
MOTOROKR E6/E6e
Java™ ME Developer Guide

Version 02.00

Copyright © 2007, Motorola, Inc. All rights reserved. This documentation may be printed and copied solely

for use in developing products for Motorola products. In addition, two (2) copies of this documentation may

be made for archival and backup purposes. Except for the foregoing, no part of this documentation may be

reproduced or transmitted in any form or by any means or used to make any derivative work (such as

translation, transformation, or adaptation) without express written consent from Motorola, Inc.

Motorola reserves the right to make changes without notice to any products or services described herein.

"Typical" parameters, which may be provided in Motorola Data sheets and/or specifications, can and do vary

in different applications and actual performance may vary. Customer's technical experts will validate all

"Typicals" for each customer application. No warranty is made as to coverage, availability, or grade of

service provided by the products or services, whether through a service provider or otherwise. No warranty

is made that the software will meet your requirements or will work in combination with any hardware or

application software products provided by third parties, that the operation of the software products will be

uninterrupted or error free, or that all defects in the software products will be corrected. In no event shall

Motorola be liable, whether in contract or tort (including negligence), for any damages resulting from use of

a product or service described herein, or for any indirect, incidental, special or consequential damages of any

kind, or loss of revenue or profits, loss of business, loss of information or data, or other financial loss arising

out of or in connection with the ability or inability to use the Products, to the full extent these damages may

be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incidental or consequential

damages, or limitation on the length of an implied warranty, therefore the above limitations or exclusions

may not apply to you. This warranty gives you specific legal rights, and you may also have other rights,

which vary from jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as components in systems

intended for surgical implant into the body, or other applications intended to support or sustain life, or for

any other application in which the failure of the Motorola product or service could create a situation where

personal injury or death may occur. Should the buyer purchase or use Motorola products or services for any

such unintended or unauthorized application, the buyer shall release, indemnify and hold Motorola and its

officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and

expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or

death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was

negligent regarding the designing or manufacturing of the product or service. Motorola recommends that if

you are not the author or creator of the graphics, video, or sound, you obtain sufficient license rights,

including the rights under all patents, trademarks, trade names, copyrights, and other third party proprietary

rights.

MOTOROLA and the Stylized M Logo are registered in the U.S. Patent & Trademark Office. All other product or

service names are the property of their respective owners. Java and all other Java based marks are

trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. If this

documentation is provided on compact disc, the other software and documentation on the compact disc are

subject to the license agreement accompanying the compact disc.

MOTOROKR E6/E6e Java™ ME Developer Guide
Version 02.00
11-APR-2007
For the latest version of this document, visit http://developer.motorola.com.
Motorola, Inc.
http://www.motorola.com

Page 2

http://developer.motorola.com
http://www.motorola.com

Table of Contents

TABLE OF CONTENTS ..2

1 Java™ ME Introduction..7
THE JAVA™ PLATFORM, MICRO EDITION (JAVA™ ME)...7
THE MOTOROLA JAVA™ ME PLATFORM ..8
RESOURCES AND APIS AVAILABLE ...9

2 Developing and Packaging Java™ ME Applications 10
GUIDE TO DEVELOPMENT IN JAVA™ ME... 10

3 Downloading Applications ... 12
METHODS OF DOWNLOADING... 12
ERROR LOGS .. 14

4 Application Management ... 16
DOWNLOADING A JAR FILE WITHOUT A JAD ... 16
MIDLET UPGRADE .. 17
INSTALLATION AND DELETION STATUS REPORTS .. 17

5 iTAP.. 19
INTELLIGENT KEYPAD TEXT ENTRY API .. 19

6 Record Management System .. 21
RECORD MANAGEMENT SYSTEM API ... 21

7 Downloading MIDlet Through Browser .. 23
START ACTIVE BROWSER SESSION FROM MAIN MENU .. 23
FIND A LOCATION WITH JAVA™ ME APPLICATION .. 24
DOWNLOADING MIDLETS... 24
DIFFERENT ERROR CHECKS... 28

MEMORY FULL .. 28
MEMORY FULL DURING INSTALLATION PROCESS .. 32
APPLICATION VERSION ALREADY EXISTS .. 33
NEWER APPLICATION VERSION EXISTS... 35

8 JAD Attributes.. 36
JAD / MANIFEST ATTRIBUTE IMPLEMENTATIONS .. 36

9 Network APIs .. 39
NETWORK CONNECTIONS ... 39
USER PERMISSION .. 41
INDICATING A CONNECTION TO THE USER... 41
HTTPS CONNECTION ... 42
DNS IP ... 44
PUSH REGISTRY... 44
MECHANISMS FOR PUSH .. 44

Page 2

PUSH REGISTRY DECLARATION ... 44
DELIVERY OF A PUSH MESSAGE .. 54
DELETING AN APPLICATION REGISTERED FOR PUSH... 55
SECURITY FOR PUSH REGISTRY .. 55
NETWORK ACCESS .. 56

10 Platform Request API.. 57
PLATFORM REQUEST API ... 57
MIDLET REQUEST OF A URL THAT INTERACTS WITH BROWSER................................ 58
MIDLET REQUEST OF A URL THAT INITIATES A VOICE CALL................................... 59

11 JSR-75: PIM API... 60
OVERVIEW... 60
REQUIREMENTS ... 60
FIELDS AND ATTRIBUTES ... 63

CONTACT LIST.. 63
EVENT LIST ... 64
TODO LIST ... 65

12 JSR-75: FileConnection API.. 66
OVERVIEW... 66
REQUIREMENTS ... 66

INTERFACE .. 66
SECURITY ... 67
PERMISSIONS ... 69

13 JSR-82: Bluetooth API... 72
OVERVIEW... 72
BLUETOOTH API .. 72

SYSTEM REQUIREMENTS.. 73
BLUETOOTH CONTROL CENTER... 73
DEVICE PROPERTIES.. 74
SERVICE REGISTRATION ... 74
CONNECTABLE MODE ... 75
NON-CONNECTABLE MODE... 75
DEVICE MANAGEMENT.. 75
GENERIC ACCESS PROFILE (GAP)... 75
SECURITY ... 76
COMMUNICATION ... 76
SERIAL PORT PROFILE (SPP).. 76
OBJECT EXCHANGE (OBEX)... 77
SECURITY POLICY .. 78
EXTERNAL EVENTS ... 78
INCOMING CALL .. 78
INCOMING MESSAGE ... 78
ALARM AND DATEBOOK BEHAVIOR... 79
PRESSING OF END KEY... 79
HARDWARE REQUIREMENTS .. 79
INTEROPERABILITY REQUIREMENTS .. 80

Page 3

14 JSR-118: MIDP 2.0 Security Model .. 82
UNTRUSTED MIDLET SUITES ... 83
UNTRUSTED DOMAIN ... 83
TRUSTED MIDLET SUITES .. 85
PERMISSION TYPES CONCERNING THE HANDSET .. 86
USER PERMISSION INTERACTION MODE ... 86
IMPLEMENTATION BASED ON RECOMMENDED SECURITY POLICY 87
TRUSTED THIRD-PARTY DOMAIN ... 87
SECURITY POLICY FOR PROTECTION DOMAINS .. 88
DISPLAYING PERMISSIONS.. 91
TRUSTED MIDLET SUITES USING X.509 PKI ... 91
SIGNING A MIDLET SUITE ... 92
SIGNER OF MIDLET SUITES .. 92
MIDLET ATTRIBUTES USED IN SIGNING MIDLET SUITES....................................... 92
CREATING THE SIGNING CERTIFICATE ... 93
INSERTING CERTIFICATES INTO JAD... 93
CREATING THE RSA SHA-1 SIGNATURE OF THE JAR .. 94
AUTHENTICATING A MIDLET SUITE .. 94
VERIFYING THE SIGNER CERTIFICATE .. 95
VERIFYING THE MIDLET SUITE JAR ... 96
CARRIER SPECIFIC SECURITY MODEL .. 97

15 JSR-120: Wireless Messaging API ... 98
WIRELESS MESSAGING API (WMA)... 98
SMS CLIENT MODE AND SERVER MODE CONNECTION.. 99
SMS PORT NUMBERS... 99
SMS STORING AND DELETING RECEIVED MESSAGES ..100
SMS MESSAGE TYPES ...100
SMS MESSAGE STRUCTURE ...100
SMS NOTIFICATION ...101

16 JSR-135: Mobile Media API .. 107
MOBILE MEDIA API..107
TONECONTROL ...109
VOLUMECONTROL ..109
STOPTIMECONTROL ..110
MANAGER CLASS...110
SUPPORTED MULTIMEDIA FILE TYPES ...111

AUDIO MEDIA ...111
IMAGE MEDIA..111
VIDEO MEDIA..112

MEDIA LOCATORS ..112
RTSP LOCATOR ...112
HTTP LOCATOR ...112
FILE LOCATOR ...113
CAPTURE LOCATOR ..113

SECURITY ..113

Page 4

POLICY3 ...114
PERMISSIONS ..114

17 JSR-139: CLDC 1.1 .. 115
JSR-30 — CLDC 1.0 ..115

NO FLOATING POINT SUPPORT ...115
CLASSFILE FORMAT AND CLASS LOADING ..115
SUPPORTED FILE FORMATS ...116
PUBLIC REPRESENTATION OF JAVA APPLICATIONS AND RESOURCES116
CLASSFILE LOOKUP ORDER ...117

JSR-139 — CLDC 1.1...117
18 JSR-172: Java™ ME Web Services Specification 122

OVERVIEW..122
JAXP ...123
JAX-RPC SUBSET OVERVIEW...124

19 JSR-184: Mobile 3D Graphics API.. 125
OVERVIEW..125
MOBILE 3D API ...125
MOBILE 3D FILE FORMAT SUPPORT...126
MOBILE 3D GRAPHICS — M3G API ...126

TYPICAL M3G APPLICATION ..126
SIMPLE MIDLETS..127
INITIALIZING THE WORLD...129
USING THE GRAPHICS3D OBJECT ..130
INTERROGATING AND INTERACTING WITH OBJECTS ..131
ANIMATIONS ...132
AUTHORING M3G FILES...134

20 JSR-185: Java Technology for the Wireless Industry 135
OVERVIEW..135
CLDC RELATED CONTENT FOR JTWI...136
MIDP 2.0 SPECIFIC INFORMATION FOR JTWI ...138
WIRELESS MESSAGING API 1.1 (JSR-120) SPECIFIC CONTENT FOR JTWI.................139
MOBILE MEDIA API 1.1 (JSR-135) SPECIFIC CONTENT FOR JTWI139

21 JSR-205: WMA 2.0 .. 140
OVERVIEW..140

MESSAGING FUNCTIONALITY ..140
MMS MESSAGE STRUCTURE ..140
MMS MESSAGE ADDRESSING ..141
MMS MESSAGE TYPES ..141
MULTIPARTMESSAGE ..141
MESSAGEPART...141
MULTIMEDIA MESSAGE SERVICE CENTER ADDRESS ...142
APPLICATION ID...142
MMS PUSH ..142

REQUIREMENTS FOR WMA ..143
INITIAL SETUP ...143

Page 5

HANDLING THE INCOMING MMS MESSAGE ..144
APPLICATION IS RUNNING/RESUMING ..144
APPLICATION IS RUNNING/BACKGROUND ..144
APPLICATION IS SUSPENDING...145
APPLICATION IS ENDING ..145
MMS PUSH ..145

REQUIREMENTS TO THE NATIVE MMS CLIENT..146
ANONYMOUS REJECTION FEATURE ..146
COINCIDENTAL ADDRESSES IN THE NATIVE CLIENT AND JAVA CLIENTS ADDRESS FILTERS147
SECURITY POLICY ...147
VMVM SUPPORT ..148
EXTERNAL EVENT INTERACTION...148

22 Motorola Get URL from Flex API ... 149
OVERVIEW..149
FLEXIBLE URL FOR DOWNLOADING FUNCTIONALITY..149
SECURITY POLICY ..150

APPENDIX A: Key Mapping ... 151
KEY MAPPING ..151

APPENDIX B: Memory Management Calculation 152
AVAILABLE MEMORY ...152

APPENDIX C: FAQ.. 153
ONLINE FAQ...153

APPENDIX D: HTTP Range .. 154
GRAPHIC DESCRIPTION ..154

Page 6

1
Java™ ME Introduction

The MOTOROKR E6/E6e handset includes the Java Micro Edition (Java™ ME)

Platform, Micro Edition, also known as the Java™ ME platform. The Java™ ME

platform enables developers to easily create a variety of Java applications ranging

from business applications to games. Prior to its inclusion, services or applications

residing on small consumer devices like cell phones could not be upgraded or added

to without significant effort. By implementing the Java™ ME platform on devices like

the MOTOROKR E6/E6e handset, service providers, as well as customers, can easily

add and remove applications allowing for quick and easy personalization of each

device. This chapter presents a quick overview of the Java™ ME environment and the

tools that can be used to develop applications for the MOTOROKR E6/E6e handset.

The Java™ Platform, Micro Edition
(Java™ ME)

The Java™ ME platform is a very small application environment. It is a framework for

the deployment and use of Java technology in small devices (such as cell phones and

pagers) and includes a set of APIs and a virtual machine that is designed in a

modular fashion, allowing for scalability among a wide range of devices.

The Java™ ME architecture contains three layers consisting of the Java Virtual

Machine, the Configuration Layer, and the Profile Layer. The Virtual Machine (VM)

supports the Configuration Layer by providing an interface to the host operating

system. Above the VM Layer is the Configuration Layer, which can be thought of as

the lowest common denominator of the Java Platform available across devices of the

same "horizontal market." Built upon this Configuration Layer is the Profile Layer,

Java™ ME Developer Guide
Chapter 1 - Java™ ME Introduction

Page 7

typically encompassing the presentation layer of the Java Platform.

Figure 1 Layer Architecture

The Configuration Layer used in the iDEN handsets is either the Connected Limited

Device Configuration 1.1 (CLDC 1.1) or the Connected Limited Device Configuration

1.0 (CLDC 1.0), depending on the phone model. The Profile Layer used is the Mobile

Information Device Profile 2.0 (MIDP 2.0). Together, the CLDC and MIDP provide

common APIs for I/O, simple math functionality, UI, and more.

For more information on Java™ ME see the Sun™ Java™ ME documentation

(http://java.sun.com/javame).

The Motorola Java™ ME Platform

Functionality not covered by the CLDC and MIDP APIs is left for individual OEMs to

implement and support. By adding to the standard APIs, manufacturers can allow

developers to access and take advantage of the unique functionality of their

handsets.

The MOTOROKR E6/E6e handset contains OEM APIs for extended functionality

ranging from enhanced UI to advanced data security. While the MOTOROKR E6/E6e

handset can run any application written in standard MIDP, it can also run applications

that take advantage of the unique functionality provided by these APIs. These OEM

APIs are described in this guide.

Java™ ME Developer Guide
Chapter 1 - Java™ ME Introduction

Page 8

http://java.sun.com/javame

Resources and APIs Available

MIDP 2.0 provides support to the following functional areas on the MOTOROKR

E6/E6e handset:

• Application delivery and billing
• Application lifecycle
• Application signing model and privileged security model
• End-to-end transactional security (HTTPS)
• MIDlet push registration (server push model)
• Networking
• Persistent storage
• Sounds
• Timers
• User Interface
• File Image Support (.PNG, .JPEG, .GIF, .BMP)

Additional Functionality:

••••••••••• JSR-118
• JSR-120
• JSR-135
• JSR-139
• JSR-172
• JSR-184
• JSR-185
• JSR-205
• JSR-75 FileConnection API
• JSR-75 PIM API
• JSR-82
• Motorola Get URL from Flex API

Java™ ME Developer Guide
Chapter 1 - Java™ ME Introduction

Page 9

2
Developing and

Packaging Java™ ME
Applications

Guide to Development in Java™ ME

Introduction to Development

This chapter assumes you have previous experience in Java™ ME development and

can appreciate the development process for Java MIDlets. This chapter provides

some information that a beginner in development can use to gain an understanding

of MIDlets for Java™ ME handsets.

There is a wealth of material on this subject on the following web sites maintained by

Motorola, Sun Microsystems, and others. Please refer to the following URLs for more

information:

• http://developer.motorola.com
• http://www.java.sun.com/javame
• http://www.corej2me.com
• http://www.javaworld.com

Java™ ME Developer Guide
Chapter 2 - Developing and Packaging Java™ ME Applications

Page 10

http://developer.motorola.com
http://www.java.sun.com/javame
http://www.corej2me.com
http://www.javaworld.com

As an introduction, brief details of Java™ ME are explained below.

The MIDlet consists of two core specifications, namely Connected Limited Device

Configuration (CLDC) and Mobile Information Device Profile (MIDP). Both of these

specifications (JSR - Java Specification Requests) are located at http://www.jcp.org/

site for reading.

• For MIDP 1.0; JSR-37 should be reviewed.
• For MIDP 2.0; JSR-118 should be reviewed.
• For CLDC 1.0.4; JSR-30 should be reviewed.
• For CLDC 1.1; JSR-139 should be reviewed.

For beginning development, key points to remember are memory size, processing

power, screen capabilities, and wireless network characteristics. These all play an

important part in the development of a MIDlet. The specifications listed above are

designed to work upon devices that have these characteristics.

Network conditions would only apply for networked applications such as streaming

tickers, email clients, etc.

In addition to the specifications, arrays of tools are available to assist the

development cycle. These range from the command line tools provided with by

Software Development Kit (SDK) from Sun to Integrated Development Environments

(IDEs) that are either free or purchased. These IDEs come from a range of sources

such as Sun, IBM, and Borland to name a few.

In addition to the IDEs and Sun SDK for development, Motorola offers access to our

own SDK that contains Motorola device emulators. From here, a MIDlet can be built

and then deployed onto an emulated target handset. This enables debugging and

validation of the MIDlet before deployment to a real, physical handset. The latest

Motorola SDK can be downloaded from the MOTODEV web site.

Please refer to the product specifications at the end of this guide for detailed

information on each handset.

Java™ ME Developer Guide
Chapter 2 - Developing and Packaging Java™ ME Applications

Page 11

http://www.jcp.org/

3
Downloading
Applications

Methods of Downloading

There are two options open to the developer for deploying the MIDlet to a physical

Motorola device. These are OTA (over-the-air) downloading or direct cable (Serial)

downloading through a PC to the target device.

Method 1 - OTA

To use the OTA method, the developer will have a connection through a wireless

network to a content server. This content server could be, for example, Apache

(http://httpd.apache.org) which is free to use, deployable on multiple operating

systems, and has extensive documentation on how to configure the platform.

The required file will be downloaded (either .jad and/or .jar) by issuing a direct URL

request to the file in question or it could be a URL request to a WAP page and a

hyperlink on that page to the target file. This request will be made through the

browser. In MIDP 2.0, the need for a JAD file before download is not required, so the

JAR file can be downloaded directly. The information about the MIDlet will be pulled

from the manifest file.

The transport mechanism used to download the file will be one of two depending on

the support from the network operators WAP Gateway and the size of the file

requested.

• HTTP Range - see specification RFC 2068 at http://www.rfc-editor.org/rfc.html
if content greater than 30k in size. Below is a ladder diagram showing the flow

Java™ ME Developer Guide
Chapter 3 - Downloading Applications

Page 12

http://httpd.apache.org
http://www.rfc-editor.org/rfc.html

through HTTP range transfer, although recall use of the .JAD is optional.
• SAR (Segmentation & Reassembly) - see specification of wireless transaction

protocol at the http://www.wapforum.org if less than 30k in size.

During a download of the application, the user will see the Opera 8 displaying

'Downloading' followed by "x% completed" for either SAR or HTTP Byte Range type

downloads.

A basic Over the Air Server Configuration document can be found in our Technical

Articles section at http://developer.motorola.com. This includes details of configuring

the server and also example WAP pages.

In these handsets, the user is given an option of deleting any MIDlets that are on the

phone if an OTA download cannot be achieved due to lack of space.

The following error codes are supported:

• 900 Success
• 901 Insufficient Memory
• 902 User Cancelled
• 903 Loss Of Service
• 904 JAR Size Mismatch
• 905 Attribute Mismatch
• 906 Invalid Descriptor
• 907 Invalid JAR
• 908 Incompatible Configuration or Profile
• 909 Application Authentication Failure
• 910 Application Authorization Failure
• 911 Push Registration Failure
• 912 Deletion Notification

Please be aware that the method used by the handset, as per the specifications, is

POST. Using a GET (URL encoding) style for the URL will fail. This is not the correct

use of the MIDlets JAD parameters.

Possible Screen Messages Seen With Downloading:

• If JAR -file size does not match with specified size, it displays "Failed Invalid
File". Upon time-out, the handset goes back to browser.

• When downloading is done, the handset displays a transient notice "Download
Completed" and starts to install the application.

• Upon completing installation, the handset displays a transient notice "Installed"
and returns to Browser after time-out.

• If the MANIFEST file is wrong, the handset displays a transient notice "Failed
File Corrupt" and returns to Browser after time-out.

Java™ ME Developer Guide
Chapter 3 - Downloading Applications

Page 13

http://www.wapforum.org
http://developer.motorola.com

If JAD does not contain mandatory attributes, "Failed Invalid File" notice appears

The USER-AGENT String

Table 1 describes USER_AGENT strings associated with Motorola devices:

Motorola
Device

USER_AGENT STRING

MOTOROKR
E6/E6e

MOT-E6/xx.xx.xxR Opera/8 Profile/MIDP-2.0 Configuration/CLDC-1.1

Table 1 USER_AGENT String

The USER_AGENT string can be used to identify a handset and render specific

content to it based on it information provided in this string (example CGI on a

content server). These strings can be found in the connection logs at the content

server.

1. WAP Browser Release, Opera 8
2. MIDP version 2.0
3. CLDC version 1.1

Error Logs

Table 2 represents the error logs associated with downloading applications.

Error Dia-
log

Scenario Possible Cause Install-Notify

Failed: Inval-
id File

JAD Down-
load

Missing or incorrectly formatted
mandatory JAD attributes
Mandatory:
MIDlet-Name
MIDlet-Version
MIDlet-Vendor
MIDlet-JAR-URL
MIDlet-JAR_Size

906 Invalid
descriptor

Download
Failed

OTA JAR
Download

The received JAR size does not
match the size indicated

904 JAR Size Mis-
match

Cancelled:
<Icon>
<Filename>

OTA JAR
Download

User cancelled download 902 User Cancelled

Download
Failed

OTA JAR
Download

Browser lost connection with serv-
er
Certification path cannot be valid-

903 Loss of Service

Java™ ME Developer Guide
Chapter 3 - Downloading Applications

Page 14

ated
JAD signature verification failed
Unknown error during JAD valida-
tion
See 'Details' field in the dialog for
information about specific error

Insufficient
Storage

OTA JAR
Download

Insufficient data space to tempor-
arily store the JAR file

901 Insufficient
Memory

Application
Already Ex-
ists

OTA JAR
Download

MIDlet version numbers are
identical

905 Attribute Mis-
match

Different
Version Ex-
ists

OTA JAR
Download

MIDlet version on handset super-
cedes version being downloaded

Failed File
Corrupt

Installation Attributes are not identical to re-
spective JAD attributes

Insufficient
Storage

Installation Insufficient Program Space or
Data Space to install suite

901 Insufficient
Memory

Application
Error

Installation Class references non-existent
class or method
Security Certificate verification
failure
Checksum of JAR file is not equal
to Checksum in MIDlet-JAR-SHA
attribute
Application not authorized

Application
Expired

MIDlet
Launching

Security Certificates expired or re-
moved

Application
Error

MIDlet Exe-
cution

Authorization failure during MIDlet
execution
Incorrect MIDlet

Table 2 Error Logs

Java™ ME Developer Guide
Chapter 3 - Downloading Applications

Page 15

4
Application

Management

The following sections describe the application management scheme for the

MOTOROKR E6/E6e handset. This chapter discusses the following:

• Downloading a JAR without a JAD
• MIDlet upgrade
• Installation and Deletion Status Reports

Downloading a JAR File Without a JAD

In Motorola's MIDP 2.0 implementation, a JAR file can be downloaded without a JAD.

In this case, the user clicks on a link for a JAR file, the file is downloaded, and

confirmation is obtained before the installation begins. The information presented is

obtained from the JAR manifest instead of the JAD.

Java™ ME Developer Guide
Chapter 4 - Application Management

Page 16

MIDlet Upgrade

Rules from the JSR-118 (MIDP 2.0) are followed to help determine if the data from

an old MIDlet should be preserved during a MIDlet upgrade. When these rules cannot

determine if the RMS should be preserved, the user is given an option to preserve

the data.

• The data is saved if the new MIDlet-version is the same or newer, and if the
new MIDlet-data-space requirements are the same or more than the current
MIDlet.

• The data is not saved if the new MIDlet-data-space requirement is smaller than
the current MIDlet requirement.

• The data is not saved if the new MIDlet-version is older than the current
version.

If the data cannot be saved, the user is warned about losing the data. If the user

proceeds, the application is downloaded. If the user decides to save the data from

the current MIDlet, the data is preserved during the upgrade and the data is made

available for the new application. In any case, an unsigned MIDlet is not allowed to

update a signed MIDlet.

Installation and Deletion Status
Reports

The status (success or failure) of an installation, upgrade, or deletion of a MIDlet

suite is sent to the server according to the JSR-118 specification. If the status report

cannot be sent, the MIDlet suite is still enabled and the user is allowed to use it. In

some instances, if the status report cannot be sent, the MIDlet is deleted by

operator's request. Upon successful deletion, the handset sends the status code 912

to the MIDlet-Delete-Notify URL. If this notification fails, the MIDlet suite is still

deleted. If this notification cannot be sent due to lack of network connectivity, the

notification is sent at the next available network connection.

Java™ ME Developer Guide
Chapter 4 - Application Management

Page 17

Table 3 lists the application management feature/class support for MIDP 2.0:

Feature/Class

Application upgrades performed directly through the AMS.

When removing a MIDlet suite, the user is prompted to confirm the entire MIDlet
suite is removed.

Application Descriptor included the attribute MIDlet-Delete-Confirm, its value is
included in the prompt.

Prompt for user approval when the user has chosen to download an application that
is identical to the application currently in the handset. An older version cannot be
installed.

Unauthorized MIDlets will not have access to any restricted function calls.

AMS checks the JAD for security indicated every time a download is initiated.

Application descriptor or MIDlet fails the security check, the AMS prevents the
installation of that application and notifies the user that the MIDlet could not be
installed.

Application descriptor and MIDlet pass the security check, the AMS installs the
MIDlet and grants it the permissions specified in the JAD.

A method for launching Java application that maintains the same look and feel as
other features on the device is provided.

User is informed of download and installation with a single progress indicator and is
given an opportunity to cancel the process.

User is prompted to launch the MIDlet after installation.

A method for creating shortcuts to Java applications are provided.

A no forward policy on DRM issues, included but not limited to transferring the
application over-the-air, IRDA, Bluetooth, I/O Cables, External storage devices, etc.,
until further guidance is provided.

Table 3 Application Management Feature

Java™ ME Developer Guide
Chapter 4 - Application Management

Page 18

5
iTAP

Intelligent Keypad Text Entry API

When users are using features such as SMS (short message service), or "Text

Messaging," they can opt for a predictive text entry method from the handset. The

Java™ ME environment has the ability to use SMS in its API listing. The use of a

predictive entry method is a compelling feature to the MIDlet.

This API enables a developer to access iTAP, Numeric, Symbol, and Browse text

entry methods. With previous Java™ ME products, the only method available was the

standard use of TAP.

Predictive text entry allows a user to simply type in the letters of a word using only

one key press per letter, as opposed to the TAP method that can require as many as

four or more key presses. The use of the iTAP method can greatly decrease

text-entry time. Its use extends beyond SMS text messaging, but into other

functions such as phonebook entries.

The following Java™ ME text input components support iTAP.

• javax.microedition.lcdui.TextBox

The TextBox class is a Screen that allows the user to edit and enter text.

• javax.microedition.lcdui.TextField

A TextField is an editable text component that is placed into a Form. It is given a

piece of text that is used as the initial value.

Java™ ME Developer Guide
Chapter 5 - iTAP

Page 19

Refer to Table 4 for iTAP feature/class support for MIDP 2.0:

Feature/Class

Predictive text capability is offered when the constraint is set to ANY.

User is able to change the text input method during the input process when the con-
straint is set to ANY (if predictive text is available).

Multi-tap input is offered when the constraint on the text input is set to EMAILADDR,
PASSWORD, or URL.

Table 4 iTAP Feature/Class

Java™ ME Developer Guide
Chapter 5 - iTAP

Page 20

6
Record Management

System

Record Management System API

If the MIDlet has not specified a data space requirement in the JAD attribute

(MIDlet_data_space_requirement) or the manifest file, a limit of 1Mb is used as the

maximum RMS space for that MIDlet. No additional Motorola implementation

clarifications are necessary.

Table 5 lists the RMS feature/class support for MIDP 2.0:

Feature/Class Implementation

All constructors, methods, and inherited methods for
the InvalidRecordDException class in the
javax.microedition.rms package

Supported

All fields and methods for the RecordComparator inter-
face in the javax.microedition.rms package

Supported

All methods for the RecordEnumeration interface in the
javax.microedition.rms package

Supported

All methods for the RecordFilter interface in the
javax.microedtition.rms package

Supported

All methods for the RecordListener interface in the
javax.microedition.rms package

Supported

All fields, methods, and inherited methods fortify the
RecordStore interface in the javax.microedition.rms
package

Supported

Initial version number of a record to be zero Supported

Java™ ME Developer Guide
Chapter 6 - Record Management System

Page 21

All constructors, methods, and inherited methods for
the RecordStoreException class in the
javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for
the RecordStoreFullException class in the
javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for
the RecordStoreNotOpenException class in the
javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for
the InvalidRecordIDException class in the
javax.microedition.rms package

Supported

All fields and methods for the RecordComparator inter-
face in the javax.microedition.rms package

Supported

All methods for the RecordEnumeration interface in the
javax.microedition.rms package

Supported

All methods for the RecordFilter interface in the
javax.microedition.rms package

Supported

All methods for the RecordListener interface in the
javax.microedition.rms package

Supported

All fields, methods, and inherited methods for the Re-
cordStore interface in the javax.microedition.rms pack-
age

Supported

All constructors, methods, and inherited methods for
the RecordStoreException class in the
javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for
the RecordStoreNotFoundException class in the
javax.microedition.rms package

Supported

All constructors, methods, and inherited methods for
the RecordStoreNotOpenException class in the
javax.microedition.rms package

Supported

Table 5 RMS Feature/Class

Java™ ME Developer Guide
Chapter 6 - Record Management System

Page 22

7
Downloading MIDlet

Through Browser

The Download MIDlet Through Browser requires the browser to be connected before

performing any downloads on the handset.

The example shows how to access the Browser application by any of the following

methods:

• Selecting 'Browser' from the Main Menu.
• Pressing a dedicated 'Browser' key on the keypad (if available on the handset).
• Pressing a 'Browser' soft key from the idle display (if assigned).
• Using 'Browser' shortcut (if assigned).
• Selecting URL from a message.
• Selecting GetJavaApps from the Main Menu or Java Settings.

Start Active Browser Session from
Main Menu

Figure 2 describes Starting Active Browser Session from Main Menu:

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 23

Figure 2 Starting Active Browser Session from Main Menu

GetJavaApps is a feature that allows an operator to insert a WAP designated URL that

links to a Java™ ME site with MIDlet suites. This feature can be found under Java

Settings or in the Main Menu as it is flexible for either menu item.

Find a Location with Java™ ME
Application

Once connected to the WAP browser, different locations may be visited where Java™

ME Applications may be downloaded. From here, a MIDlet may be selected to

download to the handset.

Handset initially receives information from the Java Application Descriptor (JAD) file.

The JAD includes information about MIDlet-name, version, vendor, MIDlet-Jar-URL,

MIDlet-Jar-size, and MIDlet-Data-size. Two additional JAD attributes are

Mot-Data-Space-Requirements and Mot-Program-Space-Requirements. These

attributes help the KVM determine whether there is enough memory to download and

install the selected MIDlet suite. If there is not enough memory, 'Memory Full' dialog

is displayed before the download begins.

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 24

Downloading MIDlets

Figure 3 represents Java™ ME Application (MIDlets) Download and Installation.

Figure 3 Downloading and Installing Java™ ME Application (MIDlets)

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 25

Steps to Download and Install Java™ ME Application:

• BACK shows previous screen to the user.
• If the SELECT softkey is selected, the handset displays the application size,

time to install, and version. If an error occurs with the descriptor file, the
handset then displays the transient notice 'Failed Invalid File.' Upon Time-out,
the handset goes back to Browser.

• If the CANCEL softkey is selected, it shows the Browser Application Card from
where the application was selected.

• If the DOWNLD softkey is selected, the handset starts downloading the
application. The handset displays 'Downloading...% Complete' along with the
percentage of downloading completed at a time. 'Downloading...% Complete'
shall use static dots, not dynamic.

• Before downloading the MIDlet, handset checks for available memory.
Mot-Data-Space-Requirements and Mot-Program-Space-Requirements are two
JAD attributes that will help the KVM determine whether there is enough
memory to download and install the selected MIDlet suite. If there is not
enough memory, 'Insufficient storage' transient dialog is displayed before the
download begins. Upon time-out, the handset goes back to Browser.

• If an error occurs during download, such as a loss of service, then the transient
notice 'Download Failed' must be displayed. Upon time-out, the handset goes
back to idle state.

• A downloading application can be cancelled by pressing the END key. The
transient notice, 'Download Cancelled' displays. Upon time-out, handset goes
back to Browser.

• If JAR -file size does not match with specified size, it displays 'Failed Invalid
File.' Upon time-out, the handset goes back to Browser.

• When the downloading application is cancelled, handset cleans up all files,
including any partial JAR files and temporary files created during the download
process.

• When downloading is done, the handset displays a transient notice 'Download
Completed.' The handset then starts to install the application.

• The handset displays 'Installing....'
• After an application is successfully downloaded, a status message must be sent

back to the network server. This allows for charging of the downloaded
application.

• Charging is per the Over the Air User Initiated Provisioning specification. The
status of an install is reported by means of an HTTP POST request to the URL
contained in the MIDlet-Install-Notify attribute. The only protocol that MUST be
supported is 'http://'.

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 26

• If the browser connection is interrupted/ended during the download/installation
process, the device is unable to send the HTTP POST with the MIDlet-Install
Notify attribute. In this case, the MIDlet is deleted to ensure the user does not
get a free MIDlet. The use case can occur when a phone call is accepted and
terminated during the installation process, because then the browser is not in
the needed state to return the MIDlet Install Notify attribute.

• Upon completing Installation, the handset displays a transient notice 'Installed
to Games and Apps'.

• Upon time-out, the handset goes back to Browser.
• During Installation if the MANIFEST file is wrong, the handset displays a

transient notice 'Failed File Corrupt'. Upon time-out, the handset goes back to
Browser.

• During the installation process, if the flip is closed on a flip handset, the
installation process continues and the handset does not return to the idle
display. When the flip is opened, the 'Installing...' dialog should appear on the
screen and should be dynamic.

• During download or install of application, voice record, voice commands, voice
shortcuts, and volume control is not supported. However, during this time,
incoming calls and SMS messages are able to be received.

• The handset must support sending and receiving at least 30 kilobytes of data
using HTTP either from the server to the client or the client to the server, per
Over the Air User Initiated Provisioning specification.

• If JAD does not contain mandatory attributes, 'Failed Invalid File' notice
appears.

If JAD does not contain mandatory attributes, 'Failed Invalid File' notice appears.

Figure 4 Application Does Not Have Mandatory Attributes in ADF

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 27

Different Error Checks

Memory Full

There are two distinct cases when a Memory Full error can occur during the download

process. Memory Full is displayed when the device does not have enough memory to

completely download the MIDlet. The JAD of the MIDlet has two attributes,

Mot-Data-Space-Requirements and Mot-Program-Space-Requirements. If an

application developer adds these attributes to their JAD file, a Motorola device can

determine if enough memory exists on the phone before the MIDlet is downloaded.

These attributes may or may not be provided in all MIDlets. Two separate prompts

are displayed, depending on whether these attributes are present.

In cases where there is not enough memory to download the application, the user

must be given a message to delete existing applications to free additional memory.

The following messages and screen flows are displayed depending on whether

specific JAD attributes are present or not.

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 28

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 29

Figure 5 Memory Full Error

Rules:

• If Mot-Data-Space-Requirements and Mot-Program-Space-Requirements
attributes are present in the JAD, the above noted prompt is displayed. This
value takes into account the memory requirements of the MIDlet and the
current memory usage on the phone to tell the user exactly how much memory
to free. The memory usage is based in kilobyte units.

• 'Data Space:' and the value of the data space should be on separate lines.
'Prog. Space:' and the value of the program space should be on separate lines.

• The download process is canceled when this error condition occurs.
• The Memory Full error is no longer a transient prompt. A dialog screen with a

Help softkey and a Back softkey is displayed instead.
• DETAILS will give the user the above detailed Help screen describing the

memory required to be able to download the MIDlet.
• The Help dialog includes a 'More' right softkey label (for those products in

which not all the help data can be displayed on a single screen). This label
should disappear when the user has scrolled to the bottom of the dialog.

• BACK from this message takes the user back to the browser page from which
the user selected the MIDlet to download.

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 30

Figure 6 Mot-Data-Space and Mot-Program-Space Attributes

• If Mot-Data-Space-Requirements and Mot-Program-Space-Requirements JAD
attributes are not present in the JAD file, the handset can not determine how
much memory to free and displays the above help dialog.

• The Help dialog includes a 'More' right softkey label (for those products in
which not all the help data can be displayed on a single screen). This label
should disappear when the user has scrolled to the bottom of the dialog.

• All rules stated in the previous figure must also be followed for the above
stated prompt.

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 31

Memory Full During Installation Process

Once the MIDlet is successfully downloaded, the installation process begins. During

the installation of the MIDlet, the phone may determine there is insufficient memory

to complete the installation. This error can occur whether the

Mot-Data-Space-Requirements and Mot-Program-Space-Requirements JAD attributes

are present or not. The following message and Figure Figure 7 must be displayed:

Figure 7 Memory Full Help Message During Installation Process

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 32

• The installation process is canceled when this error condition occurs.
• The Memory Full error is no longer a transient prompt. A dialog screen with a

Help softkey and a Back softkey is displayed instead.
• DETAILS give the user the above Help screen explaining that additional

memory is required to be able to install the MIDlet.
• The Help dialog includes a 'More' right softkey label (for those products in

which not all the help data can be displayed on a single screen). This label
should disappear when the user has scrolled to the bottom of the dialog.

• BACK from this message takes the user back to the browser page from which
the user selected the MIDlet to download.

Application Version Already Exists

Compares the version number of the application with that already present on the

handset. If the versions are the same, the following message is displayed. The error

occurred can be queried by selecting DETAILS.

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 33

Figure 8 Same Version of Application Already Exists on the Handset

Rules:

• Handset checks for MIDlet-Name, MIDlet-vendor, and version number. If they
are the same, a dialog 'Application Already Exists' is displayed.

• To know more about this error, select the DETAILS softkey.
• Handset displays the new version of the application, as well as the existing

application.

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 34

Newer application version exists

If the application version on the handset is newer than the downloaded version of

application, the following message is displayed. The error occurred can be queried by

selecting DETAILS.

Figure 9 (Newer) Version of Application Exists

Rules:

• If the latest or newer version of application is already present on the handset,
it cannot be downloaded.

Java™ ME Developer Guide
Chapter 7 - Downloading MIDlet Through Browser

Page 35

8
JAD Attributes

JAD / Manifest Attribute
Implementations

The JAR manifest defines attributes to be used by the Application Manager Software

(AMS) to identify and install the MIDlet suite. These attributes may or may not be

found in the application descriptor.

The application descriptor is used, in conjunction with the JAR manifest, by the

Application Manager Software to manage the MIDlet. The application descriptor is

also used for the following:

• By the MIDlet, for configuration specific attributes.
• Allows the Application Manager Software on the handset to verify the MIDlet is

suited to the handset before loading the JAR file.
• Allows configuration-specific attributes (parameters) to be supplied to the

MIDlet(s) without modifying the JAR file.

Motorola has implemented the following support for the MIDP 2.0 Java Application

Descriptor attributes as outlined in the JSR-118. Table 6 lists all MIDlet attributes,

descriptions, and its location in the JAD and/or JAR manifest that are supported in

the Motorola implementation. Please note that the MIDlet does not install if the

MIDlet-Data-Size is greater than 512k.

Java™ ME Developer Guide
Chapter 8 - JAD Attributes

Page 36

Attribute Name Attribute Description JAR
Manifest

JAD

MIDlet-Name The name of the MIDlet suite that
identifies the MIDlets to the user.

Yes Yes

MIDlet-Version The version number of the MIDlet
suite.

Yes Yes

MIDlet-Vendor The organization that provides the
MIDlet suite.

Yes Yes

MIDlet-Icon The case-sensitive absolute name
of a PNG file within the JAR, used
to represent the MIDlet suite.

Yes Yes

MIDlet-Description The description of the MIDlet
suite.

No No

MIDlet-Info-URL A URL for information further de-
scribing the MIDlet suite.

Yes No

MIDlet-<n> The name, icon, and class of the
nth MIDlet in the JAR file. Name is
used to identify this MIDlet to the
user. Icon is as stated above.
Class is the name of the class ex-
tending the

.

Yes, or no if
included in
the JAD.

Yes, or no if
included in
the JAR
manifest.

MIDlet-Jar-URL The URL from which the JAR file is
loaded.

Yes

MIDlet-Jar-Size The number of bytes in the JAR
file.

Yes

MIDlet-Data-Size The minimum number of bytes of
persistent data required by the
MIDlet.

Yes Yes

MicroEdition-Profile The Java™ ME profiles required. If
any of the profiles are not imple-
mented the installation fails.

Yes, or no if
included in
the JAD.

Yes, or no if
included in
the JAR
manifest.

MicroEdition-Con-
figuration

The Java™ ME Configuration re-
quired, that is, CLDC.

Yes, or no if
included in
the JAD.

Yes, or no if
included in
the JAR
manifest.

MIDlet-Permissions Zero or more permissions that are
critical to the function of the MID-
let suite.

Yes Yes

MIDlet-Permis-
sions-Opt

Zero or more permissions that are
non-critical to the function of the
MIDlet suite.

Yes Yes

Java™ ME Developer Guide
Chapter 8 - JAD Attributes

Page 37

MIDlet-Push-<n> Register a MIDlet to handle in-
bound connections

Yes Yes

MIDlet-Install-Notify The URL to which a POST request
is sent to report installation status
of the MIDlet suite.

Yes Yes

MIDlet-De-
lete-Notify

The URL to which a POST request
is sent to report deletion of the
MIDlet suite.

Yes Yes

MIDlet-De-
lete-Confirm

A text message to be provided to
the user when prompted to con-
firm deletion of the MIDlet suite.

Yes Yes

Table 6 MIDlet Attributes, Descriptions, and its Location in the JAD and/or JAR
Manifest

Java™ ME Developer Guide
Chapter 8 - JAD Attributes

Page 38

9
Network APIs

Network Connections

The Motorola implementation of Networking APIs will support several network

connections. The network connections necessary for Motorola implementation are the

following:

• CommConnection for serial interface
• HTTP connection
• HTTPS connection
• Push registry
• SSL (secure socket)
• Datagram (UDP)

Refer to Table 7 for Network API feature/class support for MIDP 2.0:

Feature/Class Implementation

All fields, methods, and inherited methods for the Connector
class in the javax.microedition.io package

Supported

Mode parameter for the open () method in the Connector class
the javax.microedition.io package

READ, WRITE,
READ_WRITE

The timeouts parameter for the open () method in the Con-
nector class of the javax.microedition.io package

HttpConnection interface in the javax.microedition.io package Supported

HttpsConnection interface in the javax.microedition.io package Supported

SecureConnection interface in the javax.microedition.io pack-
age

Supported

SecurityInfo interface in the javax.microedition.io package Supported

UDPDDatagramConnection interface in the
javax.microedition.io package

Supported

Connector class in the javax.microedition.io.package Supported

PushRegistry class in the javax.microedition.io package Supported

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 39

CommConnection interface in the javax.microedition.io pack-
age

Supported

Dynamic DNS allocation through DHCP Supported

HttpConnection interface in the javax.microedition.io.package. Supported

HttpsConnection interface in the javaxmicroedition.io.package Supported

SecureConnection interface in the
javax.microedition.io.package

Supported

SecurityInfo Interface in the javax.microedition.io.package Supported

UDPDatagramConnection interface in the
javax.microedition.io.package

Supported

Table 7 Network API feature/class support for MIDP

Code Sample 1 shows the implementation of Socket Connection:

Socket Connection

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

...

try {
//open the connection and io streams

sc = (SocketConnection)Connector.open
("socket://www.myserver.com:8080", Connector.READ_WRITE, true);

is = sc[i].openInputStream();
os = sc[i].openOutputStream();

} catch (Exception ex) {
closeAllStreams();
System.out.println("Open Failed: " + ex.getMessage());

}
}
if (os != null && is != null)
{

try
{

os.write(someString.getBytes()); //write some data to server

int bytes_read = 0;
int offset = 0;
int bytes_left = BUFFER_SIZE;

//read data from server until done

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 40

do
{

bytes_read = is.read(buffer, offset, bytes_left);

if (bytes_read > 0)
{

offset += bytes_read;
bytes_left -= bytes_read;

}
}
while (bytes_read > 0);

} catch (Exception ex) {
System.out.println("IO failed: "+ ex.getMessage());

}
finally {

closeAllStreams(i); //clean up
}

}

Code Sample 1 Socket Connection

User Permission

The user of the handset will explicitly grant permission to add additional network

connections.

Indicating a Connection to the User

When the java implementation makes any of the additional network connections, it

will indicate to the user that the handset is actively interacting with the network. To

indicate this connection, the network icon will appear on the handset's status bar as

shown in Figure 10 .

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 41

Figure 10 Network Connections example

Conversely, when the network connection is no longer used the network icon will be

removed from the status bar.

If the handset supports applications that run when the flip is closed, the network icon

on the external display will be activated when the application is in an active network

connection with the flip closed. Please note that this indication is done by the

implementation.

HTTPS Connection

Motorola implementation supports a HTTPS connection on the MOTOROKR E6/E6e

handset. Additional protocols that will be supported are the following:

TLS protocol version 1.0 as defined in http://www.ietf.org/rfc/rfc2246.txt

SSL protocol version 3.0 as defined in http://wp.netscape.com/eng/ssl3/ssl-toc.html

Code Sample 2 shows the implementation of HTTPS:

HTTPS

import javax.microedition.io.*;
import java.io.*;
import javax.microedition.midlet.*;

try {
hc[i] = (HttpConnection)Connector.open("https://" + url[i] + "/");

} catch (Exception ex) {

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 42

http://www.ietf.org/rfc/rfc2246.txt
http://wp.netscape.com/eng/ssl3/ssl-toc.html

hc[i] = null;
System.out.println("Open Failed: " + ex.getMessage());

}

if (hc[i] != null)
{

try {
is[i] = hc[i].openInputStream();

byteCounts[i] = 0;
readLengths[i] = hc[i].getLength();

System.out.println("readLengths = " + readLengths[i]);

if (readLengths[i] == -1)
{

readLengths[i] = BUFFER_SIZE;
}

int bytes_read = 0;
int offset = 0;
int bytes_left = (int)readLengths[i];

do
{

bytes_read = is[i].read(buffer, offset, bytes_left);
offset += bytes_read;
bytes_left -= bytes_read;
byteCounts[i] += bytes_read;

}
while (bytes_read > 0);

System.out.println("byte read = " + byteCounts[i]);

} catch (Exception ex) {
System.out.println("Downloading Failed: "+ ex.getMessage());
numPassed = 0;

}
finally {

try {
is[i].close();
is[i] = null;

} catch (Exception ex) {}
}

}

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 43

/**
* close http connection
*/
if (hc[i] != null)
{

try {
hc[i].close();

} catch (Exception ex) { }
hc[i] = null;

}

Code Sample 2 HTTPS

DNS IP

The DNS IP will be flexed on or off (per operator requirement) under Java Settings as

read only or as user-editable. In some instances, it will be flexed with an

operator-specified IP address.

Push Registry

The push registry mechanism allows an application to register for notification events

that are meant for the application. The push registry maintains a list of inbound

connections.

Mechanisms for Push

Motorola implementation for push requires the support of certain mechanisms. The

mechanisms that will be supported for push are the following:

SMS push: an SMS with a port number associated with an application used to deliver

the push notification.

The formats for registering any of the above mechanisms will follow those detailed in

JSR-118 specification.

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 44

Push Registry Declaration

The application descriptor file will include information about static connections that

are needed by the MIDlet suite. If all static push declarations in the application

descriptor cannot be fulfilled during the installation, the MIDlet suite will not be

installed. The user will be notified of any push registration conflicts despite the

mechanism. This notification will accurately reflect the error that has occurred.

Push registration can fail as a result of an Invalid Descriptor. Syntax errors in the

push attributes can cause a declaration error resulting in the MIDlet suite installation

being cancelled. A declaration referencing a MIDlet class not listed in the MIDlet-<n>

attributes of the same application descriptor will also result in an error and

cancellation of the MIDlet installation.

Two types of registration mechanisms will be supported. The registration

mechanisms to be supported are the following:

Registration during installation through the JAD file entry using a fixed port number

Dynamically register using an assigned port number

If the port number is not available on the handset, an installation failure notification

will be displayed to the user while the error code 911 push is sent to the server. This

error will cease the download of the application.

Applications that wish to register with a fixed port number will use the JAD file to

identify the push parameters. The fixed port implementation will process the

MIDlet-Push-n parameter through the JAD file.

Code Sample 3 shows the implementation of Push Registry:

Push Registry Declaration

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;

public class PushTest_1 extends MIDlet implements CommandListener{

public Display display;

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 45

public static Form regForm;
public static Form unregForm;
public static Form mainForm;
public static Form messageForm;

public static Command exitCommand;
public static Command backCommand;
public static Command unregCommand;
public static Command regCommand;

public static TextField regConnection;
public static TextField regFilter;
public static ChoiceGroup registeredConnsCG;
public static String[] registeredConns;

public static Command mc;
public static Displayable ms;

public PushTest_1(){
regConnection = new TextField("Connection port:", "1000", 32, Text-

Field.PHONENUMBER);
regFilter = new TextField("Filter:", "*", 32, TextField.ANY);

display = Display.getDisplay(this);

regForm = new Form("Register");
unregForm = new Form("Unregister");
mainForm = new Form("PushTest_1");
messageForm = new Form("PushTest_1");

exitCommand = new Command("Exit", Command.EXIT, 0);
backCommand = new Command("Back", Command.BACK, 0);
unregCommand = new Command("Unreg", Command.ITEM, 1);
regCommand = new Command("Reg", Command.ITEM, 1);

mainForm.append("Press \"Reg\" softkey to register a new connection.\n" +
"Press \"Unreg\" softkey to unregister a connection.");

mainForm.addCommand(exitCommand);
mainForm.addCommand(unregCommand);
mainForm.addCommand(regCommand);
mainForm.setCommandListener(this);

regForm.append(regConnection);
regForm.append(regFilter);

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 46

regForm.addCommand(regCommand);
regForm.addCommand(backCommand);
regForm.setCommandListener(this);

unregForm.addCommand(backCommand);
unregForm.addCommand(unregCommand);
unregForm.setCommandListener(this);

messageForm.addCommand(backCommand);
messageForm.setCommandListener(this);

}
public void pauseApp(){}

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if(messageForm.size() != 0) messageForm.delete(0);
messageForm.append(s);
display.setCurrent(messageForm);

}

public void commandAction(Command c, Displayable s) {

if((c == unregCommand) && (s == mainForm)){
mc = c;
ms = s;
new runThread().start();

}

if((c == regCommand) && (s == mainForm)){
display.setCurrent(regForm);

}

if((c == regCommand) && (s == regForm)){
mc = c;
ms = s;

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 47

new runThread().start();
}

if((c == unregCommand) && (s == unregForm)){
mc = c;
ms = s;
new runThread().start();

}

if((c == backCommand) && (s == unregForm)){
display.setCurrent(mainForm);

}
if((c == backCommand) && (s == regForm)){

display.setCurrent(mainForm);
}

if((c == backCommand) && (s == messageForm)){
display.setCurrent(mainForm);

}

if((c == exitCommand) && (s == mainForm)){
destroyApp(false);

}

}

public class runThread extends Thread{
public void run(){

if((mc == unregCommand) && (ms == mainForm)){
try{

registeredConns = PushRegistry.listConnections(false);
if(unregForm.size() > 0) unregForm.delete(0);
registeredConnsCG = new ChoiceGroup("Connections", Choice-

Group.MULTIPLE, registeredConns, null);
if(registeredConnsCG.size() > 0) unreg-

Form.append(registeredConnsCG);
else unregForm.append("No registered connections found.");
display.setCurrent(unregForm);

} catch (Exception e) {
showMessage("Unexpected " + e.toString() + ": " +

e.getMessage());
}

}

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 48

if((mc == regCommand) && (ms == regForm)){
try{

PushRegistry.registerConnection("sms://:" + regConnec-
tion.getString(), "Receive", regFilter.getString());

showMessage("Connection successfully registered");
} catch (Exception e){

showMessage("Unexpected " + e.toString() + ": " +
e.getMessage());

}
}

if((mc == unregCommand) && (ms == unregForm)){
try{

if(registeredConnsCG.size() > 0){
for(int i=0; i<registeredConnsCG.size(); i++){

if(registeredConnsCG.isSelected(i)){
PushRegistry.unregisterConnection(registeredConnsCG.

getString(i));
registeredConnsCG.delete(i);
if(registeredConnsCG.size() == 0){

unregForm.delete(0);
unregForm.append("No registered connections found.");

}
}

}
}

} catch (Exception e) {
showMessage("Unexpected " + e.toString() + ": " +

e.getMessage());
}

}
}

}
}

WakeUp.java

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.PushRegistry;
import javax.microedition.rms.*;
import java.util.*;
import javax.microedition.io.*;

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 49

public class WakeUp extends MIDlet implements CommandListener{

public static Display display;
public static Form mainForm;
public static Command exitCommand;
public static TextField tf;
public static Command registerCommand;

public void startApp() {

display = Display.getDisplay(this);

mainForm = new Form("WakeUp");
exitCommand = new Command("Exit", Command.EXIT, 0);
registerCommand = new Command("Register", Command.SCREEN, 0);
tf = new TextField("Delay in seconds", "10", 10, TextField.NUMERIC);
mainForm.addCommand(exitCommand);
mainForm.addCommand(registerCommand);
mainForm.append(tf);
mainForm.setCommandListener(this);

display.setCurrent(mainForm);

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void commandAction(Command c, Displayable s) {
if((c == exitCommand) && (s == mainForm)){

destroyApp(false);
}
if(c == registerCommand){

new regThread().start();

}
}

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 50

public class regThread extends Thread{

public void run(){

try {
long delay = Integer.parseInt(tf.getString()) * 1000;

long curTime = (new Date()).getTime();

System.out.println(curTime + delay);

PushRegistry.registerAlarm("WakeUp", curTime + delay);
mainForm.append("Alarm registered successfully");

} catch (NumberFormatException nfe) {
mainForm.append("FAILED\nCan not decode delay " + nfe);

} catch (ClassNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe);

} catch (ConnectionNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe);

}

}
}

}

SMS_send.java

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;
import javax.wireless.messaging.*;
import javax.microedition.io.*;

public class SMS_send extends MIDlet implements CommandListener{

public Display display;

public static Form messageForm;
public static Form mainForm;

public static Command exitCommand;

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 51

public static Command backCommand;
public static Command sendCommand;

public static TextField address_tf;
public static TextField port_tf;
public static TextField message_text_tf;

String[] binary_str = {"Send BINARY message"};
public static ChoiceGroup binary_cg;

byte[] binary_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
String address;
String text;

MessageConnection conn = null;
TextMessage txt_message = null;
BinaryMessage bin_message = null;

public SMS_send(){
address_tf = new TextField("Address:", "", 32, TextField.PHONENUMBER);
port_tf = new TextField("Port:", "1000", 32, TextField.PHONENUMBER);

message_text_tf = new TextField("Message text:", "test message", 160,
TextField.ANY);

binary_cg = new ChoiceGroup(null, Choice.MULTIPLE, binary_str, null);

display = Display.getDisplay(this);

messageForm = new Form("SMS_send");
mainForm = new Form("SMS_send");

exitCommand = new Command("Exit", Command.EXIT, 0);
backCommand = new Command("Back", Command.BACK, 0);
sendCommand = new Command("Send", Command.ITEM, 1);

mainForm.append(address_tf);
mainForm.append(port_tf);
mainForm.append(message_text_tf);
mainForm.append(binary_cg);
mainForm.addCommand(exitCommand);
mainForm.addCommand(sendCommand);
mainForm.setCommandListener(this);

messageForm.addCommand(backCommand);

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 52

messageForm.setCommandListener(this);

}

public void pauseApp(){
}

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if(messageForm.size() != 0) messageForm.delete(0);
messageForm.append(s);
display.setCurrent(messageForm);

}

public void commandAction(Command c, Displayable s) {
if((c == backCommand) && (s == messageForm)){

display.setCurrent(mainForm);
}
if((c == exitCommand) && (s == mainForm)){

destroyApp(false);
}
if((c == sendCommand) && (s == mainForm)){

address = "sms://" + address_tf.getString();
if(port_tf.size() != 0) address += ":" + port_tf.getString();
text = message_text_tf.getString();
new send_thread().start();

}
}

public class send_thread extends Thread{
public void run(){

try{
conn = (MessageConnection) Connector.open(address);
if(!binary_cg.isSelected(0)){

txt_message = (TextMessage)
conn.newMessage(MessageConnection.TEXT_MESSAGE);

txt_message.setPayloadText(text);

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 53

conn.send(txt_message);
} else {

bin_message = (BinaryMessage)
conn.newMessage(MessageConnection.BINARY_MESSAGE);

bin_message.setPayloadData(binary_data);
conn.send(bin_message);

}
conn.close();
showMessage("Message sent");

} catch (Throwable t) {
showMessage("Unexpected " + t.toString() + ": " + t.getMessage());

}
}

}
}

Code Sample 3 Push Registry

Delivery of a Push Message

A push message intended for a MIDlet on the MOTOROKR E6/E6e handset will handle

the following interactions:

MIDlet running while receiving a push message - if the application receiving the push

message is currently running, the application will consume the push message without

user notification.

No MIDlet suites running - if no MIDlets are running, the user will be notified of the

incoming push message and will be given the option to run the intended application

as shown in Figure 11 .

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 54

Figure 11 Intend Application Run Option

Push registry with Alarm/Wake-up time for application - push registry supports one

outstanding wake-up time per MIDlet in the current suite. An application will use the

TimerTask notification of time-based events while the application is running.

Another MIDlet suite is running during an incoming push - if another MIDlet is

running, the user will be presented with an option to launch the application that had

registered for the push message. If the user selects the launch, the current MIDlet is

terminated.

Stacked push messages - it is possible for the handset to receive multiple push

messages at one time while the user is running a MIDlet. The user will be given the

option to allow the MIDlets to end and new MIDlets to begin. The user will be given

the ability to read the messages in a stacked manner (stack of 5 supported), and if

not read, the messages should be discarded.

No applications registered for push - if there are no applications registered to handle

this event, the incoming push message will be ignored.

Deleting an Application Registered for
Push

If an application registered in the Push Registry is deleted, the corresponding push

entry will be deleted, making the PORT number available for future Push

Registrations.

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 55

Security for Push Registry

Push Registry is protected by the security framework. The MIDlet registered for the

push should have the necessary permissions. Details on permissions are outlined in

the Security chapter.

Network Access

Untrusted applications will use the normal HttpConnection and HttpsConnection APIs

to access web and secure web services. There are no restrictions on web server port

numbers through these interfaces. The implementations augment the protocol so

that web servers can identify untrusted applications. The following will be

implemented:

• The implementation of HttpConnection and HttpsConnection will include a
separate User-Agent header with the Product-Token
"UNTRUSTED/1.0".User-Agent headers supplied by the application will not be
deleted.

• The implementation of SocketConnection using TCP sockets will throw
java.lang.SecurityException when an untrusted MIDlet suite attempts to
connect on ports 80 and 8080 (http) and 443 (https).

• The implementation of SecureConnection using TCP sockets will throw
java.lang.SecurityException when an untrusted MIDlet suites attempts to
connect on port 443 (https).

• The implementation of the method DatagramConnection.send will throw
java.lang.SecurityException when an untrusted MIDlet suite attempts to send
datagrams to any of the ports 9200-9203 (WAP Gateway).

• The above requirements should be applied regardless of the API used to access
the network. For example, the javax.microedition.io.Connector.open and
javax.microedition.media.Manager.createPlayer methods should throw
java.lang.SecurityException if access is attempted to these port numbers
through a means other than the normal HttpConnection and HttpsConnection
APIs.

Java™ ME Developer Guide
Chapter 9 - Network APIs

Page 56

10
Platform Request API

Platform Request API

The Platform Request API MIDlet package defines MIDP applications and the

interactions between the application and the environment in which the application

runs.

Table 8 lists the Platform Request API feature/class support for MIDP 2.0:

Feature/Class Implementation

All constructors, methods, and inherited classes for the MIDlet
class

Supported

platformRequest() method in javax.microedition.midlet Supported

Does not support the "text/vnd.sun.j2me.app-descriptor" MIME
type in the URL for the platformRequest() support

Supported

Does not support the "application/java-archive" MIME type in
the URL for the platformRequest() method

Supported

Launching native apps with URLs Supported

URL compatible launch of the WAP Browser Supported

URL compatible launch of the phone dialer Supported

Does not require the MIDlet to exit in order to launch an applic-
ation from the platformRequest() method

Supported

Pauses the MIDlet when executing the platformRequest() meth-
od

Supported

Resumes the MIDlet after the user exits the application
launched by the platform Request() method

Supported, re-
sumes to Java
Service Menu

All constructors and inherited methods for the MIDletStateChan-
geException in javax.microedition.midlet

Supported

Table 8 Platform Request API Feature/Class Support for MIDP

Java™ ME Developer Guide
Chapter 10 - Platform Request API

Page 57

For MIDP 2.0, the javax.microedition.midlet.MIDlet.platformRequest() method is

used and called when the MIDlet is destroyed. The following code sample is an

example of the Platform Request API:

Start a Call

MIDlet.platformrequest("tel:88143593")

Start a Web Session

MIDlet.platformrequest("http://gonzaga.cesar.org.br/
~bam/triplets/tii/menu.wml")

MIDlet.platformrequest("http://gonzaga.cesar.org.br/
~bam/triplets/tii/Millionaire1.jad");

Code Sample 4 Plataform Request

MIDlet Request of a URL That
Interacts with Browser

When a MIDlet suite requests a URL, the browser comes to the foreground and

connects to that URL. The user has access to the browser and control over any

downloads or network connections. The initiating MIDlet suite continues running in

the background. If it cannot (upon exiting the requesting MIDlet suite) the handset

brings the browser to the foreground with the specified URL.

If the URL specified refers to a MIDlet suite, JAD, or JAR, the request is treated as a

request to install the named package. The user is able to control the download and

installation process, including cancellation. Note that the normal Java installation

process is used.

Refer to the JAD Attributes for more details.

Java™ ME Developer Guide
Chapter 10 - Platform Request API

Page 58

MIDlet Request of a URL That Initiates
a Voice Call

If the requested URL takes the form , the handset uses this request

to initiate a voice call as specified in RFC2806. If the MIDlet is exited to handle the

URL request, the handset only handles the last request made. If the MIDlet suite

continues to run in the background when the URL request is being made, all other

requests are handled in a timely manner.

The user is asked to acknowledge each request before any actions are taken by the

handset, and upon completion of the platform request, the Java Service Menu is

displayed to the user.

Java™ ME Developer Guide
Chapter 10 - Platform Request API

Page 59

11
JSR-75: PIM API

This chapter defines the JSR-75 API implementation requirements that replace the

earlier implemented Phonebook and FileConnection APIs requirements, except for the

Recent Calls API that is still supported by RecentCallRecord, RecentCallDialed, and

RecentCallReceived classes.

NOTE: Java™ ME PIM API is implemented on Java ME platforms supporting CLDC 1.1
and MIDP 2.0 or higher.

Overview

The primary goal of the Personal Information Management (PIM) API is to provide

access to PIM data on Java ME enabled devices. PIM data is defined as information

included in the address book, calendar application, and to do list applications.

This chapter details requirements for implementing the PIM API specified in JSR-75

for Java ME enabled mobile devices.

This implementation provides the basic features available as part of the standard JSR

75 PIM implementation. It is available as the

Requirements

The implementation includes support of the following packages, classes, and

interfaces with appropriate methods and fields of PIM API described in JSR-75,

related to :

Java™ ME Developer Guide
Chapter 11 - JSR-75: PIM API

Page 60

•
•
•
•
•
•
•
•
•
•
•
•

The implementation includes support of the following packages, classes, and

interfaces with appropriate methods and fields of FileConnection API described in

JSR-75, related to :

•
•
•

Security Requirements Personal information read/write permissions are supported by

the device's native system:

• — enables reading the contact
information available on the device (hereinafter just "contact read
permission").

• — enables updating the contact
information available on the device (hereinafter just "contact write
permission").

• — enables reading the event
information available on the device (hereinafter just "event read permission").

• — enables updating the event
information available on the device (hereinafter just "event write permission").

The PIM permissions are mapped to the function groups "User Data Read Capability"

and "User Data Write Capability," depending on the read/write conditions. These two

groups and the permissions are in Table 9:

Function Trusted Third Untrusted Manufacturer Operator

Java™ ME Developer Guide
Chapter 11 - JSR-75: PIM API

Page 61

Group Party

User Data
Read Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

Always Ask Full Access Full Access

User Data
Write Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

Table 9 Permissions and Groups

The PIM permissions prohibit granting to a MIDlet suite that does not request them

explicitly in the attributes MIDlet-Permissions or MIDlet-Permissions-Opt.

The PIM package allows the handling of two types of lists: events and contacts lists.

Both are stored in a specific database respectively: event database and contact

database. These databases have specific information of each list.

Table 10 Features x JSR-75 PIM

Feature JSR 75 PIM

Name Addition to a Contact Yes

Phone Number Addition to a Contact Yes

Email Addition to a Contact Yes (1)

Multiple Email and Phone number Addition No

ToDo List No

Table 10 Features x JSR-75 PIM

NOTE: Uses .

Java™ ME Developer Guide
Chapter 11 - JSR-75: PIM API

Page 62

Fields and Attributes

Contact List

The contact database contains data items representing personal contact information

(like name, address, etc). The following features are applied to the contact list:

• The implementation provides support for ContactList type of PIM list as defined
in JSR-75.

• The implementation provides a method to access an actual list of the PIM
ContactList type.

• The implementation provides interface to manipulate actual ContactList as
specified in ContactList class section of JSR-75.

• The implementation provides access to all available PIM lists for the ContactList
list type.

• At a minimum, the following fields are supported : ADDR, BIRTHDAY,
FORMATTED_NAME, NICKNAME, TELEPHONE, MOT_EMAIL, UID,
CONTACT_TYPE, MOT_PHOTO_URL, LIGHT_ID, LOCATION, MEMBER_IDS,
VOICE TAG, and RINGTONE.

• At a minimum, the following attributes are supported: ATTR_PAGER,
ATTR_MOBILE, ATTR_OTHER, ATTR_HOME, ATTR_WORK, ATTR_FAX,
ATTR_VIDEO, and ATTR_NONE.

• The location of the contact information (that is, SIM card or Phone Memory) is
defined by separate dedicated field content value.

Table 11 Supported Fields for the

Field Description JSR 75 PIM Field

Contact Address ADDR

Birthdate BIRTHDAY

Contact Name FORMATTED_NAME

Contact Nickname NICKNAME

Contact Telephone Number TELEPHONE

Contact Email MOT_EMAIL (Motorola Extended)

Contact Unique ID UID

Contact Type (Phone, SIM, Mailing List) CONTACT_TYPE (Motorola Extended)

Contact Photo URL MOT_PHOTO_URL (Motorola Extended)

Contact Light ID LIGHT_ID (Motorola Extended)

Contact Location LOCATION (Motorola Extended)

Mailing List Member IDs MEMBER_IDS (Motorola Extended)

Contact Voice Tag VOICE TAG (Motorola Extended)

Java™ ME Developer Guide
Chapter 11 - JSR-75: PIM API

Page 63

Contact Ringtone URL RINGTONE (Motorola Extended)

Table 11 Contact List - Fields - JSR-75 PIM

Table 12 Supported Attributes for some of fields of

Field Label Attributes in JSR 75 PIM

TELEPHONE ATTR_MOBIL, ATTR_WORK, ATTR_HOME, ATTR_FAX,
ATTR_PAGER, ATTR_NONE

EMAIL ATTR_NONE

ADDR ATTR_NONE

Table 12 Contact List - Attributes - JSR-75 PIM

Event List

The event database contains entries related to events (for example, birthday). The

following features are applied to the contact list:

• The implementation provides support for EventList type of PIM list as defined in
JSR-75.

• The implementation provides a method to access an actual list of the PIM
EventList type.

• The implementation provides an interface to manipulate the actual EventList as
specified in the EventList class section of JSR-75.

• The implementation provides access to all available actual PIM lists for the
EventList list type.

• At a minimum, the following Event fields are supported: SUMMARY, UID, END,
START, and ALARM.

• At a minimum, the following repeat rules fields are supported: FREQUENCY,
DAY_IN_WEEK, WEEK_IN_MONTH, and DAY_IN_MONTH.

• At a minimum, one attribute is supported: ATTR_NONE.

Java™ ME Developer Guide
Chapter 11 - JSR-75: PIM API

Page 64

Table 13 Fields supported for Event items.

Field Description JSR 75 PIM Field Data Type

Relative time for an alarm ALARM INT

End time of the event END DATE

Start time of the event START DATE

Summary/Subject of the event SUMMARY STRING

Unique ID for the event UID STRING

Table 13 Event List - JSR-75 PIM

ToDo List

ToDo is only supported by the JSR-75 PIM Enhacement 3G implementation.

Java™ ME Developer Guide
Chapter 11 - JSR-75: PIM API

Page 65

12
JSR-75: FileConnection

API

Overview

The primary goal of the FileConnection API is to provide access to file systems on

devices and/or mounted removable memory cards supported by Motorola devices.

This API is not meant to be a replacement for the Record Management System (RMS)

but rather a complement to it allowing MIDlets to interact with native applications.

NOTE: Java™ ME FileConnection API is implemented on Java ME platforms
supporting CLDC 1.1 and MIDP 2.0 or higher.

Requirements

FileConnection API requirements are replaced with the requirements below.

• The implementation provides a security model for accessing the FileConnection
API.

• The FileConnection API is accessible to manufacturer and operator domain
MIDlets, subject to security restrictions.

• Connection API prohibits the modification or removal of files and directories
marked with the system attribute.

• Call to with key
returns the implementation

version number, starting with 1.0.

Java™ ME Developer Guide
Chapter 12 - JSR-75: FileConnection API

Page 66

Interface

The FileConnection API contains one class, two interfaces, and two exceptions. The

most important one of these is the FileConnection interface, which extends the

Connection interface. This interface is intended to access files or directories that are

located on removable media and/or file systems on a device.

There are two ways to access the file system: through Generic Connection

Framework (GCF) or using FileConnection to write/read files.

When GCF is used, the format of the input string used to access a FileConnection

through must follow the format for a fully qualified, absolute file

name. This format has the following structure: "file://<host>/<path>".

Some examples of opening a FileConnection from a root value are in Table 14:

Po
ssible Root Value

Opening a
FileConnection to the Root

CFCard/

SDCard/

MemoryStick/

C:/

/

Table 14 Opening a FileConnection

Java™ ME Developer Guide
Chapter 12 - JSR-75: FileConnection API

Page 67

Security

File operations are restricted with the aim of protecting the user's private data and

the overall system security. File operations can be executed only if the required

permission has been acquired before. Implementations must not allow a

FileConnection to access MIDP RMS databases and should not allow access to files

and configuration files, device and OS specific files and directories. If the file, file

system, or directory is not allowed to be accessed, a

is thrown from the method.

Java™ ME Developer Guide
Chapter 12 - JSR-75: FileConnection API

Page 68

Permissions

Two permissions have been defined in relation to FileConnection API:

• — enables reading from the
file system (hereinafter just "read permission").

• — enables writing to the file
system (hereinafter just "write permission").

The "read permission" and "write permission" are mapped to the function groups

"User Data Read Capability" and "User Data Write Capability," respectively. These

two groups and permissions are in Table 15:

Function
Group

Trusted Third
Party

Untrusted Manufacturer Operator

User Data
Read Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

Always Ask Full Access Full Access

User Data
Write Capab-
ility

Always Ask, Ask
Once Per App, Never
Ask, No Access

No Access Full Access Full Access

Table 15 Groups and permissions for

The FileConnection permissions are prohibited for granting to a MIDlet suite that

doesn't request them explicitly in the attributes MIDlet-Permissions or

MIDlet-Permissions-Opt.

If the permission is not granted, a is thrown by the following

methods:

Java™ ME Developer Guide
Chapter 12 - JSR-75: FileConnection API

Page 69

The following methods check for the "read

permission":

•
•
•
•
•

The following methods check for the

"read permission":

• , when instance opened with READ;
• , when instance opened with READ_WRITE.

The following methods check for the "write

permission":

•
•
•
•
•
•

The following methods check for the

"write permission":

• , when instance opened with WRITE;
• , when instance opened with READ_WRITE.

The bottom line prompt in the permission request dialog includes the name of the file

or directory only for those protected API calls that have this information specified as

a parameter.

The prompt prefix is "<File Location>/<File Name>" for the following methods:

•
•
•
•
•

File Location represents either:

Java™ ME Developer Guide
Chapter 12 - JSR-75: FileConnection API

Page 70

• "Phone" (when the file is stored on the phone),
• For example:

• "Card" (when the file is stored on a MMC, SD, T-Flash, or other card-related
media)
• For example:

• "Phone" (when the file is stored on the phone)
• For example:

• "Card" (when the file is stored on a MMC, SD, T-Flash or other card-related
media)
• For example:

Java™ ME Developer Guide
Chapter 12 - JSR-75: FileConnection API

Page 71

13
JSR-82: Bluetooth API

Overview

JSR-82 covers the establishment of connections between devices for such

applications as peer-to-peer gaming and Bluetooth pen use.

There are two new requirements from this API. The package is

required to establish general Bluetooth connections. The package is

required to provide Object Exchange support over Bluetooth and other transports.

Because OBEX is not limited to Bluetooth only, it resides as a separate package, but

must be supported by this API.

Bluetooth API

The complete requirements are defined in Java APIs for Bluetooth™ Wireless

Technology (JSR-82). The requirements listed here are a summary and specify how

the API relates to the native Bluetooth implementation on the phone.

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 72

System Requirements

The JSR-82 API utilizes Bluetooth for data connections only. The following protocols

must be supported:

• L2CAP
• RFCOMM
• SDP
• OBEX

• OBEX is a separate API from the core Bluetooth API () and
is a part of the package.

In addition, the following Bluetooth profiles must be supported:

• Generic Access Profile (GAP)
• Service Discovery Application Profile (SDAP)
• Serial Port Profile (SPP)
• Generic Object Exchange Profile (GOEP)

Bluetooth Control Center

The JSR-82 API requires that a Bluetooth Control Center (BCC) be in place to control

the Bluetooth connection and be a repository for local device settings.

According to the API, the following are features the BCC must support:

• A list of remote Bluetooth devices (not necessarily in the vicinity) that are
already known to the local Bluetooth device.

• A list of remote Bluetooth devices (not necessarily in the vicinity) that are
trusted by the local Bluetooth device.

• A mechanism to bond two devices trying to connect for the first time.
• A mechanism to provide authorization of connection requests.
• The base security settings of the local device, including the security modes

defined in the Bluetooth specification.

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 73

Device Properties

Table 16 lists the Motorola Bluetooth device properties for current products. These

device properties must be available to the MIDlet suite.

Device Property Description

The version of the Java APIs for Bluetooth™
wireless technology that is supported. For this
version, it is set to "1.0".

The maximum ReceiveMTU size (in bytes) sup-
ported in L2CAP. The string is in Base 10 digits,
for example, "672." This value is product de-
pendent. The maximum value is 64 Kb.

The maximum number of connected devices
supported (includes parked devices). The string
is in Base10 digits. This value is product de-
pendent.

Is inquiry allowed during a connection? Valid
values are either "true" or "false." This value is
product dependent.

Is paging allowed during a connection? Valid val-
ues are either "true" or "false." This value is
product dependent.

Is inquiry scanning allowed during connection?
Valid values are either "true" or "false." This
value is product dependent.

Is page scanning allowed during connection?
Valid values are either "true" or "false." This
value is product dependent.

Is master/slave switch allowed? Valid values are
either "true" or "false." This value is product de-
pendent.

Maximum number of concurrent service discov-
ery transactions. The string is in Base10 digits.
This value is product dependent.

Maximum number of service attributes to be re-
trieved per service record. The string is in
Base10 digits. This value is product dependent.

Table 16 Motorola Bluetooth Device Properties

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 74

Service Registration

Service Registration is the portion of the BCC that controls the Service Discovery

Database (SDDB). The SDDB is a list of available services on the local device.

Services registered in the SDDB by a MIDlet are removed when the connection

notifier is closed or when the MIDlet terminates.

The implementation must support run-before-connect services.

Connectable Mode

The following rules must be supported while the phone is in connectable mode:

Rules:

• In connectable mode, the Bluetooth device periodically listens for connection
requests.

• The Bluetooth device responds according to security settings and service
availability for requested connection.

Non-Connectable Mode

In non-connectable mode, the Bluetooth device is neither discoverable nor

connectable.

Device Management

Device Management describes the local settings involved that control how the local

device responds to external requests.

Generic Access Profile (GAP)

These four GAP classes must be supported by the API:

• LocalDevice contains control settings of the local Bluetooth device. Settings can
be read and changed.

• RemoteDevice contains information (that is, Bluetooth address and friendly

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 75

name) about a remote Bluetooth device.
• DeviceClass contains values of the device type and types of services the device

supports.
• BluetoothStateException is an exception that is called when a request cannot

be handled because of the device's state.

Security

Security must be set or controlled by the API. Parameters that are available to be set

are:

• authentication
• encryption
• authorization
• master (for master/slave switch)

Communication

Communication covers establishing connections to other devices via specific

Bluetooth profiles or protocols. Bluetooth connections established using this API are

based on the following three protocols:

• RFCOMM
• L2CAP
• OBEX

Additionally, other profiles can be built upon these three basic protocols, but the

profiles would have to be emulated by the MIDlet suite.

The implementation must support opening a connection with either a server

connection URL or a client connection URL, with the default mode of READ_WRITE.

Serial Port Profile (SPP)

General Rules:

• SPP uses RFCOMM as its protocol.
• Only one RFCOMM session can exist between any pair of devices at any time.
• Negotiation of connection parameters and flow control between two Bluetooth

devices must be handled automatically by the SPP connection implementation.
• An SPP server application must initialize the services it offers and register those

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 76

services in the SDDB.
• Before an SPP client can establish a connection to an SPP service, it must

discover that service via service discovery.
• A service discovery is not required if the SPP service has been discovered

previously.

Object Exchange (OBEX)

OBEX is a protocol used for "pushing" and "pulling" objects (that is, files or data)

from one device to another. OBEX is not limited to Bluetooth only. OBEX can be used

over Bluetooth, IrDA, and USB.

Rules:

• The following OBEX operations must be supported by the API:
• CONNECT
• PUT
• GET
• DISCONNECT
• SETPATH
• ABORT
• CREATE-EMPTY
• PUT-DELETE

• OBEX must support Bluetooth.
• OBEX may support the following transports (where available).

• IrDA
• TCP/IP

• OBEX must support authentication.

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 77

Security Policy

Applications must be granted permission to perform any requested operation using

this API. Table 17 assigns individual permission to the function groups.

Permission Protocol Function

Bluetooth Data Networking

Bluetooth Data Networking

Bluetooth Data Networking

Bluetooth Data Networking

Bluetooth Data Networking

Table 17 JSR-82 Security Policy

External Events

The following interruptions must be handled by kvm and MIDlet suite.

Incoming Call

Upon receiving an incoming call, the Bluetooth connection remains active when the

MIDlet is suspended. The Bluetooth connection terminates when the user ends the

MIDlet.

Incoming Message

Upon receiving an incoming call, the Bluetooth connection remains active when the

MIDlet is suspended. The Bluetooth connection is terminated when the user ends the

MIDlet.

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 78

Alarm and Datebook Behavior

When a MIDlet is running, the Bluetooth connection remains active when the MIDlet

is suspended. The Bluetooth connection is terminated when the user ends the MIDlet.

Pressing of End Key

Figure 12 Pressing of End Key

Rules:

• Pressing the END key terminates any ongoing Bluetooth connections.
• If possible, notify any other device that the session will be disconnected.

• End MIDlet suite and kvm and return phone to Idle.

Hardware Requirements

Requires Java™ ME and Bluetooth™ wireless technology for the

support.

Requires Java ME and at least one of the following: Bluetooth, IrDA, USB, or HTTP for

support.

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 79

Interoperability Requirements

Table 18 lists the suggested types of screens and text used for user feedback.

Examples of each screen type are provided below.

Figure 13 Example Screens

Event Screen Text LSK RSK Title

BCC List N/A BACK SELECT "Bluetooth
Link"

Discoverable Dialog "Discover-
able..."
<Timer
Countdown>

CANCEL RETURN N/A

Bond Re-
quest

Dialog "Bond with
<device>?"

YES NO N/A

Invalid PIN Transient "Invalid PIN" N/A N/A N/A

Service Dis-
covery

Dialog "Scanning..."
"Devices
found: <#>"
<Progress
Meter>

CANCEL STOP N/A

Name Dis-
covery

Dialog "Retriev-
ing..."
"Device
Names: x /
#"

CANCEL STOP N/A

Device His- List N/A BACK LINK "Bluetooth

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 80

tory Link"

No Devices
Found

Transient "No Devices
Found"

N/A N/A N/A

New Devices List N/A BACK LINK "Scan Res-
ults"

PIN Entry Editor N/A DELETE OK "Enter PIN"

Table 18 Interoperability Requirements

Java™ ME Developer Guide
Chapter 13 - JSR-82: Bluetooth API

Page 81

14
JSR-118: MIDP 2.0

Security Model

Reference Link

Borland http://www.borland.com/

GSM 03.38 standard http://www.etsi.org

GSM 03.40 standard http://www.etsi.org

IBM http://www.ibm.com/

MOTODEV http://developer.motorola.com

Motorola http://www.motorola.com/

RFC 2068 http://www.ietf.org/rfc/rfc2068.txt

RFC 822 http://www.ietf.org/rfc/rfc822.txt

SAR http://www.wapforum.org

SSL protocol version 3.0 http://wp.netscape.com/eng/ssl3/ssl-toc.html

Sun Microsystems http://www.sun.com/

TLS protocol version 1.0 http://www.ietf.org/rfc/rfc2246.txt

This chapter describes the MIDP 2.0 Default Security Model for the MOTOROKR

E6/E6e handset. The following topics are discussed:

• Untrusted MIDlet suites and domains
• Trusted MIDlet suites and domains
• Permissions
• Certificates

For a detailed MIDP 2.0 Security process diagram, refer to the MOTODEV web site

(http://developer.motorola.com).

Table 19 lists the default security feature/class support for MIDP 2.0:

Feature/Class Implementation

All methods for the Certificate interface in the Supported

All fields, constructors, methods, and inherited methods for Supported

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 82

http://developer.motorola.com

the CertificateException class in the
package

A MIDlet suite is authenticated as stated in Trusted MIDlet-
Suites using X.509 of MIDP 2.0 minus all root certificates pro-
cesses and references

Supported

Verification of SHA-1 signatures with a SHA-1 message digest
algorithm

Supported

Only one signature in the MIDlet-Jar-RSA-SHA1 attribute Supported

All methods for the Certificate interface in the
package

Supported

All fields, constructors, methods, and inherited methods for
the CertificateException class in the
package

Supported

Preloading two self authorizing Certificates Supported

All constructors, methods, and inherited methods for the MID-
letStateChangeException class in the

package

Supported

All constructors and inherited methods for the MIDletState-
ChangeException class in the
package

Supported

Table 19 MIDP 2.0 Feature/Class

The domain configuration is selected upon agreement with the operator.

Untrusted MIDlet Suites

A MIDlet suite is untrusted when the device cannot trust the origin or integrity of the

JAR file.

The following are conditions of untrusted MIDlet suites:

• If one or more errors occur in the process of verifying if a MIDlet suite is
trusted, then the MIDlet suite is rejected.

• Untrusted MIDlet suites execute in the untrusted domain where access to
protected APIs or functions either is not allowed or is allowed with explicit
confirmation from the user.

Untrusted Domain

Any MIDlet suites that are unsigned belong to the untrusted domain. Untrusted

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 83

domain handsets allow, without explicit confirmation, untrusted MIDlet suites access

to the following APIs:

• — RMS APIs
• — MIDlet Lifecycle APIs
• — User Interface APIs
• — Gaming APIs
• — Multimedia APIs for sound playback
• — Multimedia APIs for sound playback

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 84

The untrusted domain allows, with explicit user confirmation, untrusted MIDlet suites

access to the following protected APIs or functions:

• — HTTP protocol
• — HTTPS protocol

Trusted MIDlet Suites

Trusted MIDlet suites are those in which the integrity of the JAR file can be

authenticated and trusted by the device, and bound to a protection domain. The

MOTOROKR E6/E6e uses x.509PKI for signing and verifying trusted MIDlet suites.

Security for trusted MIDlet suites uses protection domains. Protection domains define

permissions that are granted to the MIDlet suite. A MIDlet suite belongs to one

protection domain and its defined permissible actions. For implementation on the

MOTOROKR E6/E6e, the following protection domains exist:

• Manufacturer — permissions are marked as "Allowed" (Full Access).
Downloaded and authenticated manufacturer MIDlet suites perform consistently
with MIDlet suites pre-installed by the manufacturer.

• Operator — permissions are marked as "Allowed" (Full Access). Downloaded
and authenticated operator MIDlet suites perform consistently with other
MIDlet suites installed by the operator.

• Third-Party — permissions are marked as "User." User interaction is required
for permission to be granted. MIDlets do not need to be aware of the security
policy except for security exceptions that occur when accessing APIs.

• Untrusted — all MIDlet suites that are unsigned belong to this domain.

Permissions within these domains authorize access to the protected APIs or

functions. These domains consist of a set of "Allowed" or "User" permissions that are

granted to the MIDlet suite.

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 85

Permission Types Concerning the
Handset

A protection domain consists of a set of permissions. Each permission is either

"Allowed" or "User":

• "Allowed" (Full Access) permissions explicitly allow access to a given protected
API or function from a protected domain. Allowed permissions do not require
any user interaction.

• "User" permissions require a prompt to be given to the user and explicit user
confirmation to allow the MIDlet suite access to the protected API or function.

User Permission Interaction Mode

User permission for the MOTOROKR E6/E6e handsets allows the user to either deny

or grant access to the protected API or function using the following interaction modes

(the prompt that appears in bold):

• blanket — grants access to the protected API or function every time it is
required by the MIDlet suite until the use uninstalsl the MIDlet suite or changes
the permission. (Ask Once Per App)

• session — grants access to the protected API or function every time it is
required by the MIDlet suite until the MIDlet suite is terminated. This mode
prompts the user on or before the final invocation of the protected API or
function. (Ask Once Per App)

• oneshot — prompts the user each time the protected API or function is
requested by the MIDlet suite. (Always Ask)

• No — does not allow the MIDlet suite access to the requested API or function
that is protected. (No Access)

The prompt No, Ask Later is displayed during run-time dialogs. It allows the user to

prohibit access to the protected function this time. However, the next time access is

requested, this function is called again.

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 86

Security policy and device implementation determine user permission interaction

modes. User permission has a default interaction mode. The user is presented with a

choice of available interaction modes, including the ability to deny access to the

protected API or function. The user makes a decision based on the user-friendly

description of the requested permissions provided.

The Permissions menu allows the user to configure permission settings for each

MIDlet when the VM is not running. This menu is synchronized with available

run-time options.

Implementation Based on
Recommended Security Policy

The default security policy of Motorola's implementation for MIDP 2.0 contains the

required trust model, the supported domain, and the corresponding structure.

Permissions are defined for MIDlets relating to their domain. User permission types,

as well as user prompts and notifications, are defined.

Trusted Third-Party Domain

A trusted third-party protection domain root certificate is used to verify third-party

MIDlet suites. These root certificates are mapped to a location on the handset that

the user cannot modify. The handset can store a maximum of 12 certificates,

consisting of trusted third-party protection domain root certificates and operator

protection domain root certificates.

A user can enable a disabled, trusted, third-party, protection domain root certificate.

If disabled, the third-party domain is no longer associated with this certificate.

Permissions for the trusted third-party domain are "User" permissions. The user

grants permissions by responding to a prompt.

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 87

Table 20 displays the specific wording for the first line of this prompt:

Protected Functionality Top Line of Prompt Right Softkey

Data Network Use data network? OK

Messaging Use messaging? OK

App Auto-Start Launch <MIDlet names>? OK

Connectivity Options Make a local connection? OK

User Data Read Capability Read phonebook data? OK

User Data Write Capability Modify phonebook data? OK

App Data Sharing Share data between apps? OK

Table 20 Trusted Third-Party Domain

The following radio button messages, mapped to their corresponding permission

types, appear (Table 21):

MIDP 2.0 Permission
Types

Run-time Dialogs UI Permission Prompts

Oneshot Yes, Always Ask Always Ask

Session Yes, Ask Once Ask Once per App

Blanket Yes, Always Grant Access Never Ask

no access No, Never Grant Access No Access

Table 21 MIDP 2.0 Permission Types

The run-time dialogs are not displayed if the corresponding permission type is an

option for the protected function according to the security policy table loaded into the

handset, or when the protected function is set to "Allowed" (or full access).

Security Policy for Protection Domains

Table 22 lists the security policy, by function group, for each domain. Under each

domain are the settings allowed for that function; the default setting is in bold. The

Function Group appears when the user requests access and when the user modifies

the permissions in the menu. The default setting is in effect at the time the MIDlet

suite is first invoked and remains in effect until the user changes it.

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 88

Permissions are implicitly granted or not granted to a MIDlet based on the

configuration of the domain the MIDlet is bound to. Specific permissions cannot be

defined for this closed class. A MIDlet either does or doesn't have this capability. The

user can change any of the remaining settings.

Function
Group

Trusted
Third Party

Untrusted Manufacturer Operator

Data Net-
work

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, No
Acess

Full Access Full Access

Messaging Always
Ask, No Ac-
cess

Always
Ask, No Ac-
cess

Full Access Full Access

App Auto-
Start

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, No
Acess

Full Access Full Access

Connectivity
Options

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Full Access Full Access

User Data
Read Capab-
ility

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always Ask Full Access Full Access

User Data
Read Capab-
ility

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always Ask Full Access Full Access

User Data
Write Capab-
ility

Ask once
Per
App, Always
Ask, Never

No Access Full Access Full Access

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 89

Ask, No
Access

Multimedia
Recording

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

No Access Full Access Full Access

Table 22 Security Policy for Protection Domains

Table 23 shows individual permissions assigned to the function groups in Table 23.

MIDP 2.0 Specific Functions

Permission Protocol Function Group

http Data Network

https Data Network

datagram Data Network

datagram server (w/o
host)

Data Network

socket Data Network

server socket (w/ o
host)

Data Network

ssl Data Network

comm Connectivity Op-
tions

All App Auto-Start

Wireless Messaging API - JSR-120

Messaging

Messaging

Messaging

Messaging

Multimedia Recording

Multimedia Re-
cording

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 90

Table 23 MIDP 2.0 Specific Functions

Each phone call or messaging action lets the user see the destination phone number

before approving the action. The handset ensures that I/O access from the Mobile

Media API follows the same security requirements as the Generic Connection

Framework.

Displaying Permissions

Permissions are divided into function groups, which the user can view. Each function

group falls into one of two categories: Network/Cost related and User/Privacy

related.

The Network/Cost related category includes net access, messaging, application auto

invocation, and local connectivity function groups.

The user/privacy related category includes multimedia recording, read user data

access, and the write user data access function groups. These function groups are

displayed in the settings of the MIDlet suite.

The user can access and modify only third-party and untrusted permissions. Operator

and manufacturer permissions are displayed for each MIDlet suite, but the user

cannot modify them.

Trusted MIDlet Suites Using x.509 PKI

Using the x.509 PKI (Public Key Infrastructure) mechanism, the handset can verify

the signer of the MIDlet suite and bind it to a protection domain that allows the

MIDlet suite access to the protected API or function. When the MIDlet suite is bound

to a protection domain, it uses the permission defined in the protection domain to

grant the MIDlet suite access to the defined protected APIs or functions.

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 91

The MIDlet suite is protected by itsvsigned JAR file. The signature and certificate

attributes are added to the application descriptor (JAD) and are used by the handset

to verify the signature. Authentication is complete when the handset uses the root

certificate (found on the handset) to bind the MIDlet suite to a protection domain

(found on the handset).

Signing a MIDlet Suite

The default security model involves the MIDlet suite, the signer, and public key

certificates. A set of root certificates are used to verify certificates generated by the

signer. Specially designed certificates for code signing can be obtained from the

manufacturer, operator, or certificate authority. The MOTOROKR E6/E6e handset

supports only those root certificates that are stored on the handset.

Signer of MIDlet Suites

The signer of a MIDlet suite can be the developer or an outside party that is

responsible for distributing, supporting, or billing for the MIDlet suite. The signer has

a public key infrastructure and the certificate is validated to one of the protection

domain root certificates on the handset. The public key, which is provided as an

x.509 certificate in the application descriptor (JAD), verifies the signature in the JAR

file.

MIDlet Attributes Used in Signing
MIDlet Suites

Attributes defined in the manifest of the JAR are protected by the signature.

Attributes defined in the JAD are not protected or secured. Attributes that appear in

the manifest (JAR file) are not overridden by a different value in the JAD for all

trusted MIDlets. If a MIDlet suite is to be trusted, the value in the JAD equals the

value of the corresponding attribute in the manifest (JAR file), if not, the MIDlet suite

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 92

is not installed.

The attributes MIDlet-Permissions (-OPT) are ignored for unsigned MIDlet suites. The

untrusted domain policy is consistently applied to the untrusted applications. It is

legal for these attributes to exist only in JAD, only in the manifest, or in both

locations. If these attributes are in both the JAD and the manifest, they are identical.

If the permissions requested in the JAD are different from those requested in the

manifest, the installation is rejected.

Methods:

• returns the attribute value, if present, from the
manifest (JAR). If an attribute value is not defined, the attribute value, if
present, is returned from the application descriptor (JAD).

Creating the Signing Certificate

The signer of the certificate is made aware of the authorization policy for the handset

and contacts the appropriate certificate authority (CA). The signer can then send its

distinguished name (DN) and public key in the form of a certificate request to the

certificate authority used by the handset. The CA creates a x.509 (version 3)

certificate and returns it to the signer. If multiple CAs are used, all signer certificates

in the JAD have the same public key.

Inserting Certificates into JAD

When inserting a certificate into a JAD, the certificate path includes the signer

certificate and any other necessary certificates. It omits the root certificate, which is

found on the device only.

Each certificate is encoded using base64 without line breaks, and inserted into the

application descriptor as outlined below per MIDP 2.0.

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 93

Note the following:

<n>:= a number equal to 1 for first certification path in the descriptor, or 1 greater

than the previous number for additional certification paths. This defines the sequence

in which the certificates are tested to see if the corresponding root certificate is on

the device.

<m>:= a number equal to 1 for the signer's certificate in a certification path or 1

greater than the previous number for any subsequent intermediate certificates.

Creating the RSA SHA-1 Signature of
the JAR

The signer's private key creates the JAR signature according to the EMSA-PKCS1

-v1_5 encoding method of PKCS #1 version 2.0 standard from RFC 2437. This

signature, which is inserted into the JAD, is base64 encoded and formatted as a

single MIDlet-Jar-RSA-SHA1 attribute without line breaks.

The signer of the MIDlet suite is responsible for its protection domain root certificate

owner for protecting the domain's APIs and protected functions; therefore, the signer

checks the MIDlet suite before signing it. Protection domain root certificate owners

can delegate the signing of MIDlet suites to a third party and in some instances, the

author of the MIDlet.

Authenticating a MIDlet Suite

When a MIDlet suite is downloaded, the handset checks for the JAD attribute

MIDlet-Jar-RSA-SHA1. If this attribute is present, the JAR is authenticated by

verifying the signer certificates and JAR signature as described. MIDlet suites with

application descriptors that do not have the attributes previously stated, are installed

and invoked as untrusted. For additional information, refer to the MIDP 2.0

specification.

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 94

Verifying the Signer Certificate

The signer certificate is found in the application descriptor of the MIDlet suite. The

process for verifying a signer certificate is as follows:

1. Get the certification path for the signer certificate from the JAD attributes
MIDlet-Certificate-1<m>, where <m> starts at 1 and is incremented by 1 until
there is no attribute with this name. The value of each attribute is a base64
encoded certificate that needs to be decoded and parsed.

2. Validate the certification path using the basic validation process as described in
RFC 2459 using the protection domains as the source of the protection domain
root certificates.

3. Bind the MIDlet suite to the corresponding protection domain that contains the
protection domain root certificate that validated the first chain from signer to
root.

4. Begin installation of MIDlet suite.
5. If attribute MIDlet-Certificate-<n>-<m> where <n> is greater than 1, is

present and full certification path is not established after verifying
MIDlet-Certificate-<1>-<m> certificates, then repeat steps 1 through 3 for the
value <n> greater by 1 than the previous value.

Table 24 describes actions performed upon completion of signer certificate

verification:

Result Action

Attempted to validate <n> paths.
However, issuer's public keys are missing
or certificate pathsa are invalid.

Authentication fails, JAR installation is not
allowed.

More than one full certification path is es-
tablished and validated.

Implementation proceeds with the signa-
ture verification using the first success-
fully verified certificate path for authen-
tication and authorization.

Only one certification path is established
and validated.

Implementation proceeds with the signa-
ture verification.

Table 24 Actions Performed of Signer Certificate Verification

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 95

Verifying the MIDlet Suite JAR

To verify the MIDlet suite JAR:

1. Get the public key from the verified signer certificate.
2. Get the MIDlet-JAR-RSA-SHA1 attribute from the JAD.
3. Decode the attribute value from base64 yielding a PKCS #1 signature; refer to

RFC 2437 for more detail.
4. Use the signer's public key, signature, and SHA-1 digest of JAR to verify the

signature. If signature verification fails, reject the JAD and MIDlet suite. Thus
the MIDlet suite is not installed.

5. After the certificate, signature, and JAR have been verified, the MIDlet suite is
known to be trusted and is installed (authentication process is performed
during installation).

Table 25 is a summary of MIDlet suite verification including messages:

Initial State Verification Result

JAD not present, JAR
downloaded

Authentication cannot be performed, install JAR. MIDlet
suite is treated as untrusted. The following error mes-
sage appears: "Application installed, but may have lim-
ited functionality."

JAD present, but JAR is un-
signed

Authentication cannot be performed, install JAR. MIDlet
suite is treated as untrusted. The following error mes-
sage appears: "Application installed, but may have lim-
ited functionality."

JAR signed but no root cer-
tificate present in the key-
store to validate the certi-
ficate chain

Authentication cannot be performed. JAR installation is
not allowed. The following error message appears:
"Root certificate missing. Application not installed."

JAR signed, a certificate on
the path is expired

Authentication cannot be completed. JAR installation is
not allowed. The following error message appears: "Ex-
pired Certificate. Application not installed."

JAR signed, a certificate re-
jected for reasons other
than expiration

JAD rejected, JAR installation is not allowed. The follow-
ing error message appears: "Authentication Error. Ap-
plication not installed."

JAR signed, certificate path
validated but signature
verification fails

JAD rejected, JAR installation is not allowed. The follow-
ing error message appears: "Authentication Error. Ap-
plication not installed."

Parsing of security attrib-
utes in JAD fails

JAD rejected, JAR installation is not allowed. The follow-
ing error message appears: "Failed Invalid File."

JAR signed, certificate path JAR is installed. The following message appears: "In-

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 96

validated, signature veri-
fied

stalled."

Table 25 Summary of MIDlet Suite Verification

Carrier Specific Security Model

The MIDP 2.0 security model varies based on carrier requests. Contact the carrier for

specifics.

Java™ ME Developer Guide
Chapter 14 - JSR-118: MIDP 2.0 Security Model

Page 97

15
JSR-120: Wireless

Messaging API

Wireless Messaging API (WMA)

Motorola has implemented certain features that are defined in the Wireless

Messaging API (WMA) 1.0. The complete specification document is defined in

JSR-120.

The JSR-120 specification states that developers send (MO - mobile originated) and

receive (MT - mobile terminated) SMS (Short Message Service) on the target device.

A simple example of the WMA is the ability of two Java™ ME applications using SMS

to communicate game moves running on the handset. This can take the form of

chess moves being passed between two players via the WMA.

Motorola in this implementation of the specification supports the following features:

• Creating an SMS
• Sending an SMS
• Receiving an SMS
• Viewing an SMS
• Deleting an SMS

Java™ ME Developer Guide
Chapter 15 - JSR-120: Wireless Messaging API

Page 98

SMS Client Mode and Server Mode
Connection

The Wireless Messaging API is based on the Generic Connection Framework (GCF),

which is defined in the CLDC specification 1.1. The use of the "Connection"

framework in Motorola's case is " ".

The can be opened in either server or client mode. A server

connection is opened by providing a URL that specifies an identifier (port number) for

an application on the local device for incoming messages.

Messages received with this identifier are then delivered to the application by this

connection. A server mode connection can be used for both sending and receiving

messages. A client mode connection is opened by providing a URL that points to

another device. A client mode connection can only be used for sending messages.

SMS Port Numbers

When a port number is present in the address, the TP-User-Data of the SMS contains

a User-Data-Header with the application port addressing scheme information

element. When the recipient address does not contain a port number, the

TP-User-Data does not contain the application port addressing header. The Java ME

MIDlet cannot receive this kind of message, but the SMS is handled in the usual

manner for a standard SMS to the device.

When a message identifying a port number is sent from a server type

, the originating port number in the message is set to the port

number of the . This allows the recipient to send a response to

the message that is received by this .

However, when a client type is used for sending a message with

Java™ ME Developer Guide
Chapter 15 - JSR-120: Wireless Messaging API

Page 99

a port number, the originating port number is set to an implementation specific value

and any possible messages received to this port number are not delivered to the

. Please refer to the sections A.4.0 and A.6.0 of the JSR-120.

When a MIDlet in server mode requests a port number (identifier) to use and it is the

first MIDlet to request this identifier, it is allocated. If other applications apply for the

same identifier, then an is thrown when an attempt to open

is made. If a system application is using this identifier, the

MIDlet is not allocated the identifier. The port numbers allowed for this request are

restricted to SMS messages. In addition, a MIDlet is not allowed to send messages to

certain restricted ports, a is thrown if this is attempted.

JSR-120 Section A.6.0 Restricted Ports: 2805, 2923, 2948, 2949, 5502, 5503, 5508,

5511, 5512, 9200, 9201, 9203, 9207, 49996, 49999.

If you intend to use SMSC numbers, then review A.3.0 in the JSR-120 specification.

The use of an SMSC is used if the MIDlet had to determine what recipient number to

use.

SMS Storing and Deleting Received
Messages

When SMS messages are received by the MIDlet, they are removed from the SIM

card memory where they were stored. The storage location (inbox) for the SMS

messages has a capacity of up to thirty messages. If any messages are older than

five days, then they are removed from the inbox by way of a FIFO stack.

SMS Message Types

The types of messages that can be sent are TEXT or BINARY. The method of

encoding the messages is defined in GSM 03.38 standard (Part 4 SMS Data Coding

Scheme). Refer to section A.5.0 of JSR-120 for more information.

Java™ ME Developer Guide
Chapter 15 - JSR-120: Wireless Messaging API

Page 100

SMS Message Structure

The message structure of SMS complies with GSM 03.40 v7.4.0 Digital cellular

telecommunications system (Phase 2+); Technical realization of the Short Message

Service (SMS) ETSI 2000.

Motorola's implementation uses the concatenation feature (specified in sections

9.2.3.24.1 and 9.2.3.24.8 of the GSM 03.40 standard) for messages that the Java

application sends that are too long to fit in a single SMS protocol message.

This implementation automatically concatenates the received SMS protocol messages

and passes the fully reassembled message to the application via the API. The

implementation supports at least three SMS messages to be received and

concatenated together. In addition, a minimum of three messages for sending is

supported. Motorola advises that developers should not send messages that take up

more than three SMS protocol messages unless the recipient's device is known to

support more.

SMS Notification

Examples of SMS interaction with a MIDlet include:

• A MIDlet handles an incoming SMS message if the MIDlet is registered to
receive messages on the port (identifier) and is running.

• When a MIDlet is paused and is registered to receive messages on the port
number of the incoming message, then the user is queried to launch the
MIDlet.

• If the MIDlet is not running and the Java Virtual Machine is not initialized, then
a Push Registry is used to initialize the Virtual Machine and launch the Java ME
MIDlet. This only applies to trusted, signed MIDlets.

Java™ ME Developer Guide
Chapter 15 - JSR-120: Wireless Messaging API

Page 101

• If a message is received and the untrusted unsigned application and KVM are
not running, then the message is discarded.

• There is a SMS Access setting in the Java Settings menu option on the handset
that allows the user to specify when and how often to ask for authorization.
Before the connection is made from the MIDlet, the options available are:
• Always ask for user authorization
• Ask once per application
• Never ask

Table 26 is a list of Messaging features/classes supported in the device.

Feature/Class Implementation

JSR-120 API — APIs defined in the
javax.wireless.messaging package are
implemented with regards to the GSM
SMS Adaptor

Supported

Removal of SMS messages Supported

Terminated SMS removal — any user prompts
handled by MIDlet

Supported

Originated SMS removal — any user prompts
handled by MIDlet

Supported

All fields, methods, and inherited methods for the
Connector Class in the

package

Supported

All methods for the BinaryMessage interface in the
package

Supported

All methods for the Message interface in the
package

Supported

All fields, methods, and inherited methods for the
MessageConnection interface in the

package

Supported

Number of MessageConnection instances in the
package

32 maximum

Number of MessageConnection instances in the
package

16

All methods for the MessageListener interface in
the package

Supported

All methods and inherited methods for the
TextMessage interface in the

package

Supported

16-bit reference number in concatenated messages Supported

Number of concatenated messages 30 messages in inbox, each can
be concatenated from 3 parts.
No limitation on outbox
(immediately transmitted)

Java™ ME Developer Guide
Chapter 15 - JSR-120: Wireless Messaging API

Page 102

Allow MIDlets to obtain the SMSC address with the
system property

Supported

Table 26 List of Messaging Features/Classes

Code Sample 5 shows implementation of the JSR-120 Wireless Messaging API.

Creation of client connection, creation of binary message, setting of
payload for binary message and calling of method 'numberOfSegments' for
Binary message

BinaryMessage binMsg;
MessageConnection connClient;
int MsgLength = 140;

/* Create connection for client mode */
connClient = (MessageConnection) Connector.open("sms://" + outAddr);

/* Create BinaryMessage for client mode */
binMsg = (BinaryMessage)connClient.newMessage(MessageConnection.

BINARY_MESSAGE);

/* Create BINARY of 'size' bytes for BinaryMsg */
public byte[] createBinary(int size) {

int nextByte = 0;
byte[] newBin = new byte[size];

for (int i = 0; i < size; i++) {
nextByte = (rand.nextInt());
newBin[i] = (byte)nextByte;
if ((size > 4) && (i == size / 2)) {

newBin[i-1] = 0x1b;
newBin[i] = 0x7f;

}
}
return newBin;

}

byte[] newBin = createBinary(msgLength);
binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

Java™ ME Developer Guide
Chapter 15 - JSR-120: Wireless Messaging API

Page 103

Creation of server connection

MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://:9532");

Creation of client connection with port number

MessageConnection messageConnection = (MessageConnection)
Connector.open("sms://+18473297274:9532");

Creation of client connection without port number

MessageConnection messageConnection =
(MessageConnection)Connector.open("sms://+18473297274");

Closing of connection

MessageConnection messageConnection.close();

Creation of SMS message

Message textMessage =
messageConnection.newMessage(MessageConnection.
TEXT_MESSAGE);

Setting of payload text for text message

((TextMessage)message).setPayloadText("Text Message");

Getting of payload text of received text message

receivedText = ((TextMessage)receivedMessage).getPayloadText();

Getting of payload data of received binary message

BinaryMessage binMsg;
byte[] payloadData = binMsg.getPayloadData();

Setting of address with port number

message.setAddress("sms://+18473297274:9532");

Setting of address without port number

message.setAddress("sms://+18473297274");

Java™ ME Developer Guide
Chapter 15 - JSR-120: Wireless Messaging API

Page 104

Sending of message

messageConnection.send(message);

Receiving of message

Message receivedMessage = messageConnection.receive();

Getting of address

String address = ((TextMessage)message).getAddress();

Getting of SMS service center address via calling of System.getProperty()

String addrSMSC = System.getProperty("wireless.messaging.sms.smsc");

Getting of timestamp for the message

Message message;
System.out.println("Timestamp: " + message.getTimestamp().getTime());

Setting of MessageListener and receiving of notifications about incoming
messages

public class JSR120Sample1 extends MIDlet implements CommandListener {

JSR120Sample1Listener listener = new JSR120Sample1Listener();

// open connection
messageConnection = (MessageConnection)Connector.open("sms://:9532");

// create message to send

listener.run();

// set payload for the message to send

// set address for the message to send
messageToSend.setAddress("sms://+18473297274:9532");

// send message (via invocation of 'send' method)

// set address for the message to receive
receivedMessage.setAddress("sms://:9532");

Java™ ME Developer Guide
Chapter 15 - JSR-120: Wireless Messaging API

Page 105

// receive message (via invocation of 'receive' method)

class JSR120Sample1Listener implements MessageListener, Runnable {
private int messages = 0;

public void notifyIncomingMessage(MessageConnection connection) {
System.out.println("Notification about incoming message arrived");

messages++;
}

public void run() {
try {
messageConnection.setMessageListener(listener);
} catch (IOException e) {

result = FAIL;
System.out.println("FAILED: exception while setting listener: " + e.toString());

}
}
}

Code Sample 5 JSR-120 WMA

Java™ ME Developer Guide
Chapter 15 - JSR-120: Wireless Messaging API

Page 106

16
JSR-135: Mobile Media

API

Mobile Media API

The JSR-135 Mobile Media APIs feature sets are defined for different types of media.

The media defined are as follows:

• Tone Sequence
• Sampled Audio
• MIDI
• Interactive MIDI

When a player is created for a particular type, it follows the guidelines and control

types listed in the following sections.

Code Sample 5 shows the implementation of the JSR-135 Mobile Media API:

JSR-135

Player player;

// Create a media player, associate it with a
stream containing media data try

{
player = Man-

ager.createPlayer(getClass().getResourceAsStream ("MP3.mp3"), "audio/mp3");
}
catch (Exception e)
{

System.out.println("FAILED: exception
for createPlayer: " + e.toString());

Java™ ME Developer Guide
Chapter 16 - JSR-135: Mobile Media API

Page 107

}
// Obtain the information required to acquire

the media resources try
{

player.realize();
}
catch (MediaException e)
{

System.out.println("FAILED: exception
for realize: " + e.toString());

}
// Acquire exclusive resources, fill buffers

with media data try
{

player.prefetch();
}
catch (MediaException e)
{

System.out.println("FAILED: exception
for prefetch: " + e.toString());

}
// Start the media playback try
{

player.start();
}
catch (MediaException e)
{

System.out.println("FAILED: exception
for start: " + e.toString());

}
// Pause the media playback try
{

player.stop();
}
catch (MediaException e)
{

System.out.println("FAILED: exception
for stop: " + e.toString());

}
// Release the resources

play-
er.close();

Code Sample 5 JSR-135 MMA

Java™ ME Developer Guide
Chapter 16 - JSR-135: Mobile Media API

Page 108

ToneControl

ToneControl is the interface to enable playback of a user-defined monotonic tone

sequence. The JSR-135 Mobile Media API implements public interface ToneControl.

A tone sequence is specified as a list of non-tone duration pairs and user-defined

sequence blocks and is packaged as an array of bytes. The method is

used to input the sequence to the ToneControl.

The following is the available method for ToneControl:

Sets the tone sequence.

VolumeControl

VolumeControl is an interface for manipulating the audio volume of a Player. The

JSR-135 Mobile Media API implements public interface VolumeControl.

The following describes the different volume settings found within VolumeControl:

• Volume Settings — allows the output volume to be specified using an integer
value that varies between 0 and 100. Depending on the application, this is
mapped to the volume level on the phone (0-7).

• Specifying Volume in the Level Scale — specifies volume in a linear scale. It
ranges from 0 - 100, where 0 represents silence and 100 represents the
highest volume available.

• Mute — setting mute on or off does not change the volume level returned by
the method. If mute is on, no audio signal is produced by the Player.
If mute is off, an audio signal is produced and the volume is restored.

Java™ ME Developer Guide
Chapter 16 - JSR-135: Mobile Media API

Page 109

The following is a list of available methods for VoumeControl:

Gets the current volume setting.

Gets the mute state of the signal associated with this VolumeControl.

Sets the volume using a linear point scale with values

between 0 and 100.

Mutes or unmutes the Player associated with this

VolumeControl.

StopTimeControl

StopTimeControl allows a specific preset sleep timer for a player. The JSR-135 Mobile

Media API implements public interface StopTimeControl.

The following is a list of available methods for StopTimeControl:

Gets the last value successfully set by .

Sets the media time at which you want the Player

to stop.

Manager Class

Manager Class is the access point for obtaining system dependant resources such as

players for multimedia processing. A Player is an object used to control and render

media that is specific to the content type of the data. Manager provides access to a

specific mechanism for constructing Players. For convenience, Manager also provides

a simplified method to generate simple tones. Primarily, the Multimedia API provides

a way to check available/supported content types.

Java™ ME Developer Guide
Chapter 16 - JSR-135: Mobile Media API

Page 110

Supported Multimedia File Types

The following section lists media file types (with corresponding CODECs) that are

supported in products that are JSR-135 compliant in addition to JSR-135 Mobile API

Phase I. The common guideline is that all CODECs and file types supported by the

native side are accessible through the JSR-135 implementation.

Audio Media

File Type Codec

WAV PCM

WAV ADPCM

SP MIDI General MIDI

MIDI Type 0 General MIDI

MIDI Type 1 General MIDI

iMelody IMelody

CTG CTG

MP3 MPEG-1 layer III

AMR AMR

BAS General MIDI

Table 26 Audio Media

Image Media

File Type Functionality

JPEG Playback/Capture

Progressive JPEG Playback

PNG Playback

BMP Playback

WBMP Playback

GIF 87a, 89a Playback

Java™ ME Developer Guide
Chapter 16 - JSR-135: Mobile Media API

Page 111

Video Media

File Type Functionality

H.263 Playback/Capture

MPEG4 Playback

Real Video G2 Playback

Real Video 8 Playback

Real Video 9 Playback

Media Locators

The Manager and the DataSource class, as well as the RecordControl interface accept

media locators. In addition to normal playback locators specified by JSR-135, the

following special locators need to be supported.

RTSP locator

RTSP Locators must be supported for streaming media on devices supporting real

time streaming using RTSP. This support must be available for audio and video

streaming through Manager (for playback media stream).

NOTE: Refer to JSR-135 API for RTSP locator syntax.

HTTP Locator

HTTP Locators must be supported for playing back media over network connections.

This support should be available through Manager implementation.

For example:

Java™ ME Developer Guide
Chapter 16 - JSR-135: Mobile Media API

Page 112

File Locator

File locators must be supported for playback and capture of media. This is specific to

Motorola Java™ ME implementations supporting file system API and not as per

JSR-135. The support should be available through Manager and RecordControl

implementations.

For example:

Capture Locator

Capture Locator should be supported for audio and video devices. A new device

"camera" must be defined and supported for camera device. The

method returns camera player as a special type of video

player. Camera player should implement VideoControl and should support taking

snapshots using the method.

For example:

NOTE: For mandatory capture formats, refer to JSR-135 API for capture locator
syntax.

Security

The Mobile Media API follows the MIDP 2.0 security model. Recording functionality

APIs need to be protected. Trusted third party and untrusted applications must utilize

user permissions. Specific permission settings are detailed.

Java™ ME Developer Guide
Chapter 16 - JSR-135: Mobile Media API

Page 113

Policy3

The following is flexed in per operator requirements at ship time of the handset.

Function
Group

Trusted
Third Party

Untrusted Manufacturer Operator

Multimedia
Record

Ask once
Per
App, Always
Ask, Never
Ask, No
Access

Always
Ask,
Ask Once Per
App, Never
Ask, No
Acess

Full Access Full Access

Permissions

Table 31 lists individual permissions within Multimedia Record function group.

Permission Protocol Function Group

MultimediaRecord

Table 31 Permissions within Multimedia Record

NOTE: The Audio/Media formats may differ or may not be available, depending on
the carrier or region.

Java™ ME Developer Guide
Chapter 16 - JSR-135: Mobile Media API

Page 114

17
JSR-139: CLDC 1.1

CLDC 1.1 is an incremental release of CLDC version 1.0. CLDC 1.1 is fully backwards

compatible with CLDC 1.0. An explanation of CLDC 1.0 follows.

JSR-30 — CLDC 1.0

This CLDC Specification addresses the following areas:

• Java language and virtual machine features
• Core Java libraries
• Input/output
• Networking
• Security
• Internationalization

This CLDC Specification does not address the following features:

• Application life-cycle management (application installation, launching, deletion)
• User interface functionality
• Event handling
• High-level application model (the interaction between the user and the

application)

No Floating Point Support

The main language-level difference between the full Java™ Language Specification

and this CLDC Specification is that a JVM supporting CLDC does not have floating

point support.

This means that a JVM supporting CLDC does not allow the use of floating point

literals, floating point types and values, and floating point operations.

Java™ ME Developer Guide
Chapter 17 - JSR-139: CLDC 1.1

Page 115

Classfile Format and Class Loading

An essential requirement for the Connected, Limited Device Configuration is the

ability to support dynamic downloading of Java applications and Third party content.

The dynamic class loading mechanism of the Java platform plays a central role in

enabling this. This section discusses the application representation formats and class

loading practices required of a JVM supporting CLDC.

Supported File Formats

It is assumed that a CLDC implementation is able to read standard Java class files

with the pre-verification changes defined in the following section "Public

Representation of Java Applications and Resources." In addition, a CLDC

implementation supports compressed Java Archive (JAR) files. This requirement has

been added to maintain upward compatibility with larger Java environments and

existing Java tools, but with a smaller footprint than with regular class files. Detailed

information about JAR format is provided at

http://java.sun.com/developer/Books/javaprogramming/JAR/index.html.

Public representation of Java applications and resources

A Java application is considered to be "represented publicly" or "distributed publicly"

when the system it is stored on is open to the public, and the transport layers and

protocols it can be accessed with are open standards. In contrast, a device can be

part of a single, closed network system where the vendor controls all communication.

In this case, the application is no longer represented publicly once it enters and is

distributed via the closed network system. Whenever Java applications intended for a

CLDC device are represented publicly, the compressed JAR file representation format

must be used. The JAR file must contain regular Java class files with the following

restrictions and additional requirements:

• stack map attributes must be included in class files.
• the class file must not contain any of the following Java byte codes: jsr, jsr_w,

ret and wide ret.

Java™ ME Developer Guide
Chapter 17 - JSR-139: CLDC 1.1

Page 116

http://java.sun.com/developer/Books/javaprogramming/JAR/index.html

Sun's CLDC reference implementation includes a pre-verification tool for performing

the above modifications to a Java class file. The stack map attributes are

automatically ignored by the conventional class file verifier, that is, the format

specified here is fully upwards compatible with larger Java environments such as

Java SE or Java EE.

Additionally, the JAR file may contain application-specific resource files that can be

loaded into the virtual machine by calling on of the following methods:

•
•

Classfile Lookup Order

The Java™ Language Specification and Java™ Virtual Machine Specification do not

specify the order in which class files are searched when new class files are loaded

into the virtual machine. At the implementation level, a typical Java virtual machine

implementation utilizes a special environment variable classpath to define the lookup

order.

This CLDC Specification assumes class file lookup order to be

implementation-dependent, with the following restrictions. The lookup strategy is

typically defined as part of the application management implementation. A JVM

supporting CLDC is not required to support the notion of classpath, but may do so at

the implementation level. Two restrictions apply to class file lookup order.

• First, "Protecting system classes," a JVM supporting CLDC must guarantee that
the application programmer cannot override the system classes (classes
belonging to the CLDC or supported profiles) in any way.

• Second, it is required that the application programmer must not be able to
manipulate the class file lookup order in any way. Both of these restrictions are
important for security reasons.

JSR-139 — CLDC 1.1

The Implementation of CLDC 1.1 supports the following:

• Floating Point
• Data Types float and double

Java™ ME Developer Guide
Chapter 17 - JSR-139: CLDC 1.1

Page 117

• New Data Type classes Float and Double
• All floating point byte codes
• Library classes to handle floating point values

• Weak reference
• Classes Calender, Date, and TimeZone are Java SE compliant
• Thread objects are compliant with Java SE

The support of thread objects to be compliant with Java SE requires the addition of

and a few new constructors. The following table lists the additional

classes, fields, and methods supported for CLDC 1.1 compliance:

Classes Additional Fields/
Methods

Comments

System Classes Allocates a new Thread
object with the given
target and name.

Allocates a new Thread
object with the given
name.

Returns this thread's
name.

Interrupts this thread.

Compares this string
to another String, ig-
noring case considera-
tions.

Returns a canonical
representation for the
string object.

Returns the string rep-
resentation of the float
argument.

Returns the string rep-
resentation of the
double argument.

Data Type
Classes

New Class: Refer to
CLDC Spec for more
details.

New Class: Refer to
CLDC Spec for more
details.

Calendar and
Time Classes

The field values for the
currently set time for

Java™ ME Developer Guide
Chapter 17 - JSR-139: CLDC 1.1

Page 118

this calendar.

The flags that tell if a
specified time field for
the calendar is set.

The currently set time
for this calendar, ex-
pressed in milliseconds
after January 1, 1970,
0:00:00 GMT.

Converts the current
millisecond time value
to field values in fields
[].

Converts the current
field values in fields []
to the millisecond
value time.

Converts this date ob-
ject to a String of the
form: Dow mon dd
hh:mm:ss zzz yyyy.

Exception and
Error Classes

New Class: Refer to
CLDC Spec for more
details.

Weak References New Class: Refer to
CLDC Spec for more
details.

New Class: Refer to
CLDC Spec for more
details.

Additional Utility
Classes

Returns the next
pseudo-random,
uniformly distributed
double value between
0.0 and 1.0 from the
random number gener-
ator's sequence.

Returns the next
pseudo-random, uni-
formly distributed
double value between
0.0 and 1.0 from the
random number gener-
ator's sequence.

Returns a pseudo-

Java™ ME Developer Guide
Chapter 17 - JSR-139: CLDC 1.1

Page 119

random, uniformly
distributed int value
between 0 (inclusive)
and the specified value
(exclusive), drawn
from this random
number generator's
sequence.

The double value that
is closer than any oth-
er to e, the base of the
natural logarithms.

The double value that
is closer than any oth-
er to pi, the ratio of
the circumference of a
circle to its diameter.

Returns the absolute
value of a double.

Returns the absolute
value of a float value.

Returns the smallest
(closest to negative in-
finity) double value
that is not less than
the argument and is
equal to a mathemat-
ical integer.

Returns the trigono-
metric cosine of an
angle.

Returns the largest
double value that is
not greater than the
argument and is equal
to a mathematical in-
teger.

Returns the greater of
two double values.

)

Returns the greater of
two float values.

Returns the smaller of
two double values.

Java™ ME Developer Guide
Chapter 17 - JSR-139: CLDC 1.1

Page 120

Returns the smaller of
two float values.

Returns the trigono-
metric sine of an
angle.

)
Returns the correctly
rounded positive
square root of a double
value.

Returns the trigono-
metric tangent of
angle.

Converts an angle
measured in radians to
the equivalent angle
measured in degrees.

Converts an angle
measured in degrees
to the equivalent angle
measured in radians.

Table 31 Additional Classes, Fields, and Methods Supported for CLDC 1.1 Compliance

Java™ ME Developer Guide
Chapter 17 - JSR-139: CLDC 1.1

Page 121

18
JSR-172: Java™ ME

Web Services
Specification

This chapter describes the JSR-172, which uses the Web Services standards and

infrastructures to provide the programming model for the next generation of

enterprise services. Two new capabilities are provided here for the Java™ ME

plataform:

• Access to remote SOAP / XML based web services
• Parsing XML data

Overview

The main deliverables of the JSR-172 specification are two, independent, optimal

packages:

1. An optional package adding XML Parsing support to the platform. Structured
data sent to mobile devices from existing applications will likely be in the form
of XML. To avoid including code to process this data in each application, it is
desirable to define an optional package that can be included with the platform.

2. Create an optional package to facilitate access to XML based web services from
CDC and CLDC based profiles.

This optional package defines an API to allow mobile devices to access remote XML

based web services. Where possible, it avoids defining new network protocols and

formats and reuses existing standards.

Java™ ME Developer Guide
Chapter 18 - JSR-172: Java™ ME Web Services Specification

Page 122

NOTE: Java™ ME Optional Packages are described in JSR-68, Java™ ME Platform
Specification.

JAXP

The goal of this optional package is to define a strict subset wherever possible of the

XML parsing functionality (defined in JSR-063 JAXP 1.2) that can be used on the

Java™ Platform, Micro Edition (Java™ ME).

XML is becoming a standard means for clients to interact with backend servers, their

databases, and related services. With its platform neutrality and strong industry

support, XML is being used by developers to link networked clients with remote

enterprise data. An increasing number of these clients are based on the Java™ ME

platform, with a broad selection of mobile phones, PDAs, and other portable devices.

As developers utilize these mobile devices more to access remote enterprise data,

XML support on the Java™ ME platform is becoming a requirement.

An implementation may support validation of XML documents against a DTD. XML

validation is an expensive process in terms of processing power and memory usage

and would not likely be supported on most Java™ ME devices. However, if the

platform has the ability to support it, it may provide a validating parser (due to the

limited nature of most Java™ ME devices, it is expected that only one parser will be

supported, but it is allowable to support both).

There are three packages that comprise the JAXP API subset:

•
•
•

When inspecting the API set, one quickly notices that much of what exists in the

Java™ SE JAXP API set is missing from the Java™ ME JAXP API set. The size

requirements for the Java™ ME platform are strict, allowing only approximately 35Kb

for a complete JAXP implementation. However, although many of the classes are

gone, much of the functionality remains.

Java™ ME Developer Guide
Chapter 18 - JSR-172: Java™ ME Web Services Specification

Page 123

JAX-RPC Subset Overview

JAX-RPC is a Java API for interacting with SOAP based web services. This

specification defines a subset of the JAX-RPC 1.1 specification that is appropriate for

the Java™ ME platform.

The functionality provided in the subset reflects both the limitations of the platform:

memory size and processing power; as well as the limitations of the deployment

environment: low bandwidth and high latency.

Implementations must support WSDL documents, referencing the following data

types:

• boolean
• byte
• short
• int
• long
• float
• double
• String
• complex types
• arrays of primitive and complex types

The following classes and interfaces are included in the Java™ ME Web Services

Optional Package to satisfy dependencies of JAX-RPC on the CLDC based platforms:

•
•
•
•

An RMI Optional Package is available for CDC based platforms, and if the optional

package is present, the versions of , ,

, and included in the RMI

optional package must be used.

Java™ ME Developer Guide
Chapter 18 - JSR-172: Java™ ME Web Services Specification

Page 124

19
JSR-184: Mobile 3D

Graphics API

Overview

JSR-184 Mobile 3D API defines an API for rendering three-dimensional (3D) graphics

at interactive frame rates, including a scene graph structure and a corresponding file

format for efficient management and deployment of 3D content. Typical applications

that might make use of JSR-184 Mobile 3D API include games, map visualizations,

user interface, animated messages, and screen savers. JSR-184 requires a Java™ ME

device supporting MIDP 2.0 and CLDC 1.1 at a minimum.

Mobile 3D API

The MOTOROKR E6/E6e contains full implementation of JSR-184 Mobile 3D API

(http://jcp.org/en/jsr/detail?id=184). The MOTOROKR E6/E6e has also implemented

the following:

• Call to with key — returns
1.0, otherwise NULL is returned.

• Floating point format for input and output is the standard IEEE float, having an
8-bit exponent and a 24-bit mantissa normalized to 1.0, 2.0.

• Implementation ensures the Object3D instances are kept in reference to reduce
overhead and possible inconsistency.

• Thread safety.
• Necessary pixel format conversions for rendering output onto device.
• Support at least 10 animation tracks to be associated with an Object 3D

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 125

http://jcp.org/en/jsr/detail?id=184

instance (including animation controller), subject to dynamic memory
availability.

Mobile 3D File Format Support

The MOTOROKR E6/E6e supports both M3G and PNG file formats for loading 3D

content. The MOTOROKR E6/E6e supports the standard .m3g and .png extensions for

its file formats. MIME type and not extension is used for identifying file type. In the

case that the MIME type is not available, M3G files are identified using the file

identifier and PNG files using the signature.

Mobile 3D Graphics — M3G API

The M3G API lets you access the realtime 3D engine embedded on the device to

create console quality 3D applications, such as games and menu systems. The main

benefits of the M3G engine include:

• The whole 3D scene can be stored in a very small file size (typically 50-150K),
allowing you to create games and applications in under 256K;

• The application can change the properties (such as position, rotation, scale,
color, and textures) of objects in the scene based on user interaction with the
device;

• The application can switch between cameras to get different views in to the
scene;

• The rendered images have a very high photorealistic quality.

Typical M3G Application

An application consists of logic that uses the M3G, MIDP 2.0, and CDLC 1.1 classes.

The application is compiled into a Java MIDlet that can be embedded on the target

device. The MIDlet can also contain additional assets, such as one or more M3G files

that define the 3D scene graph for the objects in the scene, images, and sounds.

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 126

Figure 14 M3G Application Proccess

Most M3G applications use an M3G resource file that contains all the information

required to define the 3D resources, such as objects, their appearance, lights,

cameras, and animations in a scene graph. The file must be loaded into memory

where object properties can be interrogated and altered using the M3G API.

Alternatively, all objects can be created from code, although this is likely to be slower

and limits creativity for designers.

Simple MIDlets

The simplest application consists of an M3G file that is loaded into the application

using the M3G Loader class, which is then passed to a Graphics3D object that

renders the world to the Display.

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 127

Figure 15 M3G Application Methods

The World object contains the objects that define a complete 3D scene — geometry,

textures, lights, cameras, and animations. The World object mediates access to the

objects within the world. It can be passed as a block to the renderer, the Graphics3D

class.

The Loader object, populates a World by loading an M3G file from a URI or other

asset source, such as a buffer of bytes in M3G format. The Loader is not restricted to

loading just Worlds, each file can contain as little as a single object and multiple files

can be merged together on the device, or you can put everything into a single file.

The rendering Graphics3D class (by analogy to the MIDP Graphics class) takes a

whole scene (or part of a scene graph), and renders a view onto that scene using the

current camera and lighting setup. This view can be to the screen, to a MIDP image,

or to a texture in the scene for special effects. You can pass a whole world in one go

(retained mode) or you can pass individual objects (immediate mode). There is only

one Graphics3D object present at one time, so that hardware accelerators can be

used.

Figure 16 shows the structure of a more typical MIDlet.

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 128

Figure 16 Typical MIDlet Structure

Initializing the World

The Loader class is used to initialize the world. It has two static methods: one takes

in a byte array, while the other takes a named resource, such as a URI or an

individual file in the JAR package.

The load methods return an array of Object3Ds that are the root level objects in the

file.

The following example calls and passes it an M3G file from the JAR

file using a property in the JAD file. Alternatively, you could specify a URI. For

example:

;

The example assumes that there is only one root node in the scene, which is the

world object. If the M3G file has multiple root nodes, the code must be changed to

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 129

reflect this, but generally most M3G files have a single root node.

Initializing the World

public void startApp() throws MIDletStateChangeException
{

myDisplay.setCurrent(myCanvas);

try
{

// Load a file.
Objects3D[] roots = Loader.load(getAppProperty("Content-1"));

// Assume the world is the first root node loaded.
myWorld = (World) roots[0];

}
catch(Exception e)
{

e.printStackTrace();
}

// Force a repaint so the update loop is started.
myCanvas.repaint();

}

Code Sample 5 Initializing the World

Using the Graphics3D Object

Using the Graphics3D class is very straightforward. Get the Graphics3D instance,

bind a target to it, render everything, and release the target.

Using the Graphics3D Object

public class myCanvas extends Canvas
{

Graphics3D myG3D = Graphics3D.getInstance();

public void paint(Graphics g)
{

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 130

myG3D.bindTarget(g);

try
{

myG3D.render(myWorld);
}
finally
{

myG3D.releaseTarget();
}

}

}

Code Sample 8 Using the Graphics3D Object

The final block makes sure that the target is released and the Graphics3D object can

be reused. The call must be outside the try block, as it can throw

exceptions that cause to be called when a target has not been

bound.

Interrogating and Interacting with Objects

The World object is a container that sits at the top of the hierarchy of objects that

form the scene graph. You can find particular objects within the scene very simply by

calling with an ID. The method returns a reference to the object that

has been assigned that ID in the authoring tool (or manually assigned from code).

This is important because it makes the application logic independent of the detailed

structure of the scene.

Finding Objects by ID

final int PERSON_OBJECT_ID = 339929883;
Node personNode = (Node)theWorld.find(PERSON_OBJECT_ID);

Code Sample 9 Finding Objects by ID

If you need to find many objects, or you don't have a fixed ID, then you can follow

the hierarchy explicitly using the or

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 131

methods.

Using the Object3D.getReferences()

static void traverseDescendants(Object3D obj)
{

int numReferences = obj.getReferences(null);

if (numReferences > 0)
{

Object3D[] objArray = new Object3D[numReferences];

obj.getReferences(objArray);

for (int i = 0; i < numReferences; i++)
traverseDescendants(objArray[i]);

}

}

Code Sample 10 Using the Object3D.getReferences()

Once you have an object, most of the properties on it can be modified using the M3G

API. For example, you can change the position, size, orientation, color, brightness, or

whatever other attribute of the object is important. You can also create and delete

objects and insert them into the world, or link parts of other M3G files into the scene

graph.

Animations

As well as controlling objects from code, scene designers can specify how objects

should move under certain circumstances, and store this movement in 'canned' or

block animation sequences that can be triggered from code. Many object properties

are animatable, including position, scale, orientation, color and textures. Each of

these properties can be attached to a sequence of keyframes using an

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 132

AnimationTrack. The keyframe sequence can be looped, or just played once, and

they can be interpolated in several ways (stepwise, linear, spline).

A coherent action typically requires the simultaneous animation of several properties

on several objects, the tracks are grouped together using the AnimationController

object. This allows the application to control a whole animation from one place.

All the currently active animatable properties can be updated by calling

on the World. (You can also call this on individual objects if you need more control.)

The current time is passed through to and is used to determine the

interpolated value to assign to the properties.

The method returns a validity value that indicates how long the current

value of a property is valid. Generally, this is 0 which means that the object is still

being animated and the property value is no longer valid, or infinity when the object

is in a static state and does not need to be updated. If nothing is happening in the

scene, you do not have to continually redraw the screen, reducing the processor load

and extending battery life. Similarly, simple scenes on powerful hardware may run

very fast; by restricting the frame-rate to something reasonable, you can extend

battery life and are more friendly to background processes.

The animation subsystem has no memory, so time is completely arbitrary. This

means that there are no events reported (for example, animation finished). The

application is responsible for specifying when the animation is active and from which

position in the keyframe sequence the animated property is played.

Consider a world, myWorld, that contains an animation of 2000 ms that you want to

cycle. First, you need to set up the active interval for the animation and set the

position of the sequence to the start. Then call with the current

world time:

Setting animation interval

anim.setActiveInterval(worldTime, worldTime+2000);
anim.setPosition(0, worldTime);

int validity = myWorld.animate(worldTime);

Code Sample 11 Setting animation interval

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 133

Authoring M3G files

You can create all your M3G content from code if necessary but this is likely to be

very time consuming and does not allow 3D artists and scene designers to easily

create and rework visually compelling content with complex animations. You can use

professional, visual development tools such as Swerve™ Studio or Swerve™ M3G

exporter from Superscape Group, which exports content from 3ds max, the industry

standard 3D animation tool, in fully compliant M3G format. For more information,

please visit http://www.superscape.com

Java™ ME Developer Guide
Chapter 19 - JSR-184: Mobile 3D Graphics API

Page 134

http://www.superscape.com

20
JSR-185: Java

Technology for the
Wireless Industry

Java™ Technology for the Wireless Industry (JTWI) specifies a set of services to

develop highly portable, interoperable Java applications. JTWI reduces API

fragmentation and broadens the number of applications for mobile phones.

Overview

Any Motorola device implementing JTWI supports the following minimum hardware

requirements in addition to the minimum requirements specified in MIDP 2.0:

• Minimum screen size of 125 x 125 pixels screen size, as returned by full screen
mode and

• Minimum color depth of 4096 colors (12-bit), as returned by

• Pixel shape of 1:1 ratio
• Minimum Java Heap Size of 512 KB
• Sound mixer with at least 2 sounds
• Minimum JAD file size of 5 KB
• Minimum JAR file size of 64 KB
• Minimum RMS data size of 30 KB

Java™ ME Developer Guide
Chapter 20 - JSR-185: Java Technology for the Wireless Industry

Page 135

Any Motorola JTWI device implements the following and passes the corresponding

TCK:

• CLDC 1.0 or CLDC 1.1
• MIDP 2.0 (JSR-118)
• Wireless Messaging API 1.1 (JSR-120)
• Mobile Media API 1.1 (JSR-135)

CLDC Related Content for JTWI

JTWI is designed to be implemented on top of CLDC 1.0 or CLDC 1.1. The

configuration provides the VM and the basic APIs of the application environment. If

floating point capabilities are exposed to Java Applications, CLDC 1.1 is implemented.

The following CLDC requirements are supported:

• Minimum Application thread count allows a MIDlet suite to create a minimum of
10 simultaneous running threads

• Minimum Clock Resolution — The
method records the elapsed time in increments not to exceed 40 msec. At least
80% of test attempts will meet the time elapsed requirement to achieve
acceptable conformance.

• Names for Encodings support at least the preferred MIME name as defined by
IANA (http://www.iana.org/assignments/character-sets) for the supported
character encodings. If preferred name has not been defined, the registered
name is used (that is, UTF-16).

• Character Properties provide support for character properties and case
conversions for the characters in the Basic Latin and Latin-1 Supplement blocks
of Unicode 3.0. Other Unicode character blocks are supported as necessary.

• Unicode Version supports Unicode characters. Character information is based
on the Unicode Standard version 3.0. Since the full character tables required
for Unicode support can be excessively large for devices with tight memory
budgets, by default, the character property and case conversion facilities in
CLDC assume the presence of ISO Latin-1 range of characters only. Refer to
JSR-185 for more information.

• Custom Time Zone IDs permit the use of custom time zones that adhere to the
following time zone format:
• General Time Zone: For time zones representing a GMT offset value, the

following syntax is used:
• Custom ID:

• GMT Sign Hours: Minutes

Java™ ME Developer Guide
Chapter 20 - JSR-185: Java Technology for the Wireless Industry

Page 136

http://www.iana.org/assignments/character-sets

• GMT Sign Hours Minutes
• GMT Sign Hours Hours

• Sign: one of:
• + -

• Hours:
• Digit
• Digit Digit

• Minutes:
• Digit Digit

• Digit: one of:
• 0 1 2 3 4 5 6 7 8 9

NOTE: Hours are between 0 and 23, and minutes are between 00 and 59. For
example, GMT +10 and GMT +0010 equates to ten hours and ten minutes ahead of
GMT.

• When creating a TimeZone, the specified Custom Time Zone ID is
normalized in the following syntax:
• NormalizedCustomID:

• GMT Sign TwoDigitHours: Minutes

• Sign: one of:
• + -

• TwoDigitHours:
• Digit Digit

• Minutes:
• Digit Digit

• Digit: one of:
• 0 1 2 3 4 5 6 7 8 9

Java™ ME Developer Guide
Chapter 20 - JSR-185: Java Technology for the Wireless Industry

Page 137

MIDP 2.0 Specific Information for JTWI

MIDP 2.0 provides the library support for user interface, persistent storage,

networking, security, and push functions. MIDP 2.0 contains a number of optional

functions, some of which are implemented as outlined below. The JTWI requirements

for MIDP 2.0 supports the following points:

• Record Store Minimum permits a MIDlet suite to create at least 5 independent
RecordStores. This requirement does not intend to mandate that memory be
reserved for these Record Stores, but it is possible to create the RecordStores if
the required memory is available.

• HTTP Support for Media Content provides support for HTTP 1.1 for all supported
media types. HTTP 1.1 conformance matches the MIDP 2.0 specification. See

package for specific requirements.
• JPEG for Image Objects — ISO/IEC JPEG together with JFIF are supported. The

support for ISO/IEC JPEG only applies to baseline DCT, non-differential,
Huffman coding, as defined in JSR-185 JTWI specification, symbol 'SOF0'. This
support extends to the class, including the
methods outlined above. This mandate is voided in the event that the JPEG
image format becomes encumbered with licensing requirements.

• Timer Resolution permits an application to specify the values for the
, , and parameters of

methods with a distinguishable resolution of no more than 40 ms. Various
factors (such as garbage collection) affect the ability to achieve this
requirement. At least 80% of test attempts will meet the schedule resolution
requirement to achieve acceptable conformance.

• Minimum Number of Timers allows a MIDlet to create a minimum of 5
simultaneously running Timers. This requirement is independent of the
minimum specified by the Minimum Application Thread Count.

• Bitmap Minimums support the loading of PNG images with pixel color depths of
1, 2, 4, 8, 16, 24, and 32 bits per pixel, per the PNG format specification. For
each of these color depths, as well as for JFIF image formats, a compliant
implementation supports images up to 76800 total pixels.

• TextField and TextBox and Phonebook Coupling — when the center select key is
pressed while in a TextBox or TextField and the constraint of the TextBox or
TextField is , the names in the Phonebook are
displayed in the "Insert Phonenumber?" screen.

• Supported characters in TextField and TextBox — TextBox and TextField with
input constraint supports inputting all the characters listed in
JSR-185.

• Supported characters in EMAILADDR and URL Fields — Class
and

Java™ ME Developer Guide
Chapter 20 - JSR-185: Java Technology for the Wireless Industry

Page 138

with either of the constraints
or allows the same characters to be

input as are allowed for input constraint .
• Push Registry Alarm Events will implement alarm-based push registry entries.
• Identification of JTWI via system property — to identify a compliant device and

the implemented version of this specification, the value of the system property
is 1.0.

Wireless Messaging API 1.1 (JSR-120)
Specific Content for JTWI

WMA defines an API used to send and receive short messages. The API provides

access to network-specific short message services, such as GSM SMS or CDMA short

messaging. JTWI supports the following as it is outlined in the <link type="internal"

destination="JSR_120">JSR-120</link> chapter.

• Support for SMS in GSM devices
• Cell Broadcast Service in GSM devices
• SMS Push

Mobile Media API 1.1 (JSR-135)
Specific Content for JTWI

The following are supported for JTWI compliance:

• HTTP 1.1 Protocol is supported for media file download for all supported media
formats.

• MIDI feature set specified in MMAPI (JSR-135) is implemented. MIDI file
playback is supported.

• VolumeControl is implemented and is required for controlling the volume of
MIDI file playback.

• JPEG encoding in video snapshots is supported if the handset supports the
video feature set and video image capture.

• Tone sequence file format is supported. Tone sequences provide an additional
simple format for supporting the audio needs of many types of games and
other applications.

Java™ ME Developer Guide
Chapter 20 - JSR-185: Java Technology for the Wireless Industry

Page 139

21
JSR-205: WMA 2.0

Overview

This chapter describes the functionality that is implemented for the WMA. This

chapter highlights implementation details with respect to the messaging API, which is

important to this implementation rather than restating entire JSR-205. Refer to the

JSR-205 for more details. This chapter also provides Motorola specific requirements

for WMA in addition to JSR-205.

Messaging Functionality

This section describes messaging functionality to be implemented by WMA.

MMS Message Structure

The MMS PDU structure is implemented as specified in the WAP-209-MMS

Encapsulation standard. The MMS PDU consists of headers and a multipart message

body. Some of the headers originate from standard RFC 822 headers and others are

specific to multimedia messaging. In addition to defined MMS headers, it also

contains header parameters as defined by JSR-205. The message body may contain

parts of any content type. The MIME multipart is used to represent and encode a

wide variety of media types for transmission via multimedia messaging.

Java™ ME Developer Guide
Chapter 21 - JSR-205: WMA 2.0

Page 140

MMS Message Addressing

The multipart message addressing model contains different types of addresses:

• global telephone number of recipient user, including telephone number, ipv4,
ipv6 addresses

• e-mail address as specified in RFC 822
• short-code of the service (not valid for MMS version 1.0)

The syntax of the URL connection strings follow the rules specified in the JSR-205

specification.

MMS Message Types

MMS messages can be sent using MULTIPART_MESSAGE type of this API. The default

type of message is multipart/related. If the content type header does not contain

start parameter, the message type is assumed to be multipart/mixed. This section

describes Multipart Message and its related classes. Messaging framework is

described in the JSR-120 chapter.

MultipartMessage

The WMA implements the MultipartMessage an interface representing a multipart

message. This is a subinterface of Message that contains methods to add, remove,

and manipulate message parts. The interface also specifies the subject of the

message.

Refer to the JSR-205 specification for more details.

MessagePart

The WMA implements the MessagePart class, representing a media part that can be

sent with the message. Instances of MessagePart class are added to the

MultipartMessage.

Java™ ME Developer Guide
Chapter 21 - JSR-205: WMA 2.0

Page 141

Each message part consists of part header and part body. The part headers include

Content ID, Content Location, Content type, and Encoding scheme. Content can be of

any MIME type.

Multimedia Message Service Center Address

The MMSC address used for sending the messages should be made available using

with property name " ".

Applications might need to obtain the Multimedia Message Service Center (MMSC)

address to decide which recipient to use. For example, the application might need to

do this because it is using service numbers for application servers that might not be

consistent in all networks and MMSCs.

Refer to the JSR-205 specification for more details.

Application ID

The WMA supports sending of MMS messages to concrete Java applications.

Messages can be sent using this API via client or server type Message Connections.

Refer to the JSR-205 specification for more details.

The application specifies Application ID when opening the server mode

MessageConnection. The receiving application running on a device is identified with

the Application ID included in the message.

The maximum number of Application IDs are limited by the implementation and

depends on phone RAM availability and carrier operators preloaded content memory

consumption.

The maximum number of simultaneously opened connections are limited by the

implementation and depends on phone RAM availability and carrier operators

preloaded content memory consumption.

The maximum number of MMS messages in the buffer at the same time are limited

by the implementation and depends on phone RAM availability and carrier operators

preloaded content memory consumption.

Java™ ME Developer Guide
Chapter 21 - JSR-205: WMA 2.0

Page 142

MMS Push

The registration for MMS-push mechanism and MMS-push mechanism itself is

implemented, but applied to MMS messages in addition to what is described in the

MIDP 2.0 chapter. This includes push registry and all user dialogs.

When an application that is registered in the Push Registry is deleted, the

corresponding PUSH entry is deleted and the corresponding application ID is made

available for future PUSH registrations.

Requirements for WMA

The WMA accepts the Application ID allocated by the first application. If other

applications try to allocate the same Application ID while it is being used by the first

application, an is thrown when they attempt to open the

MessageConnection. The same rule applies if an Application ID is being used by a

system application in the device. In this case, the Java application is not able to use

that Application ID.

MMS-push mechanism is implemented as described in the MIDP 2.0 chapter and

some specific requirements are defined next.

Initial Setup

The MMS initial setup parameters set by user is not accessible by WMA. The initial

MMS setup requirements are outside the scope of this document.

The Java Client uses the MMS Setup of the native client to send/receive messages.

So the Java client uses the same APN/Web-Sessions/mmsc etc. as the Native Client.

Java™ ME Developer Guide
Chapter 21 - JSR-205: WMA 2.0

Page 143

Handling the Incoming MMS Message

WMA is responsible for listening to the inbound connections for incoming MMS

messages with registered Application IDs.

The WMA launches the MMS application and suspends listening of incoming MMS

messages for this Application ID. Then the application is responsible for the handling

of inbound connections (open/close) for the MMS messages (receive/send).

Once the Application exits (terminated, or not successful launch, or user denied the

MMS application launch) then WMA resumes the listening of the inbound connections.

The incoming MMS messages are stored in a separate FIFO message Inbox that is

not visible to the user. The amount of memory allocated for this transparent inbox is

product specific. The MMS application Inbox is not accessible for native MMS

applications.

The WMA passes the received MMS messages to concrete Java applications

associated with the Application ID.

Application is Running/Resuming

The application startup and resume is implemented in accordance with requirements

outlined in the MIDP 2.0 chapter.

If an MMS application startup was denied by the user, then WMA removes all

buffered unread messages for this MMS application.

Application is Running/Background

The application receiving the incoming MMS message handles this MMS message.

When the MMS message is received by an application, it is removed from the

Phone/SIM memory where it may have been stored prior to being delivered to the

application.

An application is responsible to handle a corresponded (Application ID) received

Java™ ME Developer Guide
Chapter 21 - JSR-205: WMA 2.0

Page 144

message (store it more persistently if needed). An MMS message may get lost if an

application can not save it due to lack of space.

The application is responsible for the interpretation and representation of the MMS

MIME content including the SMIL (presentation) content, if any is attached.

In the case of full incoming message buffer, any new message for the application

with the same Application ID is discarded. WMA does not remove the first MMS

message in the buffer that was a cause of Push until:

• MMS message is handled by MMS application, or
• MMS application exits.

Application is Suspending

The application suspending is implemented in accordance with requirements outlined

in the MIDP 2.0 chapter.

If the user selects not to launch the new MMS application, then the incoming MMS

message is ignored and deleted from the handset.

Application is Ending

At application exit, WMA should remove all buffered messages that were not received

by the application.

If the MMS application needs to keep messages more persistently, it has to use other

APIs (File System API, RMS, etc.) to save incoming MMS messages on the handset

for later use. This is handled by the application and outside the of scope of this MRS.

MMS Push

When receiving a message that has an unknown Application ID, the MMS Engine

validates the routing options registered by each of its clients.

Since the Application ID does not match with the routing parameters, a

NotifyResponse is sent back to the MMSC, with status set to REJECTED.

Java™ ME Developer Guide
Chapter 21 - JSR-205: WMA 2.0

Page 145

When receiving a message that has an unknown Application ID / from_address, MMS

Engine validates the routing options registered by each of its clients.

Since the Application ID / from_address in the message does not match the routing

parameters registered by the client, the handling of the message uses one of the

following methods:

• Retain the message in the native clients Inbox, or
• Delete the message and display a transient notice about the removal of the

message.

The transient notice has the following UI dialog elements (to be used for P04.4

integration releases):

• Generic Dialog
• Title Bar text: "Unknown message"
• Body Area text: "Message <message_index>was sent by an unknown

application. Message deleted."
• Left Soft Key: [empty]
• Right Soft Key: OK
• The icon used in the Dialog: notice_generic_prmicn

Starting with P05.1 releases, due to entire UI adjustment for the 2-softkey paradigm,

the "OK" is on the Left Soft Key.

The decisions to deploy these options are controlled by a Feature-ID as it depends on

the behavior desired by the Operator.

Requirements to the Native MMS
Client

The mobile originated MMS Messages that are sent out by the Java client shall not be

stored in the Native clients Draft/Outbox folder.

The Current OMA Standards do not support having the Application ID parameter in

the Notification. The Application ID is only present in the Message body. Due to this,

certain limitations exist.

Anonymous Rejection Feature

Java™ ME Developer Guide
Chapter 21 - JSR-205: WMA 2.0

Page 146

The Native MMS Client supports anonymous rejection feature.

When the MMS receives a Notification, if the is not present in the

notification, the message is not downloaded. A Notify Response is sent to the MMSC

with the status set to REJECTED.

Filtering of the is done at the Notification-Level.

(The impact of this scenario is that a message from an anonymous sender intended

for the Java client is not downloaded onto the handset.)

Coincidental Addresses in the Native Client and
Java Clients Address Filters

The Native MMS client maintains a black (Reject) list of address-filters.

Messages received with these addresses are rejected.

The Java client maintains an Acceptable list of address-filters: only Messages that

match this Address-filter are handled by the Java client.

Address-filtering is done at the Notification level. If a message's

matches both the Native client and Java client's address-filters, the message is not

downloaded and a Notify Response is sent to the MMSC with status set to REJECTED.

(So a message with this , intended for the Java client, is not

downloaded onto the handset.)

Security Policy

The WMA follows the security policy specified in the MIDP 2.0 chapter.

To send and receive messages using WMA, applications are granted permission to

perform the requested operation. The following table assigns individual permissions:

Permission Pro-
tocol

Function

mms

Java™ ME Developer Guide
Chapter 21 - JSR-205: WMA 2.0

Page 147

mms

mms

When opening a connection, if the permission is not granted, then the

method throws a .

When sending or receiving messages, if the permission is not granted, then the

and the methods throw a

.

VMVM Support

WMA functionality is supported in VMVM environment.

External Event Interaction

The implementation follows external event interactions.

Java™ ME Developer Guide
Chapter 21 - JSR-205: WMA 2.0

Page 148

22
Motorola Get URL from

Flex API

Overview

The existing functionality allows current Java Applications to use a dedicated URL to

inform users about the location from which a new level of game can be downloaded.

This new functionality allows carriers to specify the URL for content download. This

feature allows accessing URLs stored in FLEX by a Java application. Carriers flex the

URL, which is used for content download, into the phone just like any invisible net

URL.

Flexible URL for Downloading
Functionality

The URL is flexed using RadioComm or using OTA provisioning. The following rules

apply:

• All URLs used follow the guidelines outlined in RFC 1738: Uniform Resource
Locators (URL). Refer to http://www.w3.org/addressing/rfc1738.txt for more
information.

• URLs are limited to 128 characters.

This feature enables Java applications to read the URL stored at the predefined

location in the flex table.

Java™ ME Developer Guide
Chapter 22 - Motorola Get URL from Flex API

Page 149

http://www.w3.org/addressing/rfc1738.txt

The Java Application is able to access the flexed URL by the

method. The key for accessing the URL is . The

method returns NULL if no URL is flexed.

Security Policy

Only trusted applications are granted permission to access this property.

Java™ ME Developer Guide
Chapter 22 - Motorola Get URL from Flex API

Page 150

Appendix A
Key Mapping

Key Mapping

Table 33 identifies key names and corresponding Java assignments. All other keys

are not processed by Java.

Key Assignment

JOYSTICK LEFT LEFT

JOYSTICK RIGHT RIGHT

JOYSTICK UP UP

JOYSTICK DOWN DOWN

SCROLL UP UP

SCROLL DOWN DOWN

SOFTKEY 1 SOFT1

SOFTKEY 2 SOFT2

SEND SELECT
Also, call placed if pressed on
lcdui.TextField or lcdui.TextBox with
PHONENUMBER constraint set.

CENTER SELECT SELECT

END Handled according to Motorola specifica-
tion: Pause/End/Resume/Background
menu invoked.

Table 33 Key Mapping

Java™ ME Developer Guide
Appendix A - Key Mapping

Page 151

Appendix B
Memory Management

Calculation

Available Memory

The available memory on the MOTOROKR E6/E6e is the following:

• 16MB shared memory for MIDlet storage
• 2Mb Heap size

Java™ ME Developer Guide
Appendix B - Memory Management Calculation

Page 152

Appendix C
FAQ

Online FAQ

The MOTODEV developer program is online and provides access to Frequently Asked

Questions about enabling technologies on Motorola products.

Access to dynamic content based on questions from the Motorola Java™ ME

developer community is available at the URL stated below.

http://developer.motorola.com

Java™ ME Developer Guide
Appendix C - FAQ

Page 153

http://developer.motorola.com

Appendix D
HTTP Range

Graphic Description

Figure 17 shows a graphic description of HTTP Range:

Figure 17 Graphic Description of HTTP Range

Java™ ME Developer Guide
Appendix D - HTTP Range

Page 154

	MOTOROKR E6/E6e Developer Guide
	Disclaimer
	Chapter 1 - Java™ ME Introduction
	Section 1.1 - The Java™ Platform, Micro Edition (Java™ ME)
	Section 1.2 - The Motorola Java™ ME Platform
	Section 1.3 - Resources and APIs Available

	Chapter 2 - Developing and Packaging Java™ ME Applications
	Section 2.1 - Guide to Development in Java™ ME

	Chapter 3 - Downloading Applications
	Section 3.1 - Methods of Downloading
	Section 3.2 - Error Logs

	Chapter 4 - Application Management
	Section 4.1 - Downloading a JAR File Without a JAD
	Section 4.2 - MIDlet Upgrade
	Section 4.3 - Installation and Deletion Status Reports

	Chapter 5 - iTAP
	Section 5.1 - Intelligent Keypad Text Entry API

	Chapter 6 - Record Management System
	Section 6.1 - Record Management System API

	Chapter 7 - Downloading MIDlet Through Browser
	Section 7.1 - Start Active Browser Session from Main Menu
	Section 7.2 - Find a Location with Java™ ME Application
	Section 7.3 - Downloading MIDlets
	Section 7.4 - Different Error Checks
	Section 7.4.1 - Memory Full
	Section 7.4.2 - Memory Full During Installation Process
	Section 7.4.3 - Application Version Already Exists
	Section 7.4.4 - Newer application version exists

	Chapter 8 - JAD Attributes
	Section 8.1 - JAD / Manifest Attribute Implementations

	Chapter 9 - Network APIs
	Section 9.1 - Network Connections
	Section 9.2 - User Permission
	Section 9.3 - Indicating a Connection to the User
	Section 9.4 - HTTPS Connection
	Section 9.5 - DNS IP
	Section 9.6 - Push Registry
	Section 9.7 - Mechanisms for Push
	Section 9.8 - Push Registry Declaration
	Section 9.9 - Delivery of a Push Message
	Section 9.10 - Deleting an Application Registered for Push
	Section 9.11 - Security for Push Registry
	Section 9.12 - Network Access

	Chapter 10 - Platform Request API
	Section 10.1 - Platform Request API
	Section 10.2 - MIDlet Request of a URL That Interacts with Browser
	Section 10.3 - MIDlet Request of a URL That Initiates a Voice Call

	Chapter 11 - JSR-75: PIM API
	Section 11.1 - Overview
	Section 11.2 - Requirements
	Section 11.3 - Fields and Attributes
	Section 11.3.1 - Contact List
	Section 11.3.2 - Event List
	Section 11.3.3 - ToDo List

	Chapter 12 - JSR-75: FileConnection API
	Section 12.1 - Overview
	Section 12.2 - Requirements
	Section 12.2.1 - Interface
	Section 12.2.2 - Security
	Section 12.2.3 - Permissions

	Chapter 13 - JSR-82: Bluetooth API
	Section 13.1 - Overview
	Section 13.2 - Bluetooth API
	Section 13.2.1 - System Requirements
	Section 13.2.2 - Bluetooth Control Center
	Section 13.2.3 - Device Properties
	Section 13.2.4 - Service Registration
	Connectable Mode
	Non-Connectable Mode

	Section 13.2.5 - Device Management
	Generic Access Profile (GAP)
	Security

	Section 13.2.6 - Communication
	Serial Port Profile (SPP)
	Object Exchange (OBEX)

	Section 13.2.7 - Security Policy
	Section 13.2.8 - External Events
	Incoming Call
	Incoming Message

	Section 13.2.9 - Alarm and Datebook Behavior
	Section 13.2.10 - Pressing of End Key
	Section 13.2.11 - Hardware Requirements
	Section 13.2.12 - Interoperability Requirements

	Chapter 14 - JSR-118: MIDP 2.0 Security Model
	Section 14.1 - Untrusted MIDlet Suites
	Section 14.2 - Untrusted Domain
	Section 14.3 - Trusted MIDlet Suites
	Section 14.4 - Permission Types Concerning the Handset
	Section 14.5 - User Permission Interaction Mode
	Section 14.6 - Implementation Based on Recommended Security Policy
	Section 14.7 - Trusted Third-Party Domain
	Section 14.8 - Security Policy for Protection Domains
	Section 14.9 - Displaying Permissions
	Section 14.10 - Trusted MIDlet Suites Using x.509 PKI
	Section 14.11 - Signing a MIDlet Suite
	Section 14.12 - Signer of MIDlet Suites
	Section 14.13 - MIDlet Attributes Used in Signing MIDlet Suites
	Section 14.14 - Creating the Signing Certificate
	Section 14.15 - Inserting Certificates into JAD
	Section 14.16 - Creating the RSA SHA-1 Signature of the JAR
	Section 14.17 - Authenticating a MIDlet Suite
	Section 14.18 - Verifying the Signer Certificate
	Section 14.19 - Verifying the MIDlet Suite JAR
	Section 14.20 - Carrier Specific Security Model

	Chapter 15 - JSR-120: Wireless Messaging API
	Section 15.1 - Wireless Messaging API (WMA)
	Section 15.2 - SMS Client Mode and Server Mode Connection
	Section 15.3 - SMS Port Numbers
	Section 15.4 - SMS Storing and Deleting Received Messages
	Section 15.5 - SMS Message Types
	Section 15.6 - SMS Message Structure
	Section 15.7 - SMS Notification

	Chapter 16 - JSR-135: Mobile Media API
	Section 16.1 - Mobile Media API
	Section 16.2 - ToneControl
	Section 16.3 - VolumeControl
	Section 16.4 - StopTimeControl
	Section 16.5 - Manager Class
	Section 16.6 - Supported Multimedia File Types
	Section 16.6.1 - Audio Media
	Section 16.6.2 - Image Media
	Section 16.6.3 - Video Media

	Section 16.7 - Media Locators
	Section 16.7.1 - RTSP locator
	Section 16.7.2 - HTTP Locator
	Section 16.7.3 - File Locator
	Section 16.7.4 - Capture Locator

	Section 16.8 - Security
	Section 16.8.1 - Policy3
	Section 16.8.2 - Permissions

	Chapter 17 - JSR-139: CLDC 1.1
	Section 17.1 - JSR-30 — CLDC 1.0
	Section 17.1.1 - No Floating Point Support
	Section 17.1.2 - Classfile Format and Class Loading
	Supported File Formats
	Public representation of Java applications and resources
	Classfile Lookup Order

	Section 17.2 - JSR-139 — CLDC 1.1

	Chapter 18 - JSR-172: Java™ ME Web Services Specification
	Section 18.1 - Overview
	Section 18.2 - JAXP
	Section 18.3 - JAX-RPC Subset Overview

	Chapter 19 - JSR-184: Mobile 3D Graphics API
	Section 19.1 - Overview
	Section 19.2 - Mobile 3D API
	Section 19.3 - Mobile 3D File Format Support
	Section 19.4 - Mobile 3D Graphics — M3G API
	Section 19.4.1 - Typical M3G Application
	Section 19.4.2 - Simple MIDlets
	Section 19.4.3 - Initializing the World
	Section 19.4.4 - Using the Graphics3D Object
	Section 19.4.5 - Interrogating and Interacting with Objects
	Section 19.4.6 - Animations
	Section 19.4.7 - Authoring M3G files

	Chapter 20 - JSR-185: Java Technology for the Wireless Industry
	Section 20.1 - Overview
	Section 20.2 - CLDC Related Content for JTWI
	Section 20.3 - MIDP 2.0 Specific Information for JTWI
	Section 20.4 - Wireless Messaging API 1.1 (JSR-120) Specific Content for JTWI
	Section 20.5 - Mobile Media API 1.1 (JSR-135) Specific Content for JTWI

	Chapter 21 - JSR-205: WMA 2.0
	Section 21.1 - Overview
	Section 21.1.1 - Messaging Functionality
	Section 21.1.2 - MMS Message Structure
	Section 21.1.3 - MMS Message Addressing
	Section 21.1.4 - MMS Message Types
	Section 21.1.5 - MultipartMessage
	Section 21.1.6 - MessagePart
	Section 21.1.7 - Multimedia Message Service Center Address
	Section 21.1.8 - Application ID
	Section 21.1.9 - MMS Push

	Section 21.2 - Requirements for WMA
	Section 21.2.1 - Initial Setup
	Section 21.2.2 - Handling the Incoming MMS Message
	Application is Running/Resuming
	Application is Running/Background
	Application is Suspending
	Application is Ending
	MMS Push

	Section 21.3 - Requirements to the Native MMS Client
	Section 21.3.1 - Anonymous Rejection Feature
	Section 21.3.2 - Coincidental Addresses in the Native Client and Java Clients Address Filters
	Section 21.3.3 - Security Policy
	Section 21.3.4 - VMVM Support
	Section 21.3.5 - External Event Interaction

	Chapter 22 - Motorola Get URL from Flex API
	Section 22.1 - Overview
	Section 22.2 - Flexible URL for Downloading Functionality
	Section 22.3 - Security Policy

	Appendix A - Key Mapping
	Key Mapping

	Appendix B - Memory Management Calculation
	Available Memory

	Appendix C - FAQ
	Online FAQ

	Appendix D - HTTP Range
	Graphic Description

