
Afzal Malik, Bill Moyer, Dan Cermak

M•CORE Technology Center, Motorola, Inc.
P.O. Box 6000, MD TX77-F51, Austin, TX 78762-6000

{malik,billm,dcermak}@lakewood.sps.mot.com

Abstract
The MCORE M340 architecture was designed to target

the low-power, embedded application market. Building
upon the MCORE M3 core, the M340 provides enhance-
ments through the addition of an 8K, 4-way set-associative
unified (instruction/data) cache and an on-chip Memory
Management Unit (MMU) that contains a single unified
64-entry TLB capable of mapping multiple page sizes. To
achieve the power and performance requirements that
today’s portable electronics demand, the M340 provides
programmable features that allow the architecture to be
optimized for a given application. This paper discusses the
features of the M340 cache sub-system and illustrates the
power and performance improvements that can be
achieved through proper configuration.

The M•CORETM M340 Unified Cache Architecture

1 Introduction

The M•CORE M340 processor (Figure 1) contains an
8-Kbyte, 4-way set-associative, unified L1 cache with 16-
byte line size, a M3 processor core, and a Memory Man-
agement Unit (MMU).

The addition of a cache memory sub-system is a well-
known performance (and power) enhancement technique
for microprocessors. However, the M340 cache sub-system
supports programmable modes of operation to accommo-
date the varying embedded application environments.
These modes are controlled via a cache control register

CACHE

CONTROL LOGIC

TAG ARRAY

DATA ARRAY

DATA PATH

PROCESSOR
CORE

ADDRESS PATH

CONTROL

DATA

ADDRESS

CONTROL

DATA

MEMORY
MANAGEMENT

UNIT

ADDRESS

E
xt

er
na

l B
us

Figure 1: M340 Block Diagram

which allows certain features of the cache to be enabled/
disabled for power and performance tuning. The main con-
tribution of this paper is the feature description and power
consumption/performance evaluation of an actual imple-
mentation of an L1 cache for a 1M transistor commercial
low-power CPU.

2 Performance and Power Evaluations
The Powerstone benchmark suite [1] was used to evalu-

ate performance and power savings. It contains a collection
of embedded and portable applications, including paging,
automobile control, signal processing, imaging and fax
applications. These benchmarks were run on the structural
gate-level verilog model and the actual silicon (where
applicable) of the M340 processor. The simulations were
performed with the cache in different modes and the exter-
nal burst memory latency of 5-1-1-1 clock cycles.

Table 1: Powerstone Benchmark Suite

Benchmarks Instr
Accesses

Description

qurt 35273 Square Root calculation using floating
point

whetstone 48741 Test for compiler optimization

crc 19896 Cyclic redundancy check

bcnt 965 Bit shifting & anding through 1K array

auto 266446 Automobile control applications

blit 14198 Graphics applications

compress 102501 A UNIX utility

des 99340 Data Encryption Standard

engine 263946 Engine control application

fir_int 115154 Integer FIR filter

g3fax 824345 Group three fax decode (single level image
decompression)

jpeg 2430577 JPEG 24-bit image decompression stan-
dard

pocsag 37112 POCSAG paging communication protocols

The Proceedings of the 2000 IEEE International Conference on Computer Design:
VLSI in Computers & Processors
0-7695-0801-4/00 $10.00 @ 2000 IEEE

3 Cache Write Modes
The M340 cache sub-system allows write accesses to be

marked as writethrough by the MMU or writethrough/
copyback via a write mode bit in the Cache Control Regis-
ter (CACR). Based on the application and the system con-
figuration, the write mode can have a dramatic impact on
power and performance based on external bus usage. Fig-
ure 2 illustrates the differences in external bus usage for
writethrough versus copyback modes.

External bus traffic was used as a metric to determine
the address and data bus usage for the different write
modes. In a multi-processor system in which the main
memory is shared by more than one CPU, it is desirable to
minimize external bus utilization for higher system perfor-
mance and overall reduction of system power.

As shown in Figure 2, the data traffic for a given appli-
cation occupies a majority of the overall bus activity. Fur-
thermore, for writethrough operations, the amount of data
transfers exceed that of copyback as expected due to the
write merging capability of the copyback mode.

The power distribution for the M340 as shown in Figure
3 illustrates the effect of both writethrough and copyback

modes on system power. It should be noted that the power
chart was based on a typical application that contained a
similar number of copyback cycles as writethrough cycles
in order to obtain a fair power comparison. For this type of
application, copyback poses a larger power consumption
requirement on the cache due to the supporting hardware
with minimal external I/O access. Therefore, the copyback
scenario yields higher cache power dissipation, but lower
overall system power for this reason. If an application gen-
erates a poor copyback hit rate, the total system level
power can be dramatically increased as well as the amount
of external bus traffic due to the miss activity.

4 Way Locking
Way locking refers to the ability to control accesses to

individual ways of the cache for power and performance
tuning. The M340 cache incorporates enable bits that can
be controlled via the cache control register. There are 8 bits
total, 4 for instruction way enabling (WIE bits) and 4 for
data way enabling (WDE bits). Since the M340 cache is a
unified data/instruction cache, each way can be enabled or
disabled for instruction and/or data access.

The locking configuration in the cache is typically static
for a given application. However, with the appropriate
benchmarking analysis, the ways can be configured to pro-
vide either the most optimal performance for a particular
application or a reduction in power consumption with some
degradation in performance. To study the effect that the
locking policy has on performance and power for a given
set of applications, we have accumulated some results
using the Powerstone Benchmarks. Each benchmark was
run with the following three configurations: All Ways
Enabled for data and instruction accesses (nominal mode
designated by the normalizing bar on the graphs), One Way
Enabled for data and instruction accesses (effectively a

ucbqsort 221583 U.C.B. Quick Sort

v42 2272271 Modem encoding/decoding

Table 1: Powerstone Benchmark Suite

Benchmarks Instr
Accesses

Description
au

to

bc
nt bl
it

co
m

pr
es

s

cr
c

de
s

en
gi

ne

fi
r_

in
t

g3
fa

x

jp
eg

po
cs

ag

qu
rt

uc
bq

so
rt

v4
2

w
he

ts
to

ne

0.0

5.0

10.0

15.0

20.0

%
 I

ns
tr

uc
tio

n/
D

at
a

T
ra

ff
ic

Instruction Traffic
Data Traffic (WT)
Data Traffic (CB)

Figure 2: External Bus Traffic Graph

Writethrough

Copyback

0.0 0.5 1.0

Core Cache I/O

Figure 3: Write Mode Power Chart

Figure 4: Way Management Power Graph

au
to

bc
nt

bl
it

co
m

pr
es

s
cr

c
de

s
en

gi
ne

fi
r_

in
t

g3
fa

x

jp
eg

po
cs

ag
qu

rt
uc

bq
so

rt
v4

2
w

he
ts

to
ne

0.0

0.5

1.0

1.5 Optimal Way Config
One I/D Way (same)

T
ot

al
 P

ow
er

 C
on

su
m

pt
io

n

(1
10

0
00

11
)

(1
11

0
00

11
)

(1
11

0
00

01
)

(1
11

1
10

00
)

(1
00

0
10

00
)

(1
11

0
00

01
)

(1
00

0
10

00
)

(1
11

0
00

01
)

(1
11

1
10

00
)

(1
11

0
00

11
)

(1
00

0
00

01
)

(1
00

0
11

11
)

(1
00

0
00

01
)

(1
11

1
00

01
)

(1
00

0
01

11
)

(WDE WIE)

The Proceedings of the 2000 IEEE International Conference on Computer Design:
VLSI in Computers & Processors
0-7695-0801-4/00 $10.00 @ 2000 IEEE

one-way direct-mapped cache) and “Optimal” Way config-
uration for the given benchmark (way configuration that
yielded the highest performance or lowest power consump-
tion depending on the metric).

As shown in Figure 4, smaller programs will consume
less total power since fewer ways can be enabled without
suffering the penalty of conflict misses. Fewer ways
enabled equates to lower access power in the arrays. Con-
sequently, larger programs benefit from having more ways
enabled to avoid numerous conflict misses that result in
more high-power external memory accesses.

Figure 5 shows the performance versus way configura-
tion. The effect of conflict misses is evident in most of the
benchmark cases. Fewer ways equate to more conflict
misses which result in higher latencies due to increased
external memory accesses. The Optimal Way selection,
however, showed significant improvement over the All
Ways Enabled case for the larger benchmarks. Again, the
way organization will vary depending on the code struc-
ture. The most improvement is exhibited when the way
configuration allows the maximum hit rate for instruction
and data accesses. Applications can achieve even greater
performance improvements through compiler optimization
that utilizes way manipulation or in systems where external

memory latencies1 (such as multi-level memory hierar-
chies) are extremely large.

5 Store Buffer and Push Buffers

5.1 Description

M340 is equipped with an eight word (32 bytes) deep

store buffer and a four word (16 bytes) deep push buffer.
The store buffer contains a FIFO that can defer pending

write misses or writes marked as writethrough in order to
maximize performance. When enabled, store operations
which miss (writethrough or copyback) in the cache or
which are marked as writethrough are placed in the store
buffer, and the core access is terminated. For systems that
require copyback operations or systems that can trade-off
performance for power efficiency, the store buffer and cor-
responding control logic can be gated off by disabling the
store buffer bit in the CACR.

The push buffer temporarily stores push data from the
cache to be written to external memory to allow the critical
data to be immediately retrieved without suffering the
external memory write latency. Similar to the store buffer,
the push buffer and corresponding control logic can be
turned off via the push buffer bit in the CACR. This feature
helps to save power consumption in systems that require
writethrough only transactions or those systems that can
trade-off performance for power savings.

5.2 Evaluating the Store and Push Buffers

The size of the store buffer was set in order to provide
maximum decoupling efficiency for the core from the
external memory latency. As illustrated in Figure 6, a typi-
cal application will only utilize 1 to 3 entries in the buffer.
There are numerous factors that can influence the store
buffer utilization, for example, external memory latencies,
number of sequential or near sequential write requests
from the core, etc. Since most of the benchmark applica-
tion write requests were non-sequential, the buffer was able
to write the previous request out to memory as or before
the next request was being issued. Some applications, such
as the auto benchmark, do require larger buffer sizes due to

1. All performance simulations were run with a 5 cycle and 5-1-
1-1 burst cycle memory access configuration.

au
to

bc
nt

bl
it

co
m

pr
es

s
cr

c
de

s
en

gi
ne

fi
r_

in
t

g3
fa

x
jp

eg
po

cs
ag

qu
rt

uc
bq

so
rt

v4
2

w
he

ts
to

ne

0.0

0.5

1.0

1.5

Optimal Way Config
One I/D Way (same)

Figure 5: Way Management Performance

C
yc

le
 C

ou
nt

(1
10

0
00

11
)

(1
11

0
00

01
)

(N
o

E
ff

ec
t)

(1
11

1
11

11
)

(1
10

0
00

11
)

(1
11

0
00

01
)

(N
o

E
ff

ec
t)

(1
10

0
00

11
)

(1
11

1
11

11
)

(1
11

1
10

00
)

(N
o

E
ff

ec
t)

(1
11

0
00

01
)

(N
o

E
ff

ec
t)

(1
11

1
00

01
)

(0
00

1
11

10
)

(WDE WIE)

Figure 6: Store Buffer Utilization

1 2 3 4 5 6 7 8

0.0

20.0

40.0

60.0

Pe
rc

en
t P

er
fo

rm
an

ce
 I

m
pr

ov
em

en
t (

%
)

Number of Entries

The Proceedings of the 2000 IEEE International Conference on Computer Design:
VLSI in Computers & Processors
0-7695-0801-4/00 $10.00 @ 2000 IEEE

the multiple sequential write requests that exist. Applica-
tions that execute numerous store multiple commands or
those with long external memory latencies benefit most
from the large depth of the buffer.

The push buffer provides a boost in performance for
applications that suffer a large number of conflict misses
(v42, jpeg, and compress) on lines that have been marked
dirty. This buffer allows the push latency penalty to be
transparent to the core. As shown in Figure 7, the push

buffer can provide a significant performance improvement
for the appropriate application. The benchmarks that illus-
trated little to no improvement from the push buffer sup-
port can utilize the enable bit to help conserve power.

To show the effect of the buffers on power dissipation,
the total cache system power (Pcache) can be broken down
into five major modules:

Pcache = Psb + Ppb + Pctrl + Pdarray + Ptarray (1)

Psb: Power dissipated by the store buffer
Ppb: Power dissipated by the push buffer
Pctrl: Power dissipated by the control logic
Pdarray: Power dissipated by the data array
Ptarray: Power dissipated by the tag array

Figure 8 illustrates the total increase in power dissipa-
tion incurred by enabling the store and push buffers. The
store buffer and push buffer can be disabled by clearing the
respective enable bit in the CACR. Due to efficient clock
gating techniques[1], Psb and Ppb are negligible when the
buffers are disabled, resulting in lower overall system
power dissipation.

6 Conclusion

The M•CORE M340 provides user programmability to
allow the architecture to be adaptable to various applica-
tions. Two write modes (writethrough and copyback) are
supported with store and push buffer enhancement options
and way management control for instruction versus data
caching policy adjustment and data preservation.

Each of the enhancements described in this paper show
performance and/or power consumption improvements
depending on the configuration. Further optimization can
be achieved through appropriate benchmarking analysis
and compiler direction based on the embedded application
environment.

7 References
[1] J. Scott, L. Lee, J. Arends, B. Moyer, “Designing the Low-

Power M•CORE Architecture,” Proc. Int’l. Symp. on
Computer Architecture Power Driven Microarchitecture
Workshop, Barcelona, Spain, July 1998, pp. 145-150.

[2] M•CORE M340 Reference Manual, Motorola, Inc., 2000.,

Figure 7: Push Buffer Performance

au
to

bc
nt bl
it

co
m

pr
es

s
cr

c
de

s
en

gi
ne

fi
r_

in
t

g3
fa

x
jp

eg
po

cs
ag

qu
rt

uc
bq

so
rt

v4
2

w
he

ts
to

ne

0.0

10.0

20.0

30.0

Pe
rc

en
t I

m
pr

ov
em

en
t (

%
)

au
to

bc
nt bl
it

co
m

pr
es

s

cr
c

de
s

en
gi

ne

fi
r_

in
t

g3
fa

x

jp
eg

po
cs

ag

qu
rt

uc
bq

so
rt

v4
2

w
he

ts
to

ne

0.
0

10
.0

20
.0

Figure 8: Buffer Power Usage

Pe
rc

en
t C

ac
he

 P
ow

er
 I

nc
re

as
e

(%
) Store Buffer

Push Buffer
Total

Data Array

M3 CoreMMU

Tag Array

C
ac

he
 C

on
tr

ol

Cache Flow Unit
(including buffers)

M•CORE is a trademark of Motorola, Inc.

The Proceedings of the 2000 IEEE International Conference on Computer Design:
VLSI in Computers & Processors
0-7695-0801-4/00 $10.00 @ 2000 IEEE

