position of pen input point

Name Description

PPSM_OK Successful operation

Name Description

x x-coordinate of the bottom-right corner
of the touch panel coordinate in turn
of screen display coordinate.

y y-coordinate of the bottom-right corner
of the touch panel coordinate in turn
of screen display coordinate.

Name Description

PPSM_OK Successful operation

Personal Portable System Manager
Programmer Manual

Pen Input Tools 18-13

18.19 PenSetInputOrg

Syntax

STATUS PenSetInputOrg(S16 x, S16 y)

Description

It allows the user to define the top-left corner of the touch panel coordinate in
terms of screen display coordinate. It is usually called when the system is
doing calibration/re-calibration and should only be called by CalibratePen(U16
logoFlag) at the device driver level.

Parameter

Return Value

18.20 PenSetRate

Syntax

STATUS PenSetRate(U16 samplingPeriod)

Description

To allow user to define the period for pen sampling dynamically. The sampling
period set in an task does not affect other task` s sampling period. It only takes
effect after at least one active area has been created under the calling task.

Parameter

Name Description

x x-coordinate of the top-left corner of the
touch panel coordinate in turn of
screen display coordinate.

y y-coordinate of the top-left corner of the
touch panel coordinate in turn of
screen display coordinate.

Name Description

PPSM_OK Successful operation

Name Description

samplingPeriod Sampling period in milliseconds. This is
the time between A/D sampling of the pen
input coordinates. It has a range of 1 to
1000 milliseconds (e.g. samplingPeriod of
25milliseconds translates to 40 samples/
sec)

Administrator
The sampling
period set in an task does not affect other task` s sampling period.

18-14 Pen Input Tools

Personal Portable System Manager
Programmer Manual

For MC68EZ328 only

Return Value

18.21 ScanningOff

Syntax

void ScanningOff(void)

Description

Switches off touch panel scanning for the current application. All application
active areas will not response to pen-input interrupt.

Parameter

Return Value

18.22 ScanningOn

Syntax

void ScanningOn(void)

Sampling Period Pen Sampling Rate

samplingPeriod>= 250
250>samplingPeriod>=125

125>samplingPeriod>= 62
62>samplingPeriod>= 31
31>samplingPeriod>= 15

15>samplingPeriod>= 7
7>samplingPeriod>= 3
3>samplingPeriod>= 1

4Hz
8Hz

16Hz
32Hz
64Hz

128Hz
256Hz
512Hz

Name Description

PPSM_OK Successful operation

PPSM_ERR_PEN_RATE Invalid sampling period specified

Name Description

None

Name Description

None

Personal Portable System Manager
Programmer Manual

Pen Input Tools 18-15

Description

Switches on touch panel scanning for the current application. This will enable
all application active area scanning of the current task.

Parameter

Return Value

Name Description

None

Name Description

None

18-16 Pen Input Tools

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Character Input Tools 19-1

Chapter 19 Character Input Tools

19.1 AdvOpenInputPad

Syntax

STATUS AdvOpenInputPad(U16 xPos, U16 yPos, U16 numRow, U16
numCol, U16 areaWidth, U16 areaHeight, U16 echoCol, U16
echoWidth, U32 timeOut, U16 samplingTime, U8 areaClean, U16
stackSize)

Description

Opens the input pad for handwritten character input(similar to the tool
OpenInputPad() but with advanced configuration details). It allows the caller to
specify:

` position of the input pad
` number of rows and columns of input boxes
` the width and the height of the input boxes
` the echo ink colour and dot width
` the length of time out after a stroke
` the sampling rate of the pen
` if the system should clean the input box for the user after each

character is written
` the stack size for the input pad subtask

Parameter

Name Description

xPos X-coordinate of the top left corner of the
input pad

yPos Y-coordinate of the top left corner of the
input pad

numRow Number of rows of input boxes

numCol Number of columns of input boxes

areaWidth Width of each input box in number of
pixels

areaHeight Height of each input box in number of
pixels

echoCol Colour of the echo ink

echoWidth Dot width of the echo ink

19-2 Character Input Tools

Personal Portable System Manager
Programmer Manual

Return Value

19.2 AdvOpenSoftKey

Syntax

STATUS AdvOpenSoftKey(U16 xPos, U16 yPos, U16 keyWidth, U16
keyHeight, U16 numCol, U16 numRow, P_U16 keyMap, P_U8
bitmap)

Description

Opens a soft keyboard module in a similar manner as the tool OpenSoftKey()
but with advanced configuration details. It allows the caller to specify:

` location of the soft keyboard

timeOut Length of time to wait between a written
stroke and recognition start in number of
milliseconds with range of 0 to 1000. If it is
zero, time-out is disabled. So, recognition
will only start after writing a stroke in
another input box.

samplingTime It is the time between two pen samples. It
has range of 0 to 1000 milliseconds

areaClean cleans after each character input or not

0 - do not clean
1 - clean

stackSize the stack size of input pad subtask

Name Description

PPSM_OK Successful operation

PPSM_ERR_INPUT_PAD_OPENED Input pad is already opened - by the same
task or its sibling sub-task or its parent
task.

PPSM_ERR_INPUT_PAD_WIDTH Invalid width

PPSM_ERR_INPUT_PAD_HEIGHT Invalid height

PPSM_ERR_INPUT_PAD_X_POS Invalid X-coordinate

PPSM_ERR_INPUT_PAD_Y_POS Invalid Y-coordinate

PPSM_ERR_PEN_RATE Invalid pen sampling time

PPSM_ERR_PAN_INIT Panning screen has not been initialized

PPSM_ERR_NO_MEMORY Not enough memory

PPSM_ERR_TMOUT_VALUE Invalid time out value

Name Description

Personal Portable System Manager
Programmer Manual

Character Input Tools 19-3

` width and height of each key in number of pixels
` number of rows and columns of keys
` the return code of each key(ie, key code or scan code)
` the bitmap of the soft keyboard user interface

Parameter

Return Value

19.3 CloseInputPad

Syntax

Name Description

xPos X-coordinate of the top left corner of the
soft keyboard

yPos Y-coordinate of the top left corner of the
soft keyboard

keyWidth Width of each key in number of pixels

keyHeight Height of each key in number of pixels

numRow Number of rows of keys

numCol Number of columns of keys

keyMap Pointer to an array of return key codes,
from the top left key towards to the right,
then next row and so on, until the bottom
right key

bitmap bitmap of the soft keyboard area interface
width = (keyWidth * numCol)

height = (keyHeight * numRow)
in number of pixels

Name Description

PPSM_OK Successful operation

PPSM_ERR_SKBD_USED Soft keyboard has already being used by
current task

PPSM_ERR_PAN_INIT Panning screen info is not initialized yet

PPSM_ERR_INPUT_PAD_NOSCRE
EN

No panning screen memory is allocated
for this task

PPSM_ERR_SKBD_XSIZE Soft keyboard x-coordinate out of range

PPSM_ERR_SKBD_YSIZE Soft keyboard y-coordinate out of range

PPSM_ERR_NO_MEMORY Not enough memory

19-4 Character Input Tools

Personal Portable System Manager
Programmer Manual

STATUS CloseInputPad(void)

Description

Closes the handwritten character input pad.

The input pad image is removed from the panning screen display and no more
handwriting recognition messages (IRPT_HWR) will be generated from the
system to the application. The original image covered by the input pad is
restored by the system.

Parameter

Return Value

19.4 CloseSoftKey

Syntax

STATUS CloseSoftKey(void)

Description

Closes the soft keyboard module.

The soft keyboard image is removed from the display area and no more key
pressed messages (IRPT_KEY) will be generated from the system to the
application. The original image covered by the keyboard is restored by the
system.

Parameter

Return Value

Name Description

None

Name Description

PPSM_OK Successful operation

PPSM_ERR_PEN_INIT No active area found

PPSM_ERR_INPUT_PAD_CLOSED Input pad is not opened

Name Description

None

Name Description

PPSM_OK Successful operation

Personal Portable System Manager
Programmer Manual

Character Input Tools 19-5

19.5 OpenInputPad

Syntax

STATUS OpenInputPad(U16 xPos, U16 yPos, U16 numRow, U16 numCol,
U16 areaSize)

Description

Opens the input pad for handwritten character input.

The input pad is drawn at the specified position in a row by column format. The
input pad has numRow by numCol number of square input boxes. Each input
box is of size areaSize by areaSize pixels.

Once the input pad is opened, handwriting recognition interrupt messages
(IRPT_HWR) are generated to the application when characters are being
recognized. Each recognized character generates an individual interrupt
message.

Only one input pad is allowed among all applications. The image that is
covered by the input pad is saved by the system automatically, which will be
restored upon closing of the input pad. Note that the image saved by the
system is a snap-shot of the display screen at the time this tool is called. Any
changes to this area by the application will not be recorded by the system. The
input pad needs to be closed before any of the other applications can open it.

The default length of input timeout is 1sec.

Parameter

Return Value

PPSM_ERROR Soft keyboard is not opened

Name Description

xPos X-coordinate of the top left corner of the
input pad

yPos Y-coordinate of the top left corner of the
input pad

numRow Number of rows of input boxes

numCol Number of columns of input boxes

areaSize Size of each input box in number of pixels

Name Description

PPSM_OK Successful operation

Name Description

19-6 Character Input Tools

Personal Portable System Manager
Programmer Manual

19.6 OpenSoftKey

Syntax

STATUS OpenSoftKey(U16 xPos, U16 yPos)

Description

Opens a soft keyboard module for type-written English character input.

A soft keyboard is drawn at the position specified by the application. Once the
keyboard is opened, key-pressed interrupt messages (IRPT_KEY) are
generated to the application when key icons on the soft keyboard module are
pressed. Each individual key pressed generates an individual interrupt
message.

Only one soft keyboard is allowed for each application. The image that is
covered by the pseudo keyboard is saved by the system automatically, which
will be restored upon closing of the keyboard. Note that the image saved by the
system is a snap-shot of the display screen at the time this tool is called. Any
changes to this area by the application will not be recorded by the system.

Parameter

Return Value

PPSM_ERR_INPUT_PAD_OPENED Input pad already opened by the same
task or its sibling sub-task or its parent
task

PPSM_ERR_INPUT_PAD_X_POS Input pad x-coordinate out of range

PPSM_ERR_INPUT_PAD_Y_POS Input pad y-coordinate out of range

PPSM_ERR_INPUT_PAD_WIDTH Input pad width out of range

PPSM_ERR_INPUT_PAD_HEIGHT Input pad height out of range

PPSM_ERR_NO_MEMORY Not enough memory

Name Description

xPos X-coordinate of the top left corner of the
soft keyboard

yPos Y-coordinate of the top left corner of the
soft keyboard

Name Description

PPSM_OK Successful operation

PPSM_ERR_SKBD_X_POS Input pad x-coordinate out of range

Name Description

Personal Portable System Manager
Programmer Manual

Character Input Tools 19-7

PPSM_ERR_SKBD_Y_POS Input pad y-coordinate out of range

PPSM_ERR_SKBD_USED Soft keyboard already being used

PPSM_ERR_NO_MEMORY Not enough memory

Name Description

19-8 Character Input Tools

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-1

Chapter 20 Graphics Tools

All coordinates mentioned in the following tools are Panning Screen coordinates:

` The range of valid (x, y) coordinates is from (0, 0) through (Panning
Screen Width - 1, Panning Screen Height - 1).

` The range of valid width is from 1 through Panning Screen Width
` The range of valid height is from 1 through Panning Screen Height

20.1 ChangePanning

Syntax

STATUS ChangePanning(P_PAN_SCREEN newPanning, U16 flag,
P_PAN_SCREEN oldPanning)

Description

This function changes the current task panning screen address, size, etc.
The panning screen width must be divisible by 8 for 2 bits/pixel and divisible by
16 for 1 bit/pixel display.

Administrator
The panning screen width must be divisible by 8 for 2 bits/pixel and divisible by
16 for 1 bit/pixel display.

20-2 Graphics Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

Name Description

newPanning A PAN_SCREEN structure containing the
properties to set to:
` P_U32 panAddress -

Panning screen address
` U16 horzSize -

Panning screen horizontal size
` U16 vertSize -

Panning screen vertical size
` U16 displayXOrigin -

x-coordinate of LCD display
origin relative to panning
screen

` U16 displayYOrigin -
y-coordinate of LCD display
origin relative to panning
screen

` P_U32 displayScreenAddr -
the LCD Display screen
address used in hardware
register Display Screen
Address

` U8 regPOSR -
the bit position offset used in
hardware register POSR

` U16 regPSW -
(Panning screen width *
number of bit per pixel)/16

flag FALSE if the old panning screen is not
needed any more and TRUE if the old
panning screen needs to be kept and
returned in oldPanning

oldPanning A PAN_SCREEN structure returned by
the system containing the original
settings:
` P_U32 panAddress
` U16 horzSize

` U16 vertSize
` U16 displayXOrigin
` U16 displayYOrigin

` P_U32 displayScreenAddr
` U8 regPOSR
` U16 regPSW

Name Description

PPSM_OK Successful operation

Administrator
(Panning screen width *
number of bit per pixel)/16
flag

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-3

Hint

The panning screen address must be created by using GetScreenMem(). In
some cases, a common panning screen may be shared among multiple tasks.
To achieve that, the common panning screen is created by GetScreenMem(),
and ChangePanning() is called at the beginning of each task.

20.2 ChangeWindow

Syntax

STATUS ChangeWindow(U32 addr, U16 width, U16 height, P_U32 oldAddr,
P_U16 oldWidth, P_U16 oldHeight)

Description

This tool will direct all graphics routines to the memory at addr so that nothing
will be changed on the panning screen being displayed. The width must be
divisible by 8 for 2 bits/pixel display and divisible by 16 for 1 bit/pixel display.
The original settings will be returned to the calling application.

Parameter

Return Value

PPSM_ERR_PAN_ADDRESS Invalid panning screen address

PPSM_ERR_PAN_WIDTH Invalid panning screen width

PPSM_ERR_PAN_HEIGHT Invalid panning screen height

Name Description

addr New graphics output area address

width New graphics output area width in number
of pixels

height New graphics output area height in
number of pixels

oldAddr Old graphics output area address

oldWidth Old graphics output area width in number
of pixels

oldHeight Old graphics output area height in number
of pixels

Name Description

PPSM_OK Successful operation

Name Description

20-4 Graphics Tools

Personal Portable System Manager
Programmer Manual

Hint

This is used for displaying image which needs a long time to generate. The
image can be plotted in other memory area by using ChangeWindow(). When
the image is drawn, it can be copied to the panning screen by calling
ChangeWindow() and PutRec().

20.3 ClearRec

Syntax

STATUS ClearRec(U16 greyLevel, U16 xSrc, U16 ySrc, U16 width, U16
height, U16 style)

Description

Fills the given area with grey level indicated by greyLevel with style.

Parameter

Return Value

PPSM_ERR_WIDTH Invalid graphics output area width

PPSM_ERR_HEIGHT Invalid graphics output area height

Name Description

greyLevel Grey level of the line

xSrc Top left x-coordinate of the rectangular
area

ySrc Top left y-coordinate of the rectangular
area

width Width of the rectangular area in pixels

height Height of the rectangular area in pixels

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE, or REPLACE_STYLE).

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_WIDTH Invalid width

PPSM_ERR_HEIGHT Invalid height

Name Description

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-5

Hint

If (xSrc, ySrc) is (5, 10), width equals 20, and height equals 10, this will fill the
rectangle with top left corner at (5, 10) and bottom right corner at (24, 39) on
LCD with specified greyLevel with style.

20.4 ClearScreen

Syntax

void ClearScreen(U16 greyLevel)

Description

Fills the whole panning screen with grey level indicated by greyLevel.

Parameter

Return Value

20.5 CursorGetOrigin

Syntax

STATUS CursorGetOrigin(P_U16 xPos, P_U16 yPos)

Description

Returns the coordinate (*xPos, *yPos) of the display origin.

Parameter

PPSM_ERR_LCD_STYLE Invalid style

Name Description

greyLevel Grey level of screen

Name Description

None

Name Description

xPos Pointer to X coordinate of the display
origin

yPos Pointer to Y coordinate of the display
origin

Name Description

20-6 Graphics Tools

Personal Portable System Manager
Programmer Manual

Return Value

Hint

The LCD display origin is the co-ordinate of top left corner of the LCD display
screen relative to the panning screen origin.

20.6 CursorGetPos

Syntax

STATUS CursorGetPos(P_U16 xPos, P_U16 yPos)

Description

Returns the coordinate (*xPos, *yPos) of the hardware cursor of the current
task. If this function is called after calling CursorOff(), error will be returned as
no more information about cursor exists after calling CursorOff().

Parameter

Return Value

Name Description

PPSM_ERR_PAN_INIT Error when the current task has no
panning screen

PPSM_ERROR If any of xPos or yPos is 0

PPSM_OK Successful operation

Name Description

xPos Pointer to X coordinate of the top-left
corner of the cursor

yPos Pointer to Y coordinate of the top-left
corner of the cursor

Name Description

PPSM_ERR_CURSOR_INIT Error if cursor is never set or CursorOff() is
just called.

PPSM_ERR_PAN_INIT Error when the cursor is not set

PPSM_ERROR If any of xPos and yPos is 0

PPSM_OK Successful operation

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-7

20.7 CursorGetStatus

Syntax

STATUS CursorGetStatus(P_U16 status)

Description

Returns the status of the hardware cursor of the current task.

Parameter

Return Value

20.8 CursorInit

Syntax

STATUS CursorInit(U16 cursorWidth, U16 cursorHeight)

Description

Changes hardware cursor size to be of width cursorWidth and height
cursorHeight. The width and height must be less than 31 pixels.

Parameter

Name Description

status Pointer to status flag of the cursor. It can
be one of the following values:
` PPSM_CURSOR_OFF

Cursor is OFF
` PPSM_CURSOR_ON

Cursor is ON in full density
` PPSM_CURSOR_REVERSED

Cursor is ON in reverse video

Name Description

PPSM_ERR_CURSOR_INIT Error if cursor is never set or CursorOff() is
just called.

PPSM_OK Successful operation

Name Description

cursorWidth Width of the cursor in number of pixels

cursorHeight Height of the cursor in number of pixels

20-8 Graphics Tools

Personal Portable System Manager
Programmer Manual

Return Value

Hint

If the cursor is large, programmer may use InvRec() to implement a soft cursor.

20.9 CursorOff

Syntax

STATUS CursorOff(void)

Description

Turns off the hardware cursor permanently.

Parameter

Return Value

20.10 CursorSet

Syntax

STATUS CursorSet(U16 xPos, U16 yPos)

Description

Name Description

PPSM_ERR_PAN_INIT Error when the current task has no
panning screen

PPSM_ERR_CURSOR_INIT No more memory to create the hardware
cursor information record

PPSM_ERR_WIDTH If cursorWidth is larger than 31

PPSM_ERR_HEIGHT If cursorHeight is larger than 31

PPSM_OK Successful operation

Name Description

None

Name Description

PPSM_ERR_CURSOR_INIT Error if cursor is never set or CursorOff() is
just called.

PPSM_OK Successful operation

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-9

Sets the top left corner of the hardware cursor to be at (xPos, yPos). The
current task must have panning screen. The (xPos, yPos) must be within the
panning screen. However, it doesn check whether the right boundary
exceeds the panning screen coordinate.

Parameter

Return Value

20.11 CursorSetBlink

Syntax

STATUS CursorSetBlink(U16 frequency)

Description

This will set the hardware cursor in blinking mode with frequency indicating the
number of blinks per 10 seconds. However, the cursor will be seen only if the
cursor is set on by calling CursorSetStatus().

Parameter

Return Value

Name Description

xPos X coordinate of the top-left corner of the
hardware cursor

yPos Y coordinate of the top-left corner of the
hardware cursor

Name Description

PPSM_ERR_PAN_INIT Current task has no panning screen

PPSM_ERR_CURSOR_INIT No more memory to create the hardware
cursor information record

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_OK Successful operation

Name Description

frequency blinking rate of the cursor in number of
blinks per 10 seconds

Name Description

PPSM_ERR_PAN_INIT Current task has no panning screen

20-10 Graphics Tools

Personal Portable System Manager
Programmer Manual

20.12 CursorSetOrigin

Syntax

STATUS CursorSetOrigin(U16 xPos, U16 yPos)

Description

Sets the LCD display screen origin to (xPos, yPos).

Parameter

Return Value

Hint

This must be used with LCDScreenMove().

20.13 CursorSetPos

Syntax

STATUS CursorSetPos(U16 xPos, U16 yPos)

Description

Sets the top left corner position of the hardware cursor to be at (xPos, yPos)

PPSM_ERR_CURSOR_INIT No more memory to create the hardware
cursor information record

PPSM_ERROR Error if the frequency cannot be set

Name Description

xPos X coordinate of the display origin

yPos Y coordinate of the display origin

Name Description

PPSM_ERR_PAN_INIT Current task has no panning screen

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_OK Successful operation

Name Description

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-11

Parameter

Return Value

20.14 CursorSetStatus

Syntax

STATUS CursorSetStatus(U16 status)

Description

This will set the hardware cursor mode to ON in full density, ON in reverse
video mode, or temporary OFF. The hardware cursor will be set on when this
function is called with PPSM_CURSOR_ON or
PPSM_CURSOR_REVERSED.

Parameter

Name Description

xPos X coordinate of the top-left corner of the
cursor

yPos Y coordinate of the top-left corner of the
cursor

Name Description

PPSM_ERR_PAN_INIT Current task has no panning screen

PPSM_ERR_CURSOR_INIT No more memory to create the hardware
cursor information record

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_OK Successful operation

Name Description

status Specify whether a hardware cursor is
needed and if so, in what mode it should
be:

` PPSM_CURSOR_OFF -
temporary no hardware cursor

` PPSM_CURSOR_ON -
full density hardware cursor is
needed

` PPSM_CURSOR_REVERSED -
reverse video mode hardware
cursor is needed.

20-12 Graphics Tools

Personal Portable System Manager
Programmer Manual

Return Value

Hint

CursorInit() is called to set the hardware cursor width and height which ranges
from 0 to 31 in pixels. CursorSetPos() is called to set the co-ordinate of the top
left corner of the hardware cursor. Then finally, CursorSetStatus is called to
turn the hardware cursor on. After CursorSetStatus() is called and hardware
cursor is on, CursorSetPos() and CursorInit() may be called to change the
hardware cursor position or size with immediate effect without calling
CursorSetStatus() again.

20.15 DisplayMove

Syntax

STATUS DisplayMove(U16 xPos, U16 yPos)

Description

This function is to replace the calling of LCDScreenMove() and
CursorSetOrigin(). Whenever the user wants to display a region of panning
screen with top left corner of the display at (xPos, yPos) of the panning screen,
DisplayMove(xPos, yPos) should be called.

Parameter

Return Value

Name Description

PPSM_ERR_PAN_INIT Current task has no panning screen

PPSM_ERR_CURSOR_INIT No more memory to create the hardware
cursor information record

PPSM_OK Successful operation

Name Description

xPos X coordinate

yPos Y coordinate

Name Description

PPSM_OK Successful operation

PPSM_ERR_PAN_INIT Error when the current task has no
panning screen

PPSM_ERR_COORDINATE Error when any part of LCD is going to
display the region outside panning screen

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-13

20.16 DrawArc

Syntax

STATUS DrawArc(U16 greyLevel, U16 x1, U16 y1, U16 x2, U16 y2, U16
style)

Description

Draws an arc from (x1, y1) to (x2, y2).

The arc is actually a quarter of an ellipse with center at (x2, y1) on which both
(x1, y1) and (x2, y2) lie.

If dot width is greater than 1, a thick arc will be drawn.

If both fill pattern mode and border mode are set, those area inside arc which
is not covered by the border of the arc will be filled.

If fill pattern is set and border is off, those area inside and on the arc border will
be filled.

Parameter

Return Value

20.17 DrawCircle

Syntax

Name Description

greyLevel Grey level of the arc

x1 x-coordinate of the first point

y1 y-coordinate of the first point

x2 x-coordinate of the second point

y2 y-coordinate of the second point

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE or REPLACE_STYLE)

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_GREY Invalid grey level value

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_LCD_STYLE Invalid style

20-14 Graphics Tools

Personal Portable System Manager
Programmer Manual

STATUS DrawCircle(U16 greyLevel, U16 xCenter, U16 yCenter, U16 radius,
U16 style)

Description

Draws a circle centered at (xCenter, yCenter) with radius and style as
specified.

If dot width is greater than 1, a thick circle will be drawn.

If both fill pattern mode and border mode are set, those area inside the circle
which is not covered by border will be filled.

If fill pattern mode is set and border mode is off, the area inside and on the
circle border will be filled.

Parameter

Return Value

20.18 DrawDot

Syntax

STATUS DrawDot(U16 greyLevel, U16 xPos, U16 yPos, U16 style)

Description

Outputs a dot with grey level greyLevel onto the screen at position (xPos,
yPos) with indicated style.

Name Description

greyLevel Grey level of the circle

xCenter X-coordinate of the center of circle

yCenter Y-coordinate of the center of circle

radius radius of the circle in number of pixels

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE or REPLACE_STYLE)

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_GREY Invalid grey level value

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_LCD_RADIUS Invalid radius

PPSM_ERR_LCD_STYLE Invalid style

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-15

If dot width is 2, a square dot of length 2 will be drawn where the top left corner
is (xPos, yPos). If dot width is greater than 2, a disc with the center at (xPos,
yPos) will be drawn.

Parameter

Return Value

20.19 DrawEllipse

Syntax

STATUS DrawEllipse(U16 greyLevel, U16 xCenter, U16 yCenter, U16
xLength, U16 yLength, U16 style)

Description

Draws an ellipse centered at (xCenter, yCenter) with the xLength as the width
in the x-axis, and yLength as the height in the y-axis.

If dot width is greater than 1, a thick ellipse will be drawn.

If both fill pattern mode and border mode are set, those area inside ellipse
which is not covered by the border will be filled.

If fill pattern mode is set and border mode is off, the area inside and on the
ellipse border will be filled.

Name Description

greyLevel Grey level of the dot

xPos X-coordinate of the dot

yPos Y-coordinate of the dot

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE, or REPLACE_STYLE).

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_GREY Invalid grey level value

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_LCD_STYLE Invalid style

20-16 Graphics Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

20.20 DrawHorz

Syntax

STATUS DrawHorz(U16 greyLevel, U16 xSrc, U16 ySrc, U16 width, U16
dotLine, U16 style)

Description

Draws a horizontal line from (xSrc, ySrc) to the right for width dots.

If dot width is greater than 1, a thick horizontal line will be drawn. If dot width is
greater than 1 and the width of the horizontal line is 1, a square dot of size
indicated by dot width will be drawn.

If dotLine is non-zero, dotLine number of dots will be drawn with the specified
grey level; then, the dotLine number of dots will be skipped; then, the dotLine
number of dots will be drawn; and so on.

Parameter

Name Description

greyLevel Grey level of the ellipse

xCenter X-coordinate of the center of ellipse

yCenter Y-coordinate of the center of ellipse

xLength The length of the ellipse in x-axis in pixels

yLength The length of the ellipse in y-axis in pixels

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE or REPLACE_STYLE)

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_GREY Invalid grey level value

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_LCD_STYLE Invalid style

Name Description

greyLevel Grey level of the line

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-17

Return Value

20.21 DrawLine

Syntax

STATUS DrawLine(U16 greyLevel, U16 xSrc, U16 ySrc, U16 xDest, U16
yDest, U16 dotLine, U16 style)

Description

Draws a line from (xSrc, ySrc) to (xDest, yDest).

If dot width is greater than 1, a thick line will be drawn. If dot width is greater
than 1 and (xSrc, ySrc) equals (xDest, yDest), a square dot of size indicated
by dot width will be drawn.

If dotLine is non-zero, dotLine number of dots will be drawn with the specified
grey level; then, the dotLine number of dots will be skipped; then, the dotLine
number of dots will be drawn; and so on.

xSrc X-coordinate of the left end-point of the
line

ySrc Y-coordinate of the left end-point of the
line

width The length of the line in pixels

dotLine Dotted line drawing. This argument
accepts a number which represents an
equal number of solid dots and skipped
dots during line drawing. A value of 0
represents a solid line.

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE, or REPLACE_STYLE).

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_GREY Invalid grey level value

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_LCD_STYLE Invalid style

Name Description

20-18 Graphics Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

20.22 DrawRec

Syntax

STATUS DrawRec(U16 greyLevel, U16 xSrc, U16 ySrc, U16 xDest, U16
yDest, U16 dotLine, U16 style)

Description

Draws a rectangular outline with the top-left corner at (xSrc, ySrc) and bottom-
right corner at (xDest, yDest).

If dot width is greater than 1, a thick rectangle will be drawn.

If both fill pattern mode and border mode are set, those area inside the
rectangle which is not covered by the border will be filled.

If fill pattern mode is set and border mode is off, the area inside and on the
rectangle border will be filled.

Name Description

greyLevel Grey level of the line

xSrc X-coordinate of the source point

ySrc Y-coordinate of the source point

xDest X-coordinate of the destination point

yDest Y-coordinate of the destination point

dotLine Dotted line drawing. This argument
accepts a number which represents an
equal number of solid dots and skipped
dots during line drawing. A value of 0
represents a solid line.

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE, or REPLACE_STYLE).

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_GREY Invalid grey level value

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_LCD_STYLE Invalid style

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-19

Parameter

Return Value

20.23 DrawVector

Syntax

STATUS DrawVector(U16 greyLevel, U16 numberOfPoints, P_POINT
pPoints, U16 style, U16 mode)

Description

Draws lines to connect points according to the sequence of the data points
input. No connection will be made between the first and last points unless it is
specified by mode or when the last point is the same as the first point.

DrawVector() does not support pattern fill.

Name Description

greyLevel Grey level of the rectangle

xSrc X-coordinate of the top-left corner

ySrc Y-coordinate of the top-left corner

xDest X-coordinate of the bottom-right corner

yDest Y-coordinate of the bottom-right corner

dotLine Dotted line drawing. This argument
accepts a number which represents an
equal number of solid dots and skipped
dots during line drawing. A value of 0
represents a solid line.

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE, or REPLACE_STYLE).

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_GREY Invalid grey level value

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_LCD_STYLE Invalid style

20-20 Graphics Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

Hint

If the output style is EXOR_STYLE, special care should be taken regarding
overlapped points.

20.24 DrawVert

Syntax

STATUS DrawVert(U16 greyLevel, U16 xSrc, U16 ySrc, U16 height, U16
dotLine, U16 style)

Description

Draws a vertical line from (xSrc, ySrc) down for height dots.

If dot width is greater than 1, a thick vertical line will be drawn. If dot width is
greater than 1 and the height of the vertical line is 1, a square dot of size
indicated by dot width will be drawn.

Name Description

greyLevel Grey level of the lines

numberOfPoints Number of points in the list

pPoints Pointer to the list of points to be connected

style Output style can be:
` EXOR_STYLE

` OR_STYLE
` AND_STYLE
` REPLACE_STYLE

mode Mode should be set to TRUE if the first
and last points need to be connected;
otherwise, it should be FALSE

Name Description

PPSM_OK Successful operation

PPSM_ERROR numberOfPoints is 0

PPSM_ERR_LCD_GREY Invalid grey level

PPSM_ERR_LCD_STYLE Invalid style

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-21

If dotLine is non-zero, dotLine number of dots will be drawn with the specified
grey level; then, the dotLine number of dots will be skipped; then, the dotLine
number of dots will be drawn; and so on.

Parameter

Return Value

20.25 ExchangeRec

Syntax

STATUS ExchangeRec(U16 xSrc, U16 ySrc, U16 width, U16 height, P_U8
bitmap)

Description

Swaps the image in memory pointed to by bitmap with the image at the
specified location of the panning screen. The image pointed to by bitmap will
now be displayed while the rectangular region on the panning screen will be
stored at bitmap.

Note that the image stored in bitmap must be the same size as the specified
rectangle in the arguments.

Name Description

greyLevel Grey level of the line

xSrc X-coordinate of the top end-point of the
line

ySrc Y-coordinate of the top end-point of the
line

height The length of the line in pixels

dotLine Dotted line drawing. This argument
accepts a number which represents an
equal number of solid dots and skipped
dots during line drawing. A value of 0
represents a solid line.

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE, or REPLACE_STYLE).

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_GREY Invalid grey level value

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_LCD_STYLE Invalid style

20-22 Graphics Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

20.26 GetDisplayX

Syntax

U16 GetDisplayX(void)

Description

Returns the LCD display screen width in number of pixels.

Parameter

Return Value

Hint

Name Description

xSrc Top left x-coordinate of the rectangular
image to be stored

ySrc Top left y-coordinate of the rectangular
image to be stored

width Width of the rectangular image to be
stored in pixels

height Height of the rectangular image to be
stored in pixels

bitmap Bitmap image to be displayed

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_WIDTH Invalid width

PPSM_ERR_HEIGHT Invalid height

Name Description

None

Name Description

N/A The display screen width in pixels

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-23

Application programmers should make use of this function to make the
applications size independent.

20.27 GetDisplayY

Syntax

U16 GetDisplayY(void)

Description

Returns the display screen height in number of pixels.

Parameter

Return Value

Hint

Application programmers should make use of this function to make the
applications size independent.

20.28 GetLogicalX

Syntax

U16 GetLogicalX(void)

Description

Returns the current panning screen width in number of pixels. This value gives
the size that an application can write to, which may be larger than the LCD
display screen (i.e. the whole image might not be displayed on the LCD display
screen).

Parameter

Name Description

None

Name Description

N/A The display screen height in pixels

Name Description

None

20-24 Graphics Tools

Personal Portable System Manager
Programmer Manual

Return Value

20.29 GetLogicalY

Syntax

U16 GetLogicalY(void)

Description

Returns the current panning screen height in number of pixels. This value
gives the size that an application can write to, which may be larger than the
LCD display screen (i.e. the whole image might not be displayed on the LCD
display screen).

Parameter

Return Value

20.30 GetScreenMem

Syntax

P_VOID GetScreenMem(U16 width, U16 height)

Description

This tool will allocate appropriate memory for a panning screen of size width
and height.

Parameter

Name Description

N/A The panning screen width in pixels

Name Description

None

Name Description

N/A The panning screen height in pixels

Name Description

width Panning screen width in pixels

height Panning screen height in pixels

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-25

Return Value

20.31 InvRec

Syntax

STATUS InvRec(U16 xSrc, U16 ySrc, U16 width, U16 height)

Description

Inverts the grey level of the specified rectangular area on the panning screen.

Parameter

Return Value

Name Description

N/A Returns an address for panning screen
use or 0 if there is an error

Name Description

xSrc Top left x-coordinate of the rectangular
area

ySrc Top left y-coordinate of the rectangular
area

width Width of the rectangular area in pixels

height Height of the rectangular area in pixels

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_X Invalid LCD x-coordinate

PPSM_ERR_LCD_Y Invalid LCD y-coordinate

PPSM_ERR_WIDTH Invalid width

PPSM_ERR_HEIGHT Invalid height

20-26 Graphics Tools

Personal Portable System Manager
Programmer Manual

20.32 LCDContrast

Syntax

STATUS LCDContrast(U8 contrast)

Description

This tool will pass the value of contrast to the contrast control PWM register.
The user needs to set or reset the contrast control PWM enable bit.

Parameter

Return Value

Name Description

contrast An 8 bit values to pass to PWM

Name Description

PPSM_OK Successful operation

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-27

20.33 LCDRefreshRate

Syntax

STATUS LCDRefreshRate(U16 refreshRate, P_U16 refreshRateSet)

Description

This tool will set the LCD refresh rate to refreshRate number of frames per
second. As the frame rate will be limited by Pixel Clock Divider Register,
Refresh Rate Adjustment Register, Screen Width Register, Screen Height
Register and PLL Control Register, PPSM will only set the refresh rate to the
closest possible value. If refreshRate is 0, the LCD module will be off.
refreshRateSet will be the previous refresh rate. If user wants to know whether
the calling of LCDRefreshRate() is successful, LCDRefreshRate() can be
called once more to get the current actual refresh rate returned by
refreshRateSet.

Parameter

Return Value

20.34 LCDScreenMove

Syntax

STATUS LCDScreenMove(U16 x, U16 y)

Description

This function is replaced by DisplayMove().

Maps the LCD display screen origin to (x, y). The rectangular portion of the
panning screen with top left corner (x, y) will be displayed on the LCD display
screen.

It is assumed that (x, y) is within the valid range of panning screen coordinates.

Name Description

refreshRate Number of frames per second.

refreshRateSet Pointer to old frame rate before changes.

Name Description

PPSM_OK Successful operation

20-28 Graphics Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

Hint

This must be used with CursorSetOrigin().

20.35 PutChar

Syntax

STATUS PutChar(U16 greyLevel, P_U8 character, U16 xPos, U16 yPos, U16
font, U16 width, U16 height, U16 style)

Description

This tool will put a 1 bit/pixel font image on 1 bit/pixel or 2 bit/pixel display
depending on whether ppsm1.a or ppsm2.a is linked.

Parameter

Name Description

x New x-coordinate of the origin of the LCD
display screen

y New y-coordinate of the origin of the LCD
display screen

Name Description

PPSM_OK Successful operation

Name Description

greyLevel Grey Level of the character to put on
panning screen

character Pointer to the character bitmap

xPos x coordinate of the top left corner where
font is going to put

yPos y coordinate of the top left corner where
font is going to put

font SMALL_ITALIC_FONT and
LARGE_ITALIC_FONT font will be
handled differently to generate the italic
effect from a rectangular font bitmap.

width Width of the character in number of pixels

height Height of the character in number of pixels

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-29

Return Value

20.36 PutRec

Syntax

STATUS PutRec(P_U8 bitmap, U16 xSrc, U16 ySrc, U16 width, U16 height,
U16 style, U16 reserved)

Description

Puts a rectangular bitmap image from memory to the specified location of the
panning screen.

Parameter

style It can be REPLACE_STYLE, OR_STYLE,

Name Description

PPSM_OK Successful operation

PPSM_ERR_PAN_INIT Error if the task has no panning screen

PPSM_ERR_GREY Invalid grey level

PPSM_ERR_LCD_X Draw outside the panning screen. Invalid x
coordinate

PPSM_ERR_LCD_Y Draw outside the panning screen. Invalid y
coordinate

PPSM_ERR_LCD_FONT Invalid font

PPSM_ERR_LCD_STYLE Invalid style

PPSM_ERROR Invalid character pointer

Name Description

bitmap Pointer to the bitmap image to be
displayed

xSrc Top left x-coordinate of where the bitmap
image will be mapped

ySrc Top left y-coordinate of where the bitmap
image will be mapped

width Width of the image in pixels

height Height of the image in pixels

style Output Style (AND_STYLE, OR_STYLE,
EXOR_STYLE or REPLACE_STYLE)

Name Description

20-30 Graphics Tools

Personal Portable System Manager
Programmer Manual

Return Value

20.37 SaveRec

Syntax

STATUS SaveRec(P_U8 bitmap, U16 xSrc, U16 ySrc, U16 width, U16 height,
U16 reserved)

Description

Saves a rectangular bitmap image from the specified location on the panning
screen to memory.

Parameter

Return Value

reserved Reserved for future use

Name Description

PPSM_OK Successful operation

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_WIDTH Invalid width

PPSM_ERR_HEIGHT Invalid height

PPSM_ERR_LCD_STYLE Invalid style

Name Description

bitmap Pointer to address where bitmap image is
to be saved

xSrc Top left x-coordinate of the rectangular
image area

ySrc Top left y-coordinate of the rectangular
image area

width Width of the image in pixels

height Height of the image in pixels

reserved Reserved for future use

Name Description

PPSM_OK Successful operation

Name Description

Personal Portable System Manager
Programmer Manual

Graphics Tools 20-31

20.38 SetDotWidth

Syntax

STATUS SetDotWidth(U16 newWidth, P_U16 oldWidth)

Description

This tool sets the width for a dot in number of pixels so that a thick dot can be
drawn by DrawDot(), a thick line can be drawn by DrawLine(), etc.

This dot width is applied to DrawDot(), DrawLine(), DrawRec(), DrawCircle(),
DrawEllipse(), DrawArc() and DrawVector().

If oldWidth is non-zero, the current dot width will be saved in oldWidth.

Parameter

Return Value

20.39 SetPatternFill

Syntax

STATUS SetPatternFill(U16 mode, U16 backGrey, U16 borderMode, U16
fillSpace)

Description

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_WIDTH Invalid width

PPSM_ERR_HEIGHT Invalid height

Name Description

newWidth New dot width in pixels

oldWidth Previous dot width in pixels

Name Description

PPSM_OK Successful operation

PPSM_ERR_DOT_WIDTH newWidth is 0

Name Description

20-32 Graphics Tools

Personal Portable System Manager
Programmer Manual

This tool sets the pattern fill mode to be applied to DrawRec(), DrawCircle(),
DrawEllipse() and DrawArc(). The fill pattern modes are:

The pattern fill mode 0 will turn off the pattern fill feature.

Parameter

Return Value

Name Description

mode There are 8 modes of pattern fill (see
description above)

backGrey The grey level used for the background
space

borderMode Border on-off flag
` TRUE - a border will be drawn

around the shape
` FALSE - no border will be drawn

around the shape

fillSpace The gap between the pattern lines. The
larger this value is, the more space the
pattern will appear.

Name Description

PPSM_OK Successful operation

PPSM_ERR_FILL_PATTERN Invalid fill pattern mode

PPSM_ERR_LCD_GREY Invalid background grey level

PPSM_ERR_FILL_SPACE Invalid space gap in fill pattern

1 2 3 4

5 6 7 8

Personal Portable System Manager
Programmer Manual

Database Management Tools 21-1

Chapter 21 Database Management Tools

21.1 DBAdd

Syntax

STATUS DBAdd(P_U32 dbId)

Description

Adds a new database for an application to PPSM. This is the first routine to be
called whenever a database is created. The database added is a global
database.

Parameter

Return Value

Hint

The returned dbId must remain intact. Application uses this as a key to access
the database.

21.2 DBAddRecord

Syntax

STATUS DBAddRecord(U32 dbId, P_U32 recId, S32 numFmt)

Description

Appends a blank record to the end of the record list for a particular database.
User has the option to specify additional formatted data fields to be allocated.
The valid range of numFmt is from 0 to 5.

Name Description

dbId Returns a database identifier. This
identifier is used by the PPSM to refer to
this particular database.

Name Description

PPSM_OK Successful operation

PPSM_ERR_DB_ADD Unable to add database

Administrator
The database added is a global
database.

21-2 Database Management Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

Hint

For DBAddRecord() to work, the reference database ID must have been
created by calling DBAdd() prior to the calling of DBAddRecord().

21.3 DBAddRecToTop

Syntax

STATUS DBAddRecToTop(U32 dbId, S32 numFmt, P_U32 outRecId)

Description

Adds a blank record at the beginning of the record list of a given database.
User has the option to specify additional formatted data fields to be allocated.
The valid range of numFmt is from 0 to 5.

This tool is meant to complement the action of DBAddRecord().

Parameter

Name Description

dbId Identifier of the database

recId Returns the identifier of the record added

numFmt Number of additional formatted data fields
in the record

Name Description

PPSM_OK Successful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_NUM_FMT Invalid user format field number

Name Description

dbId Identifier of the database

numFmt Number of additional formatted data fields
in the record

outRecId Returns the identifier of the added record

Personal Portable System Manager
Programmer Manual

Database Management Tools 21-3

Return value

Hint

This tool is meant to facilitate the implementation of insertion operation for an
ordered record list.

For DBAddRecToTop() to work, the reference database ID must have been
created by calling DBAdd() prior to the calling of DBAddRecToTop(). Also, the
recID passed must be a valid record ID in the database to be operated on.

21.4 DBAppendRecord

Syntax

STATUS DBAppendRecord(U32 dbId, U32 recId, S32 numFmt, P_U32
outRecId)

Description

Appends a blank record to the record identified by the given recId and output
the record identifier, outRecId, corresponding to the new record. User has the
option to specify additional formatted data fields to be allocated. The valid
range of numFmt is from 0 to 5.

Parameter

Return value

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_NUM_FMT Invalid user format field number

Name Description

dbId Identifier of the database

recId Identifier of the record in the record list
which the new record is to be appended

numFmt Number of additional formatted data fields
in the new record

outRecId Returns the record identifier of the new
record

Name Description

PPSM_OK Successful operation

21-4 Database Management Tools

Personal Portable System Manager
Programmer Manual

Hint

This tool is meant to facilitate the implementation of insertion operation for an
ordered record list.

For DBAppendRecord() to work, the reference database ID must have been
created by calling DBAdd() prior to the calling of DBAppendRecord(). Also, the
recID passed must be a valid record ID in the database to be operated on.

21.5 DBChangeStdData

Syntax

STATUS DBChangeStdData(U32 dbId, U32 recId, S32 fieldId, P_TEXT data)

Description

Changes the data in a predefined standard field of a record in the specified
database.

Parameter

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

PPSM_ERR_NUM_FMT Invalid user format field number

Name Description

dbId Identifier of the database

recId Identifier of the record

fieldId Identifier of the field:
` DB_LAST Last Name
` DB_FIRST First Name

` DB_HOME Home Phone
` DB_OFFICE Office Phone
` DB_ADDRESS

Address
` DB_FAX Fax

` DB_COMPANY
Company

` 1, 2, 3, 4, 5 Additional fields

data Data to be put into the field

Name Description

Personal Portable System Manager
Programmer Manual

Database Management Tools 21-5

Return Value

Hint

Adheres to the size limit of each data field when writing data into it.

The record and database referred to must be valid objects in the PPSM
environment.

21.6 DBChangeUnfData

Syntax

STATUS DBChangeUnfData(U32 dbId, U32 recId, S32 type, P_U32 data,
S32 size)

Description

Changes the data in the unformatted data portion of a record.

Parameter

Return Value

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

PPSM_ERR_DB_FDID Invalid field identifier

Name Description

dbId Identifier of the database

recId Identifier of the record

type Type of data

data Starting address of the data

size Size of the data (in bytes)

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

21-6 Database Management Tools

Personal Portable System Manager
Programmer Manual

Hint

The record and database referred to must be valid objects in the PPSM
environment.

Observes the unformatted data type specification for interchangeability.

21.7 DBDelete

Syntax

STATUS DBDelete(U32 dbId)

Description

Removes a database from PPSM, and frees up all associated memory.

Parameter

Return Value

Hint

The database referred to must be a valid object in the PPSM environment.

21.8 DBDeleteRecord

Syntax

STATUS DBDeleteRecord(U32 dbId, U32 recId)

Description

Removes a particular record from the specified database, and frees up all
associated memory.

PPSM_ERR_DB_TYPE Invalid data type

Name Description

dbId Identifier of the database to be removed

Name Description

PPSM_OK Successful operation

PPSM_ERR_DB_DBID Invalid database identifier

Name Description

Personal Portable System Manager
Programmer Manual

Database Management Tools 21-7

Parameter

Return Value

Hint

The database and record referred to must be valid objects in the PPSM
environment.

21.9 DBGetFirstRecID

Syntax

STATUS DBGetFirstRecID(U32 dbId, P_U32 recId)

Description

Gets the record ID of the first record in the record list of the given database.

Parameter

Return Value

Hint

Name Description

dbId Identifier of the database

recId Identifier of the record to be removed

Name Description

PPSM_OK Successful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

Name Description

dbId Identifier of the database

recId Returns the identifier of the top record in
the record list

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

21-8 Database Management Tools

Personal Portable System Manager
Programmer Manual

This tool is useful for implementing searching on the record list.

The database referred to must be a valid object in the PPSM environment.

21.10 DBGetNextRecID

Syntax

STATUS DBGetNextRecID(U32 dbId, U32 recId, P_U32 nextID, P_U16
botListFlag)

Description

Gets the identifier of the record following the specified record. If the specified
record is the last record, nextID returned will be the same as recId, and the
botListFlag will be set.

Parameter

Return Value

Hint

This tool is for implementing searching on the record list.

The database and record referred to must be valid objects in the PPSM
environment

21.11 DBGetPrevRecID

Syntax

Name Description

dbId Identifier of the database

recId Identifier of specified record

nextID Returns the identifier of the next record

botListFlag TRUE if the record identified by recId is
the last record

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

Personal Portable System Manager
Programmer Manual

Database Management Tools 21-9

STATUS DBGetPrevRecID(U32 dbId, U32 recId, P_U32 prevId, P_U16
topListFlag)

Description

Gets the identifier of the record fore-running the specified record. If the
specified record is the first record, the prevId returned will be the same as
recId, and the topListFlag will be set.

Parameter

Return Value

Hint

This tool is useful for implementing searching on the record list.

The database and record referred to must be valid objects in the PPSM
environment.

21.12 DBReadData

Syntax

STATUS DBReadData(U32 dbId, U32 recId, S32 fieldId, P_TEXT *data)

Description

Reads the formatted data from the specified database, record and field.

Name Description

dbId Identifier of the database

recId Identifier of the specified record

prevID Returns the identifier of the previous
record

topListFlag TRUE if the record identified by recId is
the first record

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

21-10 Database Management Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

Hint

The database and record referred to must be valid objects in the PPSM
environment. If a user defined field is to be read, it is the user responsibility
to check the return status for PPSM_OK, to ensure that the user defined field
does exist before using the returned data for subsequent processing.

21.13 DBReadTotalNumber

Syntax

STATUS DBReadTotalNumber (P_S32 numDB)

Description

Reads the total number of databases in the PPSM environment.

Parameter

Return Value

Name Description

dbId Identifier of the database

recId Identifier of the record

fieldId Identifier of the field

data Returns the pointer to the starting address
of the data

Name Description

PPSM_OK Successful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

PPSM_ERR_DB_FDID Invalid field identifier

Name Description

numDB Returns the total number of databases

Name Description

PPSM_OK Successful operation

Personal Portable System Manager
Programmer Manual

Database Management Tools 21-11

21.14 DBReadTotalNumberRecords

Syntax

STATUS DBReadTotalNumberRecords(U32 dbId, P_S32 numRec)

Description

Reads the total number of records in a given database.

Parameter

Return Value

Hint

The database referred to must be a valid object in the PPSM environment.

21.15 DBReadUnfData

Syntax

STATUS DBReadUnfData(U32 dbId, U32 recId, P_S32 type, P_U32 *data,
P_S32 size)

Description

Reads the data in the unformatted data portion of a record. It will pass back the
pointer to the unformatted data being stored in the record. In addition, it will
also pass back the type and size information of the unformatted data.

PPSM_ERR_DB_READNO Invalid number found

Name Description

dbId Identifier of the database

numRec Returns the number of the records in the
database

Name Description

PPSM_OK Successful operation

PPSM_ERR_DB_DBID Invalid database identifier

Name Description

21-12 Database Management Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

Hint

The database and record referred to must be valid objects in the PPSM
environment.

It is good practice for user to check that the return status is PPSM_OK before
using the data.

21.16 DBRecordSecret

Syntax

STATUS DBRecordSecret(U32 dbId, U32 recId, P_S32 sFlag)

Description

Checks if the secret flag of a particular record in a given database is set or not.

Parameter

Name Description

dbId Identifier of the database

recId Identifier of the record

type Returns type of the data

data Returns pointer to the starting address of
the data

size Returns size of the data (in bytes)

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

Name Description

dbId Identifier of the database

recId Identifier of the record

Personal Portable System Manager
Programmer Manual

Database Management Tools 21-13

Return Value

Hint

The database and record referred to must be valid objects in the PPSM
environment.

21.17 DBSearchData

Syntax

STATUS DBSearchData(U32 dbId, S32 fieldId, P_TEXT data, P_U32 recId)

Description

Searches though the record list of the given database, finds if there is a record
that matches the specified data in the specified field. Returns status of
operation. If PPSM_OK is returned, the recID passed back is the record
identifier of the record with the specified data.

Parameter

Return Value

sFlag Returns the secret flag of the database. It
can take either of the following two values:

` 0 Secret flag is cleared
` 1 Secret flag is set

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

Name Description

dbId Identifier of the database

fieldId Identifier of the field

data Data to be found

recId Returns the identifier of the record

Name Description

PPSM_OK Successful operation

Name Description

21-14 Database Management Tools

Personal Portable System Manager
Programmer Manual

Hint

Current implementation of tool stop searching once an exact match is found.
There is no provision for the case where multiple matches exist.

For good programming practice, user must check the status returned to ensure
a valid search is found before using the record identifier returned.

21.18 DBSecretFlag

Syntax

STATUS DBSecretFlag(U32 dbId, P_S32 sFlag)

Description

Checks if the secret flag of a particular database is set or not.

Parameter

Return Value

Hint

The database referred to must be a valid object in the PPSM environment.

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

PPSM_ERR_DB_FDID Invalid field identifier

PPSM_NO_MATCH No match of data

Name Description

dbId Identifier of the database

sFlag Returns the secret flag of the database. It
can take either of the following two values:

` 0 Secret flag is cleared
` 1 Secret flag is set

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

Name Description

Personal Portable System Manager
Programmer Manual

Database Management Tools 21-15

21.19 DBSetRecordSecretFlag

Syntax

STATUS DBSetRecordSecretFlag(U32 dbId, U32 recId, S32 sFlag)

Description

Sets the secret flag of a particular record.

Parameter

Return Value

Hint

The database and record referred to must be a valid object in the PPSM
environment.

Note that when a new record is created, its secret flag will be set according to
the secret flag of the database which it belongs to. If a user wants all records
in the database to be set secret, it should call DBSetSecretFlag() immediately
after DBAdd() is called.

21.20 DBSetSecretFlag

Syntax

STATUS DBSetSecretFlag(U32 dbId, S32 sFlag)

Description

Name Description

dbId Identifier of the database

recId Identifier of the record

sFlag Secret flag of the database. It can take
either of the following two values:

` 0 Clears the secret flag
` 1 Sets the secret flag

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_RECID Invalid record identifier

PPSM_ERR_DB_SFLAG Invalid secret flag value

21-16 Database Management Tools

Personal Portable System Manager
Programmer Manual

Sets the secret flag of a database. If it is set, all new records created
subsequently in the specified database will be set to secret.

Parameter

Return Value

Hint

The database referred to must be a valid object in the PPSM environment.
User can use this flag to implement data security mechanism at a higher level.

Note that the secret flag is set to 0 when the database is created. If a user
wants all records in the database to be set secret, it should call
DBSetSecretFlag() immediately after DBAdd() is called.

Name Description

dbId Identifier of the database

sFlag Secret flag of the database. It can take
either of the following two values:

` 0 Clears the secret flag
` 1 Sets the secret flag

Name Description

PPSM_OK Successful operation

PPSM_ERROR Unsuccessful operation

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_SFLAG Invalid secret flag value

Personal Portable System Manager
Programmer Manual

Text Tools 22-1

Chapter 22 Text Tools

22.1 TextCreate

Syntax

STATUS TextCreate(P_U32 templateId)

Description

Creates and initializes a text template for storing text properties. An identifier
for the created text template will be returned.

This is the first text tool an application MUST call before any text can be
displayed on the panning screen. The templateId returned is required for
further references to this particular text template.

Parameter

Return Value

22.2 TextDelete

Syntax

STATUS TextDelete(U32 templateId)

Description

Deletes a text template created by TextCreate(). This should be done when the
text template is not needed anymore.

Parameter

Name Description

templateId Identifier of the newly created text
template. This is valid only when
PPSM_OK is returned.

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_CR Error while creating text template

Name Description

templateId Identifier of the text template to be deleted

22-2 Text Tools

Personal Portable System Manager
Programmer Manual

Return Value

22.3 TextMap

Syntax

STATUS TextMap(U32 templateId, P_TEXT buffer, U16 numChar)

Description

Displays the given text onto the panning screen with properties specified in the
text template identified by templateId.

The text will be displayed starting at the current character cursor position. The
font type, output style and grey level of the text are specified by the text
template. Text that extends beyond the size of the text display area specified
by the text template will be truncated. The current character cursor position is
automatically updated by the system.

Parameter

Return Value

22.4 TextReadCursor

Syntax

STATUS TextReadCursor(U32 templateId, P_U16 cursor)

Description

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_ID Invalid text template identifier

Name Description

templateId Identifier of the text template with current
text properties

buffer Pointer to text string to be displayed

numChar Number of characters to be displayed

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_ID Invalid text template identifier

PPSM_ERR_TEXT_CUR Invalid character cursor position

Personal Portable System Manager
Programmer Manual

Text Tools 22-3

Reads the current character cursor position of the text template identified by
templateId. The character cursor position returned is relative to the origin of the
text display area.

Parameter

Return Value

22.5 TextSetCursor

Syntax

STATUS TextSetCursor(U32 templateId, U16 cursor)

Description

Sets the current character cursor position of the text template identified by
templateId to the new position as specified. The range of valid character cursor
positions to set to is zero through (text display area size in number of
characters - 1).

Parameter

Return Value

Name Description

templateId Text template identifier

cursor Current character cursor position

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_ID Invalid text template identifier

Name Description

templateId Text template identifier

cursor The character cursor position to set to

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_ID Invalid text template identifier

PPSM_ERR_TEXT_CUR Invalid character cursor position

22-4 Text Tools

Personal Portable System Manager
Programmer Manual

22.6 TextSetDisplay

Syntax

STATUS TextSetDisplay(U32 templateId, U16 xPos, U16 yPos, U16 width,
U16 height, U16 cursor)

Description

Sets up the text display layout of the given text template with the corresponding
given values. The text display layout comprises of the location and size of a
text template. Subsequent text mapped using this text template will be
displayed with the new layout.

The text display layout specified must reside within the boundary of the
panning screen. The size of the text display area in number of pixels varies with
the size of the font type specified in the text template. The range of valid
character cursor positions to set to is zero through (text display area size in
number of characters - 1).

Parameter

Return Value

Name Description

templateId Identifier of text template to be modified

xPos X-coordinate of top left corner of text
display area

yPos Y-coordinate of top left corner of text
display area

width Width of text display area in number of
columns of characters

height Height of text display area in number of
rows of characters

cursor Character cursor position within the text
display area where text will be displayed
next

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_ID Invalid text template identifier

PPSM_ERR_TEXT_X Text template x-coordinate out of range

PPSM_ERR_TEXT_Y Text template y-coordinate out of range

PPSM_ERR_TEXT_WIDTH Given width extends text display area
beyond the panning screen

Personal Portable System Manager
Programmer Manual

Text Tools 22-5

22.7 TextSetFont

Syntax

STATUS TextSetFont(U32 templateId, P_FONTATTR pFontAttr)

Description

Sets up the font attributes of the given text template. Subsequent text mapped
using this text template will be displayed with these new font attributes.

Eight font types are currently supported. Small Normal and Small Italic are 8 x
8 pixels English fonts. Large Normal and Large Italic are 16 x 16 pixels English
fonts. GB Normal is 16 x 16 Chinese font in GB code format. Chinese Normal
is the same as GB Normal (for backward compatibility). BIG5 Normal is 16 x
16 Chinese font in BIG5 code format. BIG5 Variable is a variable size font in
BIG5 code format.

Note: Asian fonts are supplied by third parties.

The specified font width and height will only take effect if the BIG5 Variable font
type is specified. The minimum and maximum size will depend on the specific
font libraries being provided.

The attribute field is for future extensions and should be set to zero.

Parameter

PPSM_ERR_TEXT_HEIGHT Given height extends text display area
beyond the panning screen

PPSM_ERR_TEXT_CUR Invalid character cursor position

Name Description

templateId Identifier of text template to be modified

Name Description

22-6 Text Tools

Personal Portable System Manager
Programmer Manual

Return Value

22.8 TextSetOutlook

Syntax

STATUS TextSetOutlook(U32 templateId, U16 outputStyle, U16 greyLevel)

Description

Sets up the output style and grey level of the given text template with the given
values. Subsequent text mapped using this text template will be displayed with
these new settings.

The output style is defined as the arithmetic operation between the text
character bitmap and the image on the panning screen where the character
bitmap will be displayed. Five output styles are supported. The text bitmap can
replace, OR with, AND with, exclusive OR with, or be inverted and replace the
existing image.

Up to four grey levels are currently supported. For a 1 bit per pixel system, the
grey levels supported are white and black. For a 2 bits per pixel system, the
grey levels supported are white, light grey, dark grey and black.

pFontAttr Pointer to a text font attributes data
structure. Supported font types are:

` SMALL_NORMAL_FONT
Small Normal (English)

` SMALL_ITALIC_FONT
Small Italic (English)

` LARGE_NORMAL_FONT
Large Normal (English)

` LARGE_ITALIC_FONT
Large Italic (English)

` GB_NORMAL_FONT
GB Normal

` CHINESE_NORMAL_FONT
same as GB Normal

` BIG5_NORMAL_FONT
BIG5 Normal

` BIG5_VARIABLE_FONT
BIG5 Variable

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_ID Invalid text template identifier

PPSM_ERR_TEXT_FONT Invalid font type

PPSM_ERR_NO_MEMORY Not enough memory

Name Description

Personal Portable System Manager
Programmer Manual

Text Tools 22-7

Parameter

Return Value

22.9 TextSetup

Syntax

STATUS TextSetup(U32 templateId, U8 fontType, U8 outputStyle, U8
greyLevel, U16 xPos, U16 yPos, U16 width, U16 height)

Description

Sets up the font type, output style, grey level, location and size of the given text
template with the given values. Subsequent text mapped using this text
template will be displayed with these new settings.

Name Description

templateId Identifier of text template to be modified

outputStyle Output style of text to be displayed:

` REPLACE_STYLE
Replace existing image

` OR_STYLE
OR with existing image

` AND_STYLE
AND with existing image

` EXOR_STYLE
Exclusive OR with existing
image

` INVERSE_STYLE
Invert and Replace existing
image

greyLevel Grey level value of the characters:
` WHITE

White color text
` LIGHT_GREY

Light grey color text
` DARK_GREY

Dark grey color text
` BLACK

Black color text

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_ID Invalid text template identifier

PPSM_ERR_TEXT_STYLE Invalid output style

PPSM_ERR_TEXT_GREY Invalid grey level value

22-8 Text Tools

Personal Portable System Manager
Programmer Manual

This tool does not support the variable size of BIG5_VARIABLE_FONT font
type and is provided for backward compatibility. If BIG5_VARIABLE_FONT is
used, default font size of 16 x 16 is used.

Please refer to TextSetDisplay() (Section 22.6 - TextSetDisplay), TextSetFont()
(Section 22.7 - TextSetFont), and TextSetOutlook() (Section 22.8 -
TextSetOutlook) for detailed descriptions of the corresponding parameters.

Parameter

Return Value

Name Description

templateId Identifier of text template to be modified

fontType Font type of text to be displayed:
` SMALL_NORMAL_FONT

` SMALL_ITALIC_FONT
` LARGE_NORMAL_FONT
` LARGE_ITALIC_FONT

` CHINESE_NORMAL_FONT
` BIG5_NORMAL_FONT
` BIG5_VARIABLE_FONT

outputStyle Output style of text to be displayed:
` REPLACE_STYLE
` OR_STYLE

` AND_STYLE
` EXOR_STYLE
` INVERSE_STYLE

greyLevel Grey level value of the characters:
` WHITE
` LIGHT_GREY

` DARK_GREY
` BLACK

xPos x-coordinate of top left corner of text
display area

yPos y-coordinate of top left corner of text
display area

width Width of text display area in number of
columns of characters

height Height of text display area in number of
rows of characters

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_ID Invalid text template identifier

Personal Portable System Manager
Programmer Manual

Text Tools 22-9

22.10 TextUnmap

Syntax

STATUS TextUnmap(U32 templateId)

Description

Clears the entire text display area specified by the given text template.

Parameter

Return Value

PPSM_ERR_TEXT_FONT Invalid font type

PPSM_ERR_TEXT_STYLE Invalid output style value

PPSM_ERR_TEXT_GREY Invalid text grey level value

PPSM_ERR_TEXT_X Text template x-coordinate out of range

PPSM_ERR_TEXT_Y Text template y-coordinate out of range

PPSM_ERR_TEXT_WIDTH Given width extends text display area
beyond the panning screen

PPSM_ERR_TEXT_HEIGHT Given height extends text display area
beyond the panning screen

Name Description

templateId Identifier of text template

Name Description

PPSM_OK Successful operation

PPSM_ERR_TEXT_ID Invalid text template identifier

Name Description

22-10 Text Tools

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Timer Tools 23-1

Chapter 23 Timer Tools

23.1 AlarmClear

Syntax

void AlarmClear(void)

Description

Clear all alarms set for current task. This will not affect those alarms set for
other tasks.

Parameter

Return Value

23.2 AlarmClearId

Syntax

void AlarmClearId(U32 alarmId)

Description

This function will clear the alarm in the alarm list specified by alarmId. The
alarm set can be of any task.

Parameter

Return Value

Name Description

None

Name Description

None

Name Description

alarmId The identifier of the alarm to be cleared

Name Description

None

23-2 Timer Tools

Personal Portable System Manager
Programmer Manual

23.3 AlarmRead

Syntax

STATUS AlarmRead(P_U16 year, P_U16 month, P_U16 day, P_U16 hour,
P_U16 minute, P_U16 second)

Description

Reads the up coming alarm set for the current task in alarm list.

Parameter

Return Value

23.4 AlarmReadId

Syntax

STATUS AlarmReadId(U32 alarmId, P_U16 year, P_U16 month, P_U16 day,
P_U16 hour, P_U16 minute, P_U16 second)

Description

This function will read the alarm time set in alarmId.

Parameter

Name Description

year Pointer to the year value of the alarm

month Pointer to the month value of the alarm

day Pointer to the day value of the alarm

hour Pointer to the hour value of the alarm

minute Pointer to the minute value of the alarm

second Pointer to the second value of the alarm

Name Description

PPSM_OK Successful operation

PPSM_ERR_NO_ALARM No alarm is set

Name Description

alarmId The identifier of the alarm to be read

year Pointer to the year of the alarm

month Pointer to the month of the alarm

Personal Portable System Manager
Programmer Manual

Timer Tools 23-3

Return Value

23.5 AlarmSet

Syntax

STATUS AlarmSet(U16 year, U16 month, U16 day, U16 hour, U16 minute, U16
second)

Description

Sets the year, month, day, hour, minute and second values of an alarm. Once
set, the application will receive a software interrupt message from the system
when the specified time is reached.

Parameter

day Pointer to the day of the alarm

hour Pointer to the hour of the alarm

minute Pointer to the minute of the alarm

second Pointer to the second of the alarm

Name Description

PPSM_OK Successful operation

PPSM_ERROR Error if any of the year, month, day, hour,
minute or second is NULL

PPSM_ERR_NO_ALARM No alarm with the specified alarmId found
in alarm list

Name Description

year The new year for the alarm

month The new month for the alarm

day The new day for the alarm

hour The new hour for the alarm, in 24-hour
clock unit

minute The new minute for the alarm, in 60-
minute clock unit

second The new second for the alarm, in 60-
second clock unit

Name Description

23-4 Timer Tools

Personal Portable System Manager
Programmer Manual

Return Value

23.6 AlarmSetId

Syntax

STATUS AlarmSetId(P_U32 alarmId, U16 year, U16 month, U16 date, U16
hour, U16 minute, U16 second)

Description

Set alarm at specific time and return the alarm id. When the time reaches the
alarm time, a message with the alarm id, will be passed to the task. Even if the
task is swapped out or the system goes to sleep, the alarm task will still be
swapped in and the system will wake up. However, if more than one alarm
tasks happen, the earlier the alarm is set, the earlier the task will be swapped
in. If alarmId is 0, no alarm id will be given but the alarm will still be set. So if
several alarms are set at the same time, the task will first swap to the alarm
task which set the alarm first, then the second, etc. However, this version the
alarm will stop in the task which set the alarm first only, although the alarm
messages are sent to other tasks also.

Parameter

Name Description

PPSM_OK Successful operation

PPSM_ERR_YEAR Invalid year value

PPSM_ERR_MONTH Invalid month value

PPSM_ERR_DAY Invalid day value

PPSM_ERR_HOUR Invalid hour value

PPSM_ERR_MINUTE Invalid minute value

PPSM_ERR_SECOND Invalid second value

Name Description

alarmId The pointer to the alarm id set with
specific time

year Alarm year which must be greater than or
equal to 1900

month Alarm month from 1 to 12

date Alarm date from 1 to 28, 30 or 31
depending on the month and year values.

hour Alarm hour from 0 to 23

Personal Portable System Manager
Programmer Manual

Timer Tools 23-5

Return Value

23.7 DateTimeRead

Syntax

STATUS DateTimeRead(P_U16 year, P_U16 month, P_U16 day, P_U16 hour,
P_U16 minute, P_U16 second)

Description

Gets the system date and time.

Parameter

Return Value

minute Alarm minute from 0 to 59

second Alarm second from 0 to 59

Name Description

PPSM_OK Successful operation

PPSM_ERR_YEAR Invalid year

PPSM_ERR_MONTH Invalid month

PPSM_ERR_DAY Invalid date

PPSM_ERR_HOUR Invalid hour

PPSM_ERR_MINUTE Invalid minute

PPSM_ERR_SECOND Invalid second

Name Description

year Pointer to the year value

month Pointer to the month value

day Pointer to the day value

hour Pointer to the hour value

minute Pointer to the minute value

second Pointer to the second value

Name Description

PPSM_OK Successful operation

Name Description

23-6 Timer Tools

Personal Portable System Manager
Programmer Manual

23.8 DateTimeSet

Syntax

STATUS DateTimeSet(U16 year, U16 month, U16 day, U16 hour, U16 minute,
U16 second)

Description

Sets the system date and time.

Parameter

Return Value

PPSM_ERR_YEAR Invalid year pointer

PPSM_ERR_MONTH Invalid month pointer

PPSM_ERR_DAY Invalid day pointer

PPSM_ERR_HOUR Invalid hour pointer

PPSM_ERR_MINUTE Invalid minute pointer

PPSM_ERR_SECOND Invalid second pointer

Name Description

year Input year value, starts from 1900

month Input month value, in range 1 - 12

day Input day value, in range 1 - 31

hour Input hour value, in range 0 - 23

minute Input minute value, in range 0 - 59

second Input second value, in range 0 - 59

Name Description

PPSM_OK Successful operation

PPSM_ERR_YEAR Invalid year value

PPSM_ERR_MONTH Invalid month value

PPSM_ERR_DAY Invalid day value

PPSM_ERR_HOUR Invalid hour value

PPSM_ERR_MINUTE Invalid minute value

PPSM_ERR_SECOND Invalid second value

Name Description

Personal Portable System Manager
Programmer Manual

Timer Tools 23-7

23.9 DeleteTimer

Syntax

STATUS DeleteTimer(U32 timerId)

Description

Delete the timer in timer list specified by timerId. Timer can be deleted in any
task as far as the timer identifier is known.

Parameter

Return Value

23.10 InputTimeout

Syntax

STATUS InputTimeout(U32 millisecond)

Description

Sets the repetitive time-out period for data input from the touch panel. This
time-out routine is an explicit time-out routine dedicated for the pen input
device.

Once this time-out routine is activated, the time-out period specified in the
argument list is set and count down begins immediately after pen up condition
is detected. If the time-out period expires before the next pen down has
occurred, PPSM will generate a timer interrupt to the calling application;
otherwise, the time-out period is reset ready for the next pen input sequence.
This is a repetitive time-out that will continuously set the timer for time-out after
each pen input stroke, until it is disabled.

To disable the time-out, call this function with zero as the argument. Maximum
value allowed is 1000.

In IrptGetData(), the alarm id read will be 0xFFFFFFFF to distinguish this input
timeout from normal timeout.

Name Description

timerId The timer identifier returned after calling
TimeoutId(), RefFineTimeAlarmId() or
RefTimeAlarmId().

Name Description

PPSM_OK Successful operation

PPSM_ERROR If the timerId is not valid.

23-8 Timer Tools

Personal Portable System Manager
Programmer Manual

For DragonBall not DragonBall-EZ, the InputTimeout() is also limited by the
pen input sampling rate. A higher sampling rate is more likely to give a more
accurate result.

Parameter

Return Value

23.11 RefFineTimeAlarm

Syntax

STATUS RefFineTimeAlarm(U32 alarmTime)

Description

Sets up an alarm time with respect to the current reference timer in unit of 100
microseconds. Maximum period between alarm time and current time is
0x7FFFFFFF/10 millisecond.

Parameter

Return Value

23.12 RefFineTimeAlarmId

Syntax

Name Description

millisecond Time-out period in units of millisecond. If
this value is zero, time-out is disabled.

Name Description

PPSM_OK Successful operation

PPSM_ERR_TMOUT_VALUE Invalid time-out period

Name Description

alarmTime The absolute value of the alarm time with
respect to the current reference timer
value in unit of 100 microseconds.
Maximum alarm time period is
0x7FFFFFFF/10 milliseconds from the
current reference time.

Name Description

PPSM_OK Successful operation

Personal Portable System Manager
Programmer Manual

Timer Tools 23-9

STATUS RefFineTimeAlarmId(P_U32 alarmId, U32 alarmTime)

Description

Sets up an alarm time with respect to the current reference timer in unit of 100
microseconds. Maximum period between alarm time and current time is
0x7FFFFFFF/10 milliseconds. The timerId will be returned in IrptGetData().

Parameter

Return Value

23.13 RefFineTimeDiff

Syntax

U32 RefFineTimeDiff(U32 beginTime, U32 endTime)

Description

This routine takes in two reference times and return to the caller the difference
between the two times. This routine takes care of wrapped around condition of
the 32-bit continuous reference value. All reference timer values in this routine
are in unit of 100 microseconds.

Parameter

Name Description

alarmId Pointer to reference timer alarm identifier

alarmTime The absolute value of the alarm time with
respect to the current reference timer
value in unit of 100 microseconds.

Name Description

PPSM_OK Successful operation

Name Description

beginTime The begin reference time in unit of 100
microseconds

endTime The end reference time in unit of 100
microseconds

23-10 Timer Tools

Personal Portable System Manager
Programmer Manual

Return Value

23.14 RefFineTimeRead

Syntax

U32 RefFineTimeRead(void)

Description

Returns the current 32-bit reference timer value to the caller in unit of 100
microseconds. This is recommended to be used to read the reference timer as
it doesn involve much calculation and simply return the value. RefTimeRead()
will need more CPU time to convert the reference timer to resolution of
millisecond.

Parameter

Return Value

23.15 RefTimeAlarm

Syntax

STATUS RefTimeAlarm(U32 alarmTime)

Description

Sets up an alarm time with respect to the current reference timer in unit of
milliseconds. Maximum period between alarm time and current time is
0x7FFFFFFF/10 milliseconds.

Name Description

N/A The elapsed time between the two given
reference times in unit of 100
microseconds

Name Description

void

Name Description

N/A Returns a 32-bit reference timer value in
unit of 100 microseconds

Personal Portable System Manager
Programmer Manual

Timer Tools 23-11

Parameter

Return Value

23.16 RefTimeAlarmId

Syntax

STATUS RefTimeAlarmId(P_U32 alarmId, U32 alarmTime)

Description

Sets up an alarm time with respect to the current reference timer in unit of
milliseconds. Maximum period between alarm time and current time is
0x7FFFFFFF/10 milliseconds. The alarmId will be returned in IrptGetData().

Parameter

Return Value

23.17 RefTimeDiff

Syntax

U32 RefTimeDiff(U32 beginTime, U32 endTime)

Description

Name Description

alarmTime The absolute value of the alarm time with
respect to the current reference timer
value in unit of milliseconds. Maximum
alarm time period is 0x7FFFFFFF/10
seconds from the current reference time.

Name Description

PPSM_OK Successful operation

Name Description

alarmId Pointer to reference timer alarm identifier

alarmTime The absolute value of the alarm time with
respect to the current reference timer
value in unit of milliseconds.

Name Description

PPSM_OK Successful operation

23-12 Timer Tools

Personal Portable System Manager
Programmer Manual

This routine takes in two reference times and return to the caller the difference
between the two. This routine takes care of wrapped around condition of the
32-bit continuous reference value. All reference timer values in this routine are
in unit of milliseconds.

Parameter

Return Value

23.18 RefTimeRead

Syntax

U32 RefTimeRead(void)

Description

Returns the current 32-bit reference timer value to the caller in unit of
milliseconds. The calling of this function will occupy longer CPU time than
RefFineTimeRead().

Parameter

Return Value

23.19 SetPeriod

Syntax

Name Description

beginTime The begin reference time in unit of
millisecond

endTime The end reference time in unit of
millisecond

Name Description

N/A The elapsed time between the two given
reference times in unit of milliseconds

Name Description

void -

Name Description

N/A Returns a 32-bit reference timer value in
unit of milliseconds

Personal Portable System Manager
Programmer Manual

Timer Tools 23-13

STATUS SetPeriod(U16 period)

Description

Sets the periodic interrupt from the system. This routine will cause PPSM to
send a periodic interrupt message with the specified duration between
messages, to the calling application.

Parameter

Return Value

23.20 SetPeriodId

Syntax

STATUS SetPeriodId(P_U32 alarmId, U16 period)

Description

This function will set the periodic interrupt for current task. Hour periodic
interrupt is available for MC68EZ328 but not MC68328. If the periodic alarm is
going to be killed with RTC_PERI_NONE, RTC_PERI_NO_SECOND, etc.,
The returned value of the alarmId is going to be meaningless.

Parameter

Name Description

period The period of interrupt can have any one
of the following values:
` RTC_PERI_NONE

Disable periodic interrupt
` RTC_PERI_SECOND

Interrupt per second
` RTC_PERI_MINUTE

Interrupt per minute

Name Description

PPSM_OK Successful operation

PPSM_ERR_PERIOD Invalid time-out period

Name Description

alarmId The pointer the alarm id set with specific
period

23-14 Timer Tools

Personal Portable System Manager
Programmer Manual

Return Value

23.21 Timeout

Syntax

STATUS Timeout(U32 millisecond)

Description

General timer time-out routine. This is a one-shot time-out.

The application that calls this routine will register a time-out interval with
PPSM. A time interrupt is generated to the task when this time-out period is
expired.

Maximum allowed value for Timeout() is 1000.

period It can be:
RTC_PERI_NONE - Kill all period
interrupts in all tasks
RTC_PERI_SECOND - Set second
periodic interrupts for current task
RTC_PERI_MINUTE - Set minute periodic
interrupts for current task
RTC_PERI_HOUR - Set hour periodic
interrupts for current task which is only
available for EZ328

RTC_PERI_MIDNIGHT - Set midnight
periodic interrupts for current task

RTC_PERI_NO_SECOND - Kill second
periodic interrupt for current task

RTC_PERI_NO_MINUTE - Kill minute
interrupt for current task

RTC_PERI_NO_HOUR - Kill hour
interrupt for current task which is only
available for EZ328
RTC_PERI_NO_MIDNIGHT - Kill
midnight interrupt for current task

Name Description

PPSM_OK Successful operation

PPSM_ERR_PERIOD Invalid period flag

PPSM_ERR_NO_MEMORY Out of memory

Name Description

Personal Portable System Manager
Programmer Manual

Timer Tools 23-15

Parameter

Return Value

23.22 TimeoutId

Syntax

STATUS TimeoutId(P_U32 timerId, U32 millisecond)

Description

General timer time-out routine. This is a one-shot time-out.

The application that calls this routine will register a time-out interval with
PPSM. A time interrupt is generated to the task when this time-out period is
expired with the timer id. passed to task.

Maximum allowed value for Timeout() is 1000.

Parameter

Return Value

Name Description

millisecond Time-out period in unit of millisecond. If
this value is zero, time-out is disabled.

Name Description

PPSM_OK Successful operation

PPSM_ERR_TMOUT_VALUE Invalid time-out period

Name Description

timerId Pointer to the timer identifier

millisecond Time-out period in unit of millisecond. If
this value is zero, time-out is disabled.

Name Description

PPSM_OK Successful operation

PPSM_ERR_TMOUT_VALUE Invalid time-out period

23-16 Timer Tools

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Memory Management Tools 24-1

Chapter 24 Memory Management Tools

24.1 Lcalloc

Syntax

void *Lcalloc(U32 size)

Description

Dynamic allocation of run-time memory to the caller. This routine returns to the
caller a pointer to a region of free memory within the malloc size specified in
the Linker Specification File (.SPC). PPSM returns at least the amount of
memory, in number of bytes, that the caller asked for. If there is not enough
memory available in the system, a NULL pointer is returned.

The memory pointed to by the pointer is initialized to zero.

Parameter

Return Value

24.2 Lfree

Syntax

void Lfree(void *ptr)

Description

Returns the memory back into the system heap for reuse. The parameter
supplied must be a valid pointer obtained from one of the PPSM memory
allocation tools.

Name Description

size The size of memory required by the caller
in number of bytes

Name Description

N/A zero - Not enough memory in the system

non-zero - Pointer to an initialized free
memory region

24-2 Memory Management Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

24.3 Lmalloc

Syntax

void *Lmalloc(U32 size)

Description

Dynamic allocation of run-time memory to the caller. This routine returns to the
caller a pointer to a region of free memory within the malloc size specified in
the Linker Specification File (.SPC). PPSM returns at least the amount of
memory, in number of bytes, that the caller asked for. If there is not enough
memory available in the system, a NULL pointer is returned.

The memory pointed to by the pointer is un-initialized.

PPSM returns the size of the largest continuous memory block can be used
when calling Lmalloc(LARGEST_MALLOC_SIZE).

Parameter

Return Value

Name Description

ptr Pointer to a valid memory location. It must
be a pointer returned from one of the
PPSM memory allocation tools.

Name Description

None

Name Description

size The size of memory required by the caller
in number of bytes
or flag LARGEST_MALLOC_SIZE
when inquiring the size of the largest
continuous memory block

Name Description

N/A zero - Not enough memory in the system
non-zero - Pointer to an initialized free
memory region
or the size of the largest continuous
memory block

Personal Portable System Manager
Programmer Manual

Memory Management Tools 24-3

24.4 Lrealloc

Syntax

void *Lrealloc(void *ptr, U32 size)

Description

Moving of memory. This routine re-allocates the memory that is being used
from one location to another. It allocates a new area, then copies the content
at the original location to the new area, and frees the original memory back into
the heap. The purpose of this routine is to defragmentize the system memory.

Parameter

Return Value

24.5 MoveBlock

Syntax

STATUS MoveBlock(P_U32 srcAddr, P_U32 destAddr, U32 size)

Description

Copies a block of memory from the specified source location to the specified
destination location. The tool automatically detects the direction of movement.
Overlapping of memory regions is allowed.

Parameter

Name Description

ptr Pointer to a valid memory location. It must
be a pointer returned from one of the
PPSM memory allocation tools.

size The size of memory to be reallocated

Name Description

N/A zero - Not enough memory in the system
non-zero - Pointer to a valid free memory
region with the original region content

Name Description

srcAddr Address of source location

destAddr Address of destination location

size Size of transfer in bytes

24-4 Memory Management Tools

Personal Portable System Manager
Programmer Manual

Return Value

24.6 TaskMemUsed

Syntax

STATUS TaskMemUsed(U32 taskId, P_U32 pSizeUsed)

Description

Inquire memory usage of a task. This routine returns to the caller total number
of bytes of memory allocated to the given task through Lmalloc(), Lcalloc or
Lrealloc().

Parameter

Return Value

24.7 TaskStackAvail

Syntax

S32 TaskStackAvail(void)

Description

PPSM returns to the caller the total number of bytes of stack can still be used by
current task when calling TaskStackAvail(). Positive returned value indicates stack
has not been used up, negative value implies stack has already overflow.

Name Description

PPSM_OK Successful operation

PPSM_ERROR Invalid input arguments

Name Description

taskId Identifier of the task

pSizeUsed Returns the total number of bytes of
memory used by the task with the given
taskId

Name Description

PPSM_OK Successful operation

PPSM_ERR_TASK_ID Invalid task identifier

Personal Portable System Manager
Programmer Manual

Memory Management Tools 24-5

Parameter

Return Value

24.8 TotalMemSize

Syntax

U32 TotalMemSize(void)

Description

This routine returns to the caller the number of bytes of memory can be
allocated through Lmalloc(), Lcalloc() or Lrealloc() on the system. Value
returned by this function is a constant which is the same as the malloc size
specified in the Linker Specification File (.SPC).

Parameter

Return Value

24.9 TotalMemUsed

Syntax

U32 TotalMemUsed(void)

Description

Name Description

None

Name Description

N/A Total number of bytes of stack can still
be used by current task

Name Description

None

Name Description

N/A The number of bytes of mallocable
memory on the system

24-6 Memory Management Tools

Personal Portable System Manager
Programmer Manual

Inquire run-time memory usage of the system. This routine returns to the caller
the total number of bytes of memory have been allocated to the whole system
through Lmalloc(), Lcalloc() or Lrealloc().

Parameter

Return Value

Note: Value returned by TotalMemUsed() does not equal to the actual
size of all memory resources used by the system. Global
variables and strings memory usage are not counted by this
function. For SDS user, the initial memory usage can be found
by the symbol lister, SYM.EXE, provided in SDS command
directory.

Name Description

None

Name Description

N/A The total number of bytes of memory
allocated to the whole system

Personal Portable System Manager
Programmer Manual

Power Management Tools 25-1

Chapter 25 Power Management Tools

25.1 SetDozeMode

Syntax

void SetDozeMode(void)

Description

Sets system to go into Doze mode immediately.

Parameter

Return Value

25.2 SetDozePeriod

Syntax

STATUS SetDozePeriod(U16 milliSecond)

Description

Sets the countdown period to switch the system from Normal mode to Doze
mode. A value of zero forces the system to go to Doze mode whenever there
is no message to be handled and no task swapping is needed. If millisecond
equals PPSM_NO_DOZE, no automatically going to doze will be executed and
so no automatically going to sleep mode even SetSleepPeriod() is called.

Name Description

None

Name Description

None

25-2 Power Management Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

25.3 SetDutyCycle

Syntax

U16 SetDutyCycle(U16 percentage)

Description

This tool allows the application to set its own duty cycle level. Applications
within a system can have different duty cycle percentages. PPSM
automatically changes the PCM correspondingly when the application tasks
become active.

Parameter

Name Description

milliSecond Specifies the Doze mode time-out period
in unit of milliseconds. The range is from 0
to 60000 milliseconds. The 0 default
value means that PPSM enters Doze
mode whenever there is no messages and
no task swapping is needed. If it
PPSM_NO_DOZE, no automatically going
to doze after doze timeout nor sleep
timeout will happen.

Name Description

PPSM_OK Successful operation

PPSM_ERR_DOZE_TIME Doze time-out period out of range

Name Description

percentage Specifies the percentage of duty cycle
required from the processor core. Range
from a minimum of 3% processor usage to
a maximum of 100% usage in unit of 3%
steps. Anything less than 3% will be set to
3; anything more than 100% will be set to
100.
By default, all applications start at 100%
duty cycle

Personal Portable System Manager
Programmer Manual

Power Management Tools 25-3

Return Value

25.4 SetSleepMode

Syntax

void SetSleepMode(void)

Description

Sets system to go into Sleep mode immediately.

Parameter

Return Value

25.5 SetSleepPeriod

Syntax

STATUS SetSleepPeriod(U16 second)

Description

Sets the countdown period to switch the System from Doze mode to Sleep
mode. A value of zero disables the system from going into Sleep mode.

Parameter

Name Description

U16 Returns the previous duty cycle

Name Description

None

Name Description

None

Name Description

second Specifies the Sleep mode time-out period
in unit of seconds, in the range from 0 to
512 seconds. The default value is 0,
meaning no Sleep mode is required.

25-4 Power Management Tools

Personal Portable System Manager
Programmer Manual

Return Value

Name Description

PPSM_OK Successful operation

PPSM_ERR_SLEEP_TIME Sleep time-out period out of range

Personal Portable System Manager
Programmer Manual

UART Communication Tools 26-1

Chapter 26 UART Communication Tools

26.1 UARTConfigure

Syntax

STATUS UARTConfigure(U8 mode, U16 baudRate, U8 parity, U8 stopBits, U8
charLen)

Description

Configures the UART with the given operating mode, baudRate, parity, number
of stopBits, and charLen flag settings.

The UART hardware and the data transmission time-out are reset during the
course of this configuration. Any on-going send or receive request are also
aborted.

Both the normal NRZ and IrDA operating modes are supported. The minimum
and maximum baud rates supported are 300 bits per second and 115200 bits
per second correspondingly.

Parameter

Name Description

mode Operating mode flag
` UART_NORMAL_MODE

Normal NRZ mode
` UART_IRDA_MODE

IrDA mode

26-2 UART Communication Tools

Personal Portable System Manager
Programmer Manual

Return Value

baudRate Baud rate flag
` UART_300_BPS

300 bits per second
` UART_600_BPS

600 bits per second
` UART_1200_BPS

1200 bits per second
` UART_2400_BPS

2400 bits per second
` UART_4800_BPS

4800 bits per second
` UART_9600_BPS

9600 bits per second
` UART_14400_BPS

14400 bits per second
` UART_19200_BPS

19200 bits per second
` UART_28800_BPS

28800 bits per second
` UART_38400_BPS

38400 bits per second
` UART_57600_BPS

57600 bits per second
` UART_115200_BPS

115200 bits per second

parity Parity flag
` NO_PARITY

Disable parity
` ODD_PARITY

Enable odd parity
` EVEN_PARITY

Enable even parity

stopBits Stop bits flag

` ONE_STOP_BIT
One stop bit after a character

` TWO_STOP_BIT
Two stop bits after a character

charLen Character length flag
` SEVEN_BIT_CHAR

7-bit character mode
` EIGHT_BIT_CHAR

8-bit character mode

Name Description

PPSM_OK Successful operation

Name Description

Personal Portable System Manager
Programmer Manual

UART Communication Tools 26-3

26.2 UARTFlowCtrl

Syntax

STATUS UARTFlowCtrl(U8 controlType)

Description

Enable or disable hardware flow control in UART data communication. PPSM
can handle data communication with another device by UART with RTS/CTS
hardware flow control. An application can enable hardware control by calling
UARTFlowCtrl() with appropriate flag.

Parameter

Return Value

26.3 UARTInquire

Syntax

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERR_MODE Invalid operating mode flag

PPSM_ERR_BAUD Invalid baud rate flag

PPSM_ERR_PARITY Invalid parity flag

PPSM_ERR_STOPBIT Invalid number of stop bits flag

PPSM_ERR_CHARLEN Invalid character length flag

Name Description

controlType controlType
` UART_RCTS_ENABLE

Enable RTS/CTS hardware
flow control

` UART_RCTS_DISABLE
Disable RTS/CTS hardware
flow control

Name Description

PPSM_OK Successful operation

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERROR Invalid input argument

Name Description

26-4 UART Communication Tools

Personal Portable System Manager
Programmer Manual

void UARTInquire(P_U8 mode, P_U32 baudRate, P_U8 parity, P_U8
stopBits, P_U8 charLen)

Description

Returns the current operating mode, baudRate, parity, number of stopBits, and
charLen settings of the UART to the calling application.

The returned values, except for baudRate, are flag values as described in
UARTConfigure() (Section 26.1 - UARTConfigure). The baud rate value
returned is in unit of bits per second.

Parameter

Return Value

26.4 UARTRcvCtrl

Syntax

STATUS UARTRcvCtrl(U8 controlType)

Description

Pause or continue receiving data through UART from another device. An
application can pause or continue data reception through UART when
hardware control is enabled. Error message is returned if RTS/CTS hardware
flow control is not enabled.

Name Description

mode Current operating mode flag

baudRate Current baud rate (in units of bps)

parity Current parity flag

stopBits Current number of stop bits flag

charLen Current character length flag

Name Description

None

Personal Portable System Manager
Programmer Manual

UART Communication Tools 26-5

Parameter

Return Value

Name Description

controlType controlType
` UART_RCTS_PAUSE

Pause data reception through
UART

` UART_RCTS_CONT
Continue data reception
through UART

Name Description

PPSM_OK Successful operation

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERR_RCTS_IDLE RTS/CTS hardware flow control is not
enabled

26-6 UART Communication Tools

Personal Portable System Manager
Programmer Manual

26.5 UARTReadData

Syntax

STATUS UARTReadData(P_U8 pData, U16 bufSize, P_U16 sizeRead)

Description

Reads data received from the UART.

An application can initiate a receive request to start receiving data from the
UART by calling UARTReceive() (Section 26.6 - UARTReceive). When PPSM
receives data from the UART, it will post an interrupt message to notify the
calling application. The calling application can then read the data by calling
UARTReadData().

The calling application needs to pass a buffer, with its size, to PPSM for storing
the received data. PPSM will pass back to the calling application the actual
number of bytes of data read into the application buffer.

An error condition will be returned if the calling application was not granted
permission to use the UART, or no receive request has been initiated when
UARTReadData() is called.

If RTS/CTS is enabled, RTS pin is negated when PPSM running UARTRead-
Data() and asserted after data reading completed.

Parameter

Return Value

26.6 UARTReceive

Syntax

STATUS UARTReceive(U8 receiveFlag)

Name Description

pData Pointer to buffer for storing received data

bufSize Size of data buffer (in number of bytes)

sizeRead Number of bytes of data read

Name Description

PPSM_OK Successful operation

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERR_NO_REQUEST Receive request was not initiated

Personal Portable System Manager
Programmer Manual

UART Communication Tools 26-7

Description

Initiates or aborts a UART receive request.

If receiveFlag is UART_RECEIVE_REQUEST, the receive request will be
initiated, and PPSM will start waiting for incoming data from the UART.

If receiveFlag is UART_RECEIVE_ABORT, the on-going receive request will
be aborted.

When PPSM receives data, it will post an interrupt message to the calling
application notifying it that data is available for it to read. Application can then
read the received data by calling UARTReadData() (Section 26.5 -
UARTReadData).

Application task swapping is disabled while the receive request is in progress,
and re-enabled after the receive request is terminated.

Parameter

Return Value

26.7 UARTSend

Syntax

STATUS UARTSend(U8 sendFlag, P_U8 pData, U16 dataLen)

Description

Initiates or aborts a UART send request.

If sendFlag is UART_SEND_REQUEST, the send request will be initiated, and
PPSM will start sending data to the UART.

If sendFlag is UART_SEND_ABORT, the on-going send request will be
aborted.

Name Description

receiveFlag Operation flag
` UART_RECEIVE_REQUEST

Initiates a receive request
` UART_RECEIVE_ABORT

Aborts a receive request

Name Description

PPSM_OK Successful operation

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERR_BUSY There is already an on-going receive
request (when trying to initiate one)

26-8 UART Communication Tools

Personal Portable System Manager
Programmer Manual

The calling application needs to pass the data byte stream, with its size, to
PPSM for sending out.

When PPSM finishes sending the data, it will post an interrupt message to the
calling application notifying it that all data has been sent.

Application task swapping is disabled while the send request is in progress,
and re-enabled after the send request is terminated.

Parameter

Return Value

26.8 UARTSendAbort

Syntax

STATUS UARTSendAbort(U8 abortFlag, P_U8 *pSendData, P_U32
sendSize)

Description

Terminate the current UART transmission. The transmission abort process is
the same as calling UARTSend(UART_SEND_ABORT). Moreover, beside
aborting the ongoing transmission, PPSM returns a pointer which points to the
current position of internal transmission buffer and the number of bytes of data
have been sent. Caller can get those information without abort UART
transmission by calling UARTSendAbort() with UART_INQUIRE_SBYTE.

Name Description

sendFlag Operation flag
` UART_SEND_REQUEST

Initiates a send request
` UART_SEND_ABORT

Aborts a send request

pData Pointer to data byte stream

dataLen Number of bytes of data to be sent

Name Description

PPSM_OK Successful operation

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERR_BUSY There is already an on-going send request
(when trying to initiate one)

Personal Portable System Manager
Programmer Manual

UART Communication Tools 26-9

Parameter

Return Value

26.9 UARTSendCtrl

Syntax

STATUS UARTSendCtrl(U8 controlType)

Description

Pause or continue sending data through UART to another device. An
application can pause or continue data transmission through UART when
hardware control is enabled. Error message is returned if RTS/CTS hardware
flow control is not enabled.

Parameter

Name Description

abortFlag abortFlag
` UART_SEND_ABORT

Aborts a send request
` UART_INQUIRE_SBYTE

Returns the number of bytes of
data have been sent and the
position of transmission
pointer

pSendData Position of internal transmission pointer

sendSize Number of bytes of data have been sent

Name Description

PPSM_OK Successful operation

PPSM_ERR_INVALID_ACCESS Invalid access of UART

Name Description

controlType controlType

` UART_RCTS_PAUSE
Pause data transmission
through UART

` UART_RCTS_CONT
Continue data transmission
through UART

26-10 UART Communication Tools

Personal Portable System Manager
Programmer Manual

Return Value

26.10 UARTSetDelay

Syntax

STATUS UARTSetDelay(U8 type, U16 delay)

Description

In order to communicate with application in PC, such as HyperTerminal and Telix,
transmitting data in a burst of pulses periodically would greatly increase the accu-
racy of transmission. This function allows user to set a delay, in unit of 100us,
between each transmission of all data in transmit FIFO (between two hardware
interrupts).

The range of delay values supported is 1 to 60,000.

Parameter

Return Value

Name Description

PPSM_OK Successful operation

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERR_RCTS_IDLE RTS/CTS hardware flow control is not
enabled

Name Description

type delay type

` UART_TXHALF_DELAY
Set a delay between each
TXHALF interrupts

` UART_TXDELAY_CLEAR
Clear delay within transmission

delay Transmission delay value in 100
microseconds
` 100 microseconds to 60,000

microseconds (6 seconds)

Name Description

PPSM_OK Successful operation

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERR_INVALID_TXDELAY Delay value out of range

Personal Portable System Manager
Programmer Manual

UART Communication Tools 26-11

26.11 UARTTimeout

Syntax

STATUS UARTTimeout(U16 tmout)

Description

Sets the maximum time interval allowed between two hardware UART
interrupts.

This time-out function prevents application from deadlocking itself when the
data stream terminates unexpectedly.

System do not initiate a timeout right after UARTTimeout() is called. PPSM
starts timeout with the given timeout interval after calling UARTSend(),
UARTReceive(), UARTSendCtrl() and UARTRcvCtrl().

The valid range of time-out values can be set is zero through 60,000 (in units
of milliseconds). A time-out value of zero means disabling all the time-out
function related to UART.

Parameter

Return Value

Name Description

tmout Transmission time-out value in
milliseconds
` 0 - to disable time out function
` 1 to 60,000 milliseconds

Name Description

PPSM_OK Successful operation

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERR_INVALID_TMOUT Time-out value out of range

26-12 UART Communication Tools

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Task Handling Tools 27-1

Chapter 27 Task Handling Tools

27.1 AdvTaskCreate

Syntax

STATUS AdvTaskCreate(P_U32 taskId, P_VOID procAddr, S16 xSrc, S16
ySrc, S16 xDest, S16 yDest, S32 stackSize, U16 newScreen, U16
screenWidth, U16 screenHeight, P_U8 bitmap)

Description

Creation of a new PPSM task. This tool creates a PPSM application task in the
same manner as the tool TaskCreate() but with advanced configuration details.
It allows the caller to specify:

` The launch icon position and size. Launch icon can be on screen or
off screen. For either width or height is zero, no launch icon is going
to be created.

` The stack memory size required by the task.
` The panning screen dimensions. PPSM task can have no

associated screen, or a screen with user specified dimension.

The default screen dimensions are taken from the linker specification file,
LCDVIRTWIDTH and LCDVIRTHEIGHT.

Parameter

Name Description

taskId Returns a task identifier. This identifier is
used by PPSM to refer to the task when it
uses the system resources.

procAddr Address of the application task

xSrc Top-left x-coordinate of task icon

ySrc Top-left y-coordinate of task icon

xDest Bottom-right x-coordinate of task icon

yDest Bottom-right y-coordinate of task icon

stackSize Required stack size in bytes.
If a negative number is used, a default of
512 bytes is used.

27-2 Task Handling Tools

Personal Portable System Manager
Programmer Manual

Return Value

27.2 AppSwap

Syntax

void AppSwap(U16 flag)

Description

If flag is FALSE, no task swapping is allowed by any means such as pen down
on application icon nor using SendMessage(), etc. If SendMessage() or
AdvSendMessage() are called after this function with FALSE in flag, the
message will still be sent to the target task but the task swapping action will be

newScreen Screen Flag -
` PPSM_SCREEN_NOSCREEN

No panning screen is needed
` PPSM_SCREEN_NEW

A panning screen of size
screenWidth by screenHeight
is required

screenWidth If newScreen == PPSM_SCREEN_NEW,
this argument is the panning screen width
in number of pixels.
If this value is 0, the default screen width
and height are used

screenHeight If newScreen == PPSM_SCREEN_NEW,
this argument is the panning screen height
in number of pixels.

If this value is 0, the default screen height
and width are used

bitmap The bitmap for launch icon within LCD
display

Name Description

PPSM_OK Successful operation

PPSM_ERR_TASK_ID Invalid address for storing task identifier

PPSM_ERR_TASK_FLAG Invalid screen flag

PPSM_ERR_TASK_WIDTH Invalid screen width

PPSM_ERR_TASK_HEIGHT Invalid screen height

PPSM_ERR_COORDINATE Invalid coordinates

PPSM_ERR_NO_MEMORY Not enough memory

Name Description

Personal Portable System Manager
Programmer Manual

Task Handling Tools 27-3

ignored. Moreover, if several AppSwap(FALSE) are called, the same number
of AppSwap(TRUE) must be called before the task swapping is enabled.

Parameter

Return Value

27.3 SubTaskCreate

Syntax

STATUS SubTaskCreate(P_U32 taskId, P_VOID procAddr, U16 stackSize,
U16 numArg, ...)

Description

Creating a sub-task. Any task can use this tool to create sub-tasks. If the calling
task is itself a sub-task, the new sub-task will belong to its parent(i.e. the calling
sub-task and the newly created sub-task become siblings). If more than one
sub-task has been created under a parent, the new sub-task will be added to
the head of the sub task list. There is currently no limit on the number of sub-
task a parent task can have. However, the order of the sub-task chain may
change in run-time.

This routine accepts variable length input arguments. These arguments are
passed into the sub-task by PPSM, meaning that the actual sub-task routine
can accept input arguments.

Parameter

Name Description

flag TRUE - enable task swapping

FALSE - disable task swapping

Name Description

None

Name Description

taskId Returns a task identifier. This identifier is
used by PPSM to refer to the task when it
uses the system resources

procAddr Address of the sub task routine

stackSize Stack size required for the sub task. If a
zero is used, the default of 2K byte is used

numArg Number of variable arguments. Each
argument takes up 4 bytes in the
argument stack.

27-4 Task Handling Tools

Personal Portable System Manager
Programmer Manual

Return Value

27.4 TaskCreate

Syntax

STATUS TaskCreate(P_U32 taskId, P_VOID procAddr, S16 xSrc, S16 ySrc,
S16 xDest, S16 yDest, P_U8 bitmap)

Description

PPSM needs to know the existence of each application during initialization
stage. The main body of a PPSM system must call this routine once for each
application. PPSM will create the necessary data structure and memory space
required to run the application.

Parameter

Return Value

... Variable arguments. These are passed to
the sub task routine when the sub task
begins execution

Name Description

PPSM_OK Successful operation

PPSM_ERR_NO_MEMORY Not enough memory

Name Description

taskId Returns a task identifier. This identifier is
used by PPSM to refer to the task when it
uses the system resources.

procAddr Address location of the application

xSrc Top left x-coordinate of the task icon

ySrc Top left y-coordinate of the task icon

xDest Bottom right x-coordinate of the task icon

yDest Bottom right y-coordinate of the task icon

bitmap Pointer to bitmap of the task icon

` 0 - No on-screen icon is needed

Name Description

PPSM_OK Successful operation

Name Description

Personal Portable System Manager
Programmer Manual

Task Handling Tools 27-5

27.5 TaskHook

Syntax

STATUS TaskHook(U32 taskId, P_VOID entryCallback, P_VOID exitCallback)

Description

Set the entry and exit routines to the specific task. Whenever the task is going
to be swapped in, entryCallback function will be executed. Whenever the task
is going to be swapped out, exitCallback will be executed. The entryCallback
and exitCallback should be function calls with U32 as input parameter and the
function should not involve interrupts, e.g. Entry(U32 oldApp) and Exit(U32
newApp) where oldApp will be the task identifier of the task just swapped out
and newApp will be the next task to be swapped in.

Parameter

Return Value

27.6 TaskReInit

Syntax

STATUS TaskReInit(U32 taskId, U16 flag)

PPSM_ERR_TASK_ID Invalid task identifier

PPSM_ERR_COORDINATE Invalid coordinates

PPSM_ERR_NO_MEMORY Not enough memory

Name Description

taskId Task identifier of the task to be hooked
with the entry and exit functions.

entryCallback The entry function to be executed before
swapping in the task. If NULL is input, no
entry function will be executed.

exitCallback The exit function to be executed after
swapping out the task. If NULL is input, no
exit function will be executed.

Name Description

PPSM_OK Successful Operation

PPSM_ERR_TASK_ID Invalid task id.

Name Description

27-6 Task Handling Tools

Personal Portable System Manager
Programmer Manual

Description

To set the specific task to be in reinit mode so that each time the task is
swapped in, it will start from beginning of the task again. This function is
generally called once the task is created.

Parameter

Return Value

27.7 TaskStart

Syntax

STATUS TaskStart(U32 taskId)

Description

Begin execution of the first application task. This routine will never returns. It
launches the first PPSM application, and all other applications are started by
activating the application icons. This routine is used at the start to kick off the
system.

Parameter

Return Value

Name Description

taskId The task identifier of the task to be set.

flag TRUE or FALSE to indicate whether the
task needs to be in reinit mode.

Name Description

PPSM_OK Successful operation

PPSM_ERR_TASK_ID Invalid task id.

Name Description

taskId The task identifier for the first application
to be launched.

Name Description

PPSM_ERROR Invalid taskId

PPSM_OK Task started successfully

Personal Portable System Manager
Programmer Manual

Task Handling Tools 27-7

27.8 TaskTerminate

Syntax

STATUS TaskTerminate(U32 taskId)

Description

Termination of a task. The task identifier can be of a main or sub task. All
system memory, such as stack memory and screen (if any), associated with
the task and its subtasks that are allocated by PPSM will be freed.

A task cannot terminate itself nor its parent task if it is a sub-task.
TaskTerminate() will not free the memory that has been explicitly allocated by
the task with Lmalloc().

Parameter

Return Value

Name Description

taskId The task identifier of the task to be
terminated

Name Description

PPSM_OK Task successfully terminated

PPSM_ERR_TASK_ID Invalid task identifier

27-8 Task Handling Tools

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Inter-Task Messaging Tools 28-1

Chapter 28 Inter-Task Messaging Tools

28.1 AdvMessageDelete

Syntax

STATUS AdvMessageDelete(P_TASKDESC task,U16 type, U32 shortData)

Description

This function will delete those messages in a task message queue with
specific task, type and shortData matched. If any of the parameter value is
0xFFFFFFFF in task and shortData or 0xFFFF in type, it means "don care" in
that field. SO if task is 0xFFFFFFFF, all tasks will be check and the matched
messages in all tasks will be deleted, etc.

Parameter

Return Value

28.2 AdvSendMessage

Syntax

STATUS AdvSendMessage(U32 taskId, P_MESSAGE msg, U8 flag)

Description

This tool is used when the current task wants to send a message to another
task. If the receiver task task identifier is not known, this tool cannot be used.

If msg is 0, no message will be sent but the task swapping may still be
executed.

Name Description

task Task identifier

type The message type such as IRPT_UART,
etc.

shortData This field is generally returned in
IrptGetData() as alarmId, timerId, areaId,
taskId, etc.

Name Description

PPSM_ERR_TASK_ID Invalid task id.

PPSM_OK Successful Operation

28-2 Inter-Task Messaging Tools

Personal Portable System Manager
Programmer Manual

All data that the sender wants to send must be stored in the form of MESSAGE
structure. No protocol or data format is put on the message data. The sender
and receiver must have a mutual understanding of the data representation of
the message being sent.

The data structure for the structure MESSAGE is:

typedef struct _MESSAGE
{

U16 messageType; /* message type */
U16 message; /* message */
U32 misc; /* short data (32bit) */
P_VOID data; /* associated data, if any */
U16 size; /* size of data in bytes */
U16 reserved; /* for future (broadcast, etc) */

} PPSM_MESSAGE, *P_MESSAGE;

If AppSwap(FALSE) is called before calling this function, the message will still
be sent but any form of task swapping action will be ignored.

If the system is in doze mode, calling this function will wake up the system.

Parameter

Name Description

taskId The receiver task identifier

msg The message to send. All data to send are
stored in the PPSM_MESSAGE structure,
with the following representation:
` messageType - Must set to

MESSAGE_IRPT.
` message - The type of message

being sent to the receiver.
Normally set to IRPT_USER.

` misc - 32-bit short data
` data - data pointer to the buffer that

is storing the message data
` size - size of data buffer, in number

of bytes
` reserved - not used

flag It can be:

SWAP_TASK_LATER - Task swapping
will happen in IrptGetData() when all
messages in current task are handled.
SWAP_TASK_BACK_LATER - Task
swapping will happen immediately and the
current task will be swapped back when
all messages in the target task are
handled.
SWAP_TASK - Task swapping will
happen immediately.
NO_SWAP_TASK - No task swapping will
happen.

Personal Portable System Manager
Programmer Manual

Inter-Task Messaging Tools 28-3

Return Value

28.3 MessageDelete

Syntax

STATUS MessageDelete(U16 type)

Description

This function will delete those messages in current task message queue with
specific type matched. If the input parameter value is 0xFFFF in type, it means
"don care" in that field and all messages in current task will be deleted.

Parameter

Return Value

28.4 SendMessage

Syntax

STATUS SendMessage(U32 taskId, P_MESSAGE msg)

Description

This tool is used when the current task wants to send a message to another
task. If the receiver task task identifier is not known, this tool cannot be used.

Name Description

PPSM_OK Message successfully sent

PPSM_ERR_TASK_ID Invalid task identifier

PPSM_ERR_NO_MEMORY Not enough memory

PPSM_ERROR Invalid flag or AppSwap(FALSE) is called
before calling this function

Name Description

type The message type such as IRPT_UART,
etc.

Name Description

PPSM_ERR_TASK_ID Invalid task id.

PPSM_OK Successful Operation

28-4 Inter-Task Messaging Tools

Personal Portable System Manager
Programmer Manual

All data that the sender wants to sent must be stored in the form of MESSAGE
structure. No protocol or data format is put on the message data. The sender
and receiver must have a mutual understanding of the data representation of
the message being sent. On the receiving side, IrptGetData() is where the
message received.

The data structure for the structure MESSAGE is:

typedef struct _MESSAGE
{

U16 messageType; /* message type */
U16 message; /* message */
U32 misc; /* short data (32bit) */
P_VOID data; /* associated data, if any */
U16 size; /* size of data in bytes */
U16 reserved; /* for future (broadcast, etc) */

} PPSM_MESSAGE, *P_MESSAGE;

If AppSwap(FALSE) is called before calling this function, the message will still
be sent but any form of task swapping action will be ignored.

If the system is in doze mode, calling this function will wake up the system.

Parameter

Corresponding values between SendMessage() and IrptGetData()

Name Description

taskId The receiver task identifier

msg The message to send. All data to send are
stored in the PPSM_MESSAGE structure,
with the following representation:
` messageType - Must set to

MESSAGE_IRPT.
` message - The type of message

being sent to the receiver.
Normally set to IRPT_USER.

` misc - 32-bit short data
` data - data pointer pointing a buffer

that is storing the message
data

` size - size of data buffer, in number
of bytes

` reserved - not used

SendMessage IrptGetData

STATUS SendMessage(U32 taskId, P_MESSAGE msg)
U16 IrptGetData(P_U32 sData, P_U32 *data, P_U32 size)

msg.messageType must be MESSAGE_IRPT

msg.message returned value

msg.misc *sData

Personal Portable System Manager
Programmer Manual

Inter-Task Messaging Tools 28-5

Return Value

msg.data data

msg.size size

msg.reserved N/A

Name Description

PPSM_OK Message successfully sent

PPSM_ERR_TASK_ID Invalid task identifier

PPSM_ERR_NO_MEMORY Not enough memory

PPSM_ERROR AppSwap(FALSE) is called before calling
this function

SendMessage IrptGetData

28-6 Inter-Task Messaging Tools

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Interrupt Handling Tools 29-1

Chapter 29 Interrupt Handling Tools

29.1 IrptGetData

Syntax

U16 IrptGetData(P_U32 sData, P_U32 *data, P_U32 size)

Description

This tool reads the application` s interrupt buffer for any pending interrupt
message. The interrupt source of the message and data collected from the
interrupt handler is returned. Each application has its own unique interrupt
buffer.

The data returned from this routine depends on the nature of the interrupt type.
Different messages from different interrupt sources represent different types of
data. The pre-defined format for the data generated by system interrupts are
listed below. The size of the data collected during an interrupt event is returned
in the last argument size. It is in number of byte.

PPSM does not impose any format or protocol for message data generated
from User Defined handlers since such data is programmable by the system
integrator.

Parameter

Return Value *sData *(*data) *size

IRPT_AUDIO N/A U16 -
AUDIO_STOP_WAVE or

AUDIO_STOP_TONE

2

IRPT_HWR N/A U16, - List of candidates 2 x no. of
candidat
es

IRPT_ICON U32 - AreaId U16 -
PPSM_ICON_TOUCH or
PPSM_ICON_DRAG or

PPSM_ICON_PEN_UP or
PPSM_ICON_DRAG_UP

2

IRPT_INPUT_
STATUS

U32 - AreaId U16 -

PPSM_INPUT_TOUCH or
PPSM_INPUT_DRAG or
PPSM_INPUT_PEN_UP or

PPSM_INPUT_DRAG_UP

2

IRPT_KEY N/A TEXT, S16, S16 - keycode, (x, y) 6

29-2 Interrupt Handling Tools

Personal Portable System Manager
Programmer Manual

Return Value

IRPT_PEN U32 - AreaId S16, S16 - (x, y) 4

IRPT_RTC U32 - TimerId N/A 0

IRPT_TIMER U32 - TimerId N/A 0

IRPT_UART N/A U16, U16 -
UART_ERROR,
UART_ERR_TMOUT or
UART_ERR_FRAME or
UART_ERR_PARITY or

UART_ERR_OVERRUN or
UART_ERR_NODATA

OR

U16 -

UART_DATA_RECEIVED or
UART_DATA_SENT

4

2

IRPT_USER User defined User defined User
defined

Name Description

IRPT_AUDIO Indicating audio stopped

IRPT_ERROR Invalid function parameter

IRPT_HWR Handwriting Recognition interrupt

IRPT_ICON Pen input on icon active area interrupt

IRPT_INPUT_STATUS Pen Action Status for pen input

IRPT_INT INT0-INT7 User Defined Handler

IRPT_IRQ1 IRQ1 User Defined Handler

IRPT_IRQ2 IRQ2 User Defined Handler

IRPT_IRQ3 IRQ3 User Defined Handler

IRPT_IRQ6 IRQ6 User Defined Handler

IRPT_KEY External and soft keyboard interrupt

IRPT_NONE No application interrupt has occur

IRPT_PEN Pen input on application active area
interrupt

IRPT_PWM PWM User Defined Handler

IRPT_RTC Real Time Clock interrupt

Return Value *sData *(*data) *size

Personal Portable System Manager
Programmer Manual

Interrupt Handling Tools 29-3

29.2 IrptRelease

Syntax

STATUS IrptRelease(U16 handlerFlag)

Description

This tool is used by the application to release an interrupt handler that the caller
has successfully requested previously. The interrupt handler that is being
released must be a valid handler that has been granted to the application via
the IrptRequest() tool. If a handler that the application has no hook to is being
requested for release, an error message will be returned. When a handler is
released, any data or message still pending in the interrupt handler is flushed
out and removed.

Once an interrupt handler is released, PPSM can then grant the handler to
other applications that request for the handler.

The application should release the handlers one at a time.

IRPT_SPIM SPI Master User Defined Handler

IRPT_SPIS SPI Slave User Defined
Handler(DragonBall Only)

IRPT_TIMER Preset timer interrupt

IRPT_UART UART User Defined Handler

IRPT_USER User Defined Handler

IRPT_WDG Watchdog User Defined Handler

Name Description

29-4 Interrupt Handling Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

29.3 IrptRequest

Syntax

U16 IrptRequest(U16 handlerFlag)

Description

This tool is used by the application task to request the services of the interrupt
handlers. Once requested and granted, all interrupt messages sent from the
handlers are directed to the application with the appropriate interrupt
identifiers.

When calling this tool, the user must specify which of the handlers it wishes to
request. The interrupt flags can be OR` ed together to request more than one
handler with a single call. If the requested handlers are installed and available,
PPSM system will hook the handlers to the application; if not, PPSM will do
nothing.

The return value from this tool is a 16-bit word, returning the flags of the
handlers that have been granted, if any. It uses the same format as the input
handler flag parameter. For example, if a caller makes a request for a specific
set of handlers, and if all are granted, then the return value from the tool will be
the same as the input handler flag parameter. If any one of the requested
handlers cannot be granted, the return value will be different from the input flag
parameter. If none is granted, a zero is returned.

Name Description

handlerFlag Flag to indicate which of the handler the
caller is releasing.
` IRPT_SPIM_FLAG
` IRPT_SPIS_FLAG(DragonBall Only)

` IRPT_UART_FLAG
` IRPT_IRQ1_FLAG
` IRPT_IRQ2_FLAG

` IRPT_IRQ3_FLAG
` IRPT_IRQ6_FLAG
` IRPT_INT_FLAG

` IRPT_WDOG_FLAG
` IRPT_PWM_FLAG
` IRPT_USER_FLAG

Name Description

PPSM_OK Successful operation

PPSM_ERR_RELEASE Unable to release handler

Personal Portable System Manager
Programmer Manual

Interrupt Handling Tools 29-5

A request is successful if and only if the handler being requested has not been
granted to another task.

Parameter

Return Value

Name Description

handlerFlag Flag to indicate which of the handlers the
caller is requesting. Each bit of this flag
represents a specific handler.
The following flag values can be OR d
together if more than one handler is being
requested:

` IRPT_SPIM_FLAG
` IRPT_SPIS_FLAG(DragonBall only)
` IRPT_UART_FLAG

` IRPT_IRQ1_FLAG
` IRPT_IRQ2_FLAG
` IRPT_IRQ3_FLAG

` IRPT_IRQ6_FLAG
` IRPT_INT_FLAG
` IRPT_WDOG_FLAG

` IRPT_PWM_FLAG
` IRPT_USER_FLAG

Name Description

N/A Returns the handlers that has/have been
granted. Each bit in the returned 16-bit word
represents a specific handler:

` IRPT_SPIM_FLAG
` IRPT_SPIS_FLAG(DragonBall only)
` IRPT_UART_FLAG

` IRPT_IRQ1_FLAG
` IRPT_IRQ2_FLAG
` IRPT_IRQ3_FLAG

` IRPT_IRQ6_FLAG
` IRPT_INT_FLAG
` IRPT_WDOG_FLAG

` IRPT_PWM_FLAG
` IRPT_USER_FLAG

29-6 Interrupt Handling Tools

Personal Portable System Manager
Programmer Manual

29.4 IrptSendData

Syntax

STATUS IrptSendData(U16 irptType, U32 sData, P_U32 data, U32 size)

Description

Passes the user defined interrupt message from interrupt handler back to
application level. This routine should be called from the user installed interrupt
handler only. After this message is sent from the interrupt handler, the
application that has requested the handler will be able to receive this message
via the IrptGetData() tool.

Parameter

Return Value

Name Description

irptType Interrupt Identifier:
` IRPT_SPIM

` IRPT_SPIS(DragonBall only)
` IRPT_IRQ1
` IRPT_IRQ2

` IRPT_IRQ3
` IRPT_IRQ6
` IRPT_INT

` IRPT_WDOG
` IRPT_PWM
` IRPT_USER

sData This field can be used to send 4 bytes or
less data to the application

data Data buffer for storing data to send to the
application

size The size of data being sent, in number of
bytes

Name Description

PPSM_OK Successful operation

PPSM_ERR_IRPT_HANDLER Handler not requested by application

PPSM_NO_MEMORY Not enough memory

Personal Portable System Manager
Programmer Manual

System Tools 30-1

Chapter 30 System Tools

30.1 PPSMInit

Syntax

STATUS PPSMInit(U16 calibration)

Description

PPSM initialization routine. This routine must be called at the beginning of the
system file before any of the PPSM tools can be used.

The input argument allows the system caller to decide if pen calibration is
required at this time.

With the default calibration device driver, two cross-hairs will be drawn on the
screen, one near the top-right corner and the other near the bottom-left corner.
The user must press the center of these cross-hairs one at a time to perform
the pen input calibration.

The default calculation value is based on a LCD that has 320 pixels by 240
pixels (physical sizes 12 cm by 9 cm), using a 10-bit A/D convertor. An offset
of 100 (in A/D output unit) is chosen as the A/D non-linear area around the
edge of the touch panel. User may define his own calibration method by
changing CalibratePen() in PenInit.C of the device driver library.

If logo displaying is required, a Motorola logo will be displayed on the LCD
screen during the pen calibration. Depending on the physical LCD screen
dimensions, a different logo is displayed. There are 2 logos, one for a large
screen, one for a small screen. If the LCD screen width is less than 150 pixels
or the LCD height is less than 80 pixels, no logo is displayed.

Width (pixels) Height (pixels) Motorola Logo

width => 280 height => 150 Standard Logo

150 <= width < 280 80 <= height < 150 New Small Logo

width < 150 height < 80 None

30-2 System Tools

Personal Portable System Manager
Programmer Manual

Parameter

Return Value

Name Description

calibration Flag to indicate if touch panel calibration is
required.
` TRUE - do pen calibration

` FALSE - do not do pen calibration

Name Description

PPSM_OK Successful operation

PPSM_ERR_NO_MEMORY Not enough memory

PPSM_ERROR Initialization failed

Figure 29-1 Standard Motorola logo

Personal Portable System Manager
Software Licensed

1995-1998 Motorola Inc.
by Motorola Semiconductor H.K. Ltd.

Figure 29-2 Small Motorola logo

Personal Portable System Manager
Programmer Manual

System Tools 30-3

30.2 ReadSMVersion

Syntax

STATUS ReadSMVersion(P_U32 major, P_U32 minor)

Description

Returns PPSM major and minor version number. For example, for version 3.0,
major number will be 3 and minor number will be 0.

Parameter

Return Value

Name Description

major Returns the PPSM major version number

minor Returns the PPSM minor version number

Name Description

PPSM_OK Successful operation

PPSM_ERR_NO_MEMORY Invalid input memory pointer

30-4 System Tools

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Audio Tools 31-1

Chapter 31 Audio Tools

31.1 AdvAudioPlayWave (DragonBall-EZ only)

Syntax

STATUS AdvAudioPlayWave(P_U8 waveData, U32 waveSize, U8 prescaler,
U8 repeat, U8 clksel)

Description

This tool is valid for DragonBall-EZ only. This tool plays back a PCM audio
wave signal. This is similar to the tool AudioPlayWave() but with advanced
configuration details. It allows the caller to specify:

` The value of prescaler in the PWM module of DragonBall-EZ
` The repeat rate of the audio.
` The clksel in the PWM module of DragonBall-EZ

This tool assumes the user has solid knowledge of the DragonBall-EZ PWM
module. For most cases, AudioPlayWave should be used.

Parameter

Return Value

Name Description

waveData The pointer to the PCM audio wave signal

waveSize Total number of data bytes occupied by
the audio signal

prescaler Bit 14~8 of the PWM control register,
value from 0 to 127

repeat Bit 2,3 of the PWM control register, value
from 0 to 3

clksel Bit 0,1 of the PWM control register, value
from 0 to 3

Name Description

PPSM_OK Successful operation

PPSM_ERR_AUDIO_REGS Invalid values for prescaler, repeat or
clksel

PPSM_ERR_AUDIO_INUSE The PWM module is being used by
another task

31-2 Audio Tools

Personal Portable System Manager
Programmer Manual

31.2 AudioInUse

Syntax

U8 AudioInUse(void)

Description

It checks if PPSM audio tools are currently being used.

Parameter

Return Value

31.3 AudioPlayTone

Syntax

STATUS AudioPlayTone(P_U16 toneData, U32 toneSize, U16 toneDuration,
U8 autoRepeat)

Description

PPSM plays a sequence of different tone frequencies with each tone frequency
having a fixed duration.

Parameter

Name Description

None

Name Description

AUDIO_OFF PPSM audio tools are not being used

WAVE_IN_USE PPSM wave play back audio tool is being
used

TONE_IN_USE PPSM tone play back audio tool is being
used

Name Description

toneData The pointer to the tone frequency
sequence, with frequency between 31Hz
and 4048Hz

toneSize Total number of tone frequencies to play.

Personal Portable System Manager
Programmer Manual

Audio Tools 31-3

Return Value

31.4 AudioPlayWave (DragonBall-EZ only)

Syntax

STATUS AudioPlayWave(P_U8 waveData, U32 waveSize, U8
samplingRate)

Description

This tool is for DragonBall-EZ only. PPSM plays back a PCM audio wave
signal with requested sampling rate.

Parameter

toneDuration The duration of each tone frequency
For DragonBall-EZ
` TONE_DUR_512Hz

` TONE_DUR_256Hz
` TONE_DUR_128Hz
` TONE_DUR_64Hz

` TONE_DUR_32Hz
` TONE_DUR_16Hz
` TONE_DUR_8Hz

` TONE_DUR_4Hz
For DragonBall
0 to 1000, length of duration in number of
milliseconds.

autoRepeat If auto-repeat is needed or not

0 - no autorepeat.
1 - autorepeat.

Name Description

PPSM_OK Successful operation

PPSM_ERR_AUDIO_INUSE The PWM module is being used by
another task

PPSM_ERR_AUDIO_TONEDUR Invalid tone duration
The requested RTC-sampling interrupt is
already being used(This only happens on
the MC68EZ328)

Name Description

waveData The pointer to the PCM audio wave signal

Name Description

31-4 Audio Tools

Personal Portable System Manager
Programmer Manual

Return Value

31.5 AudioStopTone

Syntax

STATUS AudioStopTone(void)

Description

Terminates the tone playing.

Parameter

Return Value

31.6 AudioStopWave (DragonBall-EZ only)

Syntax

STATUS AudioStopWave(void)

waveSize Total number of data bytes occupied by
the audio signal

samplingRate The requested sampling rate
` SAMPLING_32KHZ
` SAMPLING_16KHZ

` SAMPLING_11KHZ
` SAMPLING_8KHZ
` SAMPLING_4KHZ

Name Description

PPSM_OK Successful operation

PPSM_ERR_AUDIO_INUSE The PWM module is being used by
another task.

Name Description

None

Name Description

PPSM_OK Successful operation

PPSM_ERR_AUDIO_NOTINUSE The audio tools are not in use

Name Description

Personal Portable System Manager
Programmer Manual

Audio Tools 31-5

Description

Terminates the wave playing.

Parameter

Return Value

Name Description

None

Name Description

PPSM_OK Successful operation

PPSM_ERR_AUDIO_NOTINUSE The audio tools are not in use

31-6 Audio Tools

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Part IV
System
Integrator
Guide

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

How to make ROM? 32-1

Chapter 32 How to make ROM?

To make PPSM applications into ROM code, two items are needed which are
different from running PPSM applications using RAM memory version. These two
items are:

` Boot Strap code
` Linker Specification File for ROM

This chapter gives some description of how to make a ROM code version of
PPSM applications.

32.1 Boot Strap Code (boot.s)

The boot strap code performs the following functions:

` Starts the 68K core upon reset
` Map the chip-selects of MC68328 to run on a particular hardware

platform
` Initialization of peripheral devices on the MC68328
` Jump into PPSM start-up code

Depending on the size and address of ROM that are used, the chip selects inside
boot.s need to be changed accordingly.

32.1.1 68K Start-up

In 68K architecture, the first 256 locations in the memory address space, 0x0 to
0x400, are reserved for system vector usage and cannot be over-written with
random values. The first two 32-bit words locations (address 0x00 and 0x04) are
defined for the start program counter address and the stack address upon power
reset.

In order to make this assignment of addresses re-locatable at link time, rather
than hard-coding the addresses at compilation time, two new regions, rom_reset
and rom_code, are defined by PPSM in the linker specification file to perform the
mapping.

Administrator
0x0 to
0x400, are reserved for system vector usage

Administrator
cannot be over-written with
random values.

Administrator
rom_reset

Administrator
rom_code,

32-2 How to make ROM?

Personal Portable System Manager
Programmer Manual

32.1.1.1 ROM_RESET

This is used to map the 68K first 256 locations. In the boot strap code, it is defined
as:

SECTION rom_reset ; section declaration
DC.L MON_STACKTOP ; stack address for boot code
DC.L rom_start-ROMADDR ; absolute address of boot code
DCB.L 254,0 ; interrupt vector space

The labels MON_STACKTOP and rom_start declared in this region are resolved
with their absolute address only during link time. This implementation makes the
values for these locations dynamic and system integration can be independent to
the absolute location and size of the hardware system.

ROMADDR is declared in the Linker Specification File.

32.1.1.2 ROM_CODE

This regions is declared to store the boot strap code. Because this code is NOT
part of PPSM library, they are declared and executed in the beginning of the
memory map to avoid memory conflict.

The first line of this region MUST declare the label rom_start. This is required by
the region rom_reset to work out the PC start address.

The last line of this region should be a " jmp START" instruction. This is used to
start PPSM start-up code. The label START is pre-defined as the start location for
the startup code.

Figure 30-1 Memory map for boot strap code

0x000

0x008
PC/Stack

Vectors

0x400

0x1000

Boot Strap Code

PPSM Application Tasks

rom_reset

rom_code

Personal Portable System Manager
Programmer Manual

How to make ROM? 32-3

32.1.2 Chip Selects

For the M68328ADS development board, Chip-Select group A is used for ROM
and Chip-Select group B is used for RAM. Please refer to the MC68328
Integrated Processor User Manual, MC68328UM/AD, for details on chip select
programming.

32.1.3 Peripheral Devices

Initialization of the peripherals such as default interrupt vector, watchdog and LCD
controller. Please refer to the MC68328 Integrated Processor User Manual,
MC68328UM/AD, for details on chip select programming.

32.2 Linker Supplications File for ROM

The Linker Supplications File for ROM is different to that for RAM system. The
main difference being that some of the defined regions need to go into ROM
address, and some regions need to go into RAM address. In general, regions that
are Read-Only, such as constants, strings and code, go into ROM area; while
Read/Write regions, such as ram, stack and heap space go into RAM area.

The listing below shows an example of such SPC file.

Example 30-1 Linker Specification File Example for ROM

partition { overlay {
region {} rom_reset[addr=0x0];/* reset vector in ROM */
region {} rom_code[addr=0x400];/* start of bootstrap code */
region {} code[addr=0x1000]; /* start of application code */
region {} const; /* constant data */
region {} string; /* constant strings */
DATA = $; /* pre-defined constants for

initialized variables */
LCDPHYSWIDTH = 320; /* LCD display width */
LCDPHYSHEIGHT = 240; /* LCD display height */
LCDVIRTWIDTH = 640; /* LCD virtual width */
LCDVIRTHEIGHT = 480; /* LCD virtual height */
UARTRCVBUF = 256; /* system UART receive buffer size(in #bytes) */

} area2;
} ROM[addr=0x400000,size=0x100000];/* 1M byte ROM */
partition { overlay {

region {} data[addr=0x400]; /* initialized on reset */
region {} ram[roundsize=4]; /* zeroed on reset */
region {} malloc[size=0x80000];/* malloc space */
region {} stack[size=0x4000];/* stack */
STKTOP = $; /* SP reset value */

} area1; } RAM[addr=0x0, size=0x100000];/* 1M byte RAM */

In this example, a system that has 1 MByte of ROM space mapped from address
location 0x400000 and 1 MByte of RAM memory mapped from address location
0x0 has the following characteristics:

` The ROM area starts at base address 0x400000
` The region rom_reset starts from offset 0x0 from the ROM base

address, which is 0x400000
` The region rom_code starts from offset 0x400 from the ROM base

address, which is 0x400400

32-4 How to make ROM?

Personal Portable System Manager
Programmer Manual

` As much executable code space in ROM as required, round to 4-
byte boundary starting from 0x401000

` As much constant data space in ROM as required, round to 4-byte
boundary

` As much constant strings space in ROM as required, round to 4-
byte boundary

` DATA symbol to point to the downloadable address of the initialized
constants to pre-initialized variables

` A LCD physical display screen of 320 pixels wide by 240 pixels high
` A panning screen of 640 pixels wide by 480 pixels high
` A 256 byte internal UART receive buffer
` The RAM area starts at base address 0x0
` As much initialized data space as required starting from an offset of

0x400, round to 4-byte boundary
` As much zeroed uninitialized data space as required, round to 4-

byte boundary
` 512 KByte of heap space for dynamic memory allocation
` 128 KByte of stack space for system context switching
` A STKTOP symbol to point to the address of the 128 KByte stack

32.3 Generating S-Record File

After the PPSM application has linked with the ROM spc file, the SDS tools
generates an output file in a proprietary format that is not suitable to download to
ROMs.

SDS provides a tool, the loader tool, that allows the conversion from this output
file into S-Record format.

32.3.1 Loader Options

To convert .OUT file into S-Record file, the following options are used:

Options

-d mot generate Motorola S-Record format output file

-o
<path>\<filename>.dwn

the full name of the output file

-m data, DATA Copy the initial values of initialized data into ROM area

-w <address> Generate S-Record with offset <address> which is the
base address of ROM

Personal Portable System Manager
Programmer Manual

How to make ROM? 32-5

32.3.2 Loader Commands

Example 30-2 Loader command

down -d mot sample.out -m data, DATA -o sample.dwn -w 0x400000

This will convert the sample.out to S-Record format named sample.dwn which will
be burned into ROM address of 0x400000.

Example 30-3 Loader command

down -d mot sample.out -m data, DATA -o sample.dwn

This will convert the sample.out to S-Record format named sample.dwn which will
be burned into ROM address of 0x0.

Convert .OUT file format to Motorola S-Record format

down -d mot <filename>.out -m data, DATA -o <path>\<filename>.dwn -w <address>

32-6 How to make ROM?

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Device Drivers 33-1

Chapter 33 Device Drivers

PPSM supports device drivers that are either hardware dependent or third-party
vendor dependent. These device drivers include:

` System configuration drivers
` Pen input driver
` LCD driver
` Handwriting recognition driver
` Font driver
` UART driver

In compilation, PIXEL_1 or PIXEL_2 needs to be defined so that the
corresponding device driver library will be created.

33.1 System Configuration Drivers

There are 2 system configuration drivers:

` Boot Strap Driver
` Interrupt handler installation for the MC68328.

33.1.1 Boot Strap Driver (boot.s)

Description

The boot strap code is responsible for initialization of the MC68328 internal
devices and to map chip-selects for the ROM and RAM of the hardware system
at boot time. Different hardware memory configuration and system requires
different boot strap code. An example boot strap code is included in PPSM
device driver library to demonstrate how to boot strap and initialize the chip-
selects for the M68328ADS system. Please refer to Chapter 34 - Linker
Specification File and Chapter 35 - Trap Usage in PPSM for more details on
hardware configuration mapping.

For hardware characteristics of the MC68328 processor, please refer to the
MC68328 Integrated Processor User Manual, MC68328UM/AD.

33.1.2 User Interrupt Handler Installation Driver (irptdev.c)

Description

This interrupt handler device driver allows users to install their own interrupt
handlers for certain kinds of interrupt.

Users can replace the default handler with their interrupt handler in the device
driver to perform exception handling. Since PPSM does not manage or monitor
these user-defined handlers, care must be taken when installing them. Please

33-2 Device Drivers

Personal Portable System Manager
Programmer Manual

refer to Chapter 15 - Interrupt Handling and Chapter 29 - Interrupt Handling
Tools for details on interrupt handling.

Please refer to the MC68328 Integrated Processor User Manual,
MC68328UM/AD, for details on the interrupt controller.

A single argument is passed into the interrupt handler. This argument is
supplied by PPSM system to specify the address of the stack pointer just
before calling the user-defined interrupt handler. Table 31-1 shows the
locations of the registers relative to this stack address.

M68328ADS implementation:

These interrupt handlers perform no operation and return to the interrupted
application immediately.

In general, _UARTIrptHandler() will not be executed. For PPSM source
licensee, a "-DNO_UART_HANDLER" option can be used in compiler option
to indicate that the internal UART interrupt handler is not used and this
_UARTIrptHandler() is used instead.

Table 31-1 Interrupt Stack Layout

D0 - D7

A0 - A6

A7

PC

Argument is the address that points to here -> SR (16-bit)

The following functions are the user defined interrupt handlers:

void _SPIMIrptHandler(P_U32 stackPtr) SPI Master

void _SPISIrptHandler(P_U32 stackPtr) SPI Slave(not available in
EZ)

void _IRQ6IrptHandler(P_U32 stackPtr) IRQ6

void _UARTIrptHandler(P_U32 stackPtr) UART

void _WatchdogIrptHandler(P_U32 stackPtr) Watch Dog Timer

void _KeyboardIrptHandler(P_U32 stackPtr) Keyboard

void _PWMIrptHandler(P_U32 stackPtr) Pulse Width Modulator

void _INTIrptHandler(P_U32 stackPtr) INT0-INT7

void _IRQ3IrptHandler(P_U32 stackPtr) IRQ3

void _IRQ2IrptHandler(P_U32 stackPtr) IRQ2

void _IRQ1IrptHandler(P_U32 stackPtr) IRQ1

Personal Portable System Manager
Programmer Manual

Device Drivers 33-3

33.2 Pen Input Device Driver (pendev.c)

Figure 31-1 shows the configuration of the hardware used in M68328ADS for the
pen input device:

` 4 I/O pins on port J, PJ0 to PJ3, are used to control the transistor
network.

` I/O pin 7 on port J, PJ7, is used to control the chip-select on the A/
D convertor.

` The SPI Master RxD line is connected to the A/D convertor digital
output for the sample result.

Please refer to the M68328ADS User Manual for details on the operation of the
hardware configuration.

There are 4 functions in this driver:

` Pen Initialization
` Pen Interrupt Enable
` Pen Interrupt Disable
` Pen Read Device

For M68EZ328ADS, the pen input device driver is similar as above, but it uses
port D and E instead of port J in M68328ADS.

Q6

Q3

Q4

Q5

PJ0

PJ2

PJ1

PJ3

AN0

AN1
PJ0 PJ1 PJ2 PJ3

0 1 1 0

Q6 Q4 Q5 Q3

On On Off Off

PJ0 PJ1 PJ2 PJ3

1 0 0 1

Q6 Q4 Q5 Q3

Off Off On On

X Position

Y Position

Vcc

Vcc

PJ7CS

A/D

SPIMRxDDout

PENIRQ

Figure 31-1 Transistor network for pen sampling

33-4 Device Drivers

Personal Portable System Manager
Programmer Manual

33.2.1 Pen Initialization

Syntax

void PenDevInit(void)

Description

This function initializes SPI master and all the ports that are used for pen
sampling.

M68328ADS implementation:

Port J is used to control the transistor network connected to the touch panel.
The default initialization values for port J are to set all pins to be output I/O pins.

For SPI Master, the control register, 0xFFF802, is set for the following:

M68EZ328ADS implementation:

ADS version Q3 Q4 Q5 Q6 CS

M68328ADS PJ3 PJ1 PJ2 PJ0 PJ7

M68EZ328ADS PD3 PD1 PD2 PD0 PE3

Table 31-2 Port J Assignment

Port J address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Direction
Register

0xFFF428 1 x x x 1 1 1 1

Select Register 0xFFF42B 1 x x x 1 1 1 1

Table 31-3 SPIM Assignment

SPIM Control Register, 0xFFF802 Bit Position
Default Value

(binary)

Data Rate 15 - 13 0 1 0

SPIM Enable 9 1

Exchange Bit 8 0

SPIM Interrupt Enable 6 1

Phase Shift 5 0

Polarity 4 0

Clock Count 3 - 0 1 1 1 1

Personal Portable System Manager
Programmer Manual

Device Drivers 33-5

Port D and E are used to control the transistor network connected to the touch
panel. The default initialization values for D port is to set all pins to be output I/
O pins.

Port E3 is initialized to enable the A/D converter while PE0, PE1, PE2 are
initialized to SPM function pins (SPMTXD, SPMRXD, SPMCLK respectively).

For SPI Master, the control register, 0xFFF802, is set for the following:

33.2.2 Pen Interrupt Enable

Syntax

void PenIrptEnable(void)

Description

This function enables the Pen Interrupt, PENIRQ, for pen down detection.

Table 31-4 Port D Assignment

Port D address bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Direction
Register

0xFFF418 x x x x 1 1 1 1

Select Register 0xFFF419 x x x x 1 1 1 1

Pullup Register 0xFFF41A x x x x 1 1 1 1

Select Register 0xFFF41B x x x x 1 1 1 1

Polarity 0xFFF41C x x x x 0 0 0 0

INT Enable 0xFFF41D x x x x 0 0 0 0

INT Edge 0xFFF41E x x x x x x x x

Table 31-5 SPIM Assignment

SPIM Control Register, 0xFFF802 Bit Position
Default Value

(binary)

Data Rate 15 - 13 0 1 0

SPIM Enable 9 1

Exchange Bit 8 0

SPIM Interrupt Enable 6 1

Phase Shift 5 0

Polarity 4 0

Clock Count 3 - 0 1 1 1 1

33-6 Device Drivers

Personal Portable System Manager
Programmer Manual

M68328ADS implementation:

Port M pin 6 is assigned as the PENIRQ pin. To enable PENIRQ, the following
sequence is required:

` Enable Port M pin 6 pull-up resistor
` Discharge the transistor network such that all Vcc are on, ground

are off, i.e. set Port J Data register, 0xFFF439, to 0xF0
` Charge up the transistor that is connected to PENIRQ, i.e. set Port

J Data register, 0xFFF439, to 0x0D
` Switch Port M pin 6 to interrupt pin, i.e. set Port M Selector register,

0xFFF448, bit 6 to 0
` Enable Interrupt Mask Register, 0xFFF304, bit 20 for interrupt

Please refer to the M68328ADS User Manual for details on transistor network
switching.

M68EZ328ADS implementation:

IRQ5(port F1) is assigned as the PENIRQ pin. To enable PENIRQ, the
following sequence is required:

` Enable Port F pin 1 pull-up resistor
` Discharge the transistor network such that all Vcc are on, ground

are off, i.e. set Port D Data register, to 0xF0
` Charge up the transistor that is connected to PENIRQ, i.e. set Port

D Data register, to 0x0D
` Switch Port F pin 1 to interrupt pin, i.e. set Port F Selector register,

bit 1 to 0
` Enable Interrupt Mask Register, bit 20 for interrupt

Please refer to the M68EZ328ADS User Manual for details on transistor network
switching.

33.2.3 Pen Interrupt Disable

Syntax

void PenIrptDisable(void)

Description

This function disables the Pen Interrupt, PENIRQ.

M68328ADS implementation:

Port M pin 6 is assigned as the PENIRQ pin. To disable PENIRQ, the following
sequence is required:

` Disable Interrupt Mask Register, 0xFFF304, bit 20 for interrupt
` Switch Port M pin 6 to I/O pin, i.e. set Port M Selector register,

0xFFF448, bit 6 to 1
` Disable Port M pin 6 pull-up resistor. If not switched off, it will

interfere with A/D sampling

Personal Portable System Manager
Programmer Manual

Device Drivers 33-7

` Discharge the transistor network such that all Vcc are on, ground
are off, i.e. set Port J Data register, 0xFFF439, to 0xF0

` Switch transistor network to idle mode, i.e. set Port J Data register,
0xFFF439, to 0x05

Please refer to M68328ADS User Manual for details on transistor network
switching.

M68EZ328ADS implementation:

IRQ5 is assigned as the PENIRQ pin. To disable PENIRQ, the following
sequence is required:

` Disable Interrupt Mask Register, bit 20 for interrupt
` Switch Port F pin 1 to I/O pin, i.e. set Port F Selector register, bit 1

to 1
` Disable Port F pin 1 pull-up resistor. If not switched off, it will

interfere with A/D sampling
` Discharge the transistor network such that all Vcc are on, ground

are off, i.e. set Port D Data register, to 0xF0
` Switch transistor network to idle mode, i.e. set Port D Data register,

to 0x05

Please refer to M68EZ328ADS User Manual for details on transistor network
switching.

33.2.4 Pen Read Device

Syntax

void PenReadDevice(P_S16 x, P_S16 y)

Description

This function returns a reading for X and Y to the caller and switches the
transistor network accordingly for reading X and Y.

M68328ADS implementation:

For X sampling, the transistors Q4 and Q6 needs to be ON while transistors Q3
and Q5 are OFF, see Figure 31-1, i.e. set Port J Data register, 0xFFF439, to
0xF9. While the transistors are in this setting, Port J pin 7 is asserted to activate
the A/D convertor for the sampling. The digital value returned from the A/D
convertor is stored in the SPIM Data register, 0xFFF800.

For Y sampling, the procedure is the same as X sampling except that the
transistors Q3 and Q5 needs to be ON while transistors Q4 and Q6 are OFF,
see Figure 31-1, i.e. set Port J Data register, 0xFFF439, to 0xF6.

The X and Y samples thus obtained are returned to the caller in the pointer
arguments passed in by the caller.

M68EZ328ADS implementation:

33-8 Device Drivers

Personal Portable System Manager
Programmer Manual

For X sampling, the transistors Q4 and Q6 needs to be ON while transistors Q3
and Q5 are OFF, see Figure 31-1, i.e. set Port D Data register, to 0xF9. While
the transistors are in this setting, Port E pin 3 is asserted to activate the A/D
convertor for the sampling. The digital value returned from the A/D convertor is
stored in the SPI Data register.

For Y sampling, the procedure is the same as X sampling except that the
transistors Q3 and Q5 needs to be ON while transistors Q4 and Q6 are OFF,
see Figure 31-1, i.e. set Port D Data register, to 0xF6.

The X and Y samples thus obtained are returned to the caller in the pointer
arguments passed in by the caller.

33.3 Pen Calibration(PenInit.c)

User normally needs to do calibration once the system startup time, in order to do
a correct mapping between touch panel coordination and screen display
coordination. The system needs to have at least the upper-left and bottom-right
corner of the touch panel coordinate in terms of the screen display coordinate to
do this coordinate mapping.

Syntax

STATUS CalibratePen(U16 logoFlag)

Description

When pen calibration is necessary, PPSM calls this routine. User can replace the
default pen calibration algorithm with their own. At the end of this device driver
routine, the origin and maximum point of the touch panel (in terms of display
screen coordinate) should be fed back to PPSM by calling PenSetInputMax(x, y)
and PenSetInputOrg(x, y).

By default, the Motorola logo is displayed and two cross-hair, at the upper right
and the bottom left corners, are used for pen calibration.

33.4 LCD Device Drivers (lcddev.s)

Two functions are needed in this driver for LCD controller initialization to drive the
LCD panel being used in the system. Only one of the following initialization
functions will be called according to the graphics mode desired.

33.4.1 1 bit/pixel Initialization

Syntax

void _LCDDev1(void)

Description

This function initializes the LCD controller for 1 bit/pixel graphics mode.
Application programmer may add whatever statement to initialize the LCD

Personal Portable System Manager
Programmer Manual

Device Drivers 33-9

module. Generally, LCD panel is polarity dependent which can be set in
ove.b #$00,$21(a0)?i n lcddev.s to be adjusted for individual LCD panel.

33.4.2 2 bits/pixel Initialization

Syntax

void _LCDDev2(void)

Description

This function initializes the LCD controller for 2 bits/pixel graphics mode.
Application programmer may add whatever statement to initialize the LCD
module. Generally, LCD panel is polarity dependent which can be set in

ove.b #$00,$21(a0)?i n lcddev.s to be adjusted for individual LCD panel.

Please refer to the MC68328 Integrated Processor User Manual, MC68328UM/
AD, for details on the LCD controller and the registers definitions.

M68328ADS implementation:

_LCDDev1 initializes the following registers:

` Panel Interface Configuration Register (PICF) for a 4-bit LCD panel
bus size and no gray scale

` Pixel Clock Divider Register (PXCD) to divide the clock source by 3
` Polarity Configuration Register (POLCF) to the characteristics of

the LCD panel used

_LCDDev2 initializes the following registers:

` Panel Interface Configuration Register (PICF) for a 4-bit LCD panel
bus size with gray scale enabled

` Pixel Clock Divider Register (PXCD) to use the system clock
directly

` Gray Palette Mapping Register (GPMR) to gray scale intensity of
0x3075

` Polarity Configuration Register (POLCF) to the characteristics of
the LCD panel used

33.5 Handwriting Recognition Engine Driver (hwr.c)

This driver is required for providing a common API in PPSM for recognizing
handwriting input while supporting various third party handwriting recognition
engines. The driver functions are needed by the Character Input Tools when
handwriting recognition input is called for.

This driver consists of four functions as described in the following sections.

33.5.1 Handwriting Recognition Engine Reset

Syntax

33-10 Device Drivers

Personal Portable System Manager
Programmer Manual

void ResetRecEngine(void)

Description

This function resets the handwriting recognition engine to its default state.

This function should call a reset function (if any) provided by the handwriting
recognition engine. In some cases, ResetRecEngine() may perform the same
functions as InitRecEngine() (Section 33.5.2 - Handwriting Recognition Engine
Initialization).

This function is called once when initializing the character input pad during the
call of OpenInputPad().

33.5.2 Handwriting Recognition Engine Initialization

Syntax

void InitRecEngine(void)

Description

This function initializes or installs the handwriting recognition engine.

This function should call an initialization function (if any) provided by the
handwriting recognition engine and set up data structures required by the
engine for the recognition process.

This function is called once at PPSM initialization time.

33.5.3 Process One Stroke of Handwriting Input Data

Syntax

void ProcessStroke(U16 numPoints, P_POINT strokeData, U32 inputAreaId)

Description

This function processes one stroke of handwriting input data collected by the
system.

Based on the input parameters, this function should convert the handwriting
data for one stroke of input (if necessary) into the format being acceptable by
the corresponding handwriting recognition engine. The reformatted stroke data
should then be sent to the handwriting recognition engine (by calling a function
provided in the handwriting recognition engine) for pre-processing or
optimization before the actual handwriting recognition is initiated.

This function is called for every stroke of data collected.

Personal Portable System Manager
Programmer Manual

Device Drivers 33-11

Parameter

33.5.4 Initiate Character Recognition for the Handwriting Input

Syntax

void RecognizeInput(P_U16 numCandidates, P_TEXT *candidates)

Description

This function performs the character recognition of the handwriting input.

This function should call a character recognition function provided in the
handwriting recognition engine which initiates the recognition of the pre-
processed stroke data collected so far. The character recognition function is
expected to return to the driver function the number of character candidates
being recognized, and the character codes for these candidates.

This function is called if the pen points to other character input box or there is
an input time-out.

Return Value

Note: Since PPSM does not include a specific handwriting
recognition engine, the driver functions mentioned above are
default to perform no operation.

33.6 Font Driver (font.c)

This driver is required for providing a common API in PPSM for font look-up while
supporting multiple font technologies and libraries supplied by various third party
vendors.

The font driver consists of a data structure and two functions.

Name Description

numPoints the number of points in a stroke

strokeData a pointer to a list of xy-coordinates that
make up the stroke

inputAreaId an id of the input box in which the stroke
data is collected. (i.e. the identifier of the
active area for the input box)

Name Description

numCandidates the number of character candidates

candidates a pointer to a list of the character codes
for the candidates

33-12 Device Drivers

Personal Portable System Manager
Programmer Manual

33.6.1 Font Library Information

A data structure type FONTLIB is required to store information about the font
libraries being used.

The FONTLIB type is defined as follow:

typedef struct
{
P_U8 baseAddr;
U16 fontType;
U16 fontWidth;
U16 fontHeight;
U16 bitmapSize;
} FONTLIB, *P_FONTLIB;

where:

1) baseAddr is the base address of the font bitmap library
2) fontType is the font type to be used for font look-up or generation
3) fontWidth is the width of the font bitmap of a character in number of

pixels
4) fontHeight is the height of the font bitmap of a character in number

of pixels
5) bitmapSize is the amount of memory occupied by one character

font bitmap in unit of bytes

Assuming there is font bitmap or font generation engine available for each font
type, the default font library information data structure could be initialized as
follow:

FONTLIB fontLib[] =
{
{(P_U8)SMALL_ENG_FONT_ADDR, SMALL_NORMAL_FONT, 8, 10, 10},
{(P_U8)SMALL_ENG_FONT_ADDR, SMALL_ITALIC_FONT, 8, 10, 10},
{(P_U8)LARGE_ENG_FONT_ADDR, LARGE_NORMAL_FONT, 16, 20, 40},
{(P_U8)LARGE_ENG_FONT_ADDR, LARGE_ITALIC_FONT, 16, 20, 40},
{(P_U8)GB_FONT_ADDR, GB_NORMAL_FONT, 16, 16, 32},
{(P_U8)BITMAP_BIG5_FONT_ADDR, BIG5_NORMAL_FONT, 16, 16, 32},
{(P_U8)SCALABLE_BIG5_FONT_ADDR, DEFAULT_SCALABLE_FONT, 16, 16, 32}
};

The fontLib data structure above are indexed into by the corresponding PPSM font
types.

33.6.2 Font Library or Font Generation Engine Initialization

Syntax

void FontInit(void)

Description

This function initializes the font libraries and font generation engines, if
applicable. This function will be called at PPSM initialization time.

Note: Font bitmaps libraries usually do not require any initialization,
whereas font generation engines do. Therefore, when
applicable, this driver function should call an initialization

Personal Portable System Manager
Programmer Manual

Device Drivers 33-13

routine provided by the font generation engine.

Since PPSM does not include a specific font generation engine, this driver
function is default to perform no operation.

33.6.3 Font Accessing

Syntax

P_U8 FontGetCharAddr(P_FONTATTR pFont, TEXT code)

Description

This function returns the font bitmap of a character based on the given font
attributes and character code.

Please refer to Section 8.4.3 - Setting Font Attributes for the explanation of the
FONTATTR data structure.

Font lookup or generation algorithms are assumed to be provided by the font
supplier. This driver function should call the lookup method for the
corresponding font type, to get the font bitmap of the character described by
the font attributes.

Since PPSM includes 8 x 10 and 16 x 20 ASCII English fonts, the lookup
method for mapping ASCII codes to English bitmap fonts are provided. The
font types that use this method are:

` SMALL_NORMAL_FONT
` SMALL_ITALIC_FONT
` LARGE_NORMAL_FONT
` LARGE_ITALIC_FONT

Parameter

Return Value

Name Description

pFont pointer to a FONTATTR structure which
describes the font

code character code for which the font lookup
or generation is performed

Name Description

N/A pointer to the bitmap of the character
specified by the given character code (the
bitmap is represented by unsigned 8-bit
values

33-14 Device Drivers

Personal Portable System Manager
Programmer Manual

33.7 UART Device Driver (uartdev.c)

This UART device driver is a supplement to the PPSM Serial Communication
Tools as described in Chapter 26 - UART Communication Tools. Currently this
driver contains the UARTDevSendBreak() function which allows applications to
send the BREAK character. This UARTDevSendBreak() function manipulates the
MC68328 UART hardware registers. It is assumed that the saving, setting and
restoring of appropriate system interrupt level is handled by the caller of this
device driver.

33.7.1 Sending the BREAK Character

Syntax

void UARTDevSendBreak(U8 sendBreak)

Description

This function starts or stops the MC68328 UART hardware to send the BREAK
character depending on the given flag.

If sendBreak flag is UART_SEND_BREAK, the UART hardware will start
sending the BREAK character.

If sendBreak flag is UART_ABORT_BREAK, the UART hardware will stop
sending the BREAK character.

It is assumed that sendBreak has to be one of the values stated. Any other
value will be treated as UART_ABORT_BREAK.

Parameter

Return Value

33.8 Power Management Driver (iodev.c)

4 functions are located in iodev.c for enabling or disabling I/O ports before going to
doze or sleep mode or leaving doze or sleep mode.

Name Description

sendBreak Operation flag

` UART_SEND_BREAK
Starts sending BREAK characters
` UART_ABORT_BREAK

Stops sending BREAK characters

Name Description

None

Personal Portable System Manager
Programmer Manual

Device Drivers 33-15

33.8.1 Enabling I/O ports when leaving from doze mode

Syntax

void PortDozeEnable(void)

Description

When PPSM wakes up from doze mode, it will call this routine to re-enable any
user defined I/O ports that are not handled internally by PPSM. User must add
in their own I/O initialization code in this routine.

Return Value

Note: The driver function mentioned above is default to perform no
operation.

33.8.2 Disabling I/O ports when going to doze mode

Syntax

void PortDozeDisable(void)

Description

Just before PPSM goes into doze mode, it will call this routine to disable any
user defined I/O ports that are not handled internally by PPSM. User must add
in the code to disable the I/O ports in this routine.

Return Value

Note: The driver function mentioned above is default to perform no
operation.

33.8.3 Enabling I/O ports when leaving from sleep mode

Syntax

void PortSleepEnable(void)

Description

When PPSM wakes up from sleep mode, it will call this routine to re-enable any
user defined I/O ports that are not handled internally by PPSM. User must add
in their own I/O initialization code in this routine.

Name Description

None

Name Description

None

33-16 Device Drivers

Personal Portable System Manager
Programmer Manual

Return Value

Note: The driver function mentioned above is default to perform no
operation.

33.8.4 Disabling I/O ports when going to sleep mode

Syntax

void PortSleepDisable(void)

Description

Just before PPSM goes into sleep mode, it will call this routine to disable any
user defined I/O ports that are not handled internally by PPSM. User must add
in the code to disable the I/O ports in this routine.

Return Value

Note: The driver function mentioned above is default to perform no
operation.

Name Description

None

Name Description

None

Personal Portable System Manager
Programmer Manual

Linker Specification File 34-1

Chapter 34 Linker Specification File

PPSM makes use of the Linker Specification File (.SPC file) of the SDS
development environment for memory mapping and configuration. This SPC file
defines the locations and contents of memory regions and allow user-defined
symbols. It is written in a C-like language. For full details on linker specification
files, please refer to the SDS User Manual.

PPSM required a few user-defined symbols for it to operate. They are listed in
Table 32-1.

System integrators inform PPSM of the physical memory size available in a given
hardware system using this linker specification file.

PPSM maintains a stack and heap for memory usage in the application program.
The system integrator must decide how much memory is to be given for the stack
and heap. In general, the heap memory is used as the dynamic allocatable
memory for application use, and the stack memory is mostly used by the system.
For details on memory mapping, please refer to Chapter 32 - How to make ROM?.

PPSM also maintains an internal UART receive buffer which is used as temporary
storage for data received from the UART. The system integrator must decide what
is the optimal buffer size for a given hardware system.

34.1 .SPC File for a RAM-only System

Following is an example of a SPC file for a M68328ADS with debug monitor ROM
(for SDS use only) with 2 Mbyte of RAM for system use. This 2 MByte RAM-only
system has the following characteristics:

` The RAM system starts at address 0x0
` 4 KByte of reserved memory starting from address 0x0 for reset

vectors and SDS debug monitor use
` As much executable code space as required, round to 4-byte

boundary
` As much constant data space as required, round to 4-byte

boundary

Table 32-1 Symbols Definitions for Linker Specification File

Symbol Name Description

LCDPHYSWIDTH LCD physical display screen width in pixels

LCDPHYSHEIGHT LCD physical display screen height in pixels

LCDVIRTWIDTH LCD virtual screen (Panning Screen) width in pixels

LCDVIRTHEIGHT LCD virtual screen (Panning Screen) height in pixels

UARTRCVBUF Internal UART receive buffer size in number of bytes

34-2 Linker Specification File

Personal Portable System Manager
Programmer Manual

` As much constant strings space as required, round to 4-byte
boundary

` As much initialized data space as required upon reset, round to 4-
byte boundary

` As much zeroed memory space as required, round to 4-byte
boundary

` 704 KByte of heap space for dynamic memory allocation
` 128 KByte of stack space for system context switching
` A STKTOP symbol to point to the top of the 128 KByte stack
` a DATA symbol to point to the downloadable address
` A LCD physical display screen of 320 pixels wide by 240 pixels high
` A panning screen of 640 pixels wide by 480 pixels high
` A 256 byte internal UART receive buffer
` 2 MByte of RAM

Example 32-1 Linker Specification File Example

partition { overlay {
region {} reset[addr=0,size=0x1000];/* reset vector */
region {} code[roundsize=4];/* executable code */
region {} const[roundsize=4];/* constant data */
region {} string[roundsize=4];/* constant strings */
region {} data[roundsize=4];/* initialized on reset */
region {} ram[roundsize=4];/* zeroed on reset */
region {} malloc[size=0xB0000];/* malloc space */
region {} stack[size=0x20000];/* stack */
STKTOP = $;/* SP reset value */
DATA = $;/* ata?download addr */
LCDPHYSWIDTH = 320;/* LCD display width */
LCDPHYSHEIGHT = 240;/* LCD display height */
LCDVIRTWIDTH = 640;/* LCD virtual width */
LCDVIRTHEIGHT = 480;/* LCD virtual height */
UARTRCVBUF = 256; /* system UART receive buffer size(in
#bytes) */

} example; } RAM[addr=0x0, size=0x200000]

34.2 .SPC File for a ROM-RAM System

The .SPC file for a ROM-RAM system consists of two partitions. One partition for
the ROM layout and one partition for the RAM layout on the system. Please refer
to Chapter 32 - How to make ROM? for a specific example of a .SPC file for such
a system.

34.3 For SingleStep Debugging System (SDS) user

One of the methods to find out the optimum size specified in the malloc field in the
.SPC file will be shown below. This method may not be applicable to other
debugging system.

1) First of all, we set the RAM size to 2 M, so as the malloc size. For
example,

partition { overlay {
 region {} reset[addr=0x0]; /* reset vector */
.....

Personal Portable System Manager
Programmer Manual

Linker Specification File 34-3

 region {} malloc[size=0x200000]; /* malloc space */
......
} example; } RAM[addr=0x400000, size=0x200000];

2) Following error messages will be generated after linking:

LINKER: error: actual ’RAM’ size (0x21F762) is larger than specified size
LINKER: error: overlay ’example’ is larger than the partition containing it
NMAKE : fatal error U1077: ’LINKER’ : return code ’0x1’
Stop.

3) Then, we can calculate the optimum malloc size by subtracting
exceeding bytes from the total memory size:

0x200000 - 0x1F762 = 0x1e089e

4) Finally, we can write the optimum size in the malloc field:

partition { overlay {
 region {} reset[addr=0x0]; /* reset vector */
.....
 region {} malloc[size=0x1e089e]; /* malloc space */
......
} example; } RAM[addr=0x400000, size=0x200000];

5) This optimum malloc size needed to be found again after modified
source code by similar method. This size is recommended to be
found after debugging stage.

34-4 Linker Specification File

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Trap Usage in PPSM 35-5

Chapter 35 Trap Usage in PPSM

PPSM tools access the PPSM system kernel internally via the TRAP instruction.
When an application makes a PPSM toolset call, a pre-defined TRAP instruction
is called with the correct arguments assigned to the various registers instead of
calling the actual function.

On the 68K, there are 16 TRAPs that can be used. Table 34-2 shows the TRAP
instruction mapping for the PPSM tools.

35.1 PPSM Tools Calling Structure

For the protection of the PPSM object code and security, two levels of indirection
is introduced in the PPSM when an application makes a system call.

The first level is a stub library call. A PPSM tools stub interface is supplied to the
application developers. This is a complete library of the PPSM tools but the
function body consists of parameter passing and TRAP instruction call only.

The second level is the TRAP system call, which takes in the parameters passed
in by the stub library and makes an actual system call to the PPSM function.

With this implementation, application developed code can reside in RAM, while
PPSM system code can be in ROM. Hence, ensuring object code protection and
portability of the PPSM system code.

35.2 TRAP Implementation

Figure 34-1 shows a block diagram of the event that takes place when an
application makes a system call. The stub library and the TRAP instruction jump
sections are implemented in low level assembler language to minimize the

Table 34-2 Trap Instructions Mapping

TRAP Number TRAP Vector TRAP Address PPSM Tools

1 0x21 0x84 PPSM Basic Tools

2 0x22 0x88 PPSM Extended tools

3 0x23 0x8C Touch Panel tools

4 0x24 0x90 LCD Display tools

5 0x25 0x94 Timer tools

6 0x26 0x98 PCMCIA IC Card

7 0x27 0x9C Communication tools

35-6 Trap Usage in PPSM

Personal Portable System Manager
Programmer Manual

overhead induces during a system call.

35.2.1 Application

Applications are written in ANSI C. All PPSM system tools use ANSI C procedure
calling convention. Because SingleStep C compiler allows assembly language in
C source code, it is also allowed in PPSM applications.

35.2.2 Stub Library

The Stub Library provides an interface between application code and system
routines. Its main function is for parameter passing and calling TRAP instruction
with the correct arguments. It is written in a ANSI C with 68K assembly language
embedded format. Each function in the stub library has the general layout as
shown below:

int simplification(int a, int b)
#define NO_OF_ARGUMENT2
#define FUNC_NUMBER5
#define TRAP_NUMBER3

int rv; /* return value */
asm(

` LEA 8(A6),A0?
` MOVE.W #NO_OF_ARGUMENT,D1?
` MOVE.W #FUNC_NUMBER,D0?
` TRAP #TRAP_NUMBER?
` MOVE.L D0,{rv}?

);
return (rv);
}

The first instruction that SingleStep C compiler generates for the start of a ?
procedure is a INK?inst ruct ion. Thi s inst ruct ion set s the frame poi nt er , A6, to
points to the stack that is used by the procedure caller. To access the first
argument, an offset of 8 is added to A6, see Figure 34-2. The Stub Library passes

System Call

Stub Call TRAP Call

System Code

Figure 34-1 PPSM Tools Calling Structure

`

Written in Written in Written in Written in

`
Assembly

Assembly

RAM ROM

Language
?and

Application Stub Library TRAP Handler Actual Tool

Personal Portable System Manager
Programmer Manual

Trap Usage in PPSM 35-7

the caller argument list to the TRAP instruction via the address register A0 and
the PPSM tools function number via D0.

35.2.3 TRAP Service Handler

The TRAP Service Handler routines are implemented in 68K assembly language.
There are 7 jump tables, one for each TRAP service handler (See Table 34-2).
The jump table consists of an array of PPSM tool addresses. These addresses
are used as the PPSM system function procedure addresses by the TRAP service
handler when it receives a call from the Stub Library. The listing below shows the
general code layout for a TRAP service handler.

.FREF _Func_1,2

.FREF _Func_2,8

JMPTABLE:
DC.L _Func_1, _Func_2

Trap_1:
LSL.W #2,D1 ; Multiply no of arg by 4
ADD.L D1,A0 ; Move A0 to end of arg list
LSR.W #2,D1 ; Move D1 back to no of arg
loop_1:
TST.W D1 ; Any parameter left
BEQ loop_2 ; If not, goto loop_2
MOVE.L -(A0),-(A7); Move parameter to stack
SUBQ.W #1,D1 ; Decrement D1
BRA loop_1 ;
loop_2:
LEA JMPTABLE,A0; Get jump table address
LSL #2,D0 ; Get function offset
ADD.L D0,A0 ; Find function address
MOVEA.L(A0),A1; Move address to A1
JSR (A1) ; Jump to system routine
RTE

Last Function Argument

First Function Argument

Return Address

Previous Value of A6

Automatic/Scratch Variable

A6

(-4)

(+4)

(+8)

(+12)

Figure 34-2 Frame Pointer Location in Stack Layout

Saved Registers

35-8 Trap Usage in PPSM

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Appendices

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Error Code Definition A-1

Appendix A Error Code Definition

The following are the definitions of all the possible error codes:

Table A-1 Error Code Definition

Error Code Definition

PPSM_OK Message successfully sent

Successful operation

Task successfully terminated

PPSM_ERROR Active list stack empty

Initialization failed

numberOfPoints is 0

Soft keyboard is not opened

Unsuccessful operation

PPSM_ERR_ACTIVE_POP Active list stack empty

PPSM_ERR_ACTIVE_PUSH Unable to push active list

PPSM_ERR_AREA_CODE Invalid area code for active area type

PPSM_ERR_AREA_ID Invalid active area identifier

Invalid active area pointer

PPSM_ERR_AUDIO_INUSE The PWM module is being used by
another task

PPSM_ERR_AUDIO_NOTINUSE The audio tools are not in use

PPSM_ERR_AUDIO_REGS Invalid values for prescaler, repeat or
clksel

PPSM_ERR_AUDIO_SAM Invalid audio sampling rate

PPSM_ERR_AUDIO_TONEDUR Invalid tone duration

PPSM_ERR_BAUD Invalid baud rate flag

PPSM_ERR_BUSY There is already an on-going receive
request (when trying to initiate one)

PPSM_ERR_CHARLEN Invalid character length flag

PPSM_ERR_COLOUR Invalid pen color

PPSM_ERR_COORDINATE Invalid coordinates

PPSM_ERR_CURSOR_INIT Invalid cursor pointer

A-2 Error Code Definition

Personal Portable System Manager
Programmer Manual

PPSM_ERR_DAY Invalid day pointer

Invalid day value

PPSM_ERR_DB_ADD Unable to add database

PPSM_ERR_DB_DBID Invalid database identifier

PPSM_ERR_DB_FDID Invalid field identifier

PPSM_ERR_DB_READNO Invalid number found

PPSM_ERR_DB_RECID Invalid record identifier

PPSM_ERR_DB_SFLAG Invalid secret flag value

PPSM_ERR_DB_TYPE Invalid data type

PPSM_ERR_DOT_WIDTH newWidth is 0

PPSM_ERR_DOZE_TIME Doze time-out period out of range

PPSM_ERR_DRAW_INIT Invalid draw pointer

PPSM_ERR_FILL_PATTERN Invalid fill pattern mode

PPSM_ERR_FILL_SPACE Invalid space gap in fill pattern

PPSM_ERR_GREY Invalid grey level value

PPSM_ERR_HEIGHT Invalid graphics output area height

Invalid height

PPSM_ERR_HOUR Invalid hour pointer

Invalid hour value

PPSM_ERR_ICON_TYPE Invalid predefined icon type for control
icon

PPSM_ERR_INPUT_PAD_CLOSED Input pad is not opened

PPSM_ERR_INPUT_PAD_HEIGHT Input pad height out of range

PPSM_ERR_INPUT_PAD_NOSCREEN No panning screen for input pad

PPSM_ERR_INPUT_PAD_OPENED Input pad already opened

PPSM_ERR_INPUT_PAD_WIDTH Input pad width out of range

PPSM_ERR_INPUT_PAD_X_POS Input pad x-coordinate out of range

PPSM_ERR_INPUT_PAD_Y_POS Input pad y-coordinate out of range

PPSM_ERR_INVALID_ACCESS Invalid access of UART

PPSM_ERR_INVALID_TMOUT Time-out value out of range

PPSM_ERR_IRPT_HDLER Handler not requested by application

PPSM_ERR_LCD_FONT Invalid font type

Table A-1 Error Code Definition

Error Code Definition

Personal Portable System Manager
Programmer Manual

Error Code Definition A-3

PPSM_ERR_LCD_GREY Invalid background grey level

Invalid grey level value

PPSM_ERR_LCD_RADIUS Invalid radius

PPSM_ERR_LCD_STYLE Invalid style

PPSM_ERR_LCD_X Invalid x-coordinate

PPSM_ERR_LCD_Y Invalid y-coordinate

PPSM_ERR_MINUTE Invalid minute pointer

Invalid minute value

PPSM_ERR_MODE Invalid operating mode flag

PPSM_ERR_MONTH Invalid month pointer

Invalid month value

PPSM_ERR_NO_ALARM No alarm is set

PPSM_ERR_NO_MEMORY Not enough memory

PPSM_ERR_NO_REQUEST Receive request was not initiated

PPSM_ERR_NUM_FMT Invalid user format field number

PPSM_ERR_PAN_ADDRESS Invalid panning screen address

PPSM_ERR_PAN_HEIGHT Invalid panning screen height

PPSM_ERR_PAN_INIT No panning screen has been created

PPSM_ERR_PAN_WIDTH Invalid panning screen width

PPSM_ERR_PARITY Invalid parity flag

PPSM_ERR_PEN_GET No active area has been created

PPSM_ERR_PEN_INIT No touch panel exist

PPSM_ERR_PEN_RATE Invalid sampling period specified

PPSM_ERR_PERIOD Invalid time-out period

PPSM_ERR_RCTS_IDLE RTS/CTS flow control is not enabled

PPSM_ERR_REF_MAX Alarm time is more than 1 minute from
current time

PPSM_ERR_RELEASE Unable to release handler

PPSM_ERR_SECOND Invalid second pointer

Invalid second value

PPSM_ERR_SKBD_USED Soft keyboard already being used

PPSM_ERR_SKBD_XSIZE Soft keyboard width out of range

Table A-1 Error Code Definition

Error Code Definition

A-4 Error Code Definition

Personal Portable System Manager
Programmer Manual

PPSM_ERR_SKBD_X_POS Soft keyboard x-coordinate out of range

PPSM_ERR_SKBD_YSIZE Soft keyboard height out of range

PPSM_ERR_SKBD_Y_POS Soft keyboard y-coordinate out of range

PPSM_ERR_SLEEP_TIME Sleep timeout period out of range

PPSM_ERR_STOPBIT Invalid number of stop bits flag

PPSM_ERR_TASK_FLAG Invalid screen flag

PPSM_ERR_TASK_HEIGHT Invalid screen height

PPSM_ERR_TASK_ID Invalid address for storing task identifier

Invalid task identifier

PPSM_ERR_TASK_WIDTH Invalid screen width

PPSM_ERR_TEXT_CR Error while creating text template

PPSM_ERR_TEXT_CUR Invalid character cursor position

PPSM_ERR_TEXT_FONT Invalid font type

PPSM_ERR_TEXT_GREY Invalid text grey level value

PPSM_ERR_TEXT_HEIGHT Given height extends text display area
beyond the panning screen

PPSM_ERR_TEXT_ID Invalid text template identifier

PPSM_ERR_TEXT_STYLE Invalid output style type

PPSM_ERR_TEXT_WIDTH Given width extends text display area
beyond the panning screen

PPSM_ERR_TEXT_X Text template x-coordinate out of range

PPSM_ERR_TEXT_Y Text template y-coordinate out of range

PPSM_ERR_TMOUT_VALUE Invalid time-out period

PPSM_ERR_WIDTH Invalid graphics output area width

Invalid width

PPSM_ERR_X_POS Invalid dot x position

PPSM_ERR_YEAR Invalid year pointer

Invalid year value

PPSM_ERR_Y_POS Invalid dot y position

PPSM_NO_MATCH No match of data

Table A-1 Error Code Definition

Error Code Definition

Personal Portable System Manager
Programmer Manual

List of References B-1

Appendix B List of References

1) Addendum and Errata to MC68328 DragonBallTM Integrated
Microprocessor User Manual. Motorola, Inc.

2) Computer Graphics Principles and Practices. Foley, Van Dam,
Feiner and Huges. Addison Wesley, 1993.

3) CrossCode C for the 68000 Microprocessor Family. Software
Development Systems, Inc.

4) MC68328ADS Application System User Manual. Motorola, Inc.
5) MC68328 Integrated Processor User Manual, MC68328UM/

AD.Motorola, Inc.
6) SingleStepTM Debugger for the 68000 Microprocessor Family.

Software Development Systems, Inc.
7) M68EZ328ADS Application Development System User Manual.

Motorola, Inc.
8) MC68EZ328 Integrated Processor User Manual. Motorola Inc.

B-2 List of References

Personal Portable System Manager
Programmer Manual

Personal Portable System Manager
Programmer Manual

Index of PPSM Tools C-1

Appendix C Index of PPSM Tools

A

ActiveAreaDisable . 18-1
ActiveAreaEnable . 18-1
ActiveAreaPosition . 18-7
ActiveAreaRead . 18-2
ActiveAreaSuspend . 18-3
ActiveAreaToFront . 18-4
ActiveListPop . 18-4
ActiveListPush . 18-5
AdvAudioPlayWave . 31-1
AdvMessageDelete . 28-1
AdvOpenInputPad . 19-1
AdvOpenSoftKey . 19-2
AdvSendMessage . 28-1
AdvTaskCreate . 27-1
AlarmClear . 23-1
AlarmClearId . 23-1
AlarmRead . 23-2
AlarmReadId . 23-2
AlarmSet . 23-3
AlarmSetId . 23-4
AppSwap . 27-2
AreaEchoDisable . 18-6
AreaEchoEnable . 18-6
AudioInUse . 31-2
AudioPlayTone . 31-2
AudioPlayWave . 31-3
AudioStopWave . 31-4

C

ChangePanning . 20-1
ChangeWindow . 20-3
ClearRec . 20-4
ClearScreen . 20-5
CloseInputPad . 19-3
CloseSoftKey . 19-4
CtrlIconDisable . 18-7
CtrlIconEnable . 18-8
CursorGetOrigin . 20-5
CursorGetPos . 20-6
CursorGetStatus . 20-7
CursorInit . 20-7
CursorOff . 20-8
CursorSet . 20-8
CursorSetBlink . 20-9

C-2 Index of PPSM Tools

Personal Portable System Manager
Programmer Manual

CursorSetOrigin . 20-10
CursorSetPos . 20-10
CursorSetStatus . 20-11

D

DateTimeRead . 23-5
DateTimeSet . 23-6
DBAdd . 21-1
DBAddRecord . 21-1
DBAddRecToTop . 21-2
DBAppendRecord . 21-3
DBChangeStdData . 21-4
DBChangeUnfData . 21-5
DBDelete . 21-6
DBDeleteRecord . 21-6
DBGetFirstRecID . 21-7
DBGetNextRecID . 21-8
DBGetPrevRecID . 21-8
DBReadData . 21-9
DBReadTotalNumber . 21-10
DBReadTotalNumberRecords . 21-11
DBReadUnfData . 21-11
DBRecordSecret . 21-12
DBSearchData . 21-13
DBSecretFlag . 21-14
DBSetRecordSecretFlag . 21-15
DBSetSecretFlag . 21-15
DeleteTimer . 23-7
DisplayMove . 20-12
DrawArc . 20-13
DrawCircle . 20-13
DrawDot . 20-14
DrawEllipse . 20-15
DrawHorz . 20-16
DrawLine . 20-17
DrawRec . 20-18
DrawVector . 20-19
DrawVert . 20-20

E

ExchangeRec . 20-21

G

GetDisplayX . 20-22
GetDisplayY . 20-23
GetLogicalX . 20-23
GetLogicalY . 20-24
GetScreenMem . 20-24

Personal Portable System Manager
Programmer Manual

Index of PPSM Tools C-3

I

IconScanOff . 18-9
IconScanOn . 18-10
InputTimeout . 23-7
InvRec . 20-25
IrptGetData . 29-1
IrptRelease . 29-3
IrptRequest . 29-4
IrptSendData . 29-6

L

Lcalloc . 24-1
LCDContrast . 20-26
LCDRefreshRate . 20-27
LCDScreenMove . 20-27
Lfree . 24-1
Lmalloc . 24-2, 24-6
Lrealloc . 24-3

M

MessageDelete . 28-3
MoveBlock . 24-3

O

OpenInputPad . 19-5
OpenSoftKey . 19-6

P

PenCalibration . 18-10
PenEchoParam . 18-11
PenGetInput . 18-11
PenSetInputMax . 18-12
PenSetInputOrg . 18-13
PenSetRate . 18-13
PPSMInit . 30-1
PutChar . 20-28
PutRec . 20-29

R

ReadSMVersion . 30-3
RefFineTimeAlarm . 23-7, 23-8
RefFineTimeAlarmId . 23-8
RefFineTimeDiff . 23-9
RefFineTimeRead . 23-8, 23-10

C-4 Index of PPSM Tools

Personal Portable System Manager
Programmer Manual

RefTimeAlarm . 23-10
RefTimeAlarmId . 23-11
RefTimeDiff . 23-11
RefTimeRead . 23-12

S

SaveRec . 20-30
ScanningOff . 18-14
ScanningOn . 18-14
SendMessage . 28-3
SetDotWidth . 20-31
SetDozeMode . 25-1
SetDozePeriod . 25-1
SetDutyCycle . 25-2
SetPatternFill . 20-31
SetPeriod . 23-12
SetPeriodId . 23-13
SetSleepMode . 25-3
SetSleepPeriod . 25-3
SubTaskCreate . 27-3

T

TaskCreate . 27-4
TaskHook . 27-5
TaskMemUsed . 24-4
TaskReInit . 27-5
TaskStackAvail . 24-4
TaskStart . 27-6
TaskTerminate . 27-7
TextCreate . 22-1
TextDelete . 22-1
TextMap . 22-2
TextReadCursor . 22-2
TextSetCursor . 22-3
TextSetDisplay . 22-4
TextSetFont . 22-5
TextSetOutlook . 22-6
TextSetup . 22-7
TextUnmap . 22-9
Timeout .23-12, 23-14
TimeoutId . 23-15
TotalMemSize . 24-5
TotalMemUsed . 24-5

U

UARTConfigure . 26-1
UARTFlowCtrl . 26-3
UARTInquire . 26-3
UARTRcvCtrl . 26-4

Personal Portable System Manager
Programmer Manual

Index of PPSM Tools C-5

UARTReadData . 26-6
UARTReceive . 26-6
UARTSend . 26-7
UARTSendAbort . 26-8
UARTSendCtrl . 26-9
UARTSetDelay . 26-10
UARTTimeout . 26-11

C-6 Index of PPSM Tools

Personal Portable System Manager
Programmer Manual

	2004-7-7
	2004-7-5-18-07
	2004-7-8-18-18
	2004-7-8-16-46

