
MOTORAZR V3xx
Java ME Developer Guide

Version 01.00

Table of Contents

TABLE OF CONTENTS ..2

INDEX OF TABLES ...8

INDEX OF FIGURES ... 10

INDEX OF CODE SAMPLES .. 11

1 Introduction .. 12
1.1 PURPOSE ... 12
1.2 AUDIENCE .. 12
1.3 DISCLAIMER .. 12
1.4 REFERENCES ... 14
1.5 REVISION HISTORY .. 14
1.6 DEFINITIONS, ABBREVIATIONS, ACRONYMS .. 15
1.7 DOCUMENT OVERVIEW... 16

2 Java ME Introduction .. 19
2.1 THE JAVA™ PLATFORM, MICRO EDITION (JAVA™ ME).................................... 19
2.2 THE MOTOROLA JAVA™ ME PLATFORM ... 20
2.3 RESOURCES AND APIS AVAILABLE .. 21

3 Developing and Packaging Java ME Applications................................. 22
3.1 GUIDE TO DEVELOPMENT IN JAVA™ ME.. 22

3.1.1 RECOGNIZING THE PHONE CORE SPECIFICATIONS 24
4 Downloading Applications ... 25

4.1 METHODS OF DOWNLOADING.. 25
4.2 ERROR LOGS ... 28

5 Application Management ... 30
5.1 DOWNLOADING A JAR FILE WITHOUT A JAD ... 30
5.2 MIDLET UPGRADE ... 30
5.3 INSTALLATION AND DELETION STATUS REPORTS ... 31

6 JSR-75 - PIM and Fileconnection APIs... 33
6.1 PIM API ... 33

6.1.1 REQUIREMENTS ... 33
6.1.2 CONTACT LIST .. 35
6.1.3 EVENT LIST ... 36
6.1.4 TO DO LIST ... 36

6.2 FILECONNECTION API.. 36
6.2.1 REQUIREMENTS ... 36

7 JSR-82 - Bluetooth API ... 40

[2/202]

7.1 OVERVIEW.. 40
7.2 JSR-82 BLUETOOTH API ... 40

7.2.1 SYSTEM REQUIREMENTS .. 40
7.2.2 BLUETOOTH CONTROL CENTER ... 41
7.2.3 DEVICE PROPERTY TABLE ... 41
7.2.4 SERVICE REGISTRATION .. 42
7.2.4.1 CONNECTABLE MODE ... 42
7.2.4.2 NON-CONNECTABLE MODE ... 43
7.2.5 DEVICE MANAGEMENT .. 43
7.2.5.1 GENERIC ACCESS PROFILE (GAP)... 43
7.2.5.2 SECURITY ... 43
7.2.6 COMMUNICATION.. 43
7.2.6.1 SERIAL PORT PROFILE (SPP).. 44
7.2.6.2 OBJECT EXCHANGE (OBEX) ... 44
7.2.7 SECURITY POLICY ... 45
7.2.8 EXTERNAL EVENTS .. 45
7.2.8.1 INCOMING CALL .. 45
7.2.8.2 INCOMING MESSAGE ... 46
7.2.9 ALARM & DATEBOOK BEHAVIOUR .. 46
7.2.10 PRESSING OF END KEY ... 46
7.2.11 HARDWARE REQUIREMENTS ... 47
7.2.12 INTEROPERABILITY REQUIREMENTS ... 47

8 MIDP 2.0 Security Model ... 49
8.1 UNTRUSTED MIDLET SUITES .. 50
8.2 UNTRUSTED DOMAIN .. 50
8.3 TRUSTED MIDLET SUITES ... 51
8.4 PERMISSION TYPES CONCERNING THE HANDSET.. 52
8.5 USER PERMISSION INTERACTION MODE .. 52
8.6 IMPLEMENTATION BASED ON RECOMMENDED SECURITY POLICY............................ 53
8.7 TRUSTED 3RD PARTY DOMAIN... 53
8.8 SECURITY POLICY FOR PROTECTION DOMAINS.. 54
8.9 DISPLAYING OF PERMISSIONS TO THE USER.. 57
8.10 TRUSTED MIDLET SUITES USING X.509 PKI .. 57
8.11 SIGNING A MIDLET SUITE ... 58
8.12 SIGNER OF MIDLET SUITES ... 58
8.13 MIDLET ATTRIBUTES USED IN SIGNING MIDLET SUITES 58
8.14 CREATING THE SIGNING CERTIFICATE ... 59
8.15 INSERTING CERTIFICATES INTO JAD .. 59
8.16 CREATING THE RSA SHA-1 SIGNATURE OF THE JAR 60
8.17 AUTHENTICATING A MIDLET SUITE.. 60
8.18 VERIFYING THE SIGNER CERTIFICATE ... 61
8.19 VERIFYING THE MIDLET SUITE JAR... 62
8.20 CARRIER SPECIFIC SECURITY MODEL.. 63

9 JSR-120 - Wireless Messaging API.. 64
9.1 WIRELESS MESSAGING API (WMA).. 64

[3/202]

9.2 SMS CLIENT MODE AND SERVER MODE CONNECTION..................................... 64
9.3 SMS PORT NUMBERS.. 65
9.4 SMS STORING AND DELETING RECEIVED MESSAGES 66
9.5 SMS MESSAGE TYPES ... 66
9.6 SMS MESSAGE STRUCTURE ... 66
9.7 SMS NOTIFICATION ... 67

10 JSR-135 - Mobile Media API ... 73
10.1 JSR-135 ... 73
10.2 TONECONTROL ... 75
10.3 VOLUMECONTROL... 75
10.4 STOPTIMECONTROL .. 76
10.5 MANAGER CLASS ... 76
10.6 SUPPORTED MULTIMEDIA FILE TYPES.. 76

10.6.1 AUDIO MEDIA ... 76
10.6.2 IMAGE MEDIA.. 77
10.6.3 VIDEO MEDIA.. 77

10.7 MEDIA LOCATORS .. 77
10.7.1 RTSP LOCATOR ... 78
10.7.2 HTTP LOCATOR ... 78
10.7.3 FILE LOCATOR ... 78
10.7.4 CAPTURE LOCATOR .. 78

10.8 SECURITY ... 79
10.8.1 POLICY... 79
10.8.2 PERMISSIONS.. 79

11 JSR-139 - CLDC 1.1 ... 81
11.1 JSR-139 ... 81

12 JSR-177 Java ME Security and Trust Services API 85
12.1 FEATURE DESCRIPTION... 85
12.2 ASSUMPTIONS/DEPENDENCIES .. 86
12.3 NEW IMPLEMENTATION ... 87

12.3.1 JAVAX.MICROEDITION.APDU OPTIONAL PACKAGE..................................... 87
12.3.1.1 APDUCONNECTION INTERFACE .. 88
12.3.1.2 OPENING AN APDU CONNECTION.. 88
12.3.1.3 APDU CONNECTION ESTABLISHMENT ERRORS 90
12.3.1.4 USING AN APDU CONNECTION .. 90
12.3.1.5 ERRORS WHILE USING APDU CONNECTION 92
12.3.1.6 CLOSING AN APDU CONNECTION.. 93
12.3.1.7 ERROR CASES WHEN CLOSING APDU CONNECTION.............................. 94
12.3.1.8 SUPPORT FOR (U)SIM APPLICATION TOOLKIT ((U)SAT) 94
12.3.2 JAVA.LANG PACKAGE (EXCEPTION CLASSES)... 95
12.3.3 RECOMMENDED SECURITY ELEMENT ACCESS CONTROL.............................. 96
12.3.3.1 EVALUATING INDIVIDUAL ACCESS CONTROL ENTRY 98
12.3.4 SECURITY REQUIREMENTS .. 99

13 JSR-184 - Mobile 3D Graphics API... 100
13.1 OVERVIEW ...100

[4/202]

13.2 MOBILE 3D API...100
13.3 MOBILE 3D API FILE FORMAT SUPPORT ...101
13.4 MOBILE 3D GRAPHICS - M3G API ..101

13.4.1 TYPICAL M3G APPLICATION ...101
13.4.2 SIMPLE MIDLETS...102
13.4.3 INITIALIZING THE WORLD ..104
13.4.4 USING THE GRAPHICS3D OBJECT ...105
13.4.5 INTERROGATING AND INTERACTING WITH OBJECTS106
13.4.6 ANIMATIONS ..107
13.4.7 AUTHORING M3G FILES..109

14 JSR-185 - Java™ Technology for the Wireless Industry.................... 110
14.1 OVERVIEW ...110
14.2 CLDC RELATED CONTENT FOR JTWI ...111
14.3 MIDP 2.0 SPECIFIC INFORMATION FOR JTWI ...112
14.4 WIRELESS MESSAGING API 1.1 (JSR-120) SPECIFIC CONTENT FOR JTWI114
14.5 MOBILE MEDIA API 1.1 (JSR-135) SPECIFIC CONTENT FOR JTWI....................114
14.6 MIDP 2.0 SECURITY SPECIFIC CONTENT FOR JTWI.....................................115

15 JSR-205 - WMA 2.0 ... 116
15.1 OVERVIEW ...116

15.1.1 MESSAGING FUNCTIONALITY ...116
15.1.2 MMS MESSAGE STRUCTURE ...116
15.1.3 MMS MESSAGE ADDRESSING ...117
15.1.4 MMS MESSAGE TYPES ...117
15.1.5 MULTIPARTMESSAGE ...117
15.1.6 MESSAGEPART..117
15.1.7 MULTIMEDIA MESSAGE SERVICE CENTER ADDRESS118
15.1.8 APPLICATION ID..118
15.1.9 MMS PUSH ...119

15.2 REQUIREMENTS FOR WMA..119
15.2.1 INITIAL SETUP..119
15.2.2 HANDLING THE INCOMING MMS MESSAGE ..119
15.2.2.1 APPLICATION RUNNING/RESUMING ..120
15.2.2.2 APPLICATION IS RUNNING/BACKGROUND..120
15.2.2.3 APPLICATION SUSPENDING...121
15.2.2.4 APPLICATION ENDING ..121
15.2.2.5 MMS PUSH ..121

15.3 REQUIREMENTS TO THE NATIVE MMS CLIENT ...122
15.3.1 ANONYMOUS REJECTION FEATURE ...122
15.3.2 COINCIDENTAL ADDRESSES IN THE NATIVE CLIENT AND JAVA CLIENTS ADDRESS

FILTERS ..123
15.3.3 SECURITY POLICY ..123
15.3.4 VMVM SUPPORT ...124
15.3.5 EXTERNAL EVENT INTERACTION..124

16 Java ME™ Access to certificates on SIM and phone memory 125
16.1 ALLOW JVM TO ACCESS DIGITAL CERTIFICATES ...125

[5/202]

16.2 UPDATE CERTIFICATES ON THE SIM..127
16.3 PROCEDURE FOR VIEWING/ENABLING/DELETING/DISABLING A CERTIFICATE127
16.4 ROAMING/CHANGE OF SIM CARD ..129

17 Prevent Downloading of Large Java MIDlets................................... 131
17.1 OVERVIEW ...131
17.2 NOTIFICATION ...132
17.3 BACKWARD COMPATIBILITY/FLEXING ...132

18 Download Midlet through PC .. 133
18.1 ESTABLISHING CONNECTION ..133

19 Downloading MIDlet through Browser... 134
19.1 STAR ACTIVE BROWSER SESSION FROM MAIN MENU134
19.2 FIND A LOCATION WITH JAVA ME ™ APPLICATION135
19.3 DOWNLOADING MIDLETS ...135
19.4 DIFFERENT ERROR CHECKS ...138

19.4.1 MEMORY FULL ..138
19.4.2 MEMORY FULL DURING INSTALLATION PROCESS.142
19.4.3 APPLICATION VERSION ALREADY EXISTS ...144
19.4.4 NEWER APPLICATION VERSION EXISTS...145

20 Record Management System .. 147
20.1 RECORD MANAGEMENT SYSTEM API ...147

21 Gaming API/Multiple Key Press.. 149
21.1 GAMING API ..149
21.2 MULTIPLE KEY PRESS SUPPORT...149

22 Network APIs... 152
22.1 NETWORK CONNECTIONS ...152
22.2 USER PERMISSION ..154
22.3 INDICATING A CONNECTION TO THE USER ...154
22.4 HTTPS CONNECTION ...155
22.5 DNS IP..157
22.6 PUSH REGISTRY ...157
22.7 MECHANISMS FOR PUSH ..157
22.8 PUSH REGISTRY DECLARATION ...157
22.9 DELIVERY OF A PUSH MESSAGE ..167
22.10 DELETING AN APPLICATION REGISTERED FOR PUSH....................................168
22.11 SECURITY FOR PUSH REGISTRY ...168
22.12 NETWORK ACCESS ...169

23 Platform Request API.. 170
23.1 PLATFORM REQUEST API..170
23.2 MIDLET REQUEST OF A URL THAT INTERACTS WITH BROWSER171
23.3 MIDLET REQUEST OF A URL THAT INITIATES A VOICE CALL172

24 JAD Attributes.. 173
24.1 JAD / MANIFEST ATTRIBUTE IMPLEMENTATIONS ...173

25 LCDUI ... 176
25.1 LCDUI API ...176

26 iTAP.. 181

[6/202]

26.1 INTELLIGENT KEYPAD TEXT ENTRY API ..181
27 Java.lang Implementation ... 183

27.1 JAVA.LANG SUPPORT ...183
28 CommConnection Interface.. 184

28.1 COMMCONNECTION..184
28.2 ACCESSING ..184
28.3 PARAMETERS...184
28.4 BNF FORMAT FOR CONNECTOR.OPEN () STRING...186
28.5 COMM SECURITY ..186
28.6 PORT NAMING CONVENTION ..187
28.7 METHOD SUMMARY ..188

29 Motorola Get URL from Flex API ... 189
29.1 OVERVIEW ...189
29.2 FLEXIBLE URL FOR DOWNLOADING FUNCTIONALITY......................................189
29.3 SECURITY POLICY ...190

30 Motorola Secondary Display API ... 191
30.1 PRIMARY REQUIREMENTS..191
30.2 FLIP-OPEN, FLIP-CLOSED EVENT HANDLING...192
30.3 EXCEPTION HANDLING ..192
30.4 PUSH ENABLED APPLICATIONS ..193
30.5 FEATURE INTERACTION ..193
30.6 LOW POWER REQUIREMENTS ..193
30.7 SECURITY ..193

APPENDIX A: Key Mapping ... 194
KEY MAPPING ..194

APPENDIX B: Memory Management Calculation 196
APPENDIX C: FAQ.. 197
APPENDIX D: HTTP Range .. 198

GRAPHIC DESCRIPTION ..198
APPENDIX F: Spec Sheet .. 199

SPEC SHEET..199
APPENDIX H: Quick Reference .. 201

[7/202]

Index of Tables

Table 1 References.. 14

Table 2 Revision History ... 14

Table 3 Definitions, Abbreviations, Acronyms ... 16

Table 4 USER_AGENT String .. 28

Table 5 Error Logs .. 28

Table 6 Application management feature .. 31

Table 7 Permissions and Groups ... 35

Table 8 Groups and permissions for... 37

Table 9 Motorola Bluetooth device properties ... 41

Table 10 Security Policy ... 45

Table 11 Interoperability Requirements .. 48

Table 12 MIDP 2.0 Feature/Class .. 49

Table 13 Trusted 3rd Party Domain ... 54

Table 14 MIDP 2.0 Permission Types ... 54

Table 15 Security Policy for Protection Domains.. 55

Table 16 MIDP 2.0 Specific Functions... 56

Table 17 Actions performed of signer certificate verification........................... 61

Table 18 Summary of MIDlet suite verification ... 62

Table 19 List of Messaging features/classes ... 68

Table 20 Audio Media .. 77

Table 21 Image Media ... 77

Table 22 Video Media .. 77

Table 23 Security policy ... 79

Table 24 Permissions within Multimedia Record .. 79

Table 25 Additional classes, fields, and methods supported for CLDC 1.1

[8/202]

... 81

Table 26 javax.microedition.io.Connector.open() BNF syntax 89

Table 27 RMS feature/class ..147

Table 28 Gaming and keypad feature/class support for MIDP150

Table 29 Network API feature/class support for MIDP152

Table 30 Platform Request API feature/class support for MIDP170

Table 31 MIDlet attributes, descriptions, and its location in the JAD and/or JAR
manifest...173

Table 32 LCDUI API specific interfaces supported by Motorola implementation...176

Table 33 LCDUI API specific classes supported by Motorola implementation176

Table 34 Feature/class support for MIDP ...177

Table 35 iTAP feature/class ..182

Table 36 Interface Commconncetion optional parameters.............................185

Table 37 Interface Commconncetion BNF syntax..186

Table 38 Method Summary ..188

Table 39 Key Mapping...194

[9/202]

Index of Figures

Figure 1 Java™ ME Architecture ... 20

Figure 2 JavaSystem Menu ... 24

Figure 3 MIDway "Java Tool" menu ... 27

Figure 4 Pressing of End Key ... 47

Figure 5 Examples Screens ... 47

Figure 6 M3G Application Proccess ...101

Figure 7 M3G Application Methods ...102

Figure 8 Typical MIDlet Structure...103

Figure 9 Delete a Trusted Third Party Domain Root Certificate.......................128

Figure 10 Starting Active Browser Session from Main Menu134

Figure 11 Downloading and Installing Java ME ™ Application (MIDlets)............136

Figure 12 Application does not have Mandatory Attributes in ADF138

Figure 13 Memory full error ...140

Figure 14 Mot-Data-Space & Mot-Program-Space attributes are not present or are
incorrect...142

Figure 15 Memory Full help message during installation process143

Figure 16 Same Version of Application already exists on the handset144

Figure 17 (Newer) Version of Application exists ...146

Figure 18 Network Connections example ...154

Figure 19 Intend Application Run Option..167

Figure 20 Graphic Description of HTTP Range ...198

[10/202]

Index of Code Samples

Code Sample 1 JSR-120 WMA ... 68

Code Sample 2 JSR-135 MMA.. 73

Code Sample 3 Request for Access Algorithm .. 97

Code Sample 4 Initializing the world ..105

Code Sample 5 Using the Graphics3D object ..105

Code Sample 6 Finding objects by ID. ..106

Code Sample 7 Using the Object3D.getReferences()...................................107

Code Sample 8 Socket Connection...153

Code Sample 9 HTTPS..155

Code Sample 10 Push Registry ...158

Code Sample 11 Plataform Request ...171

Code Sample 12 Java.lang implementation..183

Code Sample 13 CommConnection implementation....................................187

[11/202]

1
Introduction

1.1 Purpose

This document describes the application program interfaces used to develop Motorola

compliant Java™ Platform, Micro Edition (Java ME) applications for the MOTORAZR

V3xx handset supporting CLDC 1.1.

For more detailed information see Section 3.1.1.

1.2 Audience

This document is intended for general Java ME developers involved in the production

of Java ME applications for the MOTORAZR V3xx handset.

1.3 Disclaimer

Motorola reserves the right to make changes without notice to any products or ser-

vices described herein. "Typical" parameters, which may be provided in Motorola

Data sheets and/or specifications can and do vary in different applications and actual

performance may vary. Customer's technical experts will validate all "Typicals" for

each customer application.

Motorola makes no warranty in regard to the products or services contained herein.

Implied warranties, including without limitation, the implied warranties of merchant-

ability and fitness for a particular purpose, are given only if specifically required by

Java ME Developer Guide
Chapter 1 - Introduction

[12/202]

applicable law. Otherwise, they are specifically excluded.

No warranty is made as to coverage, availability, or grade of service provided by the

products or services, whether through a service provider or otherwise.

No warranty is made that the software will meet your requirements or will work in

combination with any hardware or application software products provided by third

parties, that the operation of the software products will be uninterrupted or error

free, or that all defects in the software products will be corrected.

In no event shall Motorola be liable, whether in contract or tort (including negli-

gence), for any damages resulting from use of a product or service described herein,

or for any indirect, incidental, special or consequential damages of any kind, or loss

of revenue or profits, loss of business, loss of information or data, or other financial

loss arising out of or in connection with the ability or inability to use the Products, to

the full extent these damages may be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incid-

ental or consequential damages, or limitation on the length of an implied warranty,

therefore the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights,

which vary from jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as

components in systems intended for surgical implant into the body, or other applica-

tions intended to support or sustain life, or for any other application in which the

failure of the Motorola product or service could create a situation where personal in-

jury or death may occur.

Should the buyer purchase or use Motorola products or services for any such unin-

tended or unauthorized application, the buyer shall release, indemnify and hold Mo-

torola and its officers, employees, subsidiaries, affiliates, and distributors harmless

against all claims, costs, damages, and expenses, and reasonable attorney fees

arising out of, directly or indirectly, any claim of personal injury or death associated

with such unintended or unauthorized use, even if such claim alleges that Motorola

was negligent regarding the designing or manufacturing of the product or service.

Java ME Developer Guide
Chapter 1 - Introduction

[13/202]

Motorola recommends that if you are not the author or creator of the graphics, video,

or sound, you obtain sufficient license rights, including the rights under all patents,

trademarks, trade names, copyrights, and other third party proprietary rights.

1.4 References

Reference Link

Borland http://www.borland.com/

GSM 03.38 standard http://www.etsi.org

GSM 03.40 standard http://www.etsi.org

IBM http://www.ibm.com/

JSR http://www.jcp.org

MOTODEV http://developer.motorola.com

Motorola http://www.motorola.com/

RFC 2068 http://www.ietf.org/rfc/rfc2068.txt

RFC 2396 http://www.ietf.org/rfc/rfc2396.txt

RFC 822 http://www.ietf.org/rfc/rfc822.txt

SAR http://www.wapforum.org

SSL protocol version 3.0 http://wp.netscape.com/eng/ssl3/ssl-toc.html

Sun Java™ ME http://java.sun.com/javame/

Sun Microsystems http://www.sun.com/

Sun MIDP 2.0 SDK http://java.sun.com/products/midp/

TLS protocol version 1.0 http://www.ietf.org/rfc/rfc2246.txt

X.509 http://www.ietf.org/rfc/rfc2459.txt

Table 1 References

1.5 Revision History

Version Date Reason

00.01 03-OCT-2006 Initial Draft.

01.00 18-DEC-2006 Document release.

Table 2 Revision History

Java ME Developer Guide
Chapter 1 - Introduction

[14/202]

1.6 Definitions, Abbreviations,
Acronyms

Acronym Description

(U)SAT Universal SIM Application Toolkit

AID Application Identifier

AMS Application Management Software

APDU Application Protocol Data Unit

API Application Program Interface

BCC Bluetooth Control Center

BMP Windows BitMap Format (image extension '.bmp')

CLDC Connected Limited Device Configuration

DNS Domain Name System

GIF Graphics Interchange Format (image extension '.gif')

GPRS General Packet Radio Service

GPS Global Positioning System

GSM Global System for Mobile Communications

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers, Inc.

IMEI International Mobile Equipment Identity

IP Internet Protocol

IRCOMM Is a specification from the Infrared Design Association (IRDA) and
determines how different devices can talk to each other via infrared.

IrDA Infrared Data Association

ITU International Telecommunication Union

JAD Java™ Application Descriptor

JAM Java Application Manager

JAR Java™ Archieve. Used by Java™ ME applications for compression and
packaging.

Java™ ME Java Platform, Micro Edition (Java™ ME, formerly J2ME)

JPG Joint Photographic Experts Group (image extension '.jpg')

JSR Java Specification Request

JVM Java Virtual Machine

KVM K Virtual Machine (Java™ ME runtime environment)

L2CAP Logical Link Control and Adaptation Protocol

LCDUI Limited Connected Device User Interface

MIB Motorola Internet Browser

MIDP Mobile Information Device Profile

Java ME Developer Guide
Chapter 1 - Introduction

[15/202]

MMA Multimedia API

MSISDN Mobile Station Integrated Services Digital Network

MT Mobile Terminated

OBEX OBject Exchange

OEM Original Equipment Manufacturer

OTA Over The Air

PKI Public-Key Infrastructure

PNG Portable Network Graphics (image extension '.png')

RFC Request for Comments

RFCOMM Radio Frequency Communication-Bluetooth protocol that provides
emulation of RS-232 (serial) connection

RMS Record Management System

RUIM Removable User Identity Module

SAR Segmentation & Reassembly

SAT SIM Application Toolkit

SATSA Security and Trust Services API

SDAP Service Discovery Application Profile

SDDB Service Discovery Database-Local listing of available Bluetooth
services on device

SDK Software Development Kit

SDP Service Discovery Protocol

SE Security Element

SIM Subscriber Identity Module

SMS Short Message Service

SMSC Short Messaging Service Center

SPP Serial Port Profile

SSL Secure Sockets Layer

TCP Transmission Control Protocol

TTP Trusted Third Parties

UDP User Datagram Protocol

UI User Interface

UICC Universal Integrated Circuit Card

URI Unified Resource Identifier

URL Universal Resource Locator

USB Universal Serial Bus

USIM Universal Subscriber Identity Module

VM Virtual Machine

WAP Wireless Application Protocol

WMA Wireless Messaging API

X.509 Internet X.509 Public Key Infrastructure Certificate and CRL Profile

Table 3 Definitions, Abbreviations, Acronyms

Java ME Developer Guide
Chapter 1 - Introduction

[16/202]

1.7 Document Overview

This developer's guide is organized into the following chapters and appendixes:

Chapter 1 - Introduction: This chapter has general information about this
document, including purpose, scope, references, and definitions.
Chapter 2 - Java ME Introduction: This chapter describes the Java ME
platform and the available resources on this Handset.
Chapter 3 - Developing and Packaging Java ME Applications: This
chapter describes important features to look for selecting tools and emulation
environments. It also describes how to package a Java ME application, how to
package a MIDlet, and generate JAR and JAD files properly.
Chapter 4 - Downloading Applications: This chapter describes the process
for downloading applications.
Chapter 5 - Application Management: This chapter describes the lifecycle,
installation/de-installation, and updating process for a MIDlet suite.
Chapter 6 - JSR-75 - PIM and Fileconnection APIs: This chapter
describes the JSR-75 APIs implementation requirements that shall replace the
earlier implemented Phonebook and Fileconnection APIs requirements.
Chapter 7 - JSR-82 - Bluetooth API: This chapter describes the JSR-82,
that covers the establishment of connections between devices for such
applications as peer-to-peer gaming and Bluetooth pen use.
Chapter 8 - MIDP 2.0 Security Model: This chapter describes the MIDP 2.0
default security model.
Chapter 9 - JSR-120 - Wireless Messaging API: This chapter describes
JSR-120 implementation.
Chapter 10 - JSR-135 - Mobile Media API: This chapter describes image
types and supported formats.
Chapter 11 - JSR-139 - CLDC 1.1: This chapter describes briefly some
characteristics of CLDC 1.1 and presents additional classes, fields, and
methods supported for CLDC 1.1.
Chapter 12 - JSR-177 Java ME Security and Trust Services API: This
chapter describes the JSR-177, which defines optional packages for the J2ME
platform. The purpose of this JSR is to specify a collection of APIs that
provides security and trust services by integrating a Security Element (SE).
Chapter 13 - JSR-184 - Mobile 3D Graphics API: This chapter describes
the JSR-184 which defines an API for rendering three-dimensional (3D)
graphics.
Chapter 14 - JSR-185 - Java™ Technology for the Wireless Industry:
This chapter describes Java Technology for the Wireless Industry (JTWI)
functionality.
Chapter 15 - JSR-205 - WMA 2.0: This chapter describes the functionality
that shall be implemented for the WMA.

Java ME Developer Guide
Chapter 1 - Introduction

[17/202]

Chapter 16 - Java ME™ Access to certificates on SIM and phone
memory: This chapter presents the marketing requirements specification to
access digital certificates on 'SIM or phone memory' by a Java Virtual Machine
(JVM)
Chapter 17 - Prevent Downloading of Large Java MIDlets: This feature
makes flexible way of preventing the large JAR files OTA download.
Chapter 18 - Download Midlet through PC: This chapter describes
download MIDlets through a PC.
Chapter 19 - Downloading MIDlet through Browser: This chapter
describes the performing any downloads on the handset.
Chapter 20 - Record Management System: This chapter describes the
Record Management System API.
Chapter 21 - Gaming API/Multiple Key Press: This chapter describes the
Gaming API.
Chapter 22 - Network APIs: This chapter describes the Java Networking
API and network access.
Chapter 23 - Platform Request API: This chapter describes the platform
request APIs.
Chapter 24 - JAD Attributes: This chapter describes what attributes are
supported.
Chapter 25 - LCDUI: This chapter describes the Limited Connected Device
User Interface API.
Chapter 26 - iTAP: This chapter describes iTAP support.
Chapter 27 - Java.lang Implementation: This chapter describes the
java.lang implementation.
Chapter 28 - CommConnection Interface: This chapter describes the
CommConnection API.
Chapter 29 - Motorola Get URL from Flex API: This chapter describes the
way to access URL stored in FLEX by a java application.
Chapter 30 - Motorola Secondary Display API: This chapter details the
capability for J2ME applications to render content to Motorola devices that
feature a secondary display.
Appendix A - Key Mapping: This appendix describes the key mapping of the
MOTORAZR V3xx handset, including the key name, key code, and game
action of all Motorola keys
Appendix B - Memory Management Calculation: This chapter describes
the memory management calculations.
Appendix C - FAQ: This appendix provides a link to the dynamic online FAQ.
Appendix D - HTTP Range: This appendix provides a graphic description of
HTTP Range.
Appendix F - Spec Sheet: This appendix provides the spec sheet for the
MOTORAZR V3xx handset.
Appendix H - Quick Reference: This appendix shows the document quick
reference.

Java ME Developer Guide
Chapter 1 - Introduction

[18/202]

2
Java ME Introduction

The MOTORAZR V3xx handset includes the Java™ Platform, Micro Edition, also

known as the Java ME platform. The Java ME platform enables developers to easily

create a variety of Java™ applications ranging from business applications to games.

Prior to its inclusion, services or applications residing on small consumer devices like

cell phones could not be upgraded or added to without significant effort. By imple-

menting the Java ME platform on devices like the MOTORAZR V3xx handset, service

providers, as well as customers, can easily add and remove applications allowing for

quick and easy personalization of each device. This chapter of the guide presents a

quick overview of the Java ME environment and the tools that can be used to develop

applications for the MOTORAZR V3xx handset.

2.1 The Java™ Platform, Micro Edition
(Java™ ME)

The Java ME platform is a new, very small application environment. It is a framework

for the deployment and use of Java™ technology in small devices such as cell phones

and pagers. It includes a set of APIs and a virtual machine that is designed in a mod-

ular fashion allowing for scalability among a wide range of devices.

The Java ME architecture, see Figure 1 , contains three layers consisting of the

Java™ Virtual Machine, a Configuration Layer, and a Profile Layer. The Virtual Ma-

chine (VM) supports the Configuration Layer by providing an interface to the host op-

erating system. Above the VM is the Configuration Layer, which can be thought of as

the lowest common denominator of the Java™ Platform available across devices of

the same "horizontal market." Built upon this Configuration Layer is the Profile Layer,

Java ME Developer Guide
Chapter 2 - Java ME Introduction

[19/202]

typically encompassing the presentation layer of the Java™ Platform.

Figure 1 Java™ ME Architecture

The Configuration Layer used in the MOTORAZR V3xx handset is the Connected Lim-

ited Device Configuration 1.1 (CLDC 1.1) and the Profile Layer used is the Mobile In-

formation Device Profile 2.0 (MIDP 2.0). Together, the CLDC and MIDP provide

common APIs for I/O, simple math functionality, UI, and more.

For more information on Java™ ME, see the Sun Java™ ME documentation

(http://java.sun.com/javame/).

2.2 The Motorola Java™ ME Platform

Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to

implement and support. By adding to the standard APIs, manufacturers can allow de-

velopers to access and take advantage of the unique functionality of their handsets.

The MOTORAZR V3xx handset contains OEM APIs for extended functionality ranging

from enhanced UI to advanced data security. While the MOTORAZR V3xx handset

can run any application written in standard MIDP, it can also run applications that

take advantage of the unique functionality provided by these APIs. These OEM APIs

are described in this guide

Java ME Developer Guide
Chapter 2 - Java ME Introduction

[20/202]

http://java.sun.com/javame/

2.3 Resources and APIs Available

MIDP 2.0 will provide support to the following functional areas on the MOTORAZR

V3xx handset:

• Application delivery and billing
• Application lifecycle
• Application signing model and privileged security model
• End-to-end transactional security (HTTPS)
• MIDlet push registration (server push model)
• Networking
• Persistent storage
• Sounds
• Timers
• User Interface
• File Image Support (.PNG, .JPEG, .GIF, .BMP)

Additional Functionality

••••••••••••••••••• JSR-118
• JSR-120
• JSR-135
• JSR-139
• JSR-177
• JSR-184
• JSR-185
• JSR-205
• JSR-75
• JSR-82
• Motorola Get URL from Flex API
• Motorola Secundary Display API

Java ME Developer Guide
Chapter 2 - Java ME Introduction

[21/202]

3
Developing and

Packaging Java ME
Applications

3.1 Guide to Development in Java™
ME

Introduction to Development

This appendix assumes the reader has previous experience in Java ME development

and can appreciate the development process for Java MIDlets. This appendix will

provide some information that a beginner in development can use to gain an under-

standing of MIDlets for Java ME handsets.

There is a wealth of material on this subject on the following websites maintained by

Motorola, Sun Microsystems and others. Please refer to the following URLs for more

information:

• http://developer.motorola.com
• http://www.java.sun.com/javame
• http://www.corej2me.com
• http://www.javaworld.com

As an introduction, brief details of Java ME are explained below.

The MIDlet will consist of two core specifications, namely Connected Limited Device

Java ME Developer Guide
Chapter 3 - Developing and Packaging Java ME Applications

[22/202]

http://developer.motorola.com
http://www.java.sun.com/javame
http://www.corej2me.com
http://www.javaworld.com

Configuration (CLDC) and Mobile Information Device Profile (MIDP). Both of these

specifications (JSR - Java Specification Requests) can be located at the

http://www.jcp.org/ site for reading.

• For MIDP 1.0; JSR-37 should be reviewed.
• For MIDP 2.0; JSR-118 should be reviewed.
• For CLDC 1.0.4; JSR-30 should be reviewed.
• For CLDC 1.1; JSR-139 should be reviewed.

For beginning development, key points to remember are memory size, processing

power, screen capabilities and wireless network characteristics. These all play an im-

portant part in the development of a MIDlet. The specifications listed above are de-

signed to work upon devices that have these characteristics.

Network conditions would only apply for networked applications such as streaming

tickers, email clients, etc.

In addition to the specifications, arrays of tools are available to assist the develop-

ment cycle. These range from the command line tools provided with by Software De-

velopment Kits (SDK) from Sun to Integrated Development Environments (IDEs)

which can be free or purchased. These IDEs come from a range of sources such as

Sun, IBM and Borland to name a few.

In addition to the IDEs and Sun SDK for development, Motorola offers access to our

own SDK which contains Motorola device emulators. From here, a MIDlet can be built

and then deployed onto an emulated target handset. This will enable debugging and

validation of the MIDlet before deployment to a real, physical handset. The latest Mo-

torola SDK can be downloaded from the MOTODEV website.

Please refer to the product specifications at the end of this guide for detailed inform-

ation on each handset.

Java ME Developer Guide
Chapter 3 - Developing and Packaging Java ME Applications

[23/202]

http://www.jcp.org/

3.1.1 Recognizing the phone core specifications

To determine what implementation of MIDP, CLDC and Heap size is on Motorola

handset, review the "Java System" details through the menu on the Motorola

handset (located under "Java Settings") as shown in Figure 2 .

Figure 2 JavaSystem Menu

NOTE: This screenshot is only an example.

Java ME Developer Guide
Chapter 3 - Developing and Packaging Java ME Applications

[24/202]

4
Downloading
Applications

4.1 Methods of Downloading

There are two options open to the developer for deploying the MIDlet to a physical

Motorola device. These are OTA (over-the-air) downloading or direct cable (Serial)

downloading through a PC to the target device.

Method 1 - OTA

To use the OTA method, the developer will have a connection through a wireless net-

work to a content server. This content server could be, for example, Apache

(http://httpd.apache.org) which is free to use, deployable on multiple operating sys-

tems, and has extensive documentation on how to configure the platform.

The required file will be downloaded (either .jad and/or .jar) by issuing a direct URL

request to the file in question or it could be a URL request to a WAP page and a hy-

perlink on that page to the target file. This request will be made through the

browser. In MIDP , the need for a JAD file before download is not required, so the

JAR file can be downloaded directly. The information about the MIDlet will be pulled

from the manifest file.

The transport mechanism used to download the file will be one of two depending on

the support from the network operators WAP Gateway and the size of the file re-

quested.

• HTTP Range - see specification RFC 2068 at

Java ME Developer Guide
Chapter 4 - Downloading Applications

[25/202]

http://httpd.apache.org

http://www.rfc-editor.org/rfc.html if content greater than 30k in size.
Below is a ladder diagram showing the flow through HTTP range
transfer, although recall use of the .JAD is optional.

• SAR (Segmentation & Reassembly) - see specification of wireless
transaction protocol at the http://www.wapforum.org if less than 30k in
size.

During a download of the application, the user will see the Opera 8 displaying 'Down-

loading' followed by "x% completed" for either SAR or HTTP Byte Range type down-

loads.

A basic Over the Air Server Configuration document can be found in our Technical

Articles section at http://developer.motorola.com/. This includes details of config-

uring the server and also example WAP pages.

In these handsets, the user is given an option of deleting any MIDlets that are on the

phone if an OTA download cannot be achieved due to lack of space.

The following error codes are supported:

• 900 Success
• 901 Insufficient Memory
• 902 User Cancelled
• 903 Loss Of Service
• 904 JAR Size Mismatch
• 905 Attribute Mismatch
• 906 Invalid Descriptor
• 907 Invalid JAR
• 908 Incompatible Configuration or Profile
• 909 Application Authentication Failure
• 910 Application Authorization Failure
• 911 Push Registration Failure
• 912 Deletion Notification

Please be aware that the method used by the handset, as per the specifications, is

POST. Using a GET (URL encoding) style for the URL will fail. This is not the correct

use of the MIDlets JAD parameters.

Possible Screen Messages Seen With Downloading:

• If JAR -file size does not match with specified size, it displays "Failed
Invalid File". Upon time-out, the handset goes back to browser.

• When downloading is done, the handset displays a transient notice
"Download Completed" and starts to install the application.

Java ME Developer Guide
Chapter 4 - Downloading Applications

[26/202]

http://www.rfc-editor.org/rfc.html
http://www.wapforum.org
http://developer.motorola.com/

• Upon completing installation, the handset displays a transient notice
"Installed" and returns to Browser after time-out.

• If the MANIFEST file is wrong, the handset displays a transient notice
"Failed File Corrupt" and returns to Browser after time-out.

If JAD does not contain mandatory attributes, "Failed Invalid File" notice appears

Method 2 - Direct Cable & Motorola MIDway Tool

The direct cable approach can be performed using a tool available from MOTODEV

called MIDway. The actual version available supports USB cable download. In order

to use the tool properly, refer to the FAQ database at http://developer.motorola.com

portal which contains the following about downloading:

1. MIDway tool executable
2. USB Driver for the cable to handset
3. Instructions on installation
4. User Guide for MIDway tool

In addition to the software a suitable USB-A to Mini-USB cable (Motorola part

number SKN6311A can be used).

It is important to note that the MIDway tool will only work with a device that has

been enabled to support direct cable Java download. This feature is not available by

purchasing a device through a standard consumer outlet.

The easiest method of confirming support for this is by looking at the "Java Tool"

menu (see Figure 3) on the phone in question and seeing if a "Java app loader" op-

tion is available on that menu. If it is not, then contact MOTODEV support for advice

on how to receive an enabled handset.

Motorola provides a User Guide with the MIDway tool (as listed above) as well as a

document outlining the tool for actual version on the MOTODEV website entitled "In-

stalling Java ME MIDlet using MIDway Tool".

Java ME Developer Guide
Chapter 4 - Downloading Applications

[27/202]

http://developer.motorola.com

Figure 3 MIDway "Java Tool" menu

The USER-AGENT String

Table 4 describes USER_AGENT strings associated with Motorola devices:

Motorola
Device

USER_AGENT STRING

MOTORAZR
V3xx

User-Agent: MOT-v3xx/xx.xx.xxR Opera/8 Profile/MIDP-2.0 Configur-
ation/CLDC-1.1

Table 4 USER_AGENT String

The USER_AGENT string can be used to identify a handset and render specific con-

tent to it based on it information provided in this string (example CGI on a content

server). These strings can be found in the connection logs at the content server.

1. WAP Browser Release, Opera 8
2. MIDP version 2.0
3. CLDC version 1.1

4.2 Error Logs

Table 5 represents the error logs associated with downloading applications.

Error Dia-
log

Scenario Possible Cause Install-Notify

Failed: Inval-
id File

JAD Down-
load

Missing or incorrectly formatted
mandatory JAD attributes
Mandatory:
MIDlet-Name (up to 32 symbols)
MIDlet-Version
MIDlet-Vendor (up to 32 symbols)
MIDlet-JAR-URL (up to 256 sym-

906 Invalid
descriptor

Java ME Developer Guide
Chapter 4 - Downloading Applications

[28/202]

bols)
MIDlet-JAR_Size

Download
Failed

OTA JAR
Download

The received JAR size does not
match the size indicated

904 JAR Size Mis-
match

Cancelled:
<Icon>
<Filename>

OTA JAR
Download

User cancelled download 902 User Cancelled

Download
Failed

OTA JAR
Download

Browser lost connection with serv-
er
Certification path cannot be valid-
ated
JAD signature verification failed
Unknown error during JAD valida-
tion
See 'Details' field in the dialog for
information about specific error

903 Loss of Service

Insufficient
Storage

OTA JAR
Download

Insufficient data space to tempor-
arily store the JAR file

901 Insufficient
Memory

Application
Already Ex-
ists

OTA JAR
Download

MIDlet version numbers are
identical

905 Attribute Mis-
match

Different
Version Ex-
ists

OTA JAR
Download

MIDlet version on handset super-
cedes version being downloaded

Failed File
Corrupt

Installation Attributes are not identical to re-
spective JAD attributes

Insufficient
Storage

Installation Insufficient Program Space or
Data Space to install suite

901 Insufficient
Memory

Application
Error

Installation Class references non-existent
class or method
Security Certificate verification
failure
Checksum of JAR file is not equal
to Checksum in MIDlet-JAR-SHA
attribute
Application not authorized

Application
Expired

MIDlet
Launching

Security Certificates expired or re-
moved

Application
Error

MIDlet Exe-
cution

Authorization failure during MIDlet
execution
Incorrect MIDlet

Table 5 Error Logs

Java ME Developer Guide
Chapter 4 - Downloading Applications

[29/202]

5
Application

Management

The following sections describe the application management scheme for the MO-

TORAZR V3xx handset. This chapter will discuss the following:

• Downloading a JAR without a JAD
• MIDlet upgrade
• Installation and Deletion Status Reports

5.1 Downloading a JAR file without a
JAD

In Motorola's MIDP 2.0 implementation, a JAR file can be downloaded without a JAD.

In this case, the user clicks on a link for a JAR file, the file is downloaded, and con-

firmation will be obtained before the installation begins. The information presented is

obtained from the JAR manifest instead of the JAD.

5.2 MIDlet Upgrade

Rules from the JSR-118 (MIDP 2.0) will be followed to help determine if the data

from an old MIDlet should be preserved during a MIDlet upgrade. When these rules

cannot determine if the RMS should be preserved, the user will be given an option to

preserve the data.

Java ME Developer Guide
Chapter 5 - Application Management

[30/202]

• The data is saved if the new MIDlet-version is the same or newer, and if
the new MIDlet-data-space requirements are the same or more than the
current MIDlet.

• The data is not saved if the new MIDlet-data-space requirement is
smaller than the current MIDlet requirement.

• The data is not saved if the new MIDlet-version is older than the current
version.

If the data cannot be saved, the user will be warned about losing the data. If the

user proceeds, the application will be downloaded. If the user decides to save the

data from the current MIDlet, the data will be preserved during the upgrade and the

data will be made available for the new application. In any case, an unsigned MIDlet

will not be allowed to update a signed MIDlet.

5.3 Installation and Deletion Status
Reports

The status (success or failure) of an installation, upgrade, or deletion of a MIDlet

suite will be sent to the server according to the JSR-118 specification. If the status

report cannot be sent, the MIDlet suite will still be enabled and the user will be al-

lowed to use it. In some instances, if the status report cannot be sent, the MIDlet will

be deleted by operator's request. Upon successful deletion, the handset will send the

status code 912 to the MIDlet-Delete-Notify URL. If this notification fails, the MIDlet

suite will still be deleted. If this notification cannot be sent due to lack of network

connectivity, the notification will be sent at the next available network connection.

Refer to Table 6 for application management feature/class support for MIDP 2.0:

Feature/Class

Application upgrades performed directly through the AMS

When removing a MIDlet suite, the user will be prompted to confirm the entire MID-
let suite will be removed

Application Descriptor included the attribute MIDlet-Delete-Confirm, its value will be
included in the prompt

Prompt for user approval when the user has chosen to download an application that
is identical to the application currently in the handset. An older version cannot be
imnstalled.

Unauthorized MIDlets will not have access to any restricted function call

Java ME Developer Guide
Chapter 5 - Application Management

[31/202]

AMS will check the JAD for security indicated every time a download is initiated

Application descriptor or MIDlet fails the security check, the AMS will prevent the in-
stallation of that application and notify the user that the MIDlet could not be in-
stalled

Application descriptor and MIDlet pass the security check , the AMS will install the
MIDlet and grant it the permissions specified in the JAD

A method for launching Java application that maintains the same look and feel as
other features on the device will be provided

User will be informed of download and installation with a single progress indicator
and will be given an opportunity to cancel the process

User will be prompted to launch the MIDlet after installation

A method for creating shortcuts to Java applications will be provided.

A no forward policy on DRM issues, included but not limited to transferring the ap-
plication over-the-air, IRDA, Bluetooth, I/O Cables, External storage devices, etc
until further guidance is provided

Table 6 Application management feature

Java ME Developer Guide
Chapter 5 - Application Management

[32/202]

6
JSR-75 - PIM and

Fileconnection APIs

This chapter defines the JSR-75 APIs implementation requirements that shall replace

the earlier implemented Phonebook and Fileconnection APIs requirements, except for

the Recent Calls API that shall still be supported by RecentCallRecord, Recent-

CallDialed and RecentCallReceived classes.

NOTE: Java ME ™ PIM and Fileconnection APIs should be implemented on Java ME ™
platforms supporting CLDC 1.1 and MIDP 2.0 or higher.

6.1 PIM API

The primary goal of the PIM APIs is to provide access to Personal Information Man-

agement (PIM) data on Java ME ™ enabled devices. PIM data is defined as informa-

tion included in the address book, calendar application, and to do list applications.

This chapter still details requirements for implementing Personal Information Man-

agement (PIM) and Fileconnection APIs specified in JSR-75 for Java ME ™ enabled

mobile devices.

6.1.1 Requirements

The implementation should include support of the following packages, classes, and

interfaces with appropriate methods and fields of PIM API described in JSR-75 related

Java ME Developer Guide
Chapter 6 - JSR-75 - PIM and Fileconnection APIs

[33/202]

to javax.microedition.pim:

• javax.microedition.pim.PIM;
• javax.microedition.pim.RepeatRule;
• javax.microedition.pim.PIMException;
• javax.microedition.pim.FieldEmptyException;
• javax.microedition.pim.FieldFullException;
• javax.microedition.pim.UnsupportedFieldException;
• javax.microedition.pim.PIMItem;
• javax.microedition.pim.Contact;
• javax.microedition.pim.Event;
• javax.microedition.pim.PIMList;
• javax.microedition.pim.ContactList;
• javax.microedition.pim.EventList.

The implementation should include support of the following packages, classes, and

interfaces with appropriate methods and fields of FileConnection API described in

JSR-75, related to javax.microedition.io.file:

• javax.microedition.io.file.ConnectionClosedException;
• javax.microedition.io.file.IllegalModeException;
• javax.microedition.io.file.FileConnection;

Security Requirements Personal information read/write permissions should be sup-

ported by the device's native system:

• javax.microedition.pim.ContactList.read - should enable reading the
contact information available on the device (hereinafter just "contact
read permission")

• javax.microedition.pim.ContactList.write - should enable updating the
contact information available on the device (hereinafter just "contact
write permission")

• javax.microedition.pim.EventList.read - should enable reading the event
information available on the device (hereinafter just "event read
permission")

• javax.microedition.pim.EventList.write - should enable updating the
event information available on the device (hereinafter just "event write
permission")

The PIM permissions should be mapped to the function groups "User Data Read Cap-

ability" and "User Data Write Capability" depending on the read/write conditions.

These two groups and the permissions are in the following Table 7:

Java ME Developer Guide
Chapter 6 - JSR-75 - PIM and Fileconnection APIs

[34/202]

Function
Group

Trusted Third
Party

Untrusted Manufacturer Operator

User Data
Read Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

Always Ask Full Access Full Access

User Data
Write Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

Table 7 Permissions and Groups

The PIM permissions should prohibit granting to a MIDlet suite which does not re-

quest them explicitly in the attributes MIDlet -Permissions or MIDlet -Permissions -

Opt.

The PIM package allows handling three types of lists: events, contacts and to do lists.

Each one is stored in a specific database, respectively: event database, contact data-

base and to do database. These databases have specific information of each list.

6.1.2 Contact List

The contact database contains data items representing personal contact information

(like name, address, etc). The following features should be applied to the contact

list:

• The implementation should provide support for ContactList type of PIM
list as defined JSR-75.

• The implementation should provide a method to access an actual list of
the PIM ContactList type.

• The implementation should provide interface to manipulate actual
ContactList as specified in ContactList class section of JSR-75.

• The implementation should provide access to all available actual PIM
lists for the ContactList list type.

• At least the following fields should be supported : UID, NICKNAME, TEL,
EMAIL, FORMATTED_NAME, BIRTHDAY, ADDR_STREET, ADDR_LOCALI
TY, ADDR_REGION, ADDR_POSTALCODE, ADDR_COUNTRY,
ADDR_EXTRA, PHOTO_URL.

Java ME Developer Guide
Chapter 6 - JSR-75 - PIM and Fileconnection APIs

[35/202]

• At least the following attributes should be supported: ATTR_MOBILE,
ATTR_HOME, ATTR_WORK, ATTR_OTHER, ATTR_FAX, ATTR_PAGER.

• The location of the contact information (i.e. SIM card or Phone Memory)
shall be defined by separate dedicated field content value.

6.1.3 Event List

The event database contains entries related on events (e.g. birthday). The following

features should be applied to the contact list:

• The implementation should provide support for EventList type of PIM list
as defined JSR-75.

• The implementation should provide a method to access an actual list of
the PIM EventList type.

• The implementation should provide interface to manipulate actual
EventList as specified in EventList class section of JSR-75.

• The implementation should provide access to all available actual PIM
lists for the EventList list type.

• At least the following Event fields should be supported : SUMMARY, UID,
END, START, ALARM.

• At least the following repeat rules fields should be supported:
FREQUENCY, DAY_IN_WEEK, WEEK_IN_MONTH, DAY_IN_MONTH.

• At least one attribute should be supported: ATTR_NONE

6.1.4 To Do List

The To Do database contains entries to tasks that must be executed on determined

data and times.

6.2 Fileconnection API

The primary goal of the FileConnection API is to provide access to file systems on

devices and/or mounted removable memory cards supported by Motorola devices.

6.2.1 Requirements

Fileconnection API requirements will be replaced with the requirements below.

Java ME Developer Guide
Chapter 6 - JSR-75 - PIM and Fileconnection APIs

[36/202]

• The implementation should provide a security model for accessing the
FileConnection APIs as defined in JSR-75.

• Fileconnection API should be accessible to manufacturer and operator
domain MIDlets subject to security restrictions.

• Connection API should prohibit the modification or removing the files
and directories marked with the system attribute.

• Call to System.getProperty with key
microedition.io.file.FileConnection.version should return the
implementation version number starting with 1.0.

Files read/write permissions should be supported by the device's native system:

• javax.microedition.io.Connector.file.read - should enable reading from
the file system (hereinafter just "read permission").

• javax.microedition.io.Connector.file.write - should enable writing to the
file system (hereinafter just "write permission").

The "read permission" and "write permission" should be mapped to the function

groups "User Data Read Capability" and "User Data Write Capability" respectively.

These two groups and permissions are in Table 8:

Function
Group

Trusted Third
Party

Untrusted Manufacturer Operator

User Data
Read Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

Always Ask Full Access Full Access

User Data
Write Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

Table 8 Groups and permissions for

The Fileconnection permissions should be prohibited for granting to a MIDlet suite

which doesn't request them explicitly in the attributes MIDlet-Permissions or MIDlet-

Permissions -Opt.

If the permission is not granted, a SecurityException shall be thrown by the following

methods: open, openDataInputStream, openInputStream, setFileConnection, list-

Roots, openDataOutputStream, openOutputStream; PIMList.items(all methods),

PIMList.itemsByCategory, PIMList.addCategory, PIMList.deleteCategory,

PIMList.renameCategory, PIMItem.commit, ContactList.removeContact, Event-

List.removeEvent, EventList.items.

Java ME Developer Guide
Chapter 6 - JSR-75 - PIM and Fileconnection APIs

[37/202]

The following javax.microedition.io.Connector methods should check for the "read

permission":

open("file:///...");
open("file:///...", Connector.READ);
open("file:///...", Connector.READ_WRITE);
openDataInputStream();
openInputStream()

The following javax.microedition.io.file.FileConnection methods should check for the

"read permission":

• setFileConnection, when instance opened with READ;
• setFileConnection, when instance opened with READ_WRITE.

The following javax.microedition.io.Connector methods should check for the "write

permission":

open("file:///...");
open("file:///...", Connector.WRITE);
open("file:///...", Connector.READ_WRITE);
openDataOutputStream();
openOutputStream();
openOutputStream(long byteOffset)

The following javax.microedition.io.file.FileConnection methods should check for the

"write permission":

• setFileConnection, when instance opened with WRITE;
• setFileConnection, when instance opened with READ_WRITE.

The bottom line prompt in the permission request dialog should include the name of

the file or directory only for those protected API calls that have this information spe-

cified as a parameter.

The prompt prefix should be "<File Location>/<File Name>" for the following

methods:

open; openDataInputStream;
openInputStream;
openDataOutputStream;
openOutputStream.

Java ME Developer Guide
Chapter 6 - JSR-75 - PIM and Fileconnection APIs

[38/202]

File Location would represent either:

• "Phone" (when the file is stored on the phone).
Ex: open("file:///phone/...");

• "Card" (when the file is stored on a MMC, SD, T-Flash or other
card-related media).

Ex: open("file:///SD/...");

Java ME Developer Guide
Chapter 6 - JSR-75 - PIM and Fileconnection APIs

[39/202]

7
JSR-82 - Bluetooth API

7.1 Overview

JSR-82 covers the establishment of connections between devices for such applica-

tions as peer-to-peer gaming and Bluetooth pen use.

There are two new requirements from this API. The package is re-

quired to establish general Bluetooth connections. The package is re-

quired to provide Object Exchange support over Bluetooth and other transports. Be-

cause OBEX is not limited to Bluetooth only, it resides as a separate package, but

must be supported by this API.

7.2 JSR-82 Bluetooth API

The complete requirements are defined in Java™ APIs for Bluetooth™ Wireless Tech-

nology (JSR-82). The requirements listed here are a summary and specify how the

API relates to the native Bluetooth implementation on the phone.

7.2.1 System Requirements

JSR-82 utilizes Bluetooth for data connections only. The following protocols must be

supported:

• L2CAP
• RFCOMM
• SDP

Java ME Developer Guide
Chapter 7 - JSR-82 - Bluetooth API

[40/202]

• OBEX
OBEX is a separate API from the core Bluetooth API
() and is a part of the package.

In addition, the following Bluetooth profiles must be supported:

• Generic Access Profile (GAP)
• Service Discovery Application Profile (SDAP)
• Serial Port Profile (SPP)
• Generic Object Exchange Profile (GOEP)

7.2.2 Bluetooth Control Center

The JSR-82 API requires that a Bluetooth Control Center (BCC) be in place to control

the Bluetooth connection and be a repository for local device settings.

According to the API, the following are features the BCC must support:

• A list of remote Bluetooth devices (not necessarily in the vicinity) that
are already known to the local Bluetooth device

• A list of remote Bluetooth devices (not necessarily in the vicinity) that
are trusted by the local Bluetooth device

• A mechanism to bond two devices trying to connect for the first time
• A mechanism to provide authorization of connection requests
• The base security settings of the local device, including the security

modes defined in the Bluetooth specification

7.2.3 Device Property Table

Table 9 lists the Motorola Bluetooth device properties for current products. These

device properties must be available to the MIDlet suite.

Device Property Description

bluetooth.api.version The version of the Java APIs for Bluetooth wire-
less technology that is supported. For this ver-
sion it will be set to "1.0".

bluetooth.l2cap.receiveMTU.max The maximum ReceiveMTU size in bytes suppor-
ted in L2CAP. The string will be in Base 10 di-
gits, e.g., "672". This value is product depend-
ent. The maximum value is 64 Kb.

bluetooth.connected.devices.max The maximum number of connected devices
supported (includes parked devices). The string

Java ME Developer Guide
Chapter 7 - JSR-82 - Bluetooth API

[41/202]

will be in Base10 digits. This value is product de-
pendent.

bluetooth.connected.inquiry Is inquiry allowed during a connection? Valid
values are either "true" or "false". This value is
product dependent.

bluetooth.connected.page Is paging allowed during a connection? Valid val-
ues are either "true" or "false". This value is
product dependent.

bluetooth.connected.inquiry.scan Is inquiry scanning allowed during connection?
Valid values are either "true" or "false". This
value is product dependent.

bluetooth.connected.page.scan Is page scanning allowed during connection?
Valid values are either "true" or "false". This
value is product dependent.

bluetooth.master.switch Is master/slave switch allowed? Valid values are
either "true" or "false". This value is product de-
pendent.

bluetooth.sd.trans.max Maximum number of concurrent service discov-
ery transactions. The string will be in Base10 di-
gits. This value is product dependent.

bluetooth.sd.attr.retrievable.max Maximum number of service attributes to be re-
trieved per service record. The string will be in
Base10 digits. This value is product dependent.

Table 9 Motorola Bluetooth device properties

7.2.4 Service Registration

Service Registration is the portion of the BCC that controls the Service Discovery

Database (SDDB). The SDDB is a list of available services on the local device. Ser-

vices registered in the SDDB by a MIDlet will be removed when the connection noti-

fier is closed or when the MIDlet terminates.

The implementation must support run-before-connect services.

Connectable Mode

The following rules must be supported while the phone is in connectable mode:

Rules:

Java ME Developer Guide
Chapter 7 - JSR-82 - Bluetooth API

[42/202]

• In connectable mode, the Bluetooth device periodically listens for
connection requests.

• The Bluetooth device will respond according to security settings and
service availability for requested connection.

Non-Connectable Mode

In non-connectable mode, the Bluetooth device is neither discoverable nor connect-

able.

7.2.5 Device Management

Device Management describes the local settings involved that control how the local

device responds to external requests.

Generic Access Profile (GAP)

These four GAP classes must be supported by the API:

• LocalDevice contains control settings of the local Bluetooth device.
Settings can be read and changed.

• RemoteDevice contains information (i.e. Bluetooth address and friendly
name) about a remote Bluetooth device.

• DeviceClass contains values of the device type and types of services the
device supports.

• BluetoothStateException is an exception that is called when a request
cannot be handled because of the device's state.

Security

Security must be set or controlled by the API. Parameters that are available to be set

are:

• authentication
• encryption
• authorization
• master (for master/slave switch)

Java ME Developer Guide
Chapter 7 - JSR-82 - Bluetooth API

[43/202]

7.2.6 Communication

Communication covers establishing connections to other devices via specific

Bluetooth profiles or protocols. Bluetooth connections established using this API are

based on the following three protocols:

• RFCOMM
• L2CAP
• OBEX

Additionally, other profiles can be built upon these three basic protocols, but the pro-

files would have to be emulated by the MIDlet suite.

The implementation must support opening a connection with either a server connec-

tion URL or a client connection URL, with the default mode of READ_WRITE.

Serial Port Profile (SPP)

General Rules:

• SPP uses RFCOMM as its protocol.
• Only one RFCOMM session can exist between any pair of devices at any

time.
• Negotiation of connection parameters and flow control between two

Bluetooth devices must be handled automatically by the SPP connection
implementation.

• A SPP server application must initialize the services it offers and register
those services in the SDDB.

• Before an SPP client can establish a connection to an SPP service, it
must discover that service via service discovery.

• A service discovery is not required if the SPP service had been
discovered previously.

Object Exchange (OBEX)

OBEX is a protocol used for "pushing" and "pulling" objects (i.e. files or data) from

one device to another. OBEX is not limited to Bluetooth only. OBEX can be used over

Bluetooth, IrDA, and USB.

Java ME Developer Guide
Chapter 7 - JSR-82 - Bluetooth API

[44/202]

Rules:

• The following OBEX operations MUST be supported by the API:
CONNECT
PUT
GET
DISCONNECT
SETPATH
ABORT
CREATE-EMPTY
PUT-DELETE

• OBEX MUST support Bluetooth
• OBEX MAY support the following transports (where available)

IrDA
TCP/IP

• OBEX must support authentication.

7.2.7 Security Policy

Applications MUST be granted permission to perform any requested operation using

this API. Table 10 assigns individual permission to the function groups:

Bluetooth API JSR-82

Permission Protocol Function

javax.bluetooth Bluetooth Data Networking

javax.microedition.io. Con-
nector.bluetooth .client

Bluetooth Data Networking

javax.microedition.io. Con-
nector.bluetooth. server

Bluetooth Data Networking

javax.microedition.io. Con-
nector.obex.client

Bluetooth Data Networking

javax.microedition.io. Con-
nector.obex.server

Bluetooth Data Networking

Table 10 Security Policy

7.2.8 External Events

The following interruptions must be handled by kvm and MIDlet suite.

Java ME Developer Guide
Chapter 7 - JSR-82 - Bluetooth API

[45/202]

Incoming Call

Rules:

Upon receiving an incoming call:

• The Bluetooth connection shall remain active when the MIDlet is
suspended. The Bluetooth connection shall be terminated when the user
Ends the MIDlet.

Incoming Message

Rules:

Upon receiving an incoming call:

• The Bluetooth connection shall remain active when the MIDlet is
suspended. The Bluetooth connection shall be terminated when the user
Ends the MIDlet.

7.2.9 Alarm & Datebook Behaviour

Rules:

The Alarm & Datebook behavior when a MIDlet is running:

• The Bluetooth connection shall remain active when the MIDlet is
suspended. The Bluetooth connection shall be terminated when the user
Ends the MIDlet.

Java ME Developer Guide
Chapter 7 - JSR-82 - Bluetooth API

[46/202]

7.2.10 Pressing of End Key

Figure 4 Pressing of End Key

Rules:

• Pressing the END key shall:
Terminate any ongoing Bluetooth connection.

• If possible, notify any other device that the session will be
disconnected.

• End MIDlet suite and kvm and return phone to Idle.

7.2.11 Hardware Requirements

Requires Java ME and Bluetooth wireless technology for the javax.bluetooth support.

Requires Java ME and at least one of the following: Bluetooth, IrDA, USB, or HTTP for

javax.obex support.

7.2.12 Interoperability Requirements

SDK Developer/Style Guide Requirements:

The following table lists the suggested types of screens and text used for user feed-

back.

Examples of each screen type are provided below.

Java ME Developer Guide
Chapter 7 - JSR-82 - Bluetooth API

[47/202]

Figure 5 Examples Screens

Event Screen Text LSK RSK Title

BCC List N/A BACK SELECT "Bluetooth
Link"

Discoverable Dialog "Discover-
able..."
<Timer
Countdown>

CANCEL RETURN N/A

Bond Re-
quest

Dialog "Bond with
<device>?"

YES NO N/A

Invalid PIN Transient "Invalid PIN" N/A N/A N/A

Service Dis-
covery

Dialog "Scanning..."
"Devices
found: <#>"
<Progress
Meter>

CANCEL STOP N/A

Name Dis-
covery

Dialog "Retriev-
ing..."
"Device
Names: x /
#"

CANCEL STOP N/A

Device His-
tory

List N/A BACK LINK "Bluetooth
Link"

No Devices
Found

Transient "No Devices
Found"

N/A N/A N/A

New Devices List N/A BACK LINK "Scan Res-
ults"

PIN Entry Editor N/A DELETE OK "Enter PIN"

Table 11 Interoperability Requirements

Java ME Developer Guide
Chapter 7 - JSR-82 - Bluetooth API

[48/202]

8
MIDP 2.0 Security

Model

The following sections describe the MIDP 2.0 Default Security Model for the MO-

TORAZR V3xx handset. The chapter discusses the following topics:

• Untrusted MIDlet suites and domains
• Trusted MIDlet suites and domains
• Permissions
• Certificates

For a detailed MIDP 2.0 Security process diagram, refer to the MOTODEV website

(http://developer.motorola.com).

Refer to Table 12 for the default security feature/class support for MIDP 2.0:

Feature/Class Implementation

All methods for the Certificate interface in the
javax.microedition.pki package

Supported

All fields, constructors, methods, and inherited
methods for the CertificateException class in the
javax.microedition.pki package

Supported

A MIDlet suite will be authenticated as stated in
Trusted MIDletSuites using X.509 of MIDP 2.0
minus all root certificates processes and references

Supported

Verification of SHA-1 signatures with a SHA-1 mes-
sage digest algorithm

Supported

Only one signature in the MIDlet-Jar-RSA-SHA1 at-
tribute

Supported

All methods for the Certificate interface in the
javax.microedition.pki package

Supported

All fields, constructors, methods, and inherited
methods for the CertificateException class in the

Supported

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[49/202]

http://developer.motorola.com

javax.microedition.pki package

Will preload two self authorizing Certificates Supported

All constructors, methods, and inherited methods
for the MIDletStateChangeException class in the
javax.microedition.midlet package

Supported

All constructors and inherited methods for the MID-
letStateChangeException class in the
javax.microedition.midlet package

Supported

Table 12 MIDP 2.0 Feature/Class

Please note the domain configuration is selected upon agreement with the operator.

8.1 Untrusted MIDlet Suites

A MIDlet suite is untrusted when the origin or integrity of the JAR file cannot be

trusted by the device.

The following are conditions of untrusted MIDlet suites:

• If one or more errors occur in the process of verifying if a MIDlet suite is
trusted, then the MIDlet suite will be rejected.

• Untrusted MIDlet suites will execute in the untrusted domain where
access to protected APIs or functions is not allowed or allowed with
explicit confirmation from the user.

8.2 Untrusted Domain

Any MIDlet suites that are unsigned will belong to the untrusted domain. Untrusted

domains handsets will allow, without explicit confirmation, untrusted MIDlet suites

access to the following APIs:

• javax.microedition.rms - RMS APIs
• javax.microedition.midlet - MIDlet Lifecycle APIs
• javax.microedition.lcdui - User Interface APIs
• javax.microedition.lcdui.game - Gaming APIs
• javax.microedition.media - Multimedia APIs for sound playback
• javax.microedition.media.control - Multimedia APIs for sound playback

The untrusted domain will allow, with explicit user confirmation, untrusted MIDlet

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[50/202]

suites access to the following protected APIs or functions:

• javax.microedition.io.HttpConnection - HTTP protocol
• javax.microedition.io.HttpsConnection - HTTPS protocol

8.3 Trusted MIDlet Suites

Trusted MIDlet suites are MIDlet suites in which the integrity of the JAR file can be

authenticated and trusted by the device, and bound to a protection domain. The MO-

TORAZR V3xx will use x.509PKI for signing and verifying trusted MIDlet suites.

Security for trusted MIDlet suites will utilize protection domains. Protection domains

define permissions that will be granted to the MIDlet suite in that particular domain.

A MIDlet suite will belong to one protection domain and its defined permissible ac-

tions. For implementation on the MOTORAZR V3xx, the following protection domains

should exist:

• Manufacturer - permissions will be marked as "Allowed" (Full Access).
Downloaded and authenticated manufacturer MIDlet suites will perform
consistently with MIDlet suites pre-installed by the manufacturer.

• Operator - permissions will be marked as "Allowed" (Full Access).
Downloaded and authenticated operator MIDlet suites will perform
consistently with other MIDlet suites installed by the operator.

• 3rd Party - permissions will be marked as "User". User interaction is
required for permission to be granted. MIDlets do not need to be aware
of the security policy except for security exceptions that will occur when
accessing APIs.

• Untrusted - all MIDlet suites that are unsigned will belong to this
domain.

Permissions within the above domains will authorize access to the protected APIs or

functions. These domains will consist of a set of "Allowed" and "User" permissions

that will be granted to the MIDlet suite.

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[51/202]

8.4 Permission Types concerning the
Handset

A protection domain will consist of a set of permissions. Each permission will be "Al-

lowed" or "User", not both. The following is the description of these sets of permis-

sions as they relate to the handset:

• "Allowed" (Full Access) permissions are any permission that explicitly
allow access to a given protected API or function from a protected
domain. Allowed permissions will not require any user interaction.

• "User" permissions are any permission that requires a prompt to be
given to the user and explicit user confirmation in order to allow the
MIDlet suite access to the protected API or function.

8.5 User Permission Interaction Mode

User permission for the MOTORAZR V3xx handsets is designed to allow the user the

ability to either deny or grant access to the protected API or function using the fol-

lowing interaction modes (bolded term(s) is the prompt displayed to the user):

• blanket - grants access to the protected API or function every time it is
required by the MIDlet suite until the MIDlet suite is uninstalled or the
permission is changed by the user. (Ask Once Per App)

• session - grants access to the protected API or function every time it is
required by the MIDlet suite until the MIDlet suite is terminated. This
mode will prompt the user on or before the final invocation of the
protected API or function. (Ask Once Per App)

• oneshot - will prompt the user each time the protected API or function is
requested by the MIDlet suite. (Always Ask)

• No - will not allow the MIDlet suite access to the requested API or
function that is protected. (No Access)

The prompt No, Ask Later will be displayed during runtime dialogs and will enable

the user to not allow the protected function to be accessed this instance, but to ask

the user again the next time the protected function is called.

User permission interaction modes will be determined by the security policy and

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[52/202]

device implementation. User permission will have a default interaction mode and a

set of other available interaction modes. The user should be presented with a choice

of available interaction modes, including the ability to deny access to the protected

API or function. The user will make their decision based on the user-friendly descrip-

tion of the requested permissions provided for them.

The Permissions menu allows the user to configure permission settings for each

MIDlet when the VM is not running. This menu is synchronized with available run-

time options.

8.6 Implementation based on
Recommended Security Policy

The required trust model, the supported domain, and their corresponding structure

will be contained in the default security policy for Motorola's implementation for MIDP

2.0. Permissions will be defined for MIDlets relating to their domain. User permission

types, as well as user prompts and notifications, will also be defined.

8.7 Trusted 3rd Party Domain

A trusted third party protection domain root certificate is used to verify third party

MIDlet suites. These root certificates will be mapped to a location on the handset

that cannot be modified by the user. The storage of trusted third party protection do-

main root certificates and operator protection domain root certificates in the handset

is limited to 12 certificates.

The user will be able to enable any disabled trusted third party protection domain

root certificates. If disabled, the third party domain will no longer be associated with

this certificate. Permissions for trusted third party domain will be "User" permissions;

specifically user interaction is required in order for permissions to be granted.

Table 13 shows the specific wording to be used in the first line of the above prompt:

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[53/202]

Protected Function-
ality

Top Line of Prompt Right Softkey

Data Network Use data network? OK

Messaging Use messaging? OK

App Auto-Start Launch <MIDlet names>? OK

Connectivity Options Make a local connection? OK

User Data Read Cap-
ability

Read phonebook data? OK

User Data Write Cap-
ability

Modify phonebook data? OK

App Data Sharing Share data between apps? OK

Table 13 Trusted 3rd Party Domain

The radio button messages will appear as follows and mapped to the permission

types as shown in Table 14:

MIDP 2.0 Permission
Types

Runtime Dialogs UI Permission Prompts

Oneshot Yes, Always Ask Always Ask

Session Yes, Ask Once Ask Once per App

Blanket Yes, Always Grant Ac-
cess

Never Ask

no access No, Never Grant Ac-
cess

No, Access

Table 14 MIDP 2.0 Permission Types

The above runtime dialog prompts will not be displayed when the protected function

is set to "Allowed" (or full access), or if that permission type is an option for that pro-

tected function according to the security policy table flexed in the handset.

8.8 Security Policy for Protection
Domains

Table 15 lists the security policy by function groups for each domain. Under each do-

main are the settings allowed for that function within the given domain, while the

bolded setting is the default setting. The Function Group is what will be displayed to

the user when access is requested and when modifying the permissions in the menu.

The default setting is the setting that is effective at the time the MIDlet suite is first

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[54/202]

invoked and remains in effect until the user changes it.

Permissions can be implicitly granted or not granted to a MIDlet based on the config-

uration of the domain the MIDlet is bound to. Specific permissions cannot be defined

for this closed class. A MIDlet has either been developed or not been developed to

utilize this capability. The other settings are options the user is able to change from

the default setting.

Function
Group

Trusted
Third Party

Untrusted Manufacturer Operator

Data Net-
work

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, No
Acess

Full Access Full Access

Messaging Always
Ask, No Ac-
cess

Always
Ask, No Ac-
cess

Full Access Full Access

App Auto-
Start

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, No
Acess

Full Access Full Access

Connectivity
Options

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Full Access Full Access

User Data
Read Capab-
ility

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always Ask Full Access Full Access

User Data
Read Capab-
ility

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always Ask Full Access Full Access

User Data Ask once No Access Full Access Full Access

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[55/202]

Write Capab-
ility

Per
App, Always
Ask, Never
Ask, No
Access

Multimedia
Recording

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

No Access Full Access Full Access

Table 15 Security Policy for Protection Domains

Table 16 shows individual permissions assigned to the function groups shown in the

above table .

MIDP 2.0 Specific Functions

Permission Protocol Function Group

javax.microedition.io.Connector.htt
p

http Data Network

javax.microedition.io.Connector.htt
ps

https Data Network

javax.microedition.io.Connector.dat
agram

datagram Data Network

javax.microedition.io.Connector.
datagramreceiver

datagram server (w/o
host)

Data Network

javax.microedition.io.Connector.soc
ket

socket Data Network

javax.microedition.io.Connector.ser
versocket

server socket (w/ o host) Data Network

javax.microedition.io.Connector.ssl ssl Data Network

javax.microedition.io.Connector.co
mm

comm Connectivity Op-
tions

javax.microedition.io.PushRegistry All App Auto-Start

Wireless Messaging API - JSR-120

javax.wireless.messaging.sms.send Messaging

javax.wireless.messaging.sms.recei
ve

Messaging

javax.microedition.io.Connector.sm
s

Messaging

javax.wireless.messaging.cbs.receiv
e

Messaging

Multimedia Recording

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[56/202]

javax.microedition.media.RecordCo
ntrol.
startRecord

RecordControl.startRecord
()

Multimedia Re-
cording

Table 16 MIDP 2.0 Specific Functions

Each phone call or messaging action will present the user with the destination phone

number before the user approves the action. The handset will ensure that I/O access

from the Mobile Media API follows the same security requirements as the Generic

Connection Framework.

8.9 Displaying of Permissions to the
User

Permissions will be divided into function groups and two high-level categories, with

the function groups being displayed to the user. These two categories are Network/

Cost related and User/Privacy related.

The Network/Cost related category will include net access, messaging, application

auto invocation, and local connectivity function groups.

The user/privacy related category will include multimedia recording, read user data

access, and the write user data access function groups. These function groups will be

displayed in the settings of the MIDlet suite.

Only 3rd party and untrusted permissions can be modified or accessed by the user.

Operator and manufacturer permissions will be displayed for each MIDlet suite, but

cannot be modified by the user.

8.10 Trusted MIDlet Suites Using
x.509 PKI

Using the x.509 PKI (Public Key Infrastructure) mechanism, the handset will be able

to verify the signer of the MIDlet suite and bind it to a protection domain which will

allow the MIDlet suite access to the protected API or function. Once the MIDlet suite

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[57/202]

is bound to a protection domain, it will use the permission defined in the protection

domain to grant the MIDlet suite access to the defined protected APIs or functions.

The MIDlet suite is protected by signing the JAR file. The signature and certificates

are added to the application descriptor (JAD) as attributes and will be used by the

handset to verify the signature. Authentication is complete when the handset uses

the root certificate (found on the handset) to bind the MIDlet suite to a protection

domain (found on the handset).

8.11 Signing a MIDlet Suite

The default security model involves the MIDlet suite, the signer, and public key certi-

ficates. A set of root certificates are used to verify certificates generated by the

signer. Specially designed certificates for code signing can be obtained from the

manufacturer, operator, or certificate authority. Only root certificates stored on the

handset will be supported by the MOTORAZR V3xx handset.

8.12 Signer of MIDlet Suites

The signer of a MIDlet suite can be the developer or an outside party that is respons-

ible for distributing, supporting, or the billing of the MIDlet suite. The signer will have

a public key infrastructure and the certificate will be validated to one of the protec-

tion domain root certificates on the handset. The public key is used to verify the sig-

nature of JAR on the MIDlet suite, while the public key is provided as a x.509 certi-

ficate included in the application descriptor (JAD).

8.13 MIDlet Attributes Used in Signing
MIDlet Suites

Attributes defined within the manifest of the JAR are protected by the signature. At-

tributes defined within the JAD are not protected or secured. Attributes that appear

in the manifest (JAR file) will not be overridden by a different value in the JAD for all

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[58/202]

trusted MIDlets. If a MIDlet suite is to be trusted, the value in the JAD will equal the

value of the corresponding attribute in the manifest (JAR file), if not, the MIDlet suite

will not be installed.

The attributes MIDlet-Permissions (-OPT) are ignored for unsigned MIDlet suites. The

untrusted domain policy is consistently applied to the untrusted applications. It is

legal for these attributes to exist only in JAD, only in the manifest, or in both loca-

tions. If these attributes are in both the JAD and the manifest, they will be identical.

If the permissions requested in the HAD are different than those requested in the

manifest, the installation must be rejected.

Methods:

1. MIDlet.getAppProperty will return the attribute value from the manifest
(JAR) if one id defined. If an attribute value is not defined, the attribute
value will return from the application descriptor (JAD) if present.

8.14 Creating the Signing Certificate

The signer of the certificate will be made aware of the authorization policy for the

handset and contact the appropriate certificate authority. The signer can then send

its distinguished name (DN) and public key in the form of a certificate request to the

certificate authority used by the handset. The CA will create a x.509 (version 3) cer-

tificate and return to the signer. If multiple CAs are used, all signer certificates in the

JAD will have the same public key.

8.15 Inserting Certificates into JAD

When inserting a certificate into a JAD, the certificate path includes the signer certi-

ficate and any necessary certificates while omitting the root certificate. Root certific-

ates will be found on the device only.

Each certificate is encoded using base 64 without line breaks, and inserted into the

application descriptor as outlined below per MIDP 2.0.

MIDlet-Certificate-<n>-<m>: <base64 encoding of a certificate>

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[59/202]

Note the following:

<n>:= a number equal to 1 for first certification path in the descriptor, or 1 greater

than the previous number for additional certification paths. This defines the sequence

in which the certificates are tested to see if the corresponding root certificate is on

the device.

<m>:= a number equal to 1 for the signer's certificate in a certification path or 1

greater than the previous number for any subsequent intermediate certificates.

8.16 Creating the RSA SHA-1
signature of the JAR

The signature of the JAR is created with the signer's private key according to the

EMSA-PKCS1 -v1_5 encoding method of PKCS #1 version 2.0 standard from RFC

2437. The signature is base64 encoded and formatted as a single MIDlet-

Jar-RSA-SHA1 attribute without line breaks and inserted into the JAD.

It will be noted that the signer of the MIDlet suite is responsible for its protection do-

main root certificate owner for protecting the domain's APIs and protected functions;

therefore, the signer will check the MIDlet suite before signing it. Protection domain

root certificate owners can delegate signing MIDlet suites to a third party and in

some instances, the author of the MIDlet.

8.17 Authenticating a MIDlet Suite

When a MIDlet suite is downloaded, the handset will check the JAD attribute MIDlet-

Jar-RSA-SHA1. If this attribute is present, the JAR will be authenticated by verifying

the signer certificates and JAR signature as described. MIDlet suites with application

descriptors that do not have the attributes previously stated will be installed and in-

voked as untrusted. For additional information, refer to the MIDP 2.0 specification.

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[60/202]

8.18 Verifying the Signer Certificate

The signer certificate will be found in the application descriptor of the MIDlet suite.

The process for verifying a Signer Certificate is outlined in the steps below:

1. Get the certification path for the signer certificate from the JAD
attributes MIDlet-Certificate-1<m>, where <m> starts at 1 and is
incremented by 1 until there is no attribute with this name. The value of
each attribute is a base64 encoded certificate that will need to be
decoded and parsed.

2. Validate the certification path using the basic validation process as
described in RFC2459 using the protection domains as the source of the
protection domain root certificates.

3. Bind the MIDlet suite to the corresponding protection domain that
contains the protection domain root certificate that validated the first
chain from signer to root.

4. Begin installation of MIDlet suite.
5. If attribute MIDlet-Certificate-<n>-<m> with <n> is greater than 1 are

present and full certification path could not be established after verifying
MIDlet-Certificate-<1>-<m> certificates, then repeat step 1 through 3
for the value <n> greater by 1 than the previous value.

Table 17 describes actions performed upon completion of signer certificate verifica-

tion:

Result Action

Attempted to validate <n> paths. No
public keys of the issuer for the certific-
ate can be found, or none of the certific-
ate paths can be validated.

Authentication fails, JAR installation is not
allowed.

More than one full certification path is es-
tablished and validated.

Implementation proceeds with the signa-
ture verification using the first success-
fully verified certificate path for authen-
tication and authorization.

Only one certification path established
and validated.

implementation proceeds with the signa-
ture verification.

Table 17 Actions performed of signer certificate verification

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[61/202]

8.19 Verifying the MIDlet Suite JAR

The following are the steps taken to verify the MIDlet suite JAR:

1. Get the public key from the verified signer certificate.
2. Get the MIDlet-JAR-RSA-SHA1 attribute from the JAD.
3. Decode the attribute value from base64 yielding a PKCS #1 signature,

and refer to RFC 2437 for more detail.
4. Use the signer's public key, signature, and SHA-1 digest of JAR to verify

the signature. If the signature verification fails, reject the JAD and
MIDlet suite. The MIDlet suite will not be installed or allow MIDlets from
the MIDlet suite to be invoked as shown in Table 17

5. Once the certificate, signature, and JAR have been verified, the MIDlet
suite is known to be trusted and will be installed (authentication process
will be performed during installation).

Table 18 is a summary of MIDlet suite verification including dialog prompts:

Initial State Verification Result

JAD not present, JAR
downloaded

Authentication can not be performed, will install JAR.
MIDlet suite is treated as untrusted. The following error
prompt will be shown, "Application installed, but may
have limited functionality."

JAD present, but JAR is un-
signed

Authentication can not be performed, will install JAR.
MIDlet suite is treated as untrusted. The following error
prompt will be shown, "Application installed, but may
have limited functionality."

JAR signed but no root cer-
tificate present in the key-
store to validate the certi-
ficate chain

Authentication can not be performed. JAR installation
will not be allowed. The following error prompt will be
shown, "Root certificate missing. Application not in-
stalled."

JAR signed, a certificate on
the path is expired

Authentication can not be completed. JAR installation
will not be allowed. The following error prompt will be
shown, "Expired Certificate. Application not installed."

JAR signed, a certificate re-
jected for reasons other
than expiration

JAD rejected, JAR installation will not be allowed. The
following error prompt will be shown, "Authentication
Error. Application not installed."

JAR signed, certificate path
validated but signature
verification fails

JAD rejected, JAR installation will not be allowed. The
following error prompt will be shown, "Authentication
Error. Application not installed."

Parsing of security attrib-
utes in JAD fails

JAD rejected, JAR installation will not be allowed. The
following error prompt will be shown, "Failed Invalid
File."

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[62/202]

JAR signed, certificate path
validated, signature veri-
fied

JAR will be installed. The following prompt will be
shown, "Installed."

Table 18 Summary of MIDlet suite verification

8.20 Carrier Specific Security Model

The MIDP 2.0 security model will vary based on carrier requests. Contact the carrier

for specifics.

Java ME Developer Guide
Chapter 8 - MIDP 2.0 Security Model

[63/202]

9
JSR-120 - Wireless

Messaging API

9.1 Wireless Messaging API (WMA)

Motorola has implemented certain features that are defined in the Wireless Mes-

saging API (WMA) 1.0. The complete specification document is defined in JSR-120.

The JSR-120 specification states that developers can be provided access to send (MO

- mobile originated) and receive (MT - mobile terminated) SMS (Short Message Ser-

vice) on the target device.

A simple example of the WMA is the ability of two Java ME applications using SMS to

communicate game moves running on the handset. This can take the form of chess

moves being passed between two players via the WMA.

Motorola in this implementation of the specification supports the following features.

• Creating an SMS
• Sending an SMS
• Receiving an SMS
• Viewing an SMS
• Deleting an SMS

Java ME Developer Guide
Chapter 9 - JSR-120 - Wireless Messaging API

[64/202]

9.2 SMS Client Mode and Server Mode
Connection

The Wireless Messaging API is based on the Generic Connection Framework (GCF),

which is defined in the CLDC specification 1.1. The use of the "Connection" frame-

work, in Motorola's case is " ".

The can be opened in either server or client mode. A server con-

nection is opened by providing a URL that specifies an identifier (port number) for an

application on the local device for incoming messages.

Messages received with this identifier will then be delivered to the application by this

connection. A server mode connection can be used for both sending and receiving

messages. A client mode connection is opened by providing a URL which points to

another device. A client mode connection can only be used for sending messages.

9.3 SMS Port Numbers

When a port number is present in the address, the TP-User-Data of the SMS will con-

tain a User-Data-Header with the application port addressing scheme information

element. When the recipient address does not contain a port number, the TP-

User-Data will not contain the application port addressing header. The Java ME

MIDlet cannot receive this kind of message, but the SMS will be handled in the usual

manner for a standard SMS to the device.

When a message identifying a port number is sent from a server type

, the originating port number in the message is set to the port number of the

. This allows the recipient to send a response to the message

that will be received by this .

However, when a client type is used for sending a message with

Java ME Developer Guide
Chapter 9 - JSR-120 - Wireless Messaging API

[65/202]

a port number, the originating port number is set to an implementation specific value

and any possible messages received to this port number are not delivered to the

Please refer to the sections A.4.0 and A.6.0 of the JSR-120.

When a MIDlet in server mode requests a port number (identifier) to use and it is the

first MIDlet to request this identifier it will be allocated. If other applications apply for

the same identifier then an will be thrown when an attempt to open

is made. If a system application is using this identifier, the

MIDlet will not be allocated the identifier. The port numbers allowed for this request

are restricted to SMS messages. In addition, a MIDlet is not allowed to send mes-

sages to certain restricted ports, a will be thrown if this is at-

tempted.

JSR-120 Section A.6.0 Restricted Ports: 2805, 2923, 2948, 2949, 5502, 5503, 5508,

5511, 5512, 9200, 9201, 9203, 9207, 49996, 49999.

If you intend to use SMSC numbers then please review A.3.0 in the JSR-120 specific-

ation. The use of an SMSC would be used if the MIDlet had to determine what recip-

ient number to use.

9.4 SMS Storing and Deleting
Received Messages

When SMS messages are received by the MIDlet, they are removed from the SIM

card memory where they were stored. The storage location (inbox) for the SMS mes-

sages has a capacity of up to thirty messages. If any messages are older than five

days then they will be removed, from the inbox by way of a FIFO stack.

9.5 SMS Message Types

The types of messages that can be sent are TEXT or BINARY, the method of encoding

the messages are defined in GSM 03.38 standard (Part 4 SMS Data Coding Scheme).

Refer to section A.5.0 of JSR-120 for more information.

Java ME Developer Guide
Chapter 9 - JSR-120 - Wireless Messaging API

[66/202]

9.6 SMS Message Structure

The message structure of SMS will comply with GSM 03.40 v7.4.0 Digital cellular

telecommunications system (Phase 2+); Technical realization of the Short Message

Service (SMS) ETSI 2000.

Motorola's implementation uses the concatenation feature specified in sections

9.2.3.24.1 and 9.2.3.24.8 of the GSM 03.40 standard for messages that the Java ap-

plication sends that are too long to fit in a single SMS protocol message.

This implementation automatically concatenates the received SMS protocol messages

and passes the fully reassembled message to the application via the API. The imple-

mentation will support at least three SMS messages to be received and concatenated

together. Also, for sending, support for a minimum of three messages is supported.

Motorola advises that developers should not send messages that will take up more

than three SMS protocol messages unless the recipient's device is known to support

more.

9.7 SMS Notification

Examples of SMS interaction with a MIDlet would be the following:

• A MIDlet will handle an incoming SMS message if the MIDlet is
registered to receive messages on the port (identifier) and is running.

• When a MIDlet is paused and is registered to receive messages on the
port number of the incoming message, then the user will be queried to
launch the MIDlet.

• If the MIDlet is not running and the Java Virtual Machine is not
initialized, then a Push Registry will be used to initialize the Virtual
Machine and launch the Java ME MIDlet. This only applies to trusted,
signed MIDlets.

• If a message is received and the untrusted unsigned application and the
KVM are not running then the message will be discarded.

• There is a SMS Access setting in the Java Settings menu option on the
handset that allows the user to specify when and how often to ask for
authorization. Before the connection is made from the MIDlet, the
options available are:

Java ME Developer Guide
Chapter 9 - JSR-120 - Wireless Messaging API

[67/202]

Always ask for user authorization
Ask once per application
Never Ask

Table 19 is a list of Messaging features/classes supported in the device.

Feature/Class Implementation

JSR-120 API. Specifically, APIs defined in the
javax.wireless.messaging package will be imple-
mented with regards to the GSM SMS Adaptor

Supported

Removal of SMS messages Supported

Terminated SMS removal - any user prompts
handled by MIDlet

Supported

Originated SMS removal - any user prompts
handled by MIDlet

Supported

All fields, methods, and inherited methods for the
Connector Class in the javax.microedition.io pack-
age

Supported

All methods for the BinaryMessage interface in the
javax.wireless.messaging package

Supported

All methods for the Message interface in the
javax.wireless.messaging package

Supported

All fields, methods, and inherited methods for the
MessageConnection interface in the
javax.wireless.messaging package

Supported

Number of MessageConnection instances in the
javax.wireless.messaging package

32 maximum

Number of MessageConnection instances in the
javax.wireless.messaging package

16

All methods for the MessageListener interface in
the javax.wireless.messaging package

Supported

All methods and inherited methods for the Text-
Message interface in the javax.wireless.messaging
package

Supported

16 bit reference number in concatenated messages Supported

Number of concatenated messages. 30 messages in inbox, each can
be concatenated from 3 parts.
No limitation on outbox
(immediately transmitted)

Allow MIDlets to obtain the SMSC address with the
wireless.messaging.sms.smsc system property

Supported

Table 19 List of Messaging features/classes

Code Sample 1 shows implementation of the JSR-120 Wireless Messaging API:

Java ME Developer Guide
Chapter 9 - JSR-120 - Wireless Messaging API

[68/202]

Creation of client connection, creation of binary message, setting of
payload for binary message and calling of method 'numberOfSegments' for
Binary message:

BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

/* Create connection for client mode */
connClient = (MessageConnection) Connector.open("sms://" + outAddr);

/* Create BinaryMessage for client mode */
binMsg = (BinaryMessage)connClient.newMessage(MessageConnection. BIN-

ARY_MESSAGE);

/* Create BINARY of 'size' bytes for BinaryMsg */
public byte[] createBinary(int size) {

int nextByte = 0;
byte[] newBin = new byte[size];

for (int i = 0; i < size; i++) {
nextByte = (rand.nextInt());
newBin[i] = (byte)nextByte;
if ((size > 4) && (i == size / 2)) {

newBin[i-1] = 0x1b;
newBin[i] = 0x7f;

}
}
return newBin;

}

byte[] newBin = createBinary(msgLength);
binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

Creation of server connection:

MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://:9532");

Creation of client connection with port number:

MessageConnection messageConnection = (MessageConnection)
Connector.open("sms://+18473297274:9532");

Java ME Developer Guide
Chapter 9 - JSR-120 - Wireless Messaging API

[69/202]

Creation of client connection without port number:

MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274");

Closing of connection:

MessageConnection messageConnection.close();

Creation of SMS message:

Message textMessage =
messageConnection.newMessage(MessageConnection.
TEXT_MESSAGE);

Setting of payload text for text message:

((TextMessage)message).setPayloadText("Text Message");

Getting of payload text of received text message:

receivedText = ((TextMessage)receivedMessage).getPayloadText();

Getting of payload data of received binary message:

BinaryMessage binMsg;
byte[] payloadData = binMsg.getPayloadData();

Setting of address with port number:

message.setAddress("sms://+18473297274:9532");

Setting of address without port number:

message.setAddress("sms://+18473297274");

Sending of message:

messageConnection.send(message);

Receiving of message:

Message receivedMessage = messageConnection.receive();

Getting of address:

Java ME Developer Guide
Chapter 9 - JSR-120 - Wireless Messaging API

[70/202]

String address = ((TextMessage)message).getAddress();

Getting of SMS service center address via calling of System.getProperty():

String addrSMSC = System.getProperty("wireless.messaging.sms.smsc");

Getting of timestamp for the message:

Message message;
System.out.println("Timestamp: " + message.getTimestamp().getTime());

Setting of MessageListener and receiving of notifications about incoming
messages:

public class JSR120Sample1 extends MIDlet implements CommandListener {

JSR120Sample1Listener listener = new JSR120Sample1Listener();

// open connection
messageConnection = (MessageConnection)Connector.open("sms://:9532");

// create message to send

listener.run();

// set payload for the message to send

// set address for the message to send
messageToSend.setAddress("sms://+18473297274:9532");

// send message (via invocation of 'send' method)

// set address for the message to receive
receivedMessage.setAddress("sms://:9532");

// receive message (via invocation of 'receive' method)

class JSR120Sample1Listener implements MessageListener, Runnable {
private int messages = 0;

public void notifyIncomingMessage(MessageConnection connection) {
System.out.println("Notification about incoming message arrived");

messages++;

Java ME Developer Guide
Chapter 9 - JSR-120 - Wireless Messaging API

[71/202]

}

public void run() {
try {
messageConnection.setMessageListener(listener);
} catch (IOException e) {

result = FAIL;
System.out.println("FAILED: exception while setting listener: " + e.toString());

}
}
}

Code Sample 1 JSR-120 WMA

Java ME Developer Guide
Chapter 9 - JSR-120 - Wireless Messaging API

[72/202]

10
JSR-135 - Mobile Media

API

10.1 JSR-135

The JSR-135 Mobile Media APIs feature sets are defined for different types of media.

The media defined are as follows:

• Tone Sequence
• Sampled Audio
• MIDI
• Interactive MIDI

When a player is created for a particular type, it must follow the guidelines and con-

trol types listed in the sections outlined below.

Code Sample 2 shows the implementation of the JSR-135 Mobile Media API:

JSR-135

Player player;

// Create a media player, associate it with a stream containing media data
try
{

player = Manager.createPlayer(getClass().getResourceAsStream ("MP3.mp3"),
"audio/mp3");
}
catch (Exception e)
{

System.out.println("FAILED: exception for createPlayer: " + e.toString());

Java ME Developer Guide
Chapter 10 - JSR-135 - Mobile Media API

[73/202]

}

// Obtain the information required to acquire the media resources
try
{

player.realize();
}
catch (MediaException e)
{

System.out.println("FAILED: exception for realize: " + e.toString());
}

// Acquire exclusive resources, fill buffers with media data
try
{

player.prefetch();
}
catch (MediaException e)
{

System.out.println("FAILED: exception for prefetch: " + e.toString());
}

// Start the media playback
try
{

player.start();
}
catch (MediaException e)
{

System.out.println("FAILED: exception for start: " + e.toString());
}

// Pause the media playback
try
{

player.stop();
}
catch (MediaException e)
{

System.out.println("FAILED: exception for stop: " + e.toString());
}

// Release the resources
player.close();

Java ME Developer Guide
Chapter 10 - JSR-135 - Mobile Media API

[74/202]

Code Sample 2 JSR-135 MMA

10.2 ToneControl

ToneControl is the interface to enable playback of a user-defined monotonic tone se-

quence. The JSR-135 Mobile Media API will implement public interface ToneControl.

A tone sequence is specified as a list of non-tone duration pairs and user-defined se-

quence blocks and is packaged as an array of bytes. The method is

used to input the sequence to the ToneControl.

The following is the available method for ToneControl:

Sets the tone sequence

10.3 VolumeControl

VolumeControl is an interface for manipulating the audio volume of a Player. The

JSR-135 Mobile Media API will implement public interface VolumeControl.

The following describes the different volume settings found within VolumeControl:

• Volume Settings - allows the output volume to be specified using an
integer value that varies between 0 and 100. Depending on the
application, this will need to be mapped to the volume level on the
phone (0-7).

• Specifying Volume in the Level Scale - specifies volume in a linear scale.
It ranges from 0 - 100 where 0 represents silence and 100 represents
the highest volume available.

• Mute - setting mute on or off does not change the volume level returned
by the getLevel. If mute is on, no audio signal is produced by the Player.
If mute is off, an audio signal is produced and the volume is restored.

The following is a list of available methods with regards to VoumeControl:

Get the current volume setting.

Get the mute state of the signal associated with this VolumeControl.

Java ME Developer Guide
Chapter 10 - JSR-135 - Mobile Media API

[75/202]

Set the volume using a linear point scale with values

between 0 and 100.

Mute or unmute the Player associated with this Volume-

Control.

10.4 StopTimeControl

StopTimeControl allows a specific preset sleep timer for a player. The JSR-135 Mobile

Media API will implement public interface StopTimeControl.

The following is a list of available methods with regards to StopTimeControl:

Gets the last value successfully by setStopTime.

Sets the media time at which you want the Player

to stop.

10.5 Manager Class

Manager Class is the access point for obtaining system dependant resources such as

players for multimedia processing. A Player is an object used to control and render

media that is specific to the content type of the data. Manager provides access to an

specific mechanism for constructing Players. For convenience, Manager also provides

a simplified method to generate simple tones. Primarily, the Multimedia API will

provide a way to check available/supported content types.

10.6 Supported Multimedia File Types

The following section lists media file types (with corresponding CODECs) that are

supported in products that are JSR-135 compliant in addition to JSR-135 Mobile API

Phase I. The common guideline being all codecs and file types supported by native

side are accessible through the JSR-135 implementation.

Java ME Developer Guide
Chapter 10 - JSR-135 - Mobile Media API

[76/202]

10.6.1 Audio Media

File Type Codec

WAV PCM

WAV ADPCM

SP MIDI General MIDI

MIDI Type 0 General MIDI

MIDI Type 1 General MIDI

iMelody IMelody

CTG CTG

MP3 MPEG-1 layer III

AMR AMR

BAS General MIDI

Table 20 Audio Media

10.6.2 Image Media

File Type Functionality

JPEG Playback/Capture

Progressive JPEG Playback

PNG Playback

BMP Playback

WBMP Playback

GIF 87a, 89a Playback

Table 21 Image Media

10.6.3 Video Media

File Type Functionality

H.263 Playback

MPEG4 Playback

Real Video G2 Playback

Real Video 8 Playback

Real Video 9 Playback

Table 22 Video Media

Java ME Developer Guide
Chapter 10 - JSR-135 - Mobile Media API

[77/202]

10.7 Media Locators

The classes Manager, DataSource and RecordControl interface accepts media loc-

ators. In addition to normal playback locators specified by JSR-135, the following

special locators need to be supported:

10.7.1 RTSP locator

RTSP Locators must be supported for streaming media on devices supporting real

time streaming using RTSP. This support must be available for audio and video

streaming through Manager (for playback media stream).

NOTE: Refer to JSR-135 API for RTSP locator syntax.

10.7.2 HTTP Locator

HTTP Locators must be supported for playing back media over network connections.

This support should be available through Manager implementation.

e.g.: Manager.createPlayer("http://webserver/tune.mid")

10.7.3 File Locator

File locators must be supported for playback and capture of media. This is specific to

Motorola Java ME implementations supporting file system API and not as per JSR-

135. The support should be available through Manager and RecordControl imple-

mentations.

e.g.: Manager.createPlayer("file://motorola/audio/sample.mid")

10.7.4 Capture Locator

Java ME Developer Guide
Chapter 10 - JSR-135 - Mobile Media API

[78/202]

Capture Locator should be supported for audio and video devices. A new device

"camera" must be defined and supported for camera device. Manager.createPlayer()

call shall return camera player as a special type of video player. Camera player

should implement VideoControl and should support taking snapShots using Video-

Control.getSnapshot() method. e.g.: Manager.createPlayer("capture://camera")

NOTE: For mandatory capture formats, refer to section 0.0.4. Refer to JSR-135 API
for capture locator syntax.

10.8 Security

Mobile Media API shall follow MIDP 2.0 security model. Recording functionality APIs

need to be protected. Trusted third party and untrusted applications must utilize user

permissions. Specific permission settings are detailed below.

10.8.1 Policy

Table 23 security policy will be flexed in per operator requirements at ship time of

the handset.

Function
Group

Trusted
Third Party

Untrusted Manufacturer Operator

Multimedia
Record

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, Never
Ask, No
Acess

Full Access Full Access

Table 23 Security policy

10.8.2 Permissions

Table 24 lists individual permissions within Multimedia Record function group.

Permission Protocol Function Group

javax.microedition. RecordCon- MultimediaRecord

Java ME Developer Guide
Chapter 10 - JSR-135 - Mobile Media API

[79/202]

media.control.
RecordControl.re

trol.startRecord()

Table 24 Permissions within Multimedia Record

NOTE: The Audio/Media formats may differ or may not be avaliable, depending on
the Carrier or region.

Java ME Developer Guide
Chapter 10 - JSR-135 - Mobile Media API

[80/202]

11
JSR-139 - CLDC 1.1

11.1 JSR-139

CLDC 1.1 is an incremental release of CLDC version 1.0. CLDC 1.1 is fully backwards

compatible with CLDC 1.0. Implementation of CLDC 1.1 supports the following:

• Floating Point
Data Types float and double
All floating point byte codes
New Data Type classes Float and Double
Library classes to handle floating point values

• Weak reference
• Classes Calender, Date and TimeZone are Java SE compliant
• Thread objects to be compliant with Java SE.

The support of thread objects to be compliant with Java SE requires the addition of

Thread.getName and a few new constructors. The following table lists the additional

classes, fields, and methods supported for CLDC 1.1 compliance:

Classes Additional Fields/
Methods

Comments

System Classes Java.lang.Thread Thread (Runnable
target, String
name)

Allocates a new Thread
object with the given
target and name

Thread (String
name)

Allocates a new Thread
object with the given
name

String getName () Returns this thread's
name

Void interrupt () Interrupts this thread

Java.lang.String Boolean equ-
alIgnoreCase

Compares this string
to another String, ig-

Java ME Developer Guide
Chapter 11 - JSR-139 - CLDC 1.1

[81/202]

(String another-
String)

noring case considera-
tions

String intern () Returns a canonical
representation for the
string object

Static String
valueOf (float f)

Returns the string rep-
resentation of the float
argument

Static String
valueOf (double d)

Returns the string rep-
resentation of the
double argument

Data Type
Classes

Java.lang.Float New Class: Refer to
CLDC Spec for more
details

Java.lang.Double New Class: Refer to
CLDC Spec for more
details

Calendar and
Time Classes

Java.util.Calendar Protected int []
fields

The field values for the
currently set time for
this calendar

Protected boolean {
} is set

The flags which tell if a
specified time field for
the calendar is set

Protected long time The currently set time
for this calendar, ex-
pressed in milliseconds
after January 1, 1970,
0:00:00 GMT

Protected abstract
void ComputeFields

Converts the current
millisecond time value
to field values in fields
[]

Protected abstract
void ComputeTime

Converts the current
field values in fields []
to the millisecond time
value time

Java.lang.Date String toString () Converts this date ob-
ject to a String of the
form: Dow mon dd
hh:mm:ss zzz yyyy

Exception and
Error Classes

Java.lang.NoClassD
efFoundError

New Class: Refer to
CLDC Spec for more
details

Weak References Java.lang.ref.Refere
nce

New Class: Refer to
CLDC Spec for more

Java ME Developer Guide
Chapter 11 - JSR-139 - CLDC 1.1

[82/202]

details

Java.lang.ref.WeakR
eference

New Class: Refer to
CLDC Spec for more
details

Additional Utility
Classes

Java.util.Random Double nextDouble
()

Returns the nextpseu-
dorandom, uniformly
distributed double
value between 0.0 and
1.0 from the random
number generator's
sequence

Float nextFloat () Returns the next pseu-
dorandom, uniformly
distributed double
value between 0.0 and
1.0 from the random
number generator's
sequence

Int nextInt (int n) Returns a pseudoran-
dom, uniformly distrib-
uted int value between
0 (inclusive) and the
specified value
(exclusive), drawn
from this random num-
ber generator's se-
quence

Java.lang.Math Static double E The double value that
is closer than any oth-
er to e, the base of the
natural logarithms

Static double PI The double value that
is closer than any oth-
er to pi, the ratio of
the circumference of a
circle to its diameter

Static double abs
(double a)

Returns the absolute
value of a double value

Static float abs
(float a)

Returns the absolute
value of a double value

Static double ceil
(double a)

Returns the smallest
(closest to negative in-
finity) double value
that is not less than
the argument and is

Java ME Developer Guide
Chapter 11 - JSR-139 - CLDC 1.1

[83/202]

equal to a mathemat-
ical integer

Static double cos
(double a)

Returns the trigono-
metric cosine of an
angle

Static double floor
(double a)

Returns the largest
(closest to positive in-
finity) double value
that is not greater than
the argument and is
equal to a mathemat-
ical integer.

Static double max
(double a, double b)

Returns the greater of
two double values

Static float max
(float a, float b)

Returns the greater of
two float values

Static double min
(float a, float b)

Returns the smaller of
two double values

Static float min
(float a, float b)

Returns the smaller of
two float values

Static double sin
(double a)

Returns the trigono-
metric sine of an angle

Static double sqrt
(double a)

Returns the correctly
rounded positive
square root of a double
value

Static double tan
(double a)

Returns the trigono-
metric tangent of
angle

Static double tode-
grees (double an-
grad)

Converts an angle
measured in radians to
the equivalent angle
measured in degrees

Static double toradi-
ans (double ang-
deg)

Converts an angle
measured in degrees
to the equivalent angle
measured in radians

Table 25 Additional classes, fields, and methods supported for CLDC 1.1 compliance

Java ME Developer Guide
Chapter 11 - JSR-139 - CLDC 1.1

[84/202]

12
JSR-177 Java ME

Security and Trust
Services API

12.1 Feature Description

This chapter describes the JSR-177 which defines optional packages for the Java ME

platform. The purpose of this JSR is to specify a collection of APIs that provides se-

curity and trust services by integrating a Security Element (SE). An SE, provides the

following:

• Secure storage to protect sensitive data, such as the user's private
keys, public key (root) certificates, service credentials, personal
information, etc.

• Cryptographic operations to support payment protocols, data integrity,
and data confidentiality.

• A secure execution environment to deploy custom security features.
MIDlets would rely on these features to handle many value-added
services, such as user identification and authentication, banking,
payment, loyalty applications, and so on.

Smart cards (SIM/USIM/UICC/RUIM) are commonly used to implement an SE. For

example, on GSM networks, the network operator enters the network authentication

data on the SIM, as well as the subscriber's personal information, such as the ad-

dress book. When the subscriber inserts the SIM into a mobile handset, the handset

is enabled to work on the operator's network.

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[85/202]

In addition to a SIM card-based implementation, an SE can also be implemented in

the handset itself. Such implementation may utilize, for example, embedded chips or

special security features of the hardware.

Alternatively, an SE may be entirely implemented in software. This specification does

not exclude any of the possible implementations of an SE even though some of the

packages are optimized for smart card implementation.

SEs can have diverse software and hardware characteristics, but this specification

considers the API functions based on the following criteria:

• Size requirements for resource-constrained consumer devices
• SE scope
• Flexibility and extensibility of the API

Based on these criteria, this version of the JSR 177 defines an API to provide the fol-

lowing capability to the Java ME platforms:

• Smart Card Communication - Two smart card access methods are
defined in this specification based on the APDU protocol and the Java
Card RMI protocol. These access methods allow a Java ME application to
communicate with a smart card to enhance the security services
deployed on it.

A MIDlet must be granted permission to use the privileged API in the SATSA-APDU

optional package. Permissions are checked by the platform prior to the invocation of

the protected methods in the API. Based on the security framework implemented by

the underlying platform, an implementation of a SATSA optional package must sup-

port either the MIDP 2.0 permissions applicable to that optional package or the func-

tional equivalent Java SE style permission classes. Based on the access control policy

defined in a smart card, the device determines whether the MIDlet is allowed to ac-

cess any function of the smart card, using the APDUConnection.

The smart card communication API is based on the Generic Connection Framework

(GCF), which is defined in the CLDC 1.1 specification.

12.2 Assumptions/Dependencies

The system must be compliant to the following standards:

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[86/202]

• CLDC 1.1
• MIDP 2.0

12.3 New Implementation

This article will only reference the APDU package of JSR 177, SATSA-APDU since it is

the only one implemented on Motorola JSR 177 compliant devices.

The smart card communication API is based on the Generic Connection Framework in

the package. The APDUConnection interface is used to com-

municate with ISO 7816-4 compliant smart cards.

12.3.1 javax.microedition.apdu Optional
Package

The SATSA-APDU optional package supports the following functions:

• A MIDlet can create an APDUConnection to communicate with a smart
card application identified by an AID.

• An APDUConnection supports exchange of APDU commands encoded in
the format, which conforms to ISO 7816-4.

• Each APDUConnection has a logical channel reserved exclusively for it.
• Logical channel management is handled by the API implementation,

which requests the smart card to allocate an unused logical channel.
• More than one APDUConnection can be created to communicate

simultaneously with smart card applications on one (via logical
channels) or multiple smart cards.

• An APDUConnection can be created to communicate with (U)SAT
applications on channel 0 of a smart card. The APDUConnection has
limited capabilities when communicating with a (U)SAT application.

• Only ENVELOPE APDUs may be sent by a MIDlet to trigger a (U)SAT
application.

• Proactive sessions and commands are not supported by the
APDUConnection. It is the MIDlet's responsibility to not send an
envelope to the (U)SAT application that would result in a proactive
session being initiated via the APDUConnection interface.

The optional package SATSA-APDU includes two components to support communica-

tion with ISO 7816-4 compliant smart cards using the APDU protocol:

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[87/202]

• A subset of the package. It supports the exception class
, which is not included in the CLDC

API or the MIDP API.
• The package. It includes the interface

APDUConnection to support APDU exchanges.

APDUConnection Interface

This interface extends the interface. It defines

the APDU connection. MIDlets can use this connection to communicate with applica-

tions on a smart card using APDU protocol. ISO 7816-4 defines the APDU protocol as

an application-level protocol between a smart card and an application on the device.

There are two types of APDU messages:

• command APDUs - sent to the smart card by a MIDlet
• response APDUs - messages received from the smart card

All APDUs is generated according to the ISO 7816-4 specification.

Opening an APDU Connection

An APDU connection is established between a MIDlet and an application on a smart

card. It uses one dedicated logical channel for that connection. The implementation

supports multiple APDU connections between the handset and a smart card. Addi-

tionally it supports multiple APDU connections between a MIDlet and an application

on a smart card (if multiple connections are supported by the application on a smart

card).

A MIDlet uses method to open an APDU

connection. An APDU connection is created by passing a generic connection URI

string with the smart card AID and, optionally, the slot in which the smart card is in-

serted, to the method. When the

method is called by a MIDlet, the im-

plementation requests a new logical channel from the smart card, for the APDU con-

nection, unless channel 0 is used. When method

is called by a MIDlet, and the logical

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[88/202]

channel is acquired for the APDU connection, the implementation establishes an

APDU connection with the specified application and returns the resulting connection

object to the MIDlet.

The implementation uses method (with key

) to obtain the name of the smart card slots

to be used in opening an APDU connection.

The value returned is a comma-separated list of the smart card slots which can be

used in the string to identify the spe-

cific smart card slot. The logical slot names include the slot number and a descriptor

indicating the type of the slot. For cold-swappable slots the letter 'C' is appended to

the slot number. For hot-swappable slots the letter 'H' is appended to the slot

number. The slot descriptors (the letter 'C' and 'H' appended to the slot number)

cannot be passed as part of the URI to open a connection to the smart card applica-

tion. The Java ME application MUST remove the descriptor from the logical slot name

and only use the slot number in the URI to identify the specific smart card slot. The

(U)SIM card will by default always be in slot (name) 0.

If the opening of the APDU connection fails, the implementation releases the logical

channel established between the handset and the smart card for the APDU connec-

tion.

The URI used in method conforms to

the following BNF syntax:

URI Format Description BNF Syntax

<APDU_connection_string> ::= "apdu:"<targetAddress>

<targetAddress> ::= [slot];target

<slot> ::= smart card slot number.
(optional. Hexadecimal
number identifying the smart
card slot. Default slot
assumed if left empty)

<target> ::= "target="<AID>|"SAT"

<AID> ::=< 5 - 16 bytes >
An AID uniquely identifies
a smart card application. It is
represented by 5 to 16
hexadecimal bytes where each

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[89/202]

byte value is
separated by a "."

Table 26 javax.microedition.io.Connector.open() BNF syntax

APDU Connection Establishment Errors

If a logical channel is not available for the APDU connection, the implementation

throws the to the MIDlet.

If a MIDlet calls method with a nonex-

istent card slot number, the implementation throws

exception.

If a MIDlet calls method with a card

slot number which does not have a card in it, the implementation throws

exception.

If a MIDlet calls method with a nonex-

istent AID, the implementation throws exception.

If a MIDlet calls method and the target

application on the card refuses connection request, the implementation throws

exception.

If a MIDlet calls method but the MIDlet

is not allowed to access the targeted application on the card, the implementation

throws exception.

Using an APDU Connection

Interface APDUConnection implements method .

The implementation interprets the CLA byte of the commandAPDU parameter passed

in the method as the

logical channel number.

Once an APDU connection is created, a MIDlet can use the

method to send com-

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[90/202]

mand APDUs and receive response APDUs to and from the smart card.

The implementation services only one logical channel (one APDU connection) at a

time, i.e. current APDU procedure on channel A must complete before a new APDU

procedure can begin on channel B.

There may be several APDU connections open at the same time using different logical

channels with the same smart card. However, since APDU protocol is synchronous,

there can be no interleaving of command and their response APDUs across logical

channels. Between the receipt of the command APDU and the sending of the re-

sponse APDU to that command, only one logical channel is active.

Interface APDUConnection implements method

When a MIDlet calls method

, the implementation

prompts the user to enter the existing value of the PIN, the new value for the PIN,

and to re-enter the new value for the PIN for confirmation.

Interface APDUConnection implements method

.

When a MIDlet calls method

, the implementation

prompts the user to enter the value of the PIN that is to be disabled.

Interface APDUConnection implements method .

When a MIDlet calls method

, the implementation

prompts the user to enter the value of the PIN that is to be enabled.

Interface APDUConnection implements method .

When a MIDlet calls method

, the implementation

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[91/202]

prompts the user to enter the current value of the PIN, for verification purposes.

Interface APDUConnection implements method .

When a MIDlet calls method

, the implementation

prompts the user to enter the value of the unblocking PIN (PIN used to unblock other

PINs), the new value for the currently blocked PIN, and to re-enter the new value for

the currently blocked PIN.

The implementation communicates the entered PIN value(s) to the card over the

APDU connection, and returns the smart cardstatus, or NULL if the user canceled the

operation.

Interface APDUConnection implements method .

When a MIDlet calls method ,

the implementation returns the retrieved value of ATR from the smart card.

When a MIDlet calls method ,

the implementation returns NULL if the smart card is not present.

When a MIDlet calls method ,

the implementation returns NULL if the APDU connection was already closed.

If response '61 XX' is received from the smart card, the implementation sends GET

RESPONSE to the card to get the response data before any other command is sent.

If response '6C XX' is received from the smart card, the implementation resends the

command after setting "Le" equal to XX received from the smart card before any

other command is sent.

Errors While Using APDU Connection

If a MIDlet attempts to exchange APDUs and the connection was closed before the

method was called or because of communication problems, the implementation

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[92/202]

throws exception.

If a MIDlet attempts to exchange APDUs using the connection object created before

the card was removed and then reinserted the implementation throws

exception.

If a MIDlet attempts to exchange APDUs on an APDU connection that is closed during

the communication session, the implementation throws

exception.

If a MIDlet calls method and the commandAPDU parameter is NULL,

the implementation throws exception.

If a MIDlet calls method and the commandAPDU contains a card ap-

plication selection APDU, the implementation throws

exception.

If a MIDlet calls method and the commandAPDU parameter contains

a MANAGE CHANNEL command APDU, the implementation throws

exception.

If a MIDlet calls method and the channel associated with the con-

nection object is non-zero and the CLA byte has a value other than 0x0X, 0x8X, 0x9X

or 0xAX, the implementation throws excep-

tion.

If a MIDlet calls method and the commandAPDU parameter contains

a malformed APDU, the implementation throws

exception.

Closing an APDU Connection

If a MIDlet calls method , the imple-

mentation closes the APDU connection.

When method is called by a MIDlet,

the implementation releases the logical channel used by the APDU connection.

If the connection that was closed was using channel 0, the implementation updates

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[93/202]

it's availability status.

Logical channels other than the basic channel may be closed when the connection is

closed. Basic channel or channel 0 has to remain open, and cannot be closed.

Error Cases When Closing APDU Connection

If a MIDlet calls method on a con-

nection that is executing in another thread, any pending I/O method throws

.

The methods of APDUConnection are not synchronized. The only method that can be

called safely in another thread is .

If a MIDlet terminates without calling

on the open connection, the implementation performs the close operation automatic-

ally in order to recover resources such as the logical channel.

Support for (U)SIM Application Toolkit ((U)SAT)

When a MIDlet calls method to open a

connection to a (U)SAT application, the implementation acquires channel 0.

When a MIDlet calls method to open a

connection to a (U)SAT application, the implementation addresses (U)SIM in slot 0.

The implementation ensures that channel 0 is always available for the new APDU

connection to the (U)SAT.

When a MIDlet calls method to open a

connection to a (U)SAT application, the URI string is formatted as

"apdu:<slot>;target=SAT".

A MIDlet in the operator domain has full and exclusive access to the APDU connec-

tion.

If the MIDlet is trying to access PIN-related methods while a APDU connection is es-

tablished with a (U)SAT application, the implementation throws .

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[94/202]

A MIDlet uses ENVELOPE APDUs only, to communicate with the (U)SAT application.

If a MIDlet uses any APDU other than ENVELOPE APDU, the implementation throws

exception.

In the case of a SIM (GSM) smart card, the implementation substitutes the class byte

passed by the MIDlet with value 'A0'.

In the case of a USIM (UMTS) smart card, the implementation substitutes the class

byte passed by the MIDlet with value '80'.

When (U)SIM responds with status word "9E XX"or "9F XX", the behavior of AP-

DUConnection is the same as when status word "61 XX" is received from the smart

card.

When (U)SIM responds with status word "62 XX" or "63 XX" the implementation

sends GET RESPONSE to the card, with Le set to "00" before any other command is

sent.

The implementation ensures that between sending the ENVELOPE APDU, receiving

status word "62 XX" or "63 XX", and sending GET RESPONSE APDU with Le set to

"00", there will not be any other APDU exchange on any logical channel with the

smart card.

The implementation throws exception if (U)SIM responds with status

word "93 00" (SIM Application Toolkit is busy) when the (U)SIM is performing an-

other proactive session.

12.3.2 java.lang Package (Exception Classes)

The package provides classes that are fundamental to the design of the Java pro-

gramming language.

Class is implemented, as specified in java.lang

package.

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[95/202]

12.3.3 Recommended Security Element Access
Control

Access control governs the establishment of an APDU connection and communication

using the APDU connection between terminal objects and on SE objects.

The access control model is designed to achieve the following security objectives:

• Protect an SE from malicious MIDlets
• Support the SE to specify a fine-grained access control policy within the

limitations of the platform
• Allow a MIDlet to select an SE object (for example, a smart card

application) for temporary exclusive usage
• Safeguard PINs from improper usage by the MIDlets

The system will use two mechanisms to implement access control: the Domain Mech-

anism and the Static Mechanism, for all SEs on the handset.

In the Domain Mechanism, an SE defines a private domain by providing the domain

root object (trusted certificate or public key). In the Domain Mechanism, the SE ac-

cepts only access from MIDlets that reside in such a domain (i.e., the application is

signed with a certificate that chains back to the trusted certificate provided by the

SE).

In the Static Mechanism, an ACF is published by an SE. The ACF contains access con-

trol for individual methods, and applications on the SE. ACFs are stored in the SE.

The terminal platform is responsible for processing these files.

The implementation reads the certificate from the SE.

The implementation reads Access Control Files from the SE.

Each SE has one ACIF associated with it. Each ACIF contains a list of ACFs (an ACIE),

one for each application on the SE. Each ACF may contain a list of zero or more ACEs

(an ACL).

When a MIDlet calls a method, the implementation evaluates if the MIDlet has appro-

priate permissions to access it, by first applying the Domain Mechanism.

The implementation applies the Domain Mechanism according to MIDP 2.0 and se-

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[96/202]

curity policy requested by the operator.

The implementation applies the following algorithm when evaluating a request for ac-

cess:

Request for Access Algorithm

Use Domain Mechanism (DM) to evaluate access to the method

if access is forbidden according to DM
Access Denied

else /* Access Granted according to DM, check ACP now */
if PKCS#15 is present

if ACIF link in DODF is present, then
if ACIF is found, then

loop for ACIE
if either ACIE contains AID for the target app or ACIE re-

lated to the entire SE
get corresponding ACF to evaluate access permis-

sions
if ACL is present
get ACE and evaluate access to the method
else
Access Granted /* ACL is missing */
endif

endif
endloop
Access Denied /* either no ACIE element is found or all found

ACLs are empty */
endif /* for ACIF */
Access Denied /* ACP link exists, but no applicable ACIF is found */

else /* No ACP */
Access Granted

endif
else /* No PKCS#15 */

Access Granted
endif

endif

If any errors in ACP or PKCS#15 (U)SIM structure is found during the evaluation al-
gorithm
execution access is denied.

Code Sample 3 Request for Access Algorithm

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[97/202]

The algorithm can be implemented in many different ways. The most efficient one

should be chosen. Implementers are not limited to using if-else statements.

If the MIDlet is trying to access a method protected by the Domain Mechanism, and

access to it is denied, the implementation throws .

If the MIDlet is trying to access a method protected by the Static Mechanism, and

access to it is denied, the implementation throws .

Evaluating Individual Access Control Entry

When evaluating ACE, the MIDlet is granted permission to open an APDU connection

with an application in the SE if the ACE principal identifies a domain category

(CHOICE domain is used with the OID indicating 'operator', 'manufacturer', or

'trusted third party') and the MIDlet belongs to the same domain.

When evaluating ACE, the MIDlet is granted permission to open an APDU connection

with an application in the SE if the ACE principal identifies the domain root (CHOICE

rootID is used) and the corresponding PrincipalID matches with the hash of the root

certificate in the path used to sign the MIDlet.

When evaluating ACE, the MIDlet is granted permission to open an APDU connection

with an application in the SE if the ACE principal identifies an end-entity (CHOICE

endEntityID is used) and the corresponding PrincipalID matches with the end-entity

certificate used to sign the MIDlet.

When evaluating ACE, the MIDlet is granted permission to send an APDU to an ap-

plication in the SE if the APDU being sent by the MIDlet is specified by at least one

ACE.

When evaluating ACE, the MIDlet is granted permission to send an APDU to an ap-

plication in the SE if the APDU being sent by the MIDlet is not one of those used for

application selection and channel management.

A MIDlet operation is considered to be specified by an ACE if the following condition

is satisfied: APDU(MIDlet) AND mask(ACE) = APDU(ACE),

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[98/202]

12.3.4 Security Requirements

The ("apdu:"[<slot>]",target=SAT")

method is protected by the permission.

The permission is not assigned to any function

group.

The access to methods in package is granted only to

MIDlets in the operator's domain.

The ("apdu:"[<slot>]",target="<AID>)

method is protected by the permission.

The permission is assigned to the Smart Card Com-

munication function group.

The default security policy supports the Ask Once Per App, Never Ask, No Access per-

mission interaction modes for the Smart Card Communication function group for the

TTP domain. Ask Once Per App interaction mode is the default.

The default security policy supports only No Access permission interaction mode for

the Smart Card Communication functional group for the Untrusted domain.

Java ME Developer Guide
Chapter 12 - JSR-177 Java ME Security and Trust Services API

[99/202]

13
JSR-184 - Mobile 3D

Graphics API

13.1 Overview

JSR-184 Mobile 3D API defines an API for rendering three-dimensional (3D) graphics

at interactive frame rates, including a scene graph structure and a corresponding file

format for efficient management and deployment of 3D content. Typical applications

that might make use of JSR-184 Mobile 3D API include games, map visualizations,

user interface, animated messages, and screen savers. JSR-184 requires a Java ME

device supporting MIDP 2.0 and CLDC 1.1 as a minimum.

13.2 Mobile 3D API

The MOTORAZR V3xx contains full implementation of JSR-184 Mobile 3D API

(http://jcp.org/en/jsr/detail?id=184). The MOTORAZR V3xx has also implemented

the following:

• Call to with key - microedition.m3g.version will
return 1.0, otherwise null will be returned.

• Floating point format for input and output is the standard IEEE float
having an 8-bit exponent and a 24-bit mantissa normalized to 1.0, 2.0.

• Implementation will ensure the Object3D instances will be kept
reference to reduce overhead and possible inconsistency.

• Thread safety.
• Necessary pixel format conversions for rendering output onto device.

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[100/202]

http://jcp.org/en/jsr/detail?id=184

• Support at least 10 animation tracks to be associated with an Object 3D
instance (including animation controller) subject to dynamic memory
availability.

13.3 Mobile 3D API File Format
Support

The MOTORAZR V3xx supports both M3G and PNG file formats for loading 3D con-

tent. The MOTORAZR V3xx supports the standard .m3g and .png extensions for its

file formats. Mime type and not extension will be used for identifying file type. In the

case that the Mime type is not available, M3G files will be identified using the file

identifier and PNG files using signature.

13.4 Mobile 3D Graphics - M3G API

The M3G API lets you access the realtime 3D engine embedded on the device, to

create console quality 3D applications, such as games and menu systems. The main

benefits of the M3G engine are the following:

• the whole 3D scene can be stored in a very small file size (typically
50-150K), allowing you to create games and applications in under 256K;

• the application can change the properties (such as position, rotation,
scale, color and textures) of objects in the scene based on user
interaction with the device;

• the application can switch between cameras to get different views onto
the scene;

• the rendered images have a very high photorealistic quality.

13.4.1 Typical M3G Application

An application consists of logic that uses the M3G, MIDP 2.0 and CDLC 1.1 classes.

The application is compiled into a Java MIDlet that can be embedded on the target

device. The MIDlet can also contain additional assets, such as one or more M3G files

that define the 3D scene graph for the objects in the scene, images and sounds.

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[101/202]

Figure 6 M3G Application Proccess

Most M3G applications use an M3G resource file that contains all the information re-

quired to define the 3D resources, such as objects, their appearance, lights, cameras

and animations, in a scene graph. The file must be loaded into memory where object

properties can be interrogated and altered using the M3G API. Alternatively all ob-

jects can be created from code, although this is likely to be slower and limits cre-

ativity for designers.

13.4.2 Simple MIDlets

The simplest application consists of an M3G file that is loaded into the application

using the M3G Loader class, which is then passed to a Graphics3D object that

renders the world to the Display.

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[102/202]

Figure 7 M3G Application Methods

The World object contains the objects that define a complete 3D scene - geometry,

textures, lights, cameras, and animations. The World object mediates access to the

objects within the world. It can be passed as a block to the renderer, the Graphics3D

class.

The Loader object, populates a World by loading an M3G file from a URI or other

asset source, such as a buffer of bytes in M3G format. The Loader is not restricted to

loading just Worlds, each file can contain as little as a single object and multiple files

can be merged together on the device, or you can put everything into a single file.

The rendering class Graphics3D (by analogy to the MIDP Graphics class) takes a

whole scene (or part of a scene graph), and renders a view onto that scene using the

current camera and lighting setup. This view can be to the screen, to a MIDP image,

or to a texture in the scene for special effects. You can pass a whole world in one go

(retained mode) or you can pass individual objects (immediate mode). There is only

one Graphics3D object present at one time, so that hardware accelerators can be

used.

Figure 8 shows the structure of a more typical MIDlet.

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[103/202]

Figure 8 Typical MIDlet Structure

13.4.3 Initializing the world

The Loader class is used to initialize the world. It has two static methods: one takes

in a byte array, while the other takes a named resource, such as a URI or an indi-

vidual file in the JAR package.

The load methods return an array of Object3Ds that are the root level objects in the

file.

The following example calls Loader.load() and passes it an M3G file from the JAR file

using a property in the JAD file. Alternatively, you could specify a URI, for example:

;

The example assumes that there is only one root node in the scene, which will be the

world object. If the M3G file has multiple root nodes the code must be changed to re-

flect this, but generally most M3G files have a single root node.

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[104/202]

public void startApp() throws MIDletStateChangeException
{

myDisplay.setCurrent(myCanvas);

try
{

// Load a file.
Objects3D[] roots = Loader.load(getAppProperty("Content-1"));

// Assume the world is the first root node loaded.
myWorld = (World) roots[0];

}
catch(Exception e)
{

e.printStackTrace();
}

// Force a repaint so the update loop is started.
myCanvas.repaint();

}

Code Sample 4 Initializing the world

13.4.4 Using the Graphics3D object

Using the Graphics3D is very straightforward. Get the Graphics3D instance, bind a

target to it, render everything, and release the target.

public class myCanvas extends Canvas
{

Graphics3D myG3D = Graphics3D.getInstance();

public void paint(Graphics g)
{

myG3D.bindTarget(g);

try

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[105/202]

{
myG3D.render(myWorld);

}
finally
{

myG3D.releaseTarget();
}

}

}

Code Sample 5 Using the Graphics3D object

The final block makes sure that the target is released and the Graphics3D can be re-

used. The bindTarget call must be outside the try block, as it can throw exceptions

that will cause releaseTarget to be called when a target has not been bound, and re-

leaseTarget throwing an exception.

13.4.5 Interrogating and interacting with
objects

The World object is a container that sits at the top of the hierarchy of objects that

form the scene graph. You can find particular objects within the scene very simply by

calling find() with an ID. find() returns a reference to the object which has been as-

signed that ID in the authoring tool (or manually assigned from code). This is im-

portant because it largely makes the application logic independent of the detailed

structure of the scene.

final int PERSON_OBJECT_ID = 339929883;
Node personNode = (Node)theWorld.find(PERSON_OBJECT_ID);

Code Sample 6 Finding objects by ID.

If you need to find many objects, or you don't have a fixed ID, then you can follow

the hierarchy explicitly using the Object3D.getReferences() or Group.getChild()

methods.

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[106/202]

static void traverseDescendants(Object3D obj)
{

int numReferences = obj.getReferences(null);

if (numReferences > 0)
{

Object3D[] objArray = new Object3D[numReferences];

obj.getReferences(objArray);

for (int i = 0; i < numReferences; i++)
traverseDescendants(objArray[i]);

}

}

Code Sample 7 Using the Object3D.getReferences().

Once you have an object, most of the properties on it can be modified using the M3G

API. For example, you can change the position, size, orientation, color, brightness, or

whatever other attribute of the object is important. You can also create and delete

objects and insert them into the world, or link parts of other M3G files into the scene

graph.

13.4.6 Animations

As well as controlling objects from code, scene designers can specify how objects

should move under certain circumstances, and store this movement in 'canned' or

block animation sequences that can be triggered from code. Many object properties

are animatable, including position, scale, orientation, color and textures. Each of

these properties can be attached to a sequence of keyframes using an Animation-

Track. The keyframe sequence can be looped, or just played once, and they can be

interpolated in several ways (stepwise, linear, spline).

A coherent action typically requires the simultaneous animation of several properties

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[107/202]

on several objects, the tracks are grouped together using the AnimationController

object. This allows the application to control a whole animation from one place.

All the currently active animatable properties can be updated by calling animate() on

the World. (You can also call this on individual objects if you need more control). The

current time is passed through to animate(), and is used to determine the interpol-

ated value to assign to the properties.

The animate() method returns a validity value that indicates how long the current

value of a property is valid. Generally this is 0 which means that the object is still

being animated and the property value is no longer valid, or infinity when the object

is in a static state and does not need to be updated. If nothing is happening in the

scene, you do not have to continually redraw the screen, reducing the processor load

and extending battery life. Similarly, simple scenes on powerful hardware may run

very fast; by restricting the frame-rate to something reasonable, you can extend bat-

tery life and are more friendly to background processes.

The animation subsystem has no memory, so time is completely arbitrary. This

means that there are no events reported (for example, animation finished). The ap-

plication is responsible for specifying when the animation is active and from which

position in the keyframe sequence the animated property is played.

Consider a world myWorld that contains an animation of 2000 ms, that you want to

cycle. First you need to set up the active interval for the animation, and set the posi-

tion of the sequence to the start. Then call World.animate() with the current world

time:

anim.setActiveInterval(worldTime, worldTime+2000);
anim.setPosition(0, worldTime);

int validity = myWorld.animate(worldTime);

Code Sample 8

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[108/202]

13.4.7 Authoring M3G files

You can create all your M3G content from code if necessary but this is likely to be

very time consuming and does not allow 3D artists and scene designers to easily

create and rework visually compelling content with complex animations. You can use

professional, visual development tools such as SwerveTM Studio or SwerveTM M3G

exporter from Superscape Group plc, which export content from 3ds max, the in-

dustry standard 3D animation tool, in fully compliant M3G format. For more informa-

tion please visit http://www.superscape.com/.

Java ME Developer Guide
Chapter 13 - JSR-184 - Mobile 3D Graphics API

[109/202]

http://www.superscape.com/

14
JSR-185 - Java™

Technology for the
Wireless Industry

Java™ Technology for the Wireless Industry (JTWI) specifies a set of services to de-

velop highly portable, interoperable Java applications. JTWI reduces API fragmenta-

tion and broadens the number of applications for mobile phones.

14.1 Overview

Any Motorola device implementing JTWI will support the following minimum hard-

ware requirements in addition to the minimum requirements specified in MIDP 2.0:

• At least a screen size of 125 x 125 pixels screen size as returned by full
screen mode Canvas.getHeight () and Canvas.getWidth ()

• At least a color depth of 4096 colors (12-bit) as returned by
Display.numColors ()

• Pixel shape of 1:1 ratio
• At least a Java Heap Size of 512 KB
• Sound mixer with at least 2 sounds
• At least a JAD file size of 5 KB
• At least a JAR file size of 64 KB
• At least a RMS data size of 30 KB

Any Motorola JTWI device will implement the following and pass the corresponding

TCK:

Java ME Developer Guide
Chapter 14 - JSR-185 - Java™ Technology for the Wireless Industry

[110/202]

• CLDC 1.0 or CLDC 1.1
• MIDP 2.0 (JSR-118)
• Wireless Messaging API 1.1 (JSR-120)
• Mobile Media API 1.1 (JSR-135)

14.2 CLDC related content for JTWI

JTWI is designed to be implemented on top of CLDC 1.0 or CLDC 1.1. The configura-

tion provides the VM and the basic APIs of the application environment. If floating

point capabilities are exposed to Java Applications, CLDC 1.1 will be implemented.

The following CLDC requirements will be supported:

• Minimum Application thread count will allow a MIDlet suite to create a
minimum of 10 simultaneous running threads

• Minimum Clock Resolution - The method
java.land.System.currentTimeMillis () will record the elapsed time in
increments not to exceed 40 msec. At least 80% of test attemps will
meet the time elapsed requirement to achieve acceptable conformance.

• Names for Encodings will support at least the preferred MIME name as
defined by IANA (http://www.iana.org/assignments/character-sets) for
the supported character encodings. If preferred name has not been
defined, the registered name will be used (i.e UTF-16).

• Character Properties will provide support for character properties and
case conversions for the characters in the Basic Latin and Latin-1
Supplement blocks of Unicode 3.0. Other Unicode character blocks will
be supported as necessary.

• Unicode Version will support Unicode characters. Character information
is based on the Unicode Standard version 3.0. Since the full character
tables required for Unicode support can be excessively large for devices
with tight memory budgets, by default, the character property and case
conversion facilities in CLDC assume the presence of ISO Latin-1 range
of characters only. Refer to JSR-185 for more information.

• Custom Time Zone Ids will permit to use of custom time zones which
adhere to the following time zone format:

General Time Zone: For time zones representing a GMT offset value,
the following syntax is used:

• Custom ID:
GMT Sign Hours: Minutes
GMT Sign Hours Minutes
GMT Sign Hours Hours

• Sign: one of:

Java ME Developer Guide
Chapter 14 - JSR-185 - Java™ Technology for the Wireless Industry

[111/202]

http://www.iana.org/assignments/character-sets

+ -
• Hours:

Digit
Digit Digit

• Minutes:
Digit Digit

• Digit: one of:
0 1 2 3 4 5 6 7 8 9

NOTE: Hours will be between 0 and 23, and minutes will be between 00 and 59. For
example, GMT +10 and GMT +0010 equates to ten hours and ten minutes ahead of
GMT.

When creating a TimeZone, the specified custom time zone ID is
normalized in the following syntax:

• NormalizedCustomID:
GMT Sign TwoDigitHours: Minutes
Sign: one of:

• + -
TwoDigitHours:

• Digit Digit
Minutes:

• Digit Digit
Digit: one of:

• 0 1 2 3 4 5 6 7 8 9

14.3 MIDP 2.0 specific information for
JTWI

MIDP 2.0 provides the library support for user interface, persistent storage, net-

working, security, and push functions. MIDP 2.0 contains a number of optional func-

tions, some of which will be implemented as outlined below. The JTWI requirements

for MIDP 2.0 will support the following points:

• Record Store Minimum will permit a MIDlet suite to create at least 5
independent RecordStores. This requirement does not intend to
mandate that memory be reserved for these Record Stores, but it will be
possible to create the RecordStores if the required memory is available.

• HTTP Support for Media Content will provide support for HTTP 1.1 for all
supported media types. HTTP 1.1 conformance will match the MIDP 2.0
specification. See package.javax.microedition.io for specific

Java ME Developer Guide
Chapter 14 - JSR-185 - Java™ Technology for the Wireless Industry

[112/202]

requirements.
• JPEG for Image Objects - ISO/IEC JPEG together wil JFIF will be

supported. The support for ISO/IEC JPEG only applies to baseline DCT,
non-differential, Huffman coding, as defined in JSR-185 JTWI
specification, symbol 'SOF0'. This support extends to the class
javax.microedition.lcdui.Image, including the methods outlined above.
This mandate is voided in the event that the JPEG image format
becomes encumbered with licensing requirements.

• Timer Resolution will permit an application to specify the values for the
firstTime, delay, and period parameters of java.util.timer.schedule ()
methods with a distinguishable resolution of no more than 40 ms.
Various factors (such as garbage collection) affect the ability to achieve
this requirement. At least 80% of test attempts will meet the schedule
resolution requirement to achieve acceptable conformance.

• Minimum Number of Timers will allow a MIDlet to create a minimum of 5
simultaneously running Timers. This requirement is independent of the
minimum specified by the Minimum Application Thread Count.

• Bitmap Minimums will support the loading of PNG images with pixel
color depths of 1, 2, 4, 8, 16, 24, and 32 bits per pixel per the PNG
format specification. For each of these color depths, as well as for JFIF
image formats, a compliant implementation will support images up to
76800 total pixels.

• TextField and TextBox and Phonebook Coupling - when the center select
key is pressed while in a TextBox or TextField and the constraint of the
TextBox or TextField is TextField.PHONENUMBER, the names in the
Phonebook will be displayed in the "Insert Phonenumber?" screen.

• Supported characters in TextField and TextBox - TextBox and TextField
with input constraint TextField.ANY will support inputting all the
characters listed in JSR-185.

• Supported characters in EMAILADDR and URL Fields - Class
javax.microedition.lcdui.TextBox and javax.microedition.lcdui.TextField
with either of the constraints TextField.EMAILADDR or TextField.URL will
allow the same characters to be input as are allowed for input constraint
TextField.ANY

• Push Registry Alarm Events will implement alarm-based push registry
entries.

• Identification of JTWI via system property - to identify a compliant
device and the implemented version of this specification, the value of
the system property microedition.jtwi.version will be 1.0

Java ME Developer Guide
Chapter 14 - JSR-185 - Java™ Technology for the Wireless Industry

[113/202]

14.4 Wireless Messaging API 1.1
(JSR-120) specific content for JTWI

WMA defines an API used to send and receive short messages. The API provides ac-

cess to network-specific short message services such as GSM SMS or CDMA short

messaging. JTWI will support the following as it is outlined in the JSR-120 chapter of

this developer guide:

• Support for SMS in GSM devices
• Cell Broadcast Service in GSM devices
• SMS Push

14.5 Mobile Media API 1.1 (JSR-135)
specific content for JTWI

The following will be supported for JTWI compliance:

• HTTP 1.1 Protocol will be supported for media file download for all
supported media formats

• MIDI feature set specified in MMAPI (JSR-135) will be implemented.
MIDI file playback will be supported.

• VolumeControl will be implemented and is required for controlling the
colume of MIDI file playback.

• JPEG encoding in video snapshots will be supported if the handset
supports the video feature set and video image capture.

• Tone sequence file format will be supported. Tone sequences provide an
additional simple format for supporting the audio needs of many types
of games and other applications.

Java ME Developer Guide
Chapter 14 - JSR-185 - Java™ Technology for the Wireless Industry

[114/202]

14.6 MIDP 2.0 Security specific
content for JTWI

• The MOTORAZR V3xx follows the security policy outlined in the Security
chapter of this developer guide.

Java ME Developer Guide
Chapter 14 - JSR-185 - Java™ Technology for the Wireless Industry

[115/202]

15
JSR-205 - WMA 2.0

15.1 Overview

This section describes the functionality that shall be implemented for the WMA. This

section highlights implementation details with respect to the messaging API which is

important to this implementation rather than restating entire JSR-205; refer to the

JSR-205 for more details. This section also provides Motorola specific requirements

for WMA in addition to JSR-205.

15.1.1 Messaging Functionality

This section describes messaging functionality to be implemented by WMA.

15.1.2 MMS Message Structure

The MMS PDU structure shall be implemented as specified in the WAP-

209-MMSEncapsulation standard. The MMS PDU consists of headers and a multipart

message body. Some of the headers originate from standard RFC 822 headers and

others are specific to multimedia messaging. In addition to defined MMS headers, it

also contains header parameters as defined by JSR-205. The message body may

contain parts of any content type and MIME multipart is used to represent and en-

code a wide variety of media types for transmission via multimedia messaging.

Java ME Developer Guide
Chapter 15 - JSR-205 - WMA 2.0

[116/202]

15.1.3 MMS Message Addressing

The multipart message addressing model contains different types of addresses:

• global telephone number of recipient user, including telephone number,
ipv4, ipv6 addresses

• e-mail address as specified in RFC 822
• short-code of the service (not valid for MMS version 1.0)

The syntax of the URL connection strings shall follow the rules specified in the JSR-

205 specification.

15.1.4 MMS Message Types

MMS messages can be sent using MULTIPART_MESSAGE type of this API. The default

type of message is multipart/related. If the content type header does not contain

start parameter, the message type is assumed to be multipart/mixed. This section

describes Multipart Message, and its related classes. Messaging framework is de-

scribed in the JSR-120 chapter of this developer guide.

15.1.5 MultipartMessage

The WMA shall implement the MultipartMessage an interface representing a multipart

message. This is a sub interface of Message which contains methods to add, remove

and manipulate message parts. The interface also allows to specifying the subject of

the message.

Please refer to JSR-205 specification for more details.

15.1.6 MessagePart

The WMA shall implement the MessagePart a class representing a media part that

can be sent with the message. Instances of MessagePart class are added to the Mul-

tipartMessage.

Java ME Developer Guide
Chapter 15 - JSR-205 - WMA 2.0

[117/202]

Each message part consists of part header and part body. The part headers include

Content ID, Content Location, Content type, Encoding scheme. Content can be of any

MIME type.

15.1.7 Multimedia Message Service Center
Address

The MMSC address used for sending the messages should be made available using

System.getProperty with property name "wireless.messaging.mms.mmsc". Applica-

tions might need to obtain the Multimedia Message Service Center (MMSC) address

to decide which recipient to use. For example, the application might need to do this

because it is using service numbers for application servers which might not be con-

sistent in all networks and MMSCs.

Please refer to the JSR-205 specification for more details.

15.1.8 Application ID

The WMA supports sending of MMS messages to concrete Java application. To enable

this the following additional parameters shall be added to Content-Type header field:

Messages can be sent using this API via client or server type Message Connections,

refer to JSR-205 specification.

The application specifies Application-ID when opening the server mode MessageCon-

nection. The receiving application running on a device is identified with the applica-

tion-ID included in the message.

The maximum number of Application-IDs shall be limited by the implementation and

depends on phone RAM availability and carrier operators preloaded content memory

consumption.

The maximum number of simultaneously opened connections shall be limited by the

implementation and depends on phone RAM availability and carrier operators pre-

loaded content memory consumption.

Java ME Developer Guide
Chapter 15 - JSR-205 - WMA 2.0

[118/202]

The maximum number of MMS messages in the buffer at the same time shall be lim-

ited by the implementation and depends on phone RAM availability and carrier oper-

ators preloaded content memory consumption.

15.1.9 MMS Push

The registration for MMS-push mechanism and MMS-push mechanism itself shall be

implemented, but applied to MMS messages in addition to what is described in the

MIDP 2.0 chapter. This includes push registry and all user dialogues.

When an application that is registered in the Push Registry is deleted, the corres-

ponding PUSH entry shall be deleted and the corresponding application ID shall be

made available for future PUSH registrations.

15.2 Requirements for WMA

The WMA shall accept the application-ID allocated by the first application. If other

applications try to allocate the same application-ID while it is being used by the first

application, an IOException shall be thrown when they attempt to open the Message-

Connection. The same rule applies if an application-ID is being used by a system ap-

plication in the device. In this case, the Java application will not be able to use that

application-ID.

MMS-push mechanism shall be implemented as described in the MIDP 2.0 chapter

and some specific requirements are defined below in this section.

15.2.1 Initial Setup

The MMS initial setup parameters set by user shall not be accessible by WMA. The

initial MMS setup requirements are outside the scope of this document.

The Java Client will use the MMS Setup of the native client to send/receive mes-

sages. So the Java client will use the same APN/Web-Sessions/mmsc etc. as the

Native Client.

Java ME Developer Guide
Chapter 15 - JSR-205 - WMA 2.0

[119/202]

15.2.2 Handling the incoming MMS message

WMA shall be responsible for listening to the inbound connections for incoming MMS

messages with registered Application IDs.

The WMA shall launch the MMS application and suspend listening of incoming MMS

messages for this Application ID. Then the application is responsible for the handling

of inbound connections (open/close) for the MMS messages (receive/send).

Once the Application exits (terminated, or not successful launch, or user denied the

MMS application launch) then WMA shall resume the listening of the inbound connec-

tions.

The incoming MMS messages shall be stored in a separate FIFO message Inbox that

is not visible to the user. The amount of memory allocated for this transparent inbox

is product specific.The MMS application Inbox shall not be accessible for native MMS

application.

The WMA shall pass the received MMS messages to concrete Java application assosi-

ated with the Application-ID.

Application running/resuming

The Application startup and resume shall be implemented in accordance with require-

ments outlined in the MIDP 2.0 chapter.

If an MMS application startup was denied by the user then WMA shall remove all buf-

fered unread messages for this MMS application.

Application is running/background

The Application receiving the incoming MMS message will handle this MMS message.

When the MMS message is received by an application, it shall be removed from the

Phone/SIM memory where they may have been stored prior to being delivered to the

application.

Java ME Developer Guide
Chapter 15 - JSR-205 - WMA 2.0

[120/202]

An application is responsible to handle a corresponded (Application ID) received mes-

sage (store it more persistently if needed). An MMS message may get lost if an ap-

plication can not save it due to lack of space.

The application will be responsible for the interpretation and representation of the

MMS MIME content including the SMIL(presentation) content if any is attached.

In the case of full incoming message buffer, any new message for the application

with the same Application-ID shall be discarded. WMA shall not remove the first MMS

message in the buffer which was a cause of Push until:

• MMS message is handled by MMS application, or
• MMS application exits.

Application suspending

The Application suspending shall be implemented in accordance with requirements

outlined in the MIDP 2.0 chapter.

If the user selects not to launch the new MMS application then the incoming MMS

message shall be ignored and deleted from the handset.

Application ending

At Application exit, WMA should remove all buffered messages that were not received

by the Application.

If the MMS application needs to keep messages more persistently, it has to use other

APIs (File System API, RMS, etc.) to save incoming MMS messages on the handset

for later use. This is handled by the Application and outside the of scope of this MRS.

MMS Push

When received a message which has an unknown Application-ID, the MMS Engine

shall validate the routing options registered by each of its clients.

Since the Application-ID does not match with the routing parameters, a NotifyRe-

Java ME Developer Guide
Chapter 15 - JSR-205 - WMA 2.0

[121/202]

sponse shall be sent back to the MMSC, with status set to REJECTED.

When received a message which has an unknown Application-ID / from_address,

MMS Engine shall validate the routing options registered by each of its clients.

Since the Application-ID / from_address in the message does not match the routing

parameters registered by the client, the handling of the message shall use one of the

following methods:

• Retain the message in the native clients Inbox, or
• Delete the message and display the transient notice about the removal

of the message.

The transient notice shall have the following UI dialogue elements (to be used for

P04.4 integration releases):

• Generic Dialog
• Title Bar text: "Unknown message"
• Body Area text: "Message <message_index>was sent by an unknown

application. Message deleted."
• Left Soft Key: [empty]
• Right Soft Key: OK
• The icon used in the Dialog: notice_generic_prmicn

Starting with P05.1 releases, due to entire UI adjustment for the 2-softkey paradigm,

the "OK" shall be on the Left Soft Key.

The decisions to deploy options above shall be controlled by a Feature-ID as it de-

pends on the behaviour desired by the Operator.

15.3 Requirements to the Native MMS
Client

The mobile originated MMS Messages that are sent out by the Java client shall not be

stored in the Native clients Draft/Outbox folder.

The Current OMA Standards do not support having the Application-ID parameter in

the Notification. The Application-ID is only present in the Message body. Due to this,

certain limitations exist as described here.

Java ME Developer Guide
Chapter 15 - JSR-205 - WMA 2.0

[122/202]

15.3.1 Anonymous Rejection Feature

The Native MMS Client shall support anonymous rejection feature.

When the MMS receives a Notification, if the from_address is not present in the noti-

fication, the message shall not be downloaded. A Notify Response shall be sent to the

MMSC with the status set to REJECTED.

Filtering of the from_address shall be done at the Notification-Level.

(The impact of this scenario is that a message from an anonymous sender intended

for the Java client will not be downloaded onto the handset.)

15.3.2 Coincidental Addresses in the native
client and Java clients address filters

The Native MMS client shall maintain a black (Reject) list of address-filters.

Messages received with these addresses shall be rejected.

The Java client shall maintain an Acceptable list of address-filters: Only Messages

that match this Address-filter shall be handled by the Java client.

Address-filtering shall be done at the Notification-level. If a message's from_address

matches both the Native client and Java client's address-filters, the message shall

not be downloaded and a Notify Response shall be sent to the MMSC with status set

to REJECTED.

(So a message with this from_address, intended for the Java client will not be down-

loaded onto the handset.)

15.3.3 Security Policy

The WMA shall follow the security policy specified in MIDP 2.0 chapter.

To send and receive messages using WMA, applications shall be granted permission

to perform the requested operation. The following table assigns individual permis-

Java ME Developer Guide
Chapter 15 - JSR-205 - WMA 2.0

[123/202]

sions:

Permission Protocol Function

javax.microedition.io.Connector.m
ms

mms Connector.open("mms://....")

javax.wireless.messaging.mms.re
ceive

mms MessageConnection.setMessage-
Listener

MessageConnection.receive

javax.wireless.messaging.mms.se
nd

mms MessageConnection.send

When opening a connection, if the permission is not granted, then Connector.open

method shall throw a SecurityException.

When sending or receiving messages, if the permission is not granted then the Mes-

sageConnection.send and the MessageConnection.receive methods shall throw a Se-

curityException.

15.3.4 VMVM support

WMA functionality shall be supported in VMVM environment.

15.3.5 External Event Interaction

The implementation shall follow external event interactions.

Java ME Developer Guide
Chapter 15 - JSR-205 - WMA 2.0

[124/202]

16
Java ME™ Access to

certificates on SIM and
phone memory

This chapter presents the specification to access digital certificates on "SIM or phone

memory" by a Java Virtual Machine (JVM). The devices that support trusted applica-

tions must follow a PKI based authentication scheme as defined in MIDP 2.0 specific-

ation.

NOTE: Support of certificates on SIM cards, and the ability to delete a TTP certi-
ficate, are optional facilities whose availability may vary by region and carrier.

16.1 Allow JVM to access Digital
Certificates

The following are the rules for accessing Digital certificates related to various do-

mains Manufacturer, Operator and Trusted third party.

Rules:

• JVM must be able to read digital certificates in the SIM.
• JVM must be able to read digital certificates in the phone memory.
• The implementation MUST support the following certificates.

Manufacturer Domain
• The certificate must be mapped to a secure location in the phone

Java ME Developer Guide
Chapter 16 - Java ME™ Access to certificates on SIM and phone
memory

[125/202]

memory.
• If the certificate is not available on the device, the manufacturer

domain MUST be disabled.
• The certificate can only be deleted or modified by the

manufacturer.
• Any new or updated manufacturer protection domain root

certificate must be associated with the manufacturer domain
security policy on the device. MIDlet suites verified by a previous
manufacturer protection domain root certificate MUST be
disabled.

Operator Domain
The certificate must be mapped to the specified location in the SIM or
in the phone memory.

• If the certificate is not available on the specified location in the
SIM or in the phone memory, the operator domain MUST be
disabled.

• The implementation MUST search SIM first for the operator root
certificate.

• The operator domain can't be deleted or modified by the
application or any other party, except by device provisioned
capability.

• Number of "Operator domain" certificates to be stored in the SIM
or in the phone memory should be at least 5.

Trusted third party Domain
• The certificate must be mapped to the specified location in the

SIM or in the phone memory.
• Only operator can provision trusted third party root certificates in

SIM. The certificate shall be stored as READ_ONLY.
User/application can't disable/enable/delete trusted third party
certificates stored in SIM.

• The implementation must search SIM first for trusted third party
root certificate.

• If a certificate is not available at the specified location in the SIM
or in the phone memory, the trusted third party domain must be
disabled.

• The user must not be able to delete or disable trusted third party
protection domain root certificates which are stored as
READ_ONLY.

• Disabled trusted third party protection domain root certificates
must not be used to verify downloaded MIDlet suites.

• If this certificate is to be deleted, the user MUST be prompted to
warn of the consequence of this action. This prompt MUST work
in conjunction with the browser functionality.

• If deleted or disabled, the third party domain MUST no longer be
associated with this certificate.

Java ME Developer Guide
Chapter 16 - Java ME™ Access to certificates on SIM and phone
memory

[126/202]

• Number of "Trusted third party protection domain" certificates to
be stored in the SIM and phone memory should be at least 6.

• The implementation should cache SIM certificates in the phone memory
at power up to avoid delay in retrieving certificates from SIM during
installation/launching of a MIDlet.

• All the data in the certificate MUST be encoded using ASN.1/DER
standards as specified in X.509.

• The implementation should follow the SIM interface specified in standard
3GPP TS 51.011.

16.2 Update certificates on the SIM

If the operator wants to issue or update the certificates on the SIM, they shall use

the SIM Application Toolkit (SAT)to send the SIM Specific SMS, GPRS or Cell Broad-

cast message from the server to the SIM card for the certificate provisioning. Then

the SIM Toolkit Refresh command shall be used to cause the certificates to be re-

cached in the SIM card.

Rules:

• The operator shall issue or update the "Operator Root Certificate" and
Trusted Third Party root certificates (SIM only) through the SIM
Application ToolKit. The SIM Specific SMS, GPRS or Cell Broadcast
message shall be sent from the server to the SIM card to remotely
provision the certificates.

• The handset shall support the SIM Toolkit Refresh command which will
be used to cause the certificate to be re-cached in the SIM card.

16.3 Procedure for
viewing/enabling/deleting/disabling a
certificate

The menu to view, enable/disable certificates is already implemented by the current

Synergy design. The name of the menu is Certificates and can be accessed from both

the Browser menu and the Security sub-menu under the main menu.

Currently, user is not allowed to delete a root certificate. This shall be changed to

Java ME Developer Guide
Chapter 16 - Java ME™ Access to certificates on SIM and phone
memory

[127/202]

allow certificates that are used by JVM to be deleted if needed. The user may view

more detailed information about a particular certificate by highlighting the certificate

name and selecting the VIEW soft key. Once selected, an "Editable List" will be cre-

ated with options: Name, Expiration Date and Status(Enable/Disable). A new option:

Delete must be added to this "Edit List" to allow it to be deleted.

• A new List Item "Delete" must be added to the "Editable List", if this
feature is flexed on. It allows the user to select this item to delete the
certificate. The procedure is shown in Figure 9 .

If the certificate is a Java type of certificate, the "Delete" item shows
up in the "Editable List" only when the certificate belongs to the
Trusted Third Party Domain and is not READ_ONLY. "Delete" item
shall not be displayed for certificates stored as READ_ONLY.
If the certificate is a SSL type of certificate, the "Delete" item shall
not be displayed.

• Enable/Disable/Delete options must not appear for Operator and
Manufacturer Domain Root Certificates.

• Enable/Disable options must appear for Trusted Third Party certificates
which are not READ_ONLY. Enable/Disable options must not appear for
certificates stored as READ_ONLY.

Java ME Developer Guide
Chapter 16 - Java ME™ Access to certificates on SIM and phone
memory

[128/202]

Figure 9 Delete a Trusted Third Party Domain Root Certificate

The menu to view, enable/disable certificates is already implemented by the current

Synergy design. The name of the menu is Certificates and can be accessed from both

the Browser menu and the Security sub-menu under the main menu.

Currently, user is not allowed to delete a root certificate. The user may view more

detailed information about a particular certificate by highlighting the certificate name

and selecting the VIEW soft key. Once selected, an "Editable List" will be created with

options: Name, Expiration Date and Status(Enable/Disable).

Java ME Developer Guide
Chapter 16 - Java ME™ Access to certificates on SIM and phone
memory

[129/202]

16.4 Roaming/Change of SIM card

All previously authorized and installed MIDlets MUST act in accordance with the

device policy when the device is roaming, or when the device SIM is changed. Newly

downloaded MIDlets are authenticated to the root certificates currently available in

the certificate store and authorized in accordance with the device policy.

If device roaming or a SIM card change causes failure to access network resources

that the MIDlet was previously authorized to access, then the implementation MUST

throw an IOException rather than security exception.

Java ME Developer Guide
Chapter 16 - Java ME™ Access to certificates on SIM and phone
memory

[130/202]

17
Prevent Downloading of

Large Java MIDlets

17.1 Overview

This feature is a flexible way of preventing the large JAR files OTA download. The

current functionality is as follows:

• The user is able to download any JAR file independently from its file size
via the WAP browser. In some cases the MIDlet can not be executed
properly due to the limited heap memory size of a Java enabled phone.
In this case the user is charged for the data transfer (not for the event)
and in some cases this charge will be higher than the cost of MIDlet
itself.

In order to let the different operators utilize this feature there must be the ability to

use flex database element to limit the maximum size of the JAR file. The appropriate

notice shall be displayed to inform the user that the maximum JAR file size is ex-

ceeded and downloading is rejected. The maximum JAR file size value shall come dir-

ectly from a customer requirement or product team.

There may be 2 types of MIDlets download:

• JAR-only file download
• JAR/JAD file download

This feature does not consider JAR-only download. The behavior in this case is spe-

cified by "Java ME™ Download MIDlet Through Browser" feature.

Java ME Developer Guide
Chapter 17 - Prevent Downloading of Large Java MIDlets

[131/202]

• The system shall support setting the maximum JAR file size for
downloading.

• This feature shall apply only to JAR accompanied by JAD files download.
• The maximum JAR file size for the download shall be stored in the flex

database.
• The default size value shall be set to the maximum available value for

the flex database element.
• The system shall only download JAR files that are less than or equal to

the maximum size specified in flex database.
• The size of JAR accompanied by JAD files download shall be controlled

by the flex element.

17.2 Notification

When the JAR file size exceeds the maximum value set, a notice shall appear to in-

form the user that the JAR file download was aborted.

When the JAR file size exceeds the maximum value set and the downloading was

aborted, then the following notification report shall be sent to the server: "901 Insuf-

ficient Memory".

When the size of the JAR file exceeds the maximum value, the JAVA AMS shall ini-

tiate the transient notice.

17.3 Backward Compatibility/Flexing

The maximum JAR file size shall be configured as per operator requirement on a

product by product basis.

Java ME Developer Guide
Chapter 17 - Prevent Downloading of Large Java MIDlets

[132/202]

18
Download Midlet

through PC

To download MIDlets through a PC, make a connection to a PC through IrDA,

Bluetooth, USB or Serial Cable (RS 232). This content considers only the RS232 con-

nection using JAL.

18.1 Establishing Connection

When a successful connection to a PC is made, an application can be downloaded.

The MS should display that a connection has been made. Only one connection will be

active at a time.

Java ME Developer Guide
Chapter 18 - Download Midlet through PC

[133/202]

19
Downloading MIDlet

through Browser

The Download MIDlet Through Browser requires the browser to be connected before

performing any downloads on the handset.

The example shows How user may access the Browser application by any of the fol-

lowing methods:

• Selecting 'Browser' from the Main Menu.
• Pressing a dedicated 'Browser' key on the keypad (if available on the

handset).
• Pressing a 'Browser' soft key from the idle display (if assigned).
• Using 'Browser' shortcut (if assigned).
• Selecting URL from a message.
• Selecting GetJavaApps from the Main Menu or Java Settings.

19.1 Star Active Browser Session from
Main Menu

Figure 10 describes Staring Active Browser Session from Main Menu:

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[134/202]

Figure 10 Starting Active Browser Session from Main Menu

GetJavaApps is a feature that allows an operator to insert a WAP designated URL that

links to a Java ME ™ site with MIDlet suites. This feature can be found under Java

Settings or in the Main Menu as it is flexible for either menu item.

19.2 Find a location with Java ME ™
Application

Once connected to the WAP browser, different locations may be visited where Java

ME ™ Applications may be downloaded. From here, a MIDlet may be selected to

download to the handset.

Handset initially receives information from the Java Application Descriptor (JAD) file.

The JAD includes information about MIDlet-name, version, vendor, MIDlet-Jar-URL,

MIDlet-Jar-size, and MIDlet-Data-size. Two additional JAD attributes will be Mot-

Data-Space-Requirements and Mot-Program-Space-Requirements. These attributes

will help the KVM determine whether there is enough memory to download and in-

stall the selected MIDlet suite. If there is not enough memory, 'Memory Full' dialog

will be displayed before the download begins.

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[135/202]

19.3 Downloading MIDlets

Figure 11 represents Java ME ™ Application (MIDlets) Download and Installation.

Figure 11 Downloading and Installing Java ME ™ Application (MIDlets)

Steps to Download and Install Java ME ™ Application:

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[136/202]

• BACK shows previous screen to the user.
• If the SELECT softkey is selected, the handset shows display the

application size, time to install and version. If an error occurs with the
descriptor file, the handset then displays the transient notice 'Failed
Invalid File.' Upon Time-out, the handset goes back to browser.

• If the CANCEL softkey is selected, it shows the Browser Application Card
from where the application was selected.

• If the DOWNLD softkey is selected, the handset starts downloading the
application. The handset displays 'Downloading...% Complete' along
with the percentage of downloading completed at a time.
'Downloading...% Complete' shall use static dots, not dynamic.

• Before downloading the MIDlet, handset checks for available memory.
Mot-Data-Space-Requirements and Mot-Program-Space-Requirements
are two JAD attributes that will help the KVM determine whether there is
enough memory to download and install the selected MIDlet suite. If
there is not enough memory, 'Insufficient storage' transient dialog will
be displayed before the download begins. Upon time-out, the handset
goes back to browser.

• If an error occurs during download, such as a loss of service, then the
transient notice 'Download Failed' must be displayed. Upon time-out,
the handset goes back to idle state.

• A downloading application can be cancelled by pressing the END key.
The transient notice, 'Download Cancelled, ' displays. Upon time-out,
handset goes back to browser.

• If JAR -file size does not match with specified size, it displays 'Failed
Invalid File'. Upon time-out, the handset goes back to browser.

• When the downloading application is cancelled, handset cleans up all
files, including any partial JAR files and temporary files created during
the download process.

• When downloading is done, the handset displays a transient notice
'Download Completed'. The handset then starts to install the application.

• The handset displays 'Installing...'.
• After an application is successfully downloaded, a status message must

be sent back to the network server. This allows for charging of the
downloaded application.

• Charging is per the Over the Air User Initiated Provisioning specification.
The status of an install is reported by means of an HTTP POST request
to the URL contained in the MIDlet-Install-Notify attribute. The only
protocol that MUST be supported is 'http://'.

• If the browser connection is interrupted/ended during the
download/installation process, the device will be unable to send the
HTTP POST with the MIDlet-Install Notify attribute. In this case, the
MIDlet will be deleted to insure the user does not get a free MIDlet. The
use case can occur when a phone call is accepted and terminated during
the installation process, because then the browser will not be in the

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[137/202]

needed state in order to return the MIDlet Install Notify attribute.
• Upon completing Installation, the handset displays a transient notice

'Installed to Games & Apps'.
• Upon time-out, the handset goes back to Browser.
• During Installation if the MANIFEST file is wrong, the handset displays a

transient notice 'Failed File Corrupt'. Upon time-out, the handset goes
back to Browser.

• During the installation process, if the flip is closed on a flip handset, the
installation process will continue and the handset will not return to the
idle display. When the flip is opened, the 'Installing...' dialogue should
appear on the screen and should be dynamic.

• During download or install of application, voice record, voice commands,
voice shortcuts, and volume control will not be supported. However,
during this time, incoming calls and SMS messages are able to be
received.

• The handset must support sending and receiving at least 30 kilobytes of
data using HTTP either from the server to the client or the client to the
server, per Over the Air User Initiated Provisioning specification.

• If JAD does not contain mandatory attributes, 'Failed Invalid File' notice
appears.

If JAD does not contain mandatory attributes, 'Failed Invalid File' notice appears.

Figure 12 Application does not have Mandatory Attributes in ADF

19.4 Different Error Checks

19.4.1 Memory Full

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[138/202]

There are two distinct cases when a Memory Full error can occur during the download

process. Memory Full will be displayed when the device does not have enough

memory to completely download the MIDlet. The JAD of the MIDlet has two attrib-

utes, Mot-Data-Space-Requirements and Mot-Program-Space-Requirements. If an

application developer adds these attributes to their JAD file, a Motorola device can

determine if enough memory exists on the phone before the MIDlet is downloaded.

These attributes may or may not be provided in all MIDlets. Two separate prompts

will be displayed depending on whether these attributes are present.

In cases where there is not enough memory to download the application, the user

MUST be given a message to delete existing applications in order to free additional

memory. The following messages and screen flows will be displayed depending on

whether specific JAD attributes are present or not:

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[139/202]

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[140/202]

Figure 13 Memory full error

Rules:

• If Mot-Data-Space-Requirements and Mot-Program-Space-Requirements
attributes are present in the JAD, the above noted prompt should be
displayed. This value takes into account the memory requirements of
the MIDlet and the current memory usage on the phone, in order to tell
the user exactly how much memory to free. The memory usage is based
in kilobyte units.

• 'Data Space:' and the value of the data space should be on separate
lines. 'Prog. Space:' and the value of the program space should be on
separate lines.

• The download process is canceled when this error condition occurs.
• The Memory Full error will no longer be a transient prompt but a dialog

screen with a Help softkey and a Back softkey will be displayed.
• DETAILS will give the user the above detailed Help screen describing the

memory required to be able to download the MIDlet.
• The Help dialog will include a 'More' right softkey label (for those

products in which not all the help data can be displayed on a single
screen). This label should disappear when the user has scrolled to the

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[141/202]

bottom of the dialog.
• BACK from this message will take the user back to the browser page

from which the user selected the MIDlet to download.

Figure 14 Mot-Data-Space & Mot-Program-Space attributes are not present or are
incorrect

• If Mot-Data-Space-Requirements and Mot-Program-Space-Requirements
JAD attributes are not present in the JAD file, the handset can not
determine how much memory to free and will display the above help
dialog.

• The Help dialog will include a 'More' right softkey label (for those
products in which not all the help data can be displayed on a single
screen). This label should disappear when the user has scrolled to the
bottom of the dialog.

• All rules stated in the previous figure must also be followed for the
above stated prompt.

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[142/202]

19.4.2 Memory Full during installation process.

Once the MIDlet is successfully downloaded, the installation process begins. During

the installation of the MIDlet, the phone may determine there is insufficient memory

to complete the installation. This error can occur whether the Mot-

Data-Space-Requirements and Mot-Program-Space-Requirements JAD attributes are

present or not. The following message and Figure Figure 15 must be displayed:

Figure 15 Memory Full help message during installation process

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[143/202]

• The installation process is canceled when this error condition occurs.
• The Memory Full error will no longer be a transient prompt but a dialog

screen with a Help softkey and a Back softkey will be displayed.
• DETAILS will give the user the above Help screen explaining that

additional memory is required to be able to install the MIDlet.
• The Help dialog will include a 'More' right softkey label (for those

products in which not all the help data can be displayed on a single
screen). This label should disappear when the user has scrolled to the
bottom of the dialog.

• BACK from this message will take the user back to the browser page
from which the user selected the MIDlet to download.

19.4.3 Application version already exists

Compares the version number of the application with that already present on the

handset. If the versions are the same, the following message is displayed. The error

occurred can be queried by selecting DETAILS.

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[144/202]

Figure 16 Same Version of Application already exists on the handset

Rules:

• Handset checks for MIDlet-Name, MIDlet-vendor, and version number.
If they are the same, a dialog 'Application Already Exists' is displayed.

• To know more about this error, select the DETAILS softkey.
• Handset displays the new version of the application, as well as the

existing application.

19.4.4 Newer application version exists

If the application version on the handset is newer than the downloaded version of

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[145/202]

application, the following message is displayed. The error occurred can be queried by

selecting DETAILS.

Figure 17 (Newer) Version of Application exists

Rules:

• If the latest or newer version of application is already present on the
handset, it cannot be downloaded.

Java ME Developer Guide
Chapter 19 - Downloading MIDlet through Browser

[146/202]

20
Record Management

System

20.1 Record Management System API

If the MIDlet has not specified a data space requirement in the JAD attribute

(MIDlet_data_space_requirement) or the manifest file, a limit of 512 KB will be used

as the maximum RMS space for that MIDlet. No additional Motorola implementation

clarifications are necessary.

Refer to Table 27 for RMS feature/class support for MIDP 2.0:

Feature/Class Implementation

All constructors, methods, and inherited methods for
the InvalidRecordDException class in the
javax.microedition.rms package

Supported

All fields and methods for the RecordComparator inter-
face in the javax.microedition.rms package

Supported

All methods for the RecordEnumeration interface in the
javax.microedition.rms package

Supported

All methods for the RecordFilter interface in the
javax.microedtition.rms package

Supported

All methods for the RecordListener interface in the
javax.microedition.rms package

Supported

All fields, methods, and inherited methods fortify the
RecordStore interface in the javax.microedition.rms
package

Supported

Initial version number of a record to be zero Supported

All constructors, methods, and inherited methods for
the RecordStoreException class in the

Supported

Java ME Developer Guide
Chapter 20 - Record Management System

[147/202]

javax.microedition.rms package

All constructors, methods, and inherited methods for
the RecordStoreFullException class in the
javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for
the RecordStoreNotOpenException class in the
javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for
the InvalidRecordIDException class in the
javax.microedition.rms package

Supported

All fields and methods for the RecordComparator inter-
face in the javax.microedition.rms package

Supported

All methods for the RecordEnumeration interface in the
javax.microedition.rms package

Supported

All methods for the RecordFilter interface in the
javax.microedition.rms package

Supported

All methods for the RecordListener interface in the
javax.microedition.rms package

Supported

All fields, methods, and inherited methods for the Re-
cordStore interface in the javax.microedition.rms pack-
age

Supported

All constructors, methods, and inherited methods for
the RecordStoreException class in the
javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for
the RecordStoreNotFoundException class in the
javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for
the RecordStoreNotOpenException class in the
javax.microedition.rms package

Supported

Table 27 RMS feature/class

Java ME Developer Guide
Chapter 20 - Record Management System

[148/202]

21
Gaming API/Multiple

Key Press

21.1 Gaming API

The Gaming API provides a series of classes that enable rich gaming content for the

handset. This API improves performance by minimizing the amount of work done in

Java, decreasing application size. The Gaming API is structured to provide freedom in

implementation, extensively using native code, hardware acceleration, and device-

specific image data formats as needed.

The API uses standard low-level graphic classes from MIDP so the high-level Gaming

API classes can be used in conjunction with graphics primitives. This allows for ren-

dering a complex background using the Gaming API while rendering something on

top of it using graphics primitives.

Methods that modify the state of Layer, LayerManager, Sprite, and TiledLayer objects

generally do not have any immediate visible side effects. Instead, this state is stored

within the object and is used during subsequent calls to the method. This

approach is suitable for gaming applications where there is a cycle within the objects'

states being updated and the entire screen is redrawn at the end of every game

cycle.

Java ME Developer Guide
Chapter 21 - Gaming API/Multiple Key Press

[149/202]

21.2 Multiple Key Press Support

Multi-button press support enhances the gaming experience for the user. Multi-

button press support gives the user the ability to press two (2) keys simultaneously

and the corresponding actions of both keys will occur simultaneously. An example of

this action would be the following:

• Simultaneously moving to the right and firing at objects in a game.

The following sets of keys will support multi-button press support on the MOTORAZR

V3xx handset. Multi-button press within each set will be supported, while multi-

button press across these sets or with other keys will not be supported.

Set 1 - Nav (Up), Nav (Down), Nav (Right), Nav (Left), 9

Set 2 - 2, 4, 6, 8, 7

Set 3 - 0, #

Refer to Table 28 for gaming and keypad feature/class support for MIDP 2.0:

Feature/Class Implementation

lcdui.game package Supported

setBacklight as defined in
javax.microedition.lcdui.Display

Supported

setVibrator as defined in
javax.microedition.lcdui.Display

Supported

All constructors and inherited classes for the Illegal-
StateException in java.lang

Supported

All constructors, methods, and inherited classes for the
Timer class in java.util

Supported

All the constructors, methods, and inherited classes for
the TimerTask class in java.util

Supported

All fields, constructors, methods, inherited fields and in-
herited methods for the GameCanvas class in
javax.microedition.lcdui.game

Supported

GameCanvas size 9x larger than screen

Map the UP_PRESSED field in
javax.microedition.lcdui.game.GameCanvas to the top
position of the key.

Supported

Map the DOWN_PRESSED field in Supported

Java ME Developer Guide
Chapter 21 - Gaming API/Multiple Key Press

[150/202]

javax.microedition.lcdui.GameCanvas to the bottom po-
sition of the key

Map the LEFT_PRESSED field in
javax.microedition.lcdui.GameCanvas to the left posi-
tion of the key

Supported

Map the RIGHT_PRESSED field in
javax.microedition.lcdui.GameCanvas to the right posi-
tion of the key

Supported

All methods and inherited methods for the Layer class
in javax.microedition.lcdui.game

Supported

All constructors, methods, and inherited methods for
the LayerManager class in
javax.microedition.lcdui.game.Layer

Supported

All fields, constructors, methods, and inherited methods
for the Sprite Class in javax.microedition.lcdui.game

Supported

Sprite Frame height will not be allowed to exceed the
height of the view window in
javax.microedition.lcdui.Layer

Any, limited by heap size
only

Sprite frame width will not be allowed to exceed the
width view of the view window in
javax.microedition.lcdui.Layer

Any, limited by heap size
only

Sprite recommended size 16*16 or 32*32

All constructors, methods, and inherited methods for
the TiledLayer class in javax.microedition.lcdui.game

Supported

MIDlet Queries to keypad hardware Supported

Alpha Blending Supported

Table 28 Gaming and keypad feature/class support for MIDP

Java ME Developer Guide
Chapter 21 - Gaming API/Multiple Key Press

[151/202]

22
Network APIs

22.1 Network Connections

The Motorola implementation of Networking APIs will support several network con-

nections. The network connections necessary for Motorola implementation are the

following:

• CommConnection for serial interface
• HTTP connection
• HTTPS connection
• Push registry
• SSL (secure socket)
• Datagram (UDP)

Refer to Table 29 for Network API feature/class support for MIDP 2.0:

Feature/Class Implementation

All fields, methods, and inherited methods for the Connector
class in the javax.microedition.io package

Supported

Mode parameter for the open () method in the Connector class
the javax.microedition.io package

READ, WRITE,
READ_WRITE

The timeouts parameter for the open () method in the Con-
nector class of the javax.microedition.io package

HttpConnection interface in the javax.microedition.io package Supported

HttpsConnection interface in the javax.microedition.io package Supported

SecureConnection interface in the javax.microedition.io pack-
age

Supported

SecurityInfo interface in the javax.microedition.io package Supported

UDPDDatagramConnection interface in the
javax.microedition.io package

Supported

Connector class in the javax.microedition.io.package Supported

PushRegistry class in the javax.microedition.io package Supported

Java ME Developer Guide
Chapter 22 - Network APIs

[152/202]

CommConnection interface in the javax.microedition.io pack-
age

Supported

Dynamic DNS allocation through DHCP Supported

HttpConnection interface in the javax.microedition.io.package. Supported

HttpsConnection interface in the javaxmicroedition.io.package Supported

SecureConnection interface in the
javax.microedition.io.package

Supported

SecurityInfo Interface in the javax.microedition.io.package Supported

UDPDatagramConnection interface in the
javax.microedition.io.package

Supported

Table 29 Network API feature/class support for MIDP

Code Sample 8 shows the implementation of Socket Connection:

Socket Connection

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

...

try {
//open the connection and io streams

sc = (SocketConnection)Connector.open
("socket://www.myserver.com:8080", Connector.READ_WRITE, true);

is = sc[i].openInputStream();
os = sc[i].openOutputStream();

} catch (Exception ex) {
closeAllStreams();
System.out.println("Open Failed: " + ex.getMessage());

}
}
if (os != null && is != null)
{

try
{

os.write(someString.getBytes()); //write some data to server

int bytes_read = 0;
int offset = 0;
int bytes_left = BUFFER_SIZE;

//read data from server until done

Java ME Developer Guide
Chapter 22 - Network APIs

[153/202]

do
{

bytes_read = is.read(buffer, offset, bytes_left);

if (bytes_read > 0)
{

offset += bytes_read;
bytes_left -= bytes_read;

}
}
while (bytes_read > 0);

} catch (Exception ex) {
System.out.println("IO failed: "+ ex.getMessage());

}
finally {

closeAllStreams(i); //clean up
}

}

Code Sample 8 Socket Connection

22.2 User Permission

The user of the handset will explicitly grant permission to add additional network

connections.

22.3 Indicating a Connection to the
User

When the java implementation makes any of the additional network connections, it

will indicate to the user that the handset is actively interacting with the network. To

indicate this connection, the network icon will appear on the handset's status bar as

shown in Figure 18 .

Java ME Developer Guide
Chapter 22 - Network APIs

[154/202]

Figure 18 Network Connections example

Conversely, when the network connection is no longer used the network icon will be

removed from the status bar.

If the handset supports applications that run when the flip is closed, the network icon

on the external display will be activated when the application is in an active network

connection with the flip closed. Please note that this indication is done by the imple-

mentation.

22.4 HTTPS Connection

Motorola implementation supports a HTTPS connection on the MOTORAZR V3xx

handset. Additional protocols that will be supported are the following:

TLS protocol version 1.0 as defined in http://www.ietf.org/rfc/rfc2246.txt

SSL protocol version 3.0 as defined in http://wp.netscape.com/eng/ssl3/ssl-toc.html

Code Sample 9 shows the implementation of HTTPS:

HTTPS

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

try {
hc[i] = (HttpConnection)Connector.open("https://" + url[i] + "/");

} catch (Exception ex) {

Java ME Developer Guide
Chapter 22 - Network APIs

[155/202]

http://www.ietf.org/rfc/rfc2246.txt
http://wp.netscape.com/eng/ssl3/ssl-toc.html

hc[i] = null;
System.out.println("Open Failed: " + ex.getMessage());

}

if (hc[i] != null)
{

try {
is[i] = hc[i].openInputStream();

byteCounts[i] = 0;
readLengths[i] = hc[i].getLength();

System.out.println("readLengths = " + readLengths[i]);

if (readLengths[i] == -1)
{

readLengths[i] = BUFFER_SIZE;
}

int bytes_read = 0;
int offset = 0;
int bytes_left = (int)readLengths[i];

do
{

bytes_read = is[i].read(buffer, offset, bytes_left);
offset += bytes_read;
bytes_left -= bytes_read;
byteCounts[i] += bytes_read;

}
while (bytes_read > 0);

System.out.println("byte read = " + byteCounts[i]);

} catch (Exception ex) {
System.out.println("Downloading Failed: "+ ex.getMessage());
numPassed = 0;

}
finally {

try {
is[i].close();
is[i] = null;

} catch (Exception ex) {}
}

}

Java ME Developer Guide
Chapter 22 - Network APIs

[156/202]

/**
* close http connection
*/
if (hc[i] != null)
{

try {
hc[i].close();

} catch (Exception ex) { }
hc[i] = null;

}

Code Sample 9 HTTPS

22.5 DNS IP

The DNS IP will be flexed on or off (per operator requirement) under Java Settings as

read only or as user-editable. In some instances, it will be flexed with an operator-

specified IP address.

22.6 Push Registry

The push registry mechanism allows an application to register for notification events

that are meant for the application. The push registry maintains a list of inbound con-

nections.

22.7 Mechanisms for Push

Motorola implementation for push requires the support of certain mechanisms. The

mechanisms that will be supported for push are the following:

SMS push: an SMS with a port number associated with an application used to deliver

the push notification.

The formats for registering any of the above mechanisms will follow those detailed in

JSR-118 specification.

Java ME Developer Guide
Chapter 22 - Network APIs

[157/202]

22.8 Push Registry Declaration

The application descriptor file will include information about static connections that

are needed by the MIDlet suite. If all static push declarations in the application

descriptor cannot be fulfilled during the installation, the MIDlet suite will not be in-

stalled. The user will be notified of any push registration conflicts despite the mech-

anism. This notification will accurately reflect the error that has occurred.

Push registration can fail as a result of an Invalid Descriptor. Syntax errors in the

push attributes can cause a declaration error resulting in the MIDlet suite installation

being cancelled. A declaration referencing a MIDlet class not listed in the MIDlet-<n>

attributes of the same application descriptor will also result in an error and cancella-

tion of the MIDlet installation.

Two types of registration mechanisms will be supported. The registration mechan-

isms to be supported are the following:

Registration during installation through the JAD file entry using a fixed port number

Dynamically register using an assigned port number

If the port number is not available on the handset, an installation failure notification

will be displayed to the user while the error code 911 push is sent to the server. This

error will cease the download of the application.

Applications that wish to register with a fixed port number will use the JAD file to

identify the push parameters. The fixed port implementation will process the MIDlet-

Push-n parameter through the JAD file.

Code Sample 10 shows the implementation of Push Registry:

Push Registry Declaration

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;

public class PushTest_1 extends MIDlet implements CommandListener{

public Display display;

Java ME Developer Guide
Chapter 22 - Network APIs

[158/202]

public static Form regForm;
public static Form unregForm;
public static Form mainForm;
public static Form messageForm;

public static Command exitCommand;
public static Command backCommand;
public static Command unregCommand;
public static Command regCommand;

public static TextField regConnection;
public static TextField regFilter;
public static ChoiceGroup registeredConnsCG;
public static String[] registeredConns;

public static Command mc;
public static Displayable ms;

public PushTest_1(){
regConnection = new TextField("Connection port:", "1000", 32, Text-

Field.PHONENUMBER);
regFilter = new TextField("Filter:", "*", 32, TextField.ANY);

display = Display.getDisplay(this);

regForm = new Form("Register");
unregForm = new Form("Unregister");
mainForm = new Form("PushTest_1");
messageForm = new Form("PushTest_1");

exitCommand = new Command("Exit", Command.EXIT, 0);
backCommand = new Command("Back", Command.BACK, 0);
unregCommand = new Command("Unreg", Command.ITEM, 1);
regCommand = new Command("Reg", Command.ITEM, 1);

mainForm.append("Press \"Reg\" softkey to register a new connection.\n" +
"Press \"Unreg\" softkey to unregister a connection.");

mainForm.addCommand(exitCommand);
mainForm.addCommand(unregCommand);
mainForm.addCommand(regCommand);
mainForm.setCommandListener(this);

regForm.append(regConnection);
regForm.append(regFilter);

Java ME Developer Guide
Chapter 22 - Network APIs

[159/202]

regForm.addCommand(regCommand);
regForm.addCommand(backCommand);
regForm.setCommandListener(this);

unregForm.addCommand(backCommand);
unregForm.addCommand(unregCommand);
unregForm.setCommandListener(this);

messageForm.addCommand(backCommand);
messageForm.setCommandListener(this);

}
public void pauseApp(){}

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if(messageForm.size() != 0) messageForm.delete(0);
messageForm.append(s);
display.setCurrent(messageForm);

}

public void commandAction(Command c, Displayable s) {

if((c == unregCommand) && (s == mainForm)){
mc = c;
ms = s;
new runThread().start();

}

if((c == regCommand) && (s == mainForm)){
display.setCurrent(regForm);

}

if((c == regCommand) && (s == regForm)){
mc = c;
ms = s;

Java ME Developer Guide
Chapter 22 - Network APIs

[160/202]

new runThread().start();
}

if((c == unregCommand) && (s == unregForm)){
mc = c;
ms = s;
new runThread().start();

}

if((c == backCommand) && (s == unregForm)){
display.setCurrent(mainForm);

}
if((c == backCommand) && (s == regForm)){

display.setCurrent(mainForm);
}

if((c == backCommand) && (s == messageForm)){
display.setCurrent(mainForm);

}

if((c == exitCommand) && (s == mainForm)){
destroyApp(false);

}

}

public class runThread extends Thread{
public void run(){

if((mc == unregCommand) && (ms == mainForm)){
try{

registeredConns = PushRegistry.listConnections(false);
if(unregForm.size() > 0) unregForm.delete(0);
registeredConnsCG = new ChoiceGroup("Connections", Choice-

Group.MULTIPLE, registeredConns, null);
if(registeredConnsCG.size() > 0) unreg-

Form.append(registeredConnsCG);
else unregForm.append("No registered connections found.");
display.setCurrent(unregForm);

} catch (Exception e) {
showMessage("Unexpected " + e.toString() + ": " +

e.getMessage());
}

}

Java ME Developer Guide
Chapter 22 - Network APIs

[161/202]

if((mc == regCommand) && (ms == regForm)){
try{

PushRegistry.registerConnection("sms://:" + regConnec-
tion.getString(), "Receive", regFilter.getString());

showMessage("Connection successfully registered");
} catch (Exception e){

showMessage("Unexpected " + e.toString() + ": " +
e.getMessage());

}
}

if((mc == unregCommand) && (ms == unregForm)){
try{

if(registeredConnsCG.size() > 0){
for(int i=0; i<registeredConnsCG.size(); i++){

if(registeredConnsCG.isSelected(i)){
PushRegistry.unregisterConnection(registeredConnsCG.

getString(i));
registeredConnsCG.delete(i);
if(registeredConnsCG.size() == 0){

unregForm.delete(0);
unregForm.append("No registered connections found.");

}
}

}
}

} catch (Exception e) {
showMessage("Unexpected " + e.toString() + ": " +

e.getMessage());
}

}
}

}
}

WakeUp.java

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.PushRegistry;
import javax.microedition.rms.*;
import java.util.*;
import javax.microedition.io.*;

Java ME Developer Guide
Chapter 22 - Network APIs

[162/202]

public class WakeUp extends MIDlet implements CommandListener{

public static Display display;
public static Form mainForm;
public static Command exitCommand;
public static TextField tf;
public static Command registerCommand;

public void startApp() {

display = Display.getDisplay(this);

mainForm = new Form("WakeUp");
exitCommand = new Command("Exit", Command.EXIT, 0);
registerCommand = new Command("Register", Command.SCREEN, 0);
tf = new TextField("Delay in seconds", "10", 10, TextField.NUMERIC);
mainForm.addCommand(exitCommand);
mainForm.addCommand(registerCommand);
mainForm.append(tf);
mainForm.setCommandListener(this);

display.setCurrent(mainForm);

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void commandAction(Command c, Displayable s) {
if((c == exitCommand) && (s == mainForm)){

destroyApp(false);
}
if(c == registerCommand){

new regThread().start();

}
}

Java ME Developer Guide
Chapter 22 - Network APIs

[163/202]

public class regThread extends Thread{

public void run(){

try {
long delay = Integer.parseInt(tf.getString()) * 1000;

long curTime = (new Date()).getTime();

System.out.println(curTime + delay);

PushRegistry.registerAlarm("WakeUp", curTime + delay);
mainForm.append("Alarm registered successfully");

} catch (NumberFormatException nfe) {
mainForm.append("FAILED\nCan not decode delay " + nfe);

} catch (ClassNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe);

} catch (ConnectionNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe);

}

}
}

}

SMS_send.java

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;
import javax.wireless.messaging.*;
import javax.microedition.io.*;

public class SMS_send extends MIDlet implements CommandListener{

public Display display;

public static Form messageForm;
public static Form mainForm;

public static Command exitCommand;

Java ME Developer Guide
Chapter 22 - Network APIs

[164/202]

public static Command backCommand;
public static Command sendCommand;

public static TextField address_tf;
public static TextField port_tf;
public static TextField message_text_tf;

String[] binary_str = {"Send BINARY message"};
public static ChoiceGroup binary_cg;

byte[] binary_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
String address;
String text;

MessageConnection conn = null;
TextMessage txt_message = null;
BinaryMessage bin_message = null;

public SMS_send(){
address_tf = new TextField("Address:", "", 32, TextField.PHONENUMBER);
port_tf = new TextField("Port:", "1000", 32, TextField.PHONENUMBER);

message_text_tf = new TextField("Message text:", "test message", 160,
TextField.ANY);

binary_cg = new ChoiceGroup(null, Choice.MULTIPLE, binary_str, null);

display = Display.getDisplay(this);

messageForm = new Form("SMS_send");
mainForm = new Form("SMS_send");

exitCommand = new Command("Exit", Command.EXIT, 0);
backCommand = new Command("Back", Command.BACK, 0);
sendCommand = new Command("Send", Command.ITEM, 1);

mainForm.append(address_tf);
mainForm.append(port_tf);
mainForm.append(message_text_tf);
mainForm.append(binary_cg);
mainForm.addCommand(exitCommand);
mainForm.addCommand(sendCommand);
mainForm.setCommandListener(this);

messageForm.addCommand(backCommand);

Java ME Developer Guide
Chapter 22 - Network APIs

[165/202]

messageForm.setCommandListener(this);

}

public void pauseApp(){
}

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if(messageForm.size() != 0) messageForm.delete(0);
messageForm.append(s);
display.setCurrent(messageForm);

}

public void commandAction(Command c, Displayable s) {
if((c == backCommand) && (s == messageForm)){

display.setCurrent(mainForm);
}
if((c == exitCommand) && (s == mainForm)){

destroyApp(false);
}
if((c == sendCommand) && (s == mainForm)){

address = "sms://" + address_tf.getString();
if(port_tf.size() != 0) address += ":" + port_tf.getString();
text = message_text_tf.getString();
new send_thread().start();

}
}

public class send_thread extends Thread{
public void run(){

try{
conn = (MessageConnection) Connector.open(address);
if(!binary_cg.isSelected(0)){

txt_message = (TextMessage)
conn.newMessage(MessageConnection.TEXT_MESSAGE);

txt_message.setPayloadText(text);

Java ME Developer Guide
Chapter 22 - Network APIs

[166/202]

conn.send(txt_message);
} else {

bin_message = (BinaryMessage)
conn.newMessage(MessageConnection.BINARY_MESSAGE);

bin_message.setPayloadData(binary_data);
conn.send(bin_message);

}
conn.close();
showMessage("Message sent");

} catch (Throwable t) {
showMessage("Unexpected " + t.toString() + ": " + t.getMessage());

}
}

}
}

Code Sample 10 Push Registry

22.9 Delivery of a Push Message

A push message intended for a MIDlet on the MOTORAZR V3xx handset will handle

the following interactions:

MIDlet running while receiving a push message - if the application receiving the push

message is currently running, the application will consume the push message without

user notification.

No MIDlet suites running - if no MIDlets are running, the user will be notified of the

incoming push message and will be given the option to run the intended application

as shown in Figure 19 .

Java ME Developer Guide
Chapter 22 - Network APIs

[167/202]

Figure 19 Intend Application Run Option

Push registry with Alarm/Wake-up time for application - push registry supports one

outstanding wake-up time per MIDlet in the current suite. An application will use the

TimerTask notification of time-based events while the application is running.

Another MIDlet suite is running during an incoming push - if another MIDlet is run-

ning, the user will be presented with an option to launch the application that had re-

gistered for the push message. If the user selects the launch, the current MIDlet is

terminated.

Stacked push messages - it is possible for the handset to receive multiple push mes-

sages at one time while the user is running a MIDlet. The user will be given the op-

tion to allow the MIDlets to end and new MIDlets to begin. The user will be given the

ability to read the messages in a stacked manner (stack of 5 supported), and if not

read, the messages should be discarded.

No applications registered for push - if there are no applications registered to handle

this event, the incoming push message will be ignored.

22.10 Deleting an Application
Registered for Push

If an application registered in the Push Registry is deleted, the corresponding push

entry will be deleted, making the PORT number available for future Push Registra-

tions.

Java ME Developer Guide
Chapter 22 - Network APIs

[168/202]

22.11 Security for Push Registry

Push Registry is protected by the security framework. The MIDlet registered for the

push should have the necessary permissions. Details on permissions are outlined in

the Security chapter.

22.12 Network Access

Untrusted applications will use the normal HttpConnection and HttpsConnection APIs

to access web and secure web services. There are no restrictions on web server port

numbers through these interfaces. The implementations augment the protocol so

that web servers can identify untrusted applications. The following will be imple-

mented:

• The implementation of HttpConnection and HttpsConnection will include
a separate User-Agent header with the Product-Token
"UNTRUSTED/1.0".User-Agent headers supplied by the application will
not be deleted.

• The implementation of SocketConnection using TCP sockets will throw
java.lang.SecurityException when an untrusted MIDlet suite attempts to
connect on ports 80 and 8080 (http) and 443 (https).

• The implementation of SecureConnection using TCP sockets will throw
java.lang.SecurityException when an untrusted MIDlet suites attempts
to connect on port 443 (https).

• The implementation of the method DatagramConnection.send will throw
java.lang.SecurityException when an untrusted MIDlet suite attempts to
send datagrams to any of the ports 9200-9203 (WAP Gateway).

• The above requirements should be applied regardless of the API used to
access the network. For example, the
javax.microedition.io.Connector.open and
javax.microedition.media.Manager.createPlayer methods should throw
java.lang.SecurityException if access is attempted to these port
numbers through a means other than the normal HttpConnection and
HttpsConnection APIs.

Java ME Developer Guide
Chapter 22 - Network APIs

[169/202]

23
Platform Request API

23.1 Platform Request API

The Platform Request API MIDlet package defines MIDP applications and the interac-

tions between the application and the environment in which the application runs.

Refer to Table 30 for Platform Request API feature/class support for MIDP 2.0:

Feature/Class Implementation

All constructors, methods, and inherited classes for the
MIDlet class

Supported

platformRequest() method in javax.microedition.midlet Supported

Will not support the "text/vnd.sun.j2me.app-descriptor"
mime type in the URL for the platformRequest() sup-
port

Supported

Will not support the "application/java-archive" mime
type in the URL for the platformRequest() method

Supported

Launching native apps with URLs Supported

URL compatible launch of the WAP Browser Supported

URL compatible launch of the phone dialer Supported

Will not require the MIDlet to exit in order to launch an
application from the platformRequest() method

Supported

Will pause the MIDlet when executing the platformRe-
quest() method.

Supported

Will resume the MIDlet after the user exits the applica-
tion launched by the platform Request() method.

Supported, resumes to
Java Service Menu

All constructors and inherited methods for the MIDlet-
StateChangeException in javax.microedition.midlet

Supported

Table 30 Platform Request API feature/class support for MIDP

For MIDP 2.0, the javax.microedition.midlet.MIDlet.platformRequest () method

Java ME Developer Guide
Chapter 23 - Platform Request API

[170/202]

should be used and called when the MIDlet is destroyed. The following code sample

is an example of the Platform Request API:

Start a Call

MIDlet.platformrequest("tel:88143593")

Start a Web Session

MIDlet.platformrequest("http://gonzaga.cesar.org.br/
~bam/triplets/tii/menu.wml")

MIDlet.platformrequest("http://gonzaga.cesar.org.br/
~bam/triplets/tii/Millionaire1.jad");

Code Sample 11 Plataform Request

23.2 MIDlet Request of a URL that
Interacts with Browser

When a MIDlet suite requests a URL, the browser will come to the foreground and

connect to that URL. The user will then have access to the browser and control over

any downloads or network connections. The initiating MIDlet suite will continue run-

ning in the background, if it cannot (upon exiting the requesting MIDlet suite) the

handset will bring the browser to the foreground with the specified URL.

If the URL specified refers to a MIDlet suite, JAD, or JAR, the request will be treated

as a request to install the named package. The user will be able to control the down-

load and installation process, including cancellation. Please note normal Java installa-

tion process should be used.

Refer to the JAD Attributes chapter for more details.

Java ME Developer Guide
Chapter 23 - Platform Request API

[171/202]

23.3 MIDlet Request of a URL that
Initiates a Voice Call

If the requested URL takes the form , the handset will use this re-

quest to initiate a voice call as specified in RFC2806. If the MIDlet will be exited to

handle the URL request, the handset will only handle the last request made. If the

MIDlet suite continues to run in the background when the URL request is being

made, all other requests will be handled in a timely manner.

The user will be asked to acknowledge each request before any actions are taken by

the handset, and upon completion of the platform request, the Java Service Menu

will be displayed to the user.

Java ME Developer Guide
Chapter 23 - Platform Request API

[172/202]

24
JAD Attributes

24.1 JAD / Manifest Attribute
Implementations

The JAR manifest defines attributes to be used by the application management soft-

ware (AMS) to identify and install the MIDlet suite. These attributes may or may not

be found in the application descriptor.

The application descriptor is used, in conjunction with the JAR manifest, by the ap-

plication management software to manage the MIDlet. The application descriptor is

also used for the following:

• By the MIDlet for configuration specific attributes
• Allows the application management software on the handset to verify

the MIDlet is suited to the handset before loading the JAR file
• Allows configuration-specific attributes (parameters) to be supplied to

the MIDlet(s) without modifying the JAR file.

Motorola has implemented the following support for the MIDP 2.0 Java Application

Descriptor attributes as outlined in the JSR-118. Table 31 lists all MIDlet attributes,

descriptions, and its location in the JAD and/or JAR manifest that are supported in

the Motorola implementation. Please note that the MIDlet will not install if the

MIDlet-Data-Size is greater than 512k.

Attribute Name Attribute Description JAR
Manifest

JAD

MIDlet-Name The name of the MIDlet suite that
identifies the MIDlets to the user

Yes Yes

MIDlet-Version The version number of the MIDlet Yes Yes

Java ME Developer Guide
Chapter 24 - JAD Attributes

[173/202]

suite

MIDlet-Vendor The organization that provides the
MIDlet suite.

Yes Yes

MIDlet-Icon The case-sensitive absolute name
of a PNG file within the JAR used
to represent the MIDlet suite.

Yes Yes

MIDlet-Description The description of the MIDlet
suite.

No No

MIDlet-Info-URL A URL for information further de-
scribing the MIDlet suite.

Yes No

MIDlet-<n> The name, icon, and class of the
nth MIDlet in the JAR file. Name is
used to identify this MIDlet to the
user. Icon is as stated above.
Class is the name of the class ex-
tending the
javax.microedition.midlet. MIDlet-
class.

Yes, or no if
included in
the JAD.

Yes,
or no
if in-
clude
d in
the
JAR
Mani-
fest.

MIDlet-Jar-URL The URL from which the JAR file
can be loaded.

Yes

MIDlet-Jar-Size The number of bytes in the JAR
file.

Yes

MIDlet-Data-Size The minimum number of bytes of
persistent data required by the
MIDlet.

Yes Yes

MicroEdition-Profile The Java ME profiles required. If
any of the profiles are not imple-
mented the installation will fail.

Yes, or no if
included in
the JAD.

Yes,
or no
if in-
clude
d in
the
JAR
Mani-
fest.

MicroEdition-Configuration The Java ME Configuration re-
quired, i.e CLDC

Yes, or no if
included in
the JAD.

Yes,
or no
if in-
clude
d in
the
JAR
Mani-
fest.

MIDlet-Permissions Zero or more permissions that are Yes Yes

Java ME Developer Guide
Chapter 24 - JAD Attributes

[174/202]

critical to the function of the MID-
let suite.

MIDlet-Permissions-Opt Zero or more permissions that are
non-critical to the function of the
MIDlet suite.

Yes Yes

MIDlet-Push-<n> Register a MIDlet to handle in-
bound connections

Yes Yes

MIDlet-Install-Notify The URL to which a POST request
is sent to report installation status
of the MIDlet suite.

Yes Yes

MIDlet-Delete-Notify The URL to which a POST request
is sent to report deletion of the
MIDlet suite.

Yes Yes

MIDlet-Delete-Confirm A text message to be provided to
the user when prompted to con-
firm deletion of the MIDlet suite.

Yes Yes

Table 31 MIDlet attributes, descriptions, and its location in the JAD and/or JAR
manifest

Java ME Developer Guide
Chapter 24 - JAD Attributes

[175/202]

25
LCDUI

25.1 LCDUI API

Table 32 lists the specific interfaces supported by Motorola implementation:

Interface Description

Choice Choice defines an API for user interface components im-
plementing selection from a predefined number of choices.

CommandListener This interface is used by applications which need to re-
ceive high-level events from implementation

ItemCommandListener A listener type for receiving notification of commands that
have been invoked on Item286 objects

ItemStateListener his interface is used by applications which need to receive
events that indicate changes in the internal state of the in-
teractive items within a Form231 screen.

Table 32 LCDUI API specific interfaces supported by Motorola implementation

Table 33 lists the specific classes supported by Motorola implementation:

Classes Description

Alert An alert is a screen that shows data to the user and waits
for a certain period of time before proceeding to the next
Displayable.

AlertType The AlertType provides an indication of the nature of
alerts.

Canvas The Canvas class is a base class for writing applications
that need to handle low-level events and to issue graphics
calls for drawing to the display.

ChoiceGroup A ChoiceGroup is a group of selectable elements intended
to be placed within a Form.

Command The Command class is a construct that encapsulates the
semantic information of an action.

Java ME Developer Guide
Chapter 25 - LCDUI

[176/202]

CustomItem A CustemItem is customizable by sub classing to introduce
new visual and interactive elements into Forms.

DateField A DateField is an editable component for presenting date
and time (calendar) information that will be placed into a
Form.

Display Display represents the manager of the display and input
devices of the system.

Displayable An object that has the capability of being placed on the
display.

Font The Font class represents fonts and font metrics.

Form A Form is a Screen that contains an arbitrary mixture of
items: images, read-only text fields, editable text fields,
editable date fields, gauges, choice groups, and custom
items.

Gauge Implements a graphical display, such as a bar graph of an
integer value.

Graphics Provides simple 2D geometric rendering capability.

Image The Image class is used to hold graphical image data.

ImageItem An item that can contain an image.

Item A superclass for components that can be added to a Form.

List A Screen containing a list of choices.

Screen The common superclass of all high-level user interface
classes.

Spacer A blank, non-interactive item that has a settable minimum
size.

StringItem An item that can contain a string.

TextBox The TextBox class is a Screen that allows the user to enter
and edit data.

TextField A TextField is an editable text component that will be
placed into a Form.

Ticker Implements a "ticker-tape", a piece of text that runs con-
tinuously across the display.

Table 33 LCDUI API specific classes supported by Motorola implementation

Refer to Table 34 for LCDUI feature/class support for MIDP 2.0:

Feature/Class Implementation

All fields, constructors, methods, and inherited methods
for the Alert class in the javax.microedition.lcdui package

Supported

All fields, constructors, methods, and inherited methods
for the AlertType class in the javax.microedition.lcdui
package

Supported

Will provide and play an audible sound when the play
Sound() method is called with an AlertType of ALARM

Supported

Java ME Developer Guide
Chapter 25 - LCDUI

[177/202]

Will provide and play an audible sound when the play
Sound() method is called with an AlertType of ERROR

Supported

Will provide and play an audible sound when the play
Sound() method is called with an AlertType of WARNING

Supported

Will provide and play an audible sound when the play
Sound() method is called with an AlertType of CONFIRMA-
TION

Supported

Will provide and play an audible sound when the play
Sound() method is called with an AlertType of INFO

Supported

All fields, constructors, methods, and inherited methods
for the Canvas Class in the javax.microedition.lcdui. pack-
age

Supported

Status indicators out of full-screen mode will consume a
portion of the display

Supported

UP field in javax.microedition.lcdui.Canvas to the top posi-
tion of the key

Supported

DOWN field in javax.microedition.lcdui.Canvas to the bot-
tom position of the key

Supported

LEFT field in javax.microedition.lcdui.Canvas to the left po-
sition of the key

Supported

RIGHT field in javax.microedition.lcdui.Canvas to the right
position of the key

Supported

All fields and methods for the Choice interface in the
javax.microedition.lcdui package

Supported

Truncate an image in a Choice object if it exceeds the ca-
pacity of the device display

Supported

Truncation of very long elements will not occur in a Choice
object

Text in forms is wrapped
and scrolled

Will display a portion of long elements to display and
provide a means for the user to view all of the parts of the
element

Supported

Truncation in elements w/line breaks will not occur in a
Choice object

Supported

Portion of line break elements to display and provide a
means for the user to view all parts of the element

Supported

All constructors, methods, inherited fields, and inherited
methods for the ChoiceGroup class in the
javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the
Command class in the javax.microedition.lcdui package

Supported

All methods for the CommandListener interface in the
javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and in-
herited methods for the CustomItem abstract class in the

Supported

Java ME Developer Guide
Chapter 25 - LCDUI

[178/202]

javax.microedition.lcdui package

All fields, constructors, methods, inherited fields, and in-
herited methods for the DateField class in the
javax.microedition.lcdui package

Supported

All fields, methods, and inherited methods for the Display
class in the javax.microedition.lcdui package

Supported

Maximum colors for the numColors() method in
javax.microedition.lcdui.Display

64K colors
supported

All methods and inherited methods for the Displayable
class in the javax.microedition.lcdui package

Supported

Adding commands to soft buttons before placing it in a
menu for the addCommand() method in
javax.microedition.lcdui.Displayable

Supported

All fields, methods, and inherited methods for the Font
class in the javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the
FORM class in the javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and in-
herited methods for the Gauge class in the
javax.microedition.lcdui package

Supported

All fields, methods, and inherited methods for the Graphics
class in the javax.microedition.lcdui package

Supported

DOTTED stroke style Supported

SOLID stroke style Supported

All methods and inherited methods for the Image class in
the javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and in-
herited methods for the ImageItem class in the
javax.microedition.lcdui package

Supported

All fields, methods, and inherited methods for the Item
class in the javax.microedition.lcdui package

Supported

Label field Supported

All methods for the ItemCommandListener interface in the
javax.microedition.lcdui package

Supported

All methods ItemStateListener interface in the
javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and in-
herited methods for the List class in the
javax.microedition.lcdui package

Supported

All constructors, methods, inherited fields, and inherited
methods for the Spacer class in the
javax.microedition.lcdui package

Supported

All constructors, methods, and inherited methods for the
StringItem class in the javax.microedition.lcdui package

Supported

Java ME Developer Guide
Chapter 25 - LCDUI

[179/202]

All constructors, methods, and inherited methods for the
TextBox class in the javax.microedition.lcdui package

Supported

All fields, constructors, methods, inherited fields, and in-
herited methods for the TextField class in the
javax.microedition.lcdui package

Supported

Visual indication with UNEDITABLE field set will be
provided

Supported

All constructors, methods, and inherited methods for the
Ticker class in the javax.microedition.lcdui package

Supported

OEM Lights API providing control to the lights present on
the handset

Supported, Fun Lights
API

All fields, constructors, methods, inherited fields, and in-
herited methods for the TextField class in the
havax.microedition.lcdui package

Supported

Table 34 Feature/class support for MIDP

Java ME Developer Guide
Chapter 25 - LCDUI

[180/202]

26
iTAP

26.1 Intelligent Keypad Text Entry API

When users are using features such as SMS (short message service), or "Text Mes-

saging", they can opt for a predictive text entry method from the handset. The Java

ME environment has the ability to use SMS in its API listing. The use of a predictive

entry method is a compelling feature to the MIDlet.

This API will enable a developer to access iTAP, Numeric, Symbol and Browse text

entry methods. With previous Java ME products, the only method available was the

standard use of TAP.

Predictive text entry allows a user to simply type in the letters of a word using only

one key press per letter, as apposed to the TAP method that can require as many as

four or more key presses. The use of the iTAP method can greatly decrease text-

entry time. Its use extends beyond SMS text messaging, but into other functions

such as phonebook entries.

The following Java ME text input components will support iTAP.

• javax.microedition.lcdui.TextBox

The TextBox class is a Screen that allows the user to edit and enter text.

• javax.microedition.lcdui.TextField

A TextField is an editable text component that will be placed into a Form. It is given a

piece of text that is used as the initial value.

Refer to Table 35 for iTAP feature/class support for MIDP 2.0:

Java ME Developer Guide
Chapter 26 - iTAP

[181/202]

Feature/Class

Predictive text capability will be offered when the constraint is set to ANY

User will be able to change the text input method during the input process when the
constraint is set to ANY (if predictive text is available)

Multi-tap input will be offered when the constraint on the text input is set to EMAIL-
ADDR, PASSWORD, or URL

Table 35 iTAP feature/class

Java ME Developer Guide
Chapter 26 - iTAP

[182/202]

27
Java.lang

Implementation

27.1 java.lang support

Motorola implementation for the method will sup-

port additional system properties beyond what is outlined in the JSR-118 specifica-

tion.

The additional system properties are as follows:

• Cell ID: The current Cell ID of the device will be returned during
implementation.

• Battery Level: The current battery level of the application will be
returned during implementation. Battery values are the following: low
battery, 1, 2, and 3, based on the battery level.

• IMEI: The IMEI number of the device will be returned during
implementation.

• MSISDN: The MSISDN of the device will be returned during
implementation.

The IMEI and MSISDN properties will not be available for unsigned MIDlets. The Code

Sample 12 shows the java.lang implementation:

System.getProperty("batterylevel")
System.getProperty("MSISDN")
System.getProperty("CellID")
System.getProperty("IMEI")

Code Sample 12 Java.lang implementation

Java ME Developer Guide
Chapter 27 - Java.lang Implementation

[183/202]

28
CommConnection

Interface

28.1 CommConnection

The CommConnection interface defines a logical serial port connection. A logical

serial port connection is a logical connection through which bytes are transferred

serially. This serial port is defined within the underlying operating system and may

not correspond to a physical RS-232 serial port. For example, IrDA IRCOMM ports

can be configured as a logical serial port within the operating system so it can act as

a logical serial port.

28.2 Accessing

The Comm port is accessed using a Generic Connection Framework string with an ex-

plicit port identifier and embedded configuration parameters, each separated with a

semi-colon (;). Only one application may be connected to a particular serial port at a

given time. A is thrown if an attempt is made to open the

serial port with if the connection is already open.

A URI with the type and parameters is used to open the connection. The scheme, as

defined in RFC 2396, will be the following:

•

Java ME Developer Guide
Chapter 28 - CommConnection Interface

[184/202]

28.3 Parameters

The first parameter will be a port identifier, which is a logical device name. These

port identifiers are The valid identifiers for a particular device and OS can be queried

through the method using the key microedition.commports.

A list of ports, separated by commas, is returned which can be combined with a

comm: prefix as the URL string to open a serial port connection.device specific and

should be used with care.

The valid identifiers for a particular device and OS can be queried through the

method using the key . A list of

ports, separated by commas, is returned which can be combined with a comm: prefix

as the URL string to open a serial port connection.

Any additional parameters will be separated by a semi-colon (;) without spaces. If a

particular parameter is not applicable to a particular port, the parameter will be ig-

nored. The port identifier cannot contain a semi-colon (;).

Legal parameters are defined by the definition of the parameters below. Illegal or un-

recognized parameters cause an . If the value of a para-

meter is supported by the device, it will be honored. If the value of a parameter is

not supported, a is thrown. If a baudrate parameter is re-

quested, it is treated the same way that a method handles baudrates.

For example, if the baudrate requested is not supported, the system will substitute a

valid baudrate which can be discovered using the method.

Table 36 describes optional parameters.

Parameter Default Description

baudrate platform dependent The speed of the port.

bitsperchar 8 The number bits per character(7 or 8).

stopbits 1 The number of stop bits per char(1 or 2)

parity none The parity can be odd, even, or none.

blocking on If on, wait for a full buffer when reading.

autocts on If on, wait for the CTS line to be on before
writing.

autorts on If on, turn on the RTS line when the input
buffer is not full. If off, the RTS line is always

Java ME Developer Guide
Chapter 28 - CommConnection Interface

[185/202]

on.

Table 36 Interface Commconncetion optional parameters

28.4 BNF Format for Connector.open
() string

The URI must conform to the BNF syntax specified in Table 37. If the URI does not

conform to this syntax, an is thrown.

BNF syntax

<comm_connection_string
>

::= "comm:"<port_id>[<options_list>] ;

<port_id> ::= string of alphanumeric characters

<options_list> ::= *(<baud_rate_string>| <bitsperchar>|
<stopbits>| <parity>| <blocking>| <autocts>|
<autorts>) ;
; if an option duplicates a previous option in the
; option list, that option overrides the previous
; option

<baud_rate_string> ::= ";baudrate="<vbaud_rate>

<baud_rate> ::= string of digits

<bitsperchar> ::= ";bitsperchar="<bit_value>

<bit_value> ::= "7" | "8"

<stopbits> ::= ";stopbits="<stop_value>

<stop_value> ::= "1" | "2"

<parity> ::= ";parity="<parity_value>

<parity_value> ::= "even" | "odd" | "none"

<blocking> ::= ";blocking="<on_off>

<autocts> ::= ";autocts="<on_off>

<autorts> ::= ";autorts="<on_off>

<on_off> ::= "on" | "off"

Table 37 Interface Commconncetion BNF syntax

28.5 Comm Security

Access to serial ports is restricted to prevent unauthorized transmission or reception

of data. The security model applied to the serial port connection is defined in the im-

Java ME Developer Guide
Chapter 28 - CommConnection Interface

[186/202]

plementing profile. The security model will be applied on the invocation of the

method with a valid serial port connection string. Should the applic-

ation not be granted access to the serial port through the profile authorization

scheme, a will be thrown from the

method. The security model will be applied during execution, specifically when the

methods

are invoked.

Code Sample 13 shows the implementation of CommConnection:

Sample of a CommConnection accessing a simple loopback program

CommConnection cc = (CommConnection)
Connector.open("comm:com0;baudrate=19200");

int baudrate = cc.getBaudRate();
InputStream is = cc.openInputStream();
OutputStream os = cc.openOutputStream();
int ch = 0;
while(ch != 'Z') {

os.write(ch);
ch = is.read();
ch++;

}
is.close();
os.close();
cc.close();

Sample of a CommConnection discovering available comm Ports

String port1;
String ports = System.getProperty("microedition.commports");
int comma = ports.indexOf(',');
if (comma > 0) {

// Parse the first port from the available ports list.
port1 = ports.substring(0, comma);

} else {
// Only one serial port available.
port1 =ports;

}

Code Sample 13 CommConnection implementation

Java ME Developer Guide
Chapter 28 - CommConnection Interface

[187/202]

28.6 Port Naming Convention

Logical port names can be defined to match platform naming conventions using any

combination of alphanumeric characters. Ports will be named consistently among the

implementations of this class according to a proposed convention. VM implementa-

tions will follow the following convention:

• Port names contain a text abbreviation indicating port capabilities
followed by a sequential number for the port. The following device name
types will be used:

COM# - COM is for RS-232 ports and # is a number assigned to the
port
IR# - IR is for IrDA IRCOMM ports and # is a number assigned to the
port

The naming scheme allows API users to determine the type of port to use. For ex-

ample, if an application "beams" a piece of data, the application will look for IR#

ports for opening the connection.

28.7 Method Summary

Table 38 describe the CommConnection method summary for MIDP 2.0.

Method Summary

int
Gets the baudrate for the serial port connection

int
Sets the baudrate for the serial port connection

Table 38 Method Summary

Java ME Developer Guide
Chapter 28 - CommConnection Interface

[188/202]

29
Motorola Get URL from

Flex API

29.1 Overview

This feature allows accessing URL stored in FLEX by a Java application. Carriers flex

the URL, which is used for content download, into the phone just like any invisible

net URL. So, this feature would allow Java applications to read and display the URL

stored in flex for users that would like to download new levels of Game.

The existing functionality allows current Java Applications use a dedicated URL to in-

form users about the location which a new level of game can be downloaded. This

new functionality allows carriers to specify the URL for content download.

29.2 Flexible URL for downloading
functionality

The URL is flexed using RadioComm or using OTA provisioning. The URL will follow

the rules mentioned below:

• All URLs used shall follow the guidelines outlined in RFC1738: Uniform
Resource Locators (URL). Refer to
http://www.w3.org/addressing/rfc1738.txt for more information.

• URLs are limited to 128 characters.

This feature enables Java applications to read the URL stored at the predefined loca-

Java ME Developer Guide
Chapter 29 - Motorola Get URL from Flex API

[189/202]

http://www.w3.org/addressing/rfc1738.txt

tion in flex table.

The Java Application will be able to access the flexed URL by System.getProperty

method. The key for accessing the URL is "com.mot.carrier.URL". The method

System.getProperty will return NULL if no URL is flexed.

29.3 Security Policy

Only trusted applications will be granted permission to access this property.

Java ME Developer Guide
Chapter 29 - Motorola Get URL from Flex API

[190/202]

30
Motorola Secondary

Display API

This chapter details the capability for Java ME applications to render content to Mo-

torola devices that feature a secondary display.

Motorola P2K Java ME ™ enabled devices currently support the standard low-level

and high-level APIs for UI development for the primary display only. When the focus

is removed from the kJava environment by closing the flip (or exiting the environ-

ment) the Java ME ™ application cannot display any text or graphical information to

the secondary display.

Motorola devices that feature a secondary display will provide the capability to ex-

tend application UI to the secondary display.

30.1 Primary Requirements

The first implementation of the Secondary Display API is targeted for the Triplets re-

fresh. Supporting Displayable items such as Forms, TextBox, List is not required, al-

though design considerations will be made to support these UI features in future re-

leases.

The Secondary Display API will provide functionality to access the secondary display:

• The secondary display API must not support the Displayable sub-class of
Screen or Screen’s sub-classes (Form, TextBox, etc.). Screen and its
subclasses support high-level layout and input support which is not
needed in this version of Secondary Display API.

Java ME Developer Guide
Chapter 30 - Motorola Secondary Display API

[191/202]

• The secondary display API must not support any input elements like
Choice, Item, Text-Field etc.

• Secondary display API must support setting Ticker on secondary display.
• The Secondary Display API must support key event processing. Key

mappings will be supported for Voice and Camera/Smart keys. Extra
keys shall be supported depending on device requirements.

• Only one display, either primary or secondary shall be having focus at a
given time. Primary display shall be active when flip is open and
secondary display shall be active when flip is closed. Events including
key events shall be delivered to the current active display only.

• The secondary canvas must support full screen and normal modes. In
full screen mode, the whole secondary display area will be available for
the MIDlet. In normal mode, the status area won’t be available for
display.

• The secondary display API must support all Graphics class functionality.
• Providing some game canvas functionality to the secondary display is

not required first implementation, but will be taken up for future
releases.

• Multimedia resources must be available for MIDlets running on
secondary display playing audio media and decoding images when the
flip is closed.

• Secondary Display API must support Flip open, Flip close event
processing.

30.2 Flip-Open, Flip-Closed Event
Handling

A running MIDlet can continue to run on the secondary display when the flip is

closed.

A MIDlet running on secondary display can switch to primary display if the flip is

opened.

The MIDlet shall receive flip open, flip close events and can take appropriate action

based on these events.

Java ME Developer Guide
Chapter 30 - Motorola Secondary Display API

[192/202]

30.3 Exception Handling

For portability purposes, the design of the API will allow the developer to handle Ex-

ceptions related to the instantiation of the secondary display context. Appropriate ex-

ceptions should be generated for invocation of methods not supported by secondary

display.

30.4 Push enabled applications

While the flip is closed, it is desirable to start up MIDlets if a push is received on a re-

gistered port and the associated MIDlet can run on secondary display. This will be

subject to user confirmation.

This feature need not be implemented for the first version of API.

30.5 Feature interaction

Any incoming call, message or any scheduled native application should have priority

over MIDlet running on secondary display. If any native application requests focus,

the running MIDlet shall be suspended.

30.6 Low power requirements

It is desirable that the VM runs on low-power mode while using the secondary dis-

play.

30.7 Security

Secondary Display API shall follow MIDP 2.0 security model.

Java ME Developer Guide
Chapter 30 - Motorola Secondary Display API

[193/202]

Appendix A
Key Mapping

Key Mapping

Table 39 identifies key names and corresponding Java assignments. All other keys

are not processed by Java.

Key Assignment

0 NUM0

1 NUM1

2 NUM2

3 NUM3

4 NUM4

5 SELECT, followed by NUM5

6 NUM6

7 NUM7

8 NUM8

9 NUM9

STAR (*) ASTERISK

POUND (#) POUND

JOYSTICK LEFT LEFT

JOYSTICK RIGHT RIGHT

JOYSTICK UP UP

JOYSTICK DOWN DOWN

SCROLL UP UP

SCROLL DOWN DOWN

SOFTKEY 1 SOFT1

SOFTKEY 2 SOFT2

MENU SOFT3 (MENU)

SEND SELECT
Also, call placed if pressed on
lcdui.TextField or lcdui.TextBox with

Java ME Developer Guide
Appendix A - Key Mapping

[194/202]

PHONENUMBER constraint set.

CENTER SELECT SELECT

END Handled according to Motorola specifica-
tion: Pause/End/Resume/Background
menu invoked.

Table 39 Key Mapping

Java ME Developer Guide
Appendix A - Key Mapping

[195/202]

Appendix B
Memory Management

Calculation

The available memory on the MOTORAZR V3xx is the following:

• 64 MB shared memory for MIDlet storage
• 4Mb Heap size

Java ME Developer Guide
Appendix B - Memory Management Calculation

[196/202]

Appendix C
FAQ

The MOTODEV developer program is online and provides access to Frequently Asked

Questions about enabling technologies on Motorola products.

Access to dynamic content based on questions from the Motorola Java ME developer

community is available at the URL stated below.

http://developer.motorola.com/

Java ME Developer Guide
Appendix C - FAQ

[197/202]

http://developer.motorola.com/

Appendix D
HTTP Range

Graphic Description

Figure 20 shows a graphic description of HTTP Range:

Figure 20 Graphic Description of HTTP Range

Java ME Developer Guide
Appendix D - HTTP Range

[198/202]

Appendix F
Spec Sheet

Spec Sheet

Listed below is the spec sheets for the MOTORAZR V3xx. The spec sheet contains in-

formation regarding the following areas:

• Technical Specifications
• Key Features
• Java ME Information
• Motorola Developer Information
• Tools
• Other Related Information

Java ME Developer Guide
Appendix F - Spec Sheet

[199/202]

MOTORAZR V3xx
Developer Reference Sheet

Technical Specifications

Band/Frequency E-GSM900/GSM 1800/GSM
1900/GPRS/EDGE/HSDPA 3.6mbps

Region EMEA/Asia/Australia
Technology UMTS, GSM, EDGE, GPRS
Connectivity Mini-USB v2.0, Bluetooth
Dimensions 53 x 104.5 x 15.5 mm
Weight 105g
Display 96 x 80 (65k colors)

240 x 320 (262k colors)
Operating System Motorola

Java ME Information

CLDC v1.1 and MIDP v2.0 compliant
Heap Size 4Mb
Maximum record store size (RMS) 512 KB
MIDlet storage avaliable 64 MB
Interface connections HTTP, HTTPS, Datagram, Socket

Stream, Secure Sock-
et(Stream/Layer)

Maximum number of Sockets 4
Image Support .jpeg .gif .png .bmp
Double Buffering Supported
Encoding schemes ISO-8859-1, UTF-8/16
Input methods iTap/Multitap
Additional APIs JSR-75, JSR-82, JSR-118, JSR-120, JSR-

135, JSR-139, JSR-177, JSR-184, JSR-
185, JSR-205, Motorola Get URL from
Flex API, Motorola Secundary Display

API
Audio Support AAC, AAC+, Enh AAC+, AMR NB/WB,

Key Features

• Updated & streamlined MOTORAZR V3xx design

• HSDPA 3.6 Mbps (category 6)

• EDGE Class 10, GPRS Class 10

• Integrated VGA and 1.3 megapixel digital camera
with 8x digital zoom and full screen viewfinder

• Integrated MP3 player with Media Finder and
optional mini-USB stereo headset

• Optional, hot swappable microSD memory card

• MPEG4 video capture and playback

• Integrated Class 2 Bluetooth wireless technology

• Bluetooth stereo Music Profile (A2DP) and Bluetooth
Music Control Profile (AVRCP) for streaming music to
compatible Bluetooth enabled wireless stereo
headphones

• VGA Imager Point to Point Video at up to 15 frames
per second

Related Information

Motorola Developer Information:
Developer Resources at
http://developer.motorola.com/
Tools:
Motorola Java™ ME SDK version v6.1 SE
Motorola Messaging Suite v1.1
Documentation:
Creating Media for the MOTORAZR V3xx Handset
Purchase:
Visit the MOTODEV Shop at http://developer.motorola.com/
Accessories: http://www.motorola.com/consumer

References:
Java ME specifications:
http://java.sun.com/javame/
MIDP v2.0 specifications:
http://www.java.sun.com/products/midp
CLDC v1.0/v1.1 specifications:
http://www.java.sun.com/products/cldc
WAP forum: http://www.wapforum.org
EMS standards: http://www.3GPP.org

Some features are network, subscription and SIM card or service provider dependent and may be not available in all areas. MOTOROLA and the Stylized M Logo are registered in the
US Patent & Trademark Office. The Bluetooth® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Motorola is under license. Java and all Java-
based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All other product or service names are the property of their
respective owners. © Motorola, Inc. 2006

Updated on 18-Dec-2006.

http://developer.motorola.com/
http://developer.motorola.com/
http://www.motorola.com/consumer
http://java.sun.com/javame/
http://www.java.sun.com/products/midp
http://www.java.sun.com/products/cldc
http://www.wapforum.org
http://www.3GPP.org

Appendix H
Quick Reference

CLDC: 12 20 20 22 24 65
81 81 86 100
111 111

HTTP: 26 47 78
155 155 198

JAD: 25 26 27 30
58 58 58 59 59 59 60 60
104 135 138 138 139
143 147 158 158 171 171 173

JSR-118: 30 31 157 173 183

JSR-120: 64 64 65 66 66 66 68
114 117

MIDP: 20 20 20 21 22 24 25
30 30 31 49 49 49 53 59 60
63 79 86 96 100 101 103 110
112 119 119 120 121 123 125 147
149 150 152 170 170 170 173 177 181
188 193

SMS: 64 64 65 66 66 66
66 67 67 67 67 71
114 127 157 164 181 181

WMA: 64 64 114 116 116 117 117
118 119 119 120 120 120 120 120 121
121 123 123 124

Java ME Developer Guide
Appendix H - Quick Reference

[201/202]

	MOTORAZR V3xx Developer Guide
	Index
	Table of Contents
	Index of Tables
	Index of Figures
	Index of Code Samples

	Chapter 1 - Introduction
	Section 1.1 - Purpose
	Section 1.2 - Audience
	Section 1.3 - Disclaimer
	Section 1.4 - References
	Section 1.5 - Revision History
	Section 1.6 - Definitions, Abbreviations, Acronyms
	Section 1.7 - Document Overview

	Chapter 2 - Java ME Introduction
	Section 2.1 - The Java™ Platform, Micro Edition (Java™ ME)
	Section 2.2 - The Motorola Java™ ME Platform
	Section 2.3 - Resources and APIs Available

	Chapter 3 - Developing and Packaging Java ME Applications
	Section 3.1 - Guide to Development in Java™ ME
	Section 3.1.1 - Recognizing the phone core specifications

	Chapter 4 - Downloading Applications
	Section 4.1 - Methods of Downloading
	Section 4.2 - Error Logs

	Chapter 5 - Application Management
	Section 5.1 - Downloading a JAR file without a JAD
	Section 5.2 - MIDlet Upgrade
	Section 5.3 - Installation and Deletion Status Reports

	Chapter 6 - JSR-75 - PIM and Fileconnection APIs
	Section 6.1 - PIM API
	Section 6.1.1 - Requirements
	Section 6.1.2 - Contact List
	Section 6.1.3 - Event List
	Section 6.1.4 - To Do List

	Section 6.2 - Fileconnection API
	Section 6.2.1 - Requirements

	Chapter 7 - JSR-82 - Bluetooth API
	Section 7.1 - Overview
	Section 7.2 - JSR-82 Bluetooth API
	Section 7.2.1 - System Requirements
	Section 7.2.2 - Bluetooth Control Center
	Section 7.2.3 - Device Property Table
	Section 7.2.4 - Service Registration
	Connectable Mode
	Non-Connectable Mode

	Section 7.2.5 - Device Management
	Generic Access Profile (GAP)
	Security

	Section 7.2.6 - Communication
	Serial Port Profile (SPP)
	Object Exchange (OBEX)

	Section 7.2.7 - Security Policy
	Section 7.2.8 - External Events
	Incoming Call
	Incoming Message

	Section 7.2.9 - Alarm & Datebook Behaviour
	Section 7.2.10 - Pressing of End Key
	Section 7.2.11 - Hardware Requirements
	Section 7.2.12 - Interoperability Requirements

	Chapter 8 - MIDP 2.0 Security Model
	Section 8.1 - Untrusted MIDlet Suites
	Section 8.2 - Untrusted Domain
	Section 8.3 - Trusted MIDlet Suites
	Section 8.4 - Permission Types concerning the Handset
	Section 8.5 - User Permission Interaction Mode
	Section 8.6 - Implementation based on Recommended Security Policy
	Section 8.7 - Trusted 3rd Party Domain
	Section 8.8 - Security Policy for Protection Domains
	Section 8.9 - Displaying of Permissions to the User
	Section 8.10 - Trusted MIDlet Suites Using x.509 PKI
	Section 8.11 - Signing a MIDlet Suite
	Section 8.12 - Signer of MIDlet Suites
	Section 8.13 - MIDlet Attributes Used in Signing MIDlet Suites
	Section 8.14 - Creating the Signing Certificate
	Section 8.15 - Inserting Certificates into JAD
	Section 8.16 - Creating the RSA SHA-1 signature of the JAR
	Section 8.17 - Authenticating a MIDlet Suite
	Section 8.18 - Verifying the Signer Certificate
	Section 8.19 - Verifying the MIDlet Suite JAR
	Section 8.20 - Carrier Specific Security Model

	Chapter 9 - JSR-120 - Wireless Messaging API
	Section 9.1 - Wireless Messaging API (WMA)
	Section 9.2 - SMS Client Mode and Server Mode Connection
	Section 9.3 - SMS Port Numbers
	Section 9.4 - SMS Storing and Deleting Received Messages
	Section 9.5 - SMS Message Types
	Section 9.6 - SMS Message Structure
	Section 9.7 - SMS Notification

	Chapter 10 - JSR-135 - Mobile Media API
	Section 10.1 - JSR-135
	Section 10.2 - ToneControl
	Section 10.3 - VolumeControl
	Section 10.4 - StopTimeControl
	Section 10.5 - Manager Class
	Section 10.6 - Supported Multimedia File Types
	Section 10.6.1 - Audio Media
	Section 10.6.2 - Image Media
	Section 10.6.3 - Video Media

	Section 10.7 - Media Locators
	Section 10.7.1 - RTSP locator
	Section 10.7.2 - HTTP Locator
	Section 10.7.3 - File Locator
	Section 10.7.4 - Capture Locator

	Section 10.8 - Security
	Section 10.8.1 - Policy
	Section 10.8.2 - Permissions

	Chapter 11 - JSR-139 - CLDC 1.1
	Section 11.1 - JSR-139

	Chapter 12 - JSR-177 Java ME Security and Trust Services API
	Section 12.1 - Feature Description
	Section 12.2 - Assumptions/Dependencies
	Section 12.3 - New Implementation
	Section 12.3.1 - javax.microedition.apdu Optional Package
	APDUConnection Interface
	Opening an APDU Connection
	APDU Connection Establishment Errors
	Using an APDU Connection
	Errors While Using APDU Connection
	Closing an APDU Connection
	Error Cases When Closing APDU Connection
	Support for (U)SIM Application Toolkit ((U)SAT)

	Section 12.3.2 - java.lang Package (Exception Classes)
	Section 12.3.3 - Recommended Security Element Access Control
	Evaluating Individual Access Control Entry

	Section 12.3.4 - Security Requirements

	Chapter 13 - JSR-184 - Mobile 3D Graphics API
	Section 13.1 - Overview
	Section 13.2 - Mobile 3D API
	Section 13.3 - Mobile 3D API File Format Support
	Section 13.4 - Mobile 3D Graphics - M3G API
	Section 13.4.1 - Typical M3G Application
	Section 13.4.2 - Simple MIDlets
	Section 13.4.3 - Initializing the world
	Section 13.4.4 - Using the Graphics3D object
	Section 13.4.5 - Interrogating and interacting with objects
	Section 13.4.6 - Animations
	Section 13.4.7 - Authoring M3G files

	Chapter 14 - JSR-185 - Java™ Technology for the Wireless Industry
	Section 14.1 - Overview
	Section 14.2 - CLDC related content for JTWI
	Section 14.3 - MIDP 2.0 specific information for JTWI
	Section 14.4 - Wireless Messaging API 1.1 (JSR-120) specific content for JTWI
	Section 14.5 - Mobile Media API 1.1 (JSR-135) specific content for JTWI
	Section 14.6 - MIDP 2.0 Security specific content for JTWI

	Chapter 15 - JSR-205 - WMA 2.0
	Section 15.1 - Overview
	Section 15.1.1 - Messaging Functionality
	Section 15.1.2 - MMS Message Structure
	Section 15.1.3 - MMS Message Addressing
	Section 15.1.4 - MMS Message Types
	Section 15.1.5 - MultipartMessage
	Section 15.1.6 - MessagePart
	Section 15.1.7 - Multimedia Message Service Center Address
	Section 15.1.8 - Application ID
	Section 15.1.9 - MMS Push

	Section 15.2 - Requirements for WMA
	Section 15.2.1 - Initial Setup
	Section 15.2.2 - Handling the incoming MMS message
	Application running/resuming
	Application is running/background
	Application suspending
	Application ending
	MMS Push

	Section 15.3 - Requirements to the Native MMS Client
	Section 15.3.1 - Anonymous Rejection Feature
	Section 15.3.2 - Coincidental Addresses in the native client and Java clients address filters
	Section 15.3.3 - Security Policy
	Section 15.3.4 - VMVM support
	Section 15.3.5 - External Event Interaction

	Chapter 16 - Java ME™ Access to certificates on SIM and phone memory
	Section 16.1 - Allow JVM to access Digital Certificates
	Section 16.2 - Update certificates on the SIM
	Section 16.3 - Procedure for viewing/enabling/deleting/disabling a certificate
	Section 16.4 - Roaming/Change of SIM card

	Chapter 17 - Prevent Downloading of Large Java MIDlets
	Section 17.1 - Overview
	Section 17.2 - Notification
	Section 17.3 - Backward Compatibility/Flexing

	Chapter 18 - Download Midlet through PC
	Section 18.1 - Establishing Connection

	Chapter 19 - Downloading MIDlet through Browser
	Section 19.1 - Star Active Browser Session from Main Menu
	Section 19.2 - Find a location with Java ME ™ Application
	Section 19.3 - Downloading MIDlets
	Section 19.4 - Different Error Checks
	Section 19.4.1 - Memory Full
	Section 19.4.2 - Memory Full during installation process.
	Section 19.4.3 - Application version already exists
	Section 19.4.4 - Newer application version exists

	Chapter 20 - Record Management System
	Section 20.1 - Record Management System API

	Chapter 21 - Gaming API/Multiple Key Press
	Section 21.1 - Gaming API
	Section 21.2 - Multiple Key Press Support

	Chapter 22 - Network APIs
	Section 22.1 - Network Connections
	Section 22.2 - User Permission
	Section 22.3 - Indicating a Connection to the User
	Section 22.4 - HTTPS Connection
	Section 22.5 - DNS IP
	Section 22.6 - Push Registry
	Section 22.7 - Mechanisms for Push
	Section 22.8 - Push Registry Declaration
	Section 22.9 - Delivery of a Push Message
	Section 22.10 - Deleting an Application Registered for Push
	Section 22.11 - Security for Push Registry
	Section 22.12 - Network Access

	Chapter 23 - Platform Request API
	Section 23.1 - Platform Request API
	Section 23.2 - MIDlet Request of a URL that Interacts with Browser
	Section 23.3 - MIDlet Request of a URL that Initiates a Voice Call

	Chapter 24 - JAD Attributes
	Section 24.1 - JAD / Manifest Attribute Implementations

	Chapter 25 - LCDUI
	Section 25.1 - LCDUI API

	Chapter 26 - iTAP
	Section 26.1 - Intelligent Keypad Text Entry API

	Chapter 27 - Java.lang Implementation
	Section 27.1 - java.lang support

	Chapter 28 - CommConnection Interface
	Section 28.1 - CommConnection
	Section 28.2 - Accessing
	Section 28.3 - Parameters
	Section 28.4 - BNF Format for Connector.open () string
	Section 28.5 - Comm Security
	Section 28.6 - Port Naming Convention
	Section 28.7 - Method Summary

	Chapter 29 - Motorola Get URL from Flex API
	Section 29.1 - Overview
	Section 29.2 - Flexible URL for downloading functionality
	Section 29.3 - Security Policy

	Chapter 30 - Motorola Secondary Display API
	Section 30.1 - Primary Requirements
	Section 30.2 - Flip-Open, Flip-Closed Event Handling
	Section 30.3 - Exception Handling
	Section 30.4 - Push enabled applications
	Section 30.5 - Feature interaction
	Section 30.6 - Low power requirements
	Section 30.7 - Security

	Appendix A - Key Mapping
	Key Mapping

	Appendix B - Memory Management Calculation
	Appendix C - FAQ
	Appendix D - HTTP Range
	Graphic Description

	Appendix F - Spec Sheet
	Spec Sheet

	MOTORAZR V3xx Spec Sheet
	Appendix H - Quick Reference

