
Java ME Developer Guide for Motorola OS

1.2

Developer Guide

Copyright © 2008, Motorola, Inc. All rights reserved.

This documentation may be printed and copied solely for use in developing products for Motorola products. In addition, two (2)
copies of this documentation may be made for archival and backup purposes. Except for the foregoing, no part of this
documentation may be reproduced or transmitted in any form or by any means or used to make any derivative work (such as
translation, transformation, or adaptation) without express written consent from Motorola, Inc.

Motorola reserves the right to make changes without notice to any products or services described herein. "Typical" parameters,
which may be provided in Motorola Data sheets and/or specifications, can and do vary in different applications and actual
performance may vary. Customer's technical experts will validate all "Typicals" for each customer application.

Motorola makes no warranty in regard to the products or services contained herein. Implied warranties, including without limitation,
the implied warranties of merchantability and fitness for a particular purpose, are given only if specifically required by applicable
law. Otherwise, they are specifically excluded.

No warranty is made as to coverage, availability, or grade of service provided by the products or services, whether through a
service provider or otherwise. No warranty is made that the software will meet your requirements or will work in combination with
any hardware or application software products provided by third parties, that the operation of the software products will be
uninterrupted or error free, or that all defects in the software products will be corrected.

In no event shall Motorola be liable, whether in contract or tort (including negligence), for any damages resulting from use of a
product or service described herein, or for any indirect, incidental, special or consequential damages of any kind, or loss of revenue
or profits, loss of business, loss of information or data, or other financial loss arising out of or in connection with the ability or
inability to use the Products, to the full extent these damages may be disclaimed by law.

Some states and other jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, or limitation on
the length of an implied warranty, therefore the above limitations or exclusions may not apply to you.

This warranty gives you specific legal rights, and you may also have other rights, which vary from jurisdiction to jurisdiction.

Motorola products or services are not designed, intended, or authorized for use as components in systems intended for surgical
implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the
Motorola product or service could create a situation where personal injury or death may occur.

Should the buyer purchase or use Motorola products or services for any such unintended or unauthorized application, the buyer
shall release, indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent
regarding the designing or manufacturing of the product or service.

Motorola recommends that if you are not the author or creator of the graphics, video, or sound, you obtain sufficient license rights,
including the rights under all patents, trademarks, trade names, copyrights, and other third party proprietary rights.

If this documentation is provided on compact disc, the other software and documentation on the compact disc are subject to the
license agreement accompanying the compact disc.

MOTOROLA and the Stylized M Logo are registered in the US Patent & Trademark Office. Java and all other Java-based marks
are trademarks or registered trademarks of Sun Microsystems, Inc. in the US and other countries. Linux® is the registered
trademark of Linus Torvalds in the US and other countries. All other product and service names are the property of their respective
owners.

Java ME Developer Guide for Motorola OS

Version 1.2

March 2008

For the latest version of this document, visit http://developer.motorola.com.

Motorola, Inc.

http://www.motorola.com

http://developer.motorola.com
http://www.motorola.com

Java ME Developer Guide for Motorola OS
Contents

i

Contents

Chapter 1 Overview .1

Purpose and audience . 1
Developer tools. 1

MOTODEV Studio for Java ME . 1
MOTODEV SDK for Java ME . 1

Additional resources . 2
Technical articles . 2
Developer knowledge base . 4
Other developer documentation . 4
JSR specifications . 5

Supported handsets . 6

Chapter 2 Downloading and Managing MIDlets .7

Methods of downloading. 7
Method 1–OTA . 7
Method 2–Bluetooth . 8
Method 3–IrDA . 8
Method 4–Direct cable and Motorola MIDway tool . 9
The USER_AGENT string . 9
Available memory . 10
Rules . 10
Installing MIDlets . 11
Downloading a JAR file without a JAD . 12
Upgrading a MIDlet . 12
Status report on installing and deleting . 12

Chapter 3 MIDP Security Model .13

Introduction. 13
The MIDP 2.0 security environment . 13

MIDP trust . 14
Motorola’s general security policy . 15

API access — consumer prompts . 18
Operator branding . 19
Identifying installed Java ME root certificates . 20

Java ME Developer Guide for Motorola OS
Contents

ii

Digital signing and MIDlet development lifecycle . 20
On-device testing . 21
Production signing . 21

Development certificates . 22
Bound certificates . 22
Obtaining a development certificate from Motorola . 24

Production signing (MIDlet signing) . 25
Choosing a signing authority . 26
Production signing authority — summation . 27
Motorola production code signing . 27

Motorola security configuration. 27
Summary . 30

Chapter 4 Network APIs .31

Network connections . 31
User permission . 32
Indicating a connection to the user . 32

CommConnection API . 33
HTTPS connection . 33
DNS IP . 34
Network access . 34
Push registry . 35
Mechanisms for push . 35
Push Registry Declaration . 35
Push message delivery . 41
Deleting an application registered for push . 42
Security for push registry . 42

Chapter 5 Platform Request API. .43

MIDlet request of a URL that interacts with browser . 43
MIDlet request of a URL that initiates a voice call . 43

Chapter 6 RMS API .45

Interfaces . 45
Classes . 45
Exceptions . 45

Chapter 7 Gaming API/Multiple Key Press .47

Java ME Developer Guide for Motorola OS
Contents

iii

Multiple key press support . 47

Chapter 8 iTAP API .49

Chapter 9 JSR-30 CLDC 1.0 .51

Chapter 10 JSR-75 PDA Optional Packages .53

PIM API . 53
FileConnection API. 53

Chapter 11 JSR-82 - Bluetooth API .55

Chapter 12 JSR-118 MIDP 2.0 Application Testing and Signing .57

Chapter 13 JSR-120 - WMA. .59

Wireless Messaging API (WMA) . 59
SMS client mode and server mode connection . 59
SMS port numbers . 60
SMS storing and deleting received messages . 60
SMS message types. 60
SMS message structure . 60
SMS notification . 61

Chapter 14 JSR-135 - Mobile Media API. .65

Network connections . 65
ToneControl . 66
VolumeControl . 66
StopTimeControl. 67
Manager class . 67
Supported multimedia file types . 67

Image Media . 68
Audio media . 69
Video media . 70
Feature/class support for JSR-135 . 70

Audio mixing . 70
Media locators . 70

Java ME Developer Guide for Motorola OS
Contents

iv

RTSP and RTP locators . 70
HTTP locator . 71
File locator . 71
Capture Locator . 71
Security. 71

Policy . 71
Permissions . 72

Basic concepts in OMA DRM . 72
DRM standards in the market . 72

Differences between OMA DRM 1.0 and 2.0 . 78

Chapter 15 JSR-139 - CLDC 1.1 .79

Chapter 16 JSR-172 - Web Services API .81

Chapter 17 JSR-177- SATSA .83

SATSA-APDU optional package . 83

Chapter 18 JSR-179 Location API .85

API requirements . 85
Security . 85

Motorola-specific implementation . 85
Location . 85
ProximityListeners . 85
Landmark . 85
AddressInfo . 86
Orientation . 86
LandmarkStore . 86

Chapter 19 JSR-184 - Mobile 3D Graphics. .87

Chapter 20 JSR-185 - JTWI .89

Chapter 21 JSR-205 - WMA 2.0. .91

Java ME Developer Guide for Motorola OS
Contents

v

Chapter 22 JSR-226 - Scalable 2D Vector Graphics API .93

Chapter 23 Motorola Get URL .95

Flexible URL for downloading functionality. 95
Security policy . 95

Chapter 24 Motorola PIM Enhancement API .97

Motorola PIM Enhancement API . 97
Contact List . 98
Event list . 99
ToDo list . 99

Chapter 25 Motorola Scalable Image APIs .101

Image scaling modes . 102
Creating a scaled image. 103

Chapter 26 Motorola Secondary Display API .107

User interface restrictions. 107
Flip-open/Flip-close event handling . 107
Exception handling . 108
Push enabled applications . 108
Feature interaction . 108
Security. 108

Chapter 27 Motorola CMCC Enhancements API .109

User interface . 109
Overview . 109
Package . 109
Interface/class implementation . 109
ScaleImage . 109

Phonebook . 110
Overview . 110
Package . 110
Interface/class implementation . 110
Definition of Class . 111

Java ME Developer Guide for Motorola OS
Contents

vi

Chapter 28 Motorola 3D API .113

Mobile 3D Graphics API introduction . 113
Basic 3D application framework . 113
Loading a 3D object . 116

Appendix A Key Mapping .119

Appendix B JAD Attributes .121

JAD/manifest attribute implementations . 121

Appendix C Status and Error Codes .123

Notification . 123
Downloading MIDLets . 124
Error logs . 124
Messages displayed after download . 125

Appendix D System Properties .127

Java.lang implementation . 127
Java ME defined system properties . 129
Motorola getsystemProperty() keys for Motorola OS devices . 130

Java ME Developer Guide for Motorola OS
Overview

1

Chapter 1: Overview

Purpose and audience
This guide provides useful information for developers who want to develop JavaTM ME (Micro Edition)
applications—known as MIDlets—for Motorola handsets running Motorola OS. It includes information on
support APIs, details on developing and packaging applications for installation, as well as a step-by-step
procedure for setting up a debug environment. It does not teach you about Java ME or provide basics on
developing Java ME applications; we assume you already know how to do that.

This document is intended for application developers who are already familiar with Java ME development
and want to know how to develop MIDlets for Motorola handsets.

Developer tools
There are two tools available for developers, MOTODEV Studio for Java ME and MOTODEV SDK for Java
ME.

MOTODEV Studio for Java ME
MOTODEV Studio for Java ME is a Java ME development environment for Motorola mobile devices. It is
an extension of the Eclipse platform integrated with EclipseME, Motorola Java ME SDK, and the Motorola
Update Manager. MOTODEV Studio is a robust, integrated development environment that gives you a fast
and easy way to create applications that take advantage of the latest functionality in a wide array of
Motorola products. Motorola's Java Emulator tool enables third-party developers to create Java
applications for mobile devices. MOTODEV Studio for Java ME features easy "all in one place" access to
Java ME libraries, sample MIDlets and tutorials, and integrated documentation.

Download MOTODEV Studio for Java ME at: https://developer.motorola.com/docstools/motodevstudio/.

MOTODEV SDK for Java ME
MOTODEV SDK for Java ME contains tools for developing and testing applications written in the Java
programming language for Motorola handsets. This SDK supports handsets running either the Linux OS or
the Motorola OS through the Motorola Java ME device emulator. The SDK is designed for use with UEI-
compliant IDEs such as NetBeans and JBuilder, and has a built-in update manager. If you wish to use the
Eclipse IDE, please use MOTODEV Studio for Java ME. For optional audio and other specialized
requirements as well as a full list of features, known issues, and related information, see the Release
Notes. Check the developer web site for the latest version of the SDK: https://developer.motorola.com/
docstools/sdks/.

https://developer.motorola.com/docstools/motodevstudio/.

Java ME Developer Guide for Motorola OS
Overview

2

Additional resources
Many documentation resources are available to Motorola developers, including those that follow.

Technical articles
Technical articles are created regularly on a wide variety of topics related to Java ME development on
Motorola OS handsets. All technical articles are posted on the Motorola developer web site available
online at http://developer.motorola.com/docstools/technicalarticles/

The following table groups the technical articles into general topic categories, not necessarily applicable to
all operating systems.

Table 1: MOTODEV Technical Articles

General Category Technical Articles

Browsing • Browser and Over-the Air Provisioning
• User-Agent Profiles and User-Agent Strings
• Basic Over-the-Air Server Configuration
• Motorola Generic WAP Developer Style Guide

Connectivity • Using HTTP and HTTPS on Motorola MIDP 2.0 Handsets
• Using Serial Connections on Motorola Java ME Handsets

Developer Tools • An Introduction to MOTODEV Studio
• Using the MOTODEV SIMConfig Tool
• NetBeans IDE and the Motorola Java ME SDK
• Using the Motorola MIDway Tool
• Installing MIDlets Using MIDway
• Integrating Motorola’s Lightweight Windowing Toolkit with Java ME Developer Tools

Device Management • Provisioning with the Open Mobile Alliance Device Management Platform
• Creating Device Configurations

DRM Introduction of Basic Concepts in OMA DRM

Games • A Simple Demo of Mobile Game Programming on the A1200 Handset
• Performance Improvement Tips in M3G Games
• 2D Game Programming for the Motorola V30, V400 and V500 Handsets

Image API The Motorola Scalable JPEG Image API (deprecated, replaced by Motorola
Scalable Image APIs)

http://developer.motorola.com/docstools/technicalarticles/
http://developer.motorola.com/docstools/technicalarticles/

Java ME Developer Guide for Motorola OS
Overview

3

Java ME • Using JAD Attributes
• Using hideNotify and showNotify on Motorola OS Handsets
• Building J2ME Web Services Applications with the MOTOMING A1200
• Using Bluetooth on Motorola Handsets
• Password Based Encryption in Java ME
• Sharing Record Stores in MIDlet Suites
• XML in Java ME
• Introduction of MVC Structure in Java ME Clients
• Using the Push Registry in MIDP 2.0
• Telephony
• Threading in Java ME (MIDP 2.0)

Java ME • Using Push Registry on Motorola Handsets
• Using RMS on Motorola Java-Enabled Handsets
• Motorola Custom Attributes in JAD Files
• Implementing Key and Pointer Events via Java ME MIDlets on Motorola Symbian

Handsets
• Porting Java ME Applications from the T720i to the V300, V400, V500 and V600
• Porting a MIDlet from the i95cl to the T720

Java ME: Language
Topics

• Chinese Character Encoding/Decoding in Java ME
• Language Translation in Java ME Applications (MIDlets)
• Handling of Right-To-Left Languages in Motorola’s MIDP 2.0 J2ME Implementation
• Motorola Language API for Java Applications

Java ME: Motorola-
specific APIs

• Morphing Support
• MIDlet Lifecycle on Motorola Linux OS Devices
• Interaction of the MIDlet Life Cycle and Hot Execution Environment
• Secondary Display API
• Vibrate, Backlight and Fun Light APIs on Linux OS Motorola Handsets
• Using Fun Lights
• Using Backlight

Messaging • Using the WMA Test Server for MMS Messaging
• Introduction of MMS in Java ME
• The Wireless Messaging API
• Creating a WAP Email Client Using Perl

Table 1: MOTODEV Technical Articles (Continued)

General Category Technical Articles

Java ME Developer Guide for Motorola OS
Overview

4

Developer knowledge base
Developer Technical Support (DTS) has an extensive Frequently Asked Questions (FAQ) developer
knowledge base at http://developer.motorola.com/techresources/techsupport/.
Here you can search our solution database by product, category, keyword or phrases to quickly find an
answer to your question. Additionally, you can submit your questions to our technical support team.

Other developer documentation
Use this developer guide together with other reference material and guides provided by Motorola. Some of
those resources are listed here. Motorola is continually adding more information to help our developers.
For the latest available developer documentation, see https://developer.motorola.com/docstools/.

Multimedia • Capturing Images and Video
• 3D Programming - Loading M3G Files and Playing Animations
• Transparent Images in MIDP 2.0
• The Java ME Mobile Media API (JSR-135)
• Mobile 3D Graphics Programming
• Troubleshooting Sound Player Issues on the E680/A780
• Image Capture for the V980 and E1000 Handsets
• Sound Implementation on the V300, V500 and V600
• Using Sound on the Motorola V300, V500 and V600 Handsets
• Graphics Programming on the Motorola V300, V500 and V600

Optimizing • Optimizing a Java ME Application Part 3: Canvas Performance Improvement
• Optimizing a Java ME Application Part 2: RMS Sorting
• Optimizing a Java ME Application Part 1: Speed

Personal Identification • JSR 75: Personal Information Management Redesign and Enhancement
• The FileConnection API
• Using PIM API to Import/Export vCards
• Using JSR 75 (Personal Information Management)

Security • Proper Speed and Heading Calculation Using Location Services
• How to Set Up Your SSL Connection in Linux Devices

Testing and Debugging • Debugging MIDlets on the MOTOSLVR L7
• Using KDWP to Debug MIDlets Running on Motorola Handsets

Windows Mobile Programming the Motorola Q Windows Mobile Smartphone

Table 1: MOTODEV Technical Articles (Continued)

General Category Technical Articles

http://developer.motorola.com/techresources/techsupport/
https://developer.motorola.com/docstools/

Java ME Developer Guide for Motorola OS
Overview

5

User guides
• Motorola SDK User Guide

• Motorola MIDway User Guide

API Device Matrix
The API Device Matrix lists all supported handsets and the applicable APIs for each. You can find the API
Device Matrix in the Help documentation inside MOTODEV Studio.

Motorola-proprietary APIs
• Motorola Get URL

• Motorola PIM Enhancement API

• Motorola PIM Enhancement without ToDo, see Motorola PIM Enhancement API

• Motorola Scalable Image APIs

• Motorola Secondary Display API

• Motorola CMCC Enhancements API

• Motorola 3D API

• Motorola Scalable JPG Image (deprecated, replaced by Motorola Scalable Image APIs)

• Motorola Scalable Image Enhancements, see Motorola Scalable Image APIs

NOTE: Some features are dependent on network subscription, SIM card, or service provider, and may
not be available in all areas.

Media guides
Additional information about creating media applications can be found in the device-specific media guides
at http://developer.motorola.com/docstools/mediaguides/.

JSR specifications
There is a wealth of Java Documentation available. Motorola supports the following APIs and is constantly
adding support for additional APIs. For the most current information about your specific handset, check the
latest API Matrix available within your SDK or within the Motorola Studio for Java ME. For more information
about individual JSRs, go to www.jcp.org.

• JSR 30 - CLDC 1.0 API

• JSR 75 - PIM API and fileConnection API

• JSR 82 - Java™ APIs for Bluetooth™ Wireless Technology

http://developer.motorola.com/docstools/mediaguides/
www.jcp.org
http://developer.motorola.com/docstools/mediaguides/
developer.motorola.com/docstools/sdks/motorola64/
http://developer.motorola.com/docstools/sdks/motorola64/
http://developer.motorola.com/docstools/othertools/Motorola_MIDway_v2.8.zip
http://java.sun.com/javame/reference/apis/jsr030/
http://java.sun.com/javame/reference/apis/jsr082/
http://mobilezoo.biz/jsr/75/pim/index.html

Java ME Developer Guide for Motorola OS
Overview

6

• JSR 118 - Mobile Information Device Profile (MIDP) 2.0 API

• JSR 120 - Wireless Messaging 1.1 API

• JSR 135 - Mobile Media API

• JSR 139 - CLDC 1.1 API

• JSR-172 - Web Services API

• JSR 177 - Security and Trust Services API

• JSR 179 - Location API for J2ME

• JSR 184 - Mobile 3D Graphics API

• JSR-185 - Java Technology for the Wireless Industry API

• JSR 205 - Wireless Messaging 2.0 API

• JSR-226 - Scalable 2D Vector Graphics API

Supported handsets
Included here is a list of the supported Motorola OS handsets, in alphabetic order. Motorola is continually
adding new handset and for the latest supported handsets, refer to http://developer.motorola.com/
products/handsets/.

Table 2: Alphabetic Listing of Motorola OS Handsets

Supported Motorola OS Handsets

A A630, A830, A845

C C300, C380, C650, C975, C980

E E1000, E1070, E380, E398, E550, E770

L L2, L6, L6i

M MOTOKRZR K1, MOTOKRZR K3, MOTOPEBL U3, MOTOPEBL U6. MOTORAZR maxx V6,
MOTORAZR V3 (CLDC 1.0), MOTORAZR V3 (CLDC 1.1), MOTORAZR V3e, MOTORAZR V3i,
MOTORAZR V3t, MOTORAZR V3x, MOTORAZR V3xx, MOTORAZR2 V9, MOTORIZR Z3,
MOTOROKR E1, MOTOSLVR L7, MOTOSLVR L7i/L7e, MOTOSLVR L9/L72

V V1050, V1100, V180, V195, V197, V220, V300, V360, V365, V400, V500, V550, V551, V600,
V620, V635, V80, V975, V980

W W490, W510

JSR-172 - Web Services API
http://developer.motorola.com/docstools/technicalarticles/
http://developer.motorola.com/docstools/technicalarticles/
http://java.sun.com/javame/reference/apis/jsr118/
http://java.sun.com/javame/reference/apis/jsr139/
http://jcp.org/en/jsr/detail?id=205
http://java.sun.com/javame/reference/apis/jsr177/
http://java.sun.com/javame/reference/apis/jsr135/
http://mobilezoo.biz/jsr/179/index.html
http://jcp.org/en/jsr/detail?id=185
http://mobilezoo.biz/jsr/184/index.html
http://jcp.org/en/jsr/detail?id=120
JSR-226 - Scalable 2D Vector Graphics API

Java ME Developer Guide for Motorola OS
Downloading and Managing MIDlets

7

Chapter 2: Downloading and Managing
MIDlets

Methods of downloading
To deploy a MIDlet to a physical Motorola device, use either over-the-air (OTA) downloading (Bluetooth or
IrDA) or direct cable (USB) downloading through a PC to the target device. The operator can restrict the
MIDlet size.

Method 1–OTA
Using the over-the-air method, you connect—via a wireless network—to a content server, for example,
Apache (http://httpd.apache.org), which is free to use, deployable on multiple operating systems, and has
extensive documentation on how to configure the platform.

To download the required JAD (Java Application Descriptor) or JAR (Java Archive) file, use the browser to
issue a direct URL request either to the appropriate file or to a Wireless Application Protocol (WAP) page
that contains a hyperlink to the target file. In MIDP 2.0, you can download the JAR file directly without first
downloading the JAD file. The manifest file contains information about the MIDlet.

The transport mechanism that downloads the file is one of two depending on the support from the network
operators WAP Gateway and the size of the file requested.

The MOTODEV Technical Articles section, http://developer.motorola.com/, contains a basic OTA server
configuration document, Browser and OTA Provisioning, that includes appendices on parameter mapping
and a compliancy matrix along with details on how to configure the server and also sample WAP pages.

If there is insufficient space to complete an OTA download, the user can delete MIDlets to free-up space.

The handset uses the GET method to download a MIDlet, and the POST method to send the status code
to the server. For a list of status codes, see “Status and Error Codes” on page 123.

The following messages can appear during download:

• If the JAR file size does not match the size specified in the JAD, the handset displays "Failed Invalid
File." Upon timeout, the handset goes back to the browser.

• If the MANIFEST file is wrong, the handset displays a transient notice "Failed File Corrupt" and returns
to the browser after timeout.

• If the JAD does not contain the mandatory attributes, the handset displays "Failed Invalid File", and
returns to the browser after timeout.

• When downloading is done, the handset displays a transient notice "Download Completed" and starts
to install the application.

http://developer.motorola.com
http://httpd.apache.org

Java ME Developer Guide for Motorola OS
Downloading and Managing MIDlets

8

• Upon completing installation, the handset displays “Download complete, launch …” Clicking Yes
launches the MIDlet. After exiting the MIDlet, the handset returns to the browser. Clicking No
immediately returns the handset to the browser;

Method 2–Bluetooth
It is possible to install MIDlets by Bluetooth transfer, however because this does not use the .jad file, it is
not possible to install MIDlets that use special JAD attributes or that are digitally signed.

To install a MIDlet from its .jar file using Bluetooth:

1 Turn on Bluetooth on both devices, and pair.

2 On the PC, open "My Bluetooth Places", and a window showing the location of the .jar file you wish to
install.

3 In the displayed objects, there should be an OBEX object. Do not use the FTP object.

4 Drag and drop the .jar file onto the OBEX object.

5 Accept the installation prompt on the handset.

To debug the installation process, you need to use MIDway and Java Application Loader (JAL) with a USB
cable (see below for enabling JAL). The procedure in this case (shortened) is:

1 Pair handset & PC.

2 Turn on JAL (Settings - Java Settings - Java App Loader).

3 Connect USB cable.

4 Start MIDway and connect to appropriate COM port.

5 Drag .jar to OBEX object & install.

6 Run MIDlet. (If needed for log).

7 Save MIDway log.

If you don't need to log the installation, you can connect MIDway after installation to simply take a log of
the MIDlet running.

Method 3–IrDA
The Infrared Design Association (IrDA) provides wireless connectivity for devices that would normally use
cable connections. IrDA is a point-to-point data transmission standard designed to operate over short
distances (up to one meter).

Java ME Developer Guide for Motorola OS
Downloading and Managing MIDlets

9

Method 4–Direct cable and Motorola MIDway tool
MIDway, a MOTODEV tool, supports USB cable downloads. For more information about MIDway, see the
Solutions database at http:developer.motorola.com/techresources/techsupport/. Select “Find an Answer”
and type “MIDway” into the Search Text field. It contains the following information:

• MIDway tool executable

• USB driver for the cable

• Instructions on installation
 (http://developer.motorola.com/docstools/technicalarticles/Using_MIDway.pdf)

• User Guide for the MIDway tool
(http://developer.motorola.com/docstools/technicalarticles/Installing_MIDlets_Using_MIDway.pdf)

In addition to the software, use a USB-A to Mini-USB cable.

If you are using MOTODEV Studio for your development, use the MWay tool instead of MIDway.

The MIDway tool works only with devices that support direct cable Java download. Direct cable Java
download is NOT available when purchasing a device from a standard consumer outlet.

To confirm support for the MIDway tool, look at the "Java Tool" menu on the handset to see if a "Java app
loader" option is available. If it is not, then contact MOTODEV support for advice on how to obtain an
enabled handset.

Motorola provides a MIDway User Guide. In addition, the MOTODEV website contains:

• "Installing Java™ ME MIDlet using MIDway Tool”, which outlines the current version of the tool

• FAQs about the MIDway tool at http:developer.motorola.com.

The USER_AGENT string
Use the USER_AGENT string (also known as the HTTP agent) to identify a handset and render specific
content to it, based on the information provided in this string; for example Common Gateway Interface
(CGI) on a content server. These strings are located in the connection logs on the content server.

To identify USER_AGENT strings on most Motorola phones, see
http://www.wirelessmedia.com/phones/make-list_make-Motorola.html.

The User Agent Profile (UAProf) specification is used to capture functionality and preference information
for a handset. This information helps content providers adhere to the appropriate format when creating
content for a specific device. Some of the information available in a UAProf file includes model
specifications such as screen size, multimedia capabilities and allowable messaging formats.

UAProf information for most Motorola handsets can be found at http://uaprof.motorola.com/

http://developer.motorola.com/docstools/technicalarticles/Using_MIDway.pdf
http://developer.motorola.com
http://www.wirelessmedia.com/phones/make-list_make-Motorola.html
http://developer.motorola.com
http://uaprof.motorola.com/

Java ME Developer Guide for Motorola OS
Downloading and Managing MIDlets

10

Downloading MIDlets
You can download a MIDlet using either a PC connection or a browser. To download a MIDlet through a
PC connection, connect the handset to the PC using IrDA, Bluetooth, or USB. When you successfully
connect a PC to your handset, a message appears stating that a connection has been made. Only one
connection can be active at a time. The preferred methods of download are OTA or MIDway. Bluetooth is
supported on many handsets.

Once connected to the WAP browser, you can search for MIDlets and download them to the handset.

Available memory
A handset initially receives information from the JAD file. The JAD contains the MIDlet-name, version,
vendor, MIDlet-Jar-URL, MIDlet-Jar-size, MIDlet-Data-size, and can also contain Mot-Data-Space-
Requirements, and Mot-Program-Space-Requirements.

Before downloading a MIDlet, the handset checks for available memory. The Mot-Data-Space-
Requirements and Mot-Program-Space-Requirements attributes help the KVM (KJava Virtual Machine)
determine whether there is enough memory to download and install the selected MIDlet suite. If there is
not enough memory, a message is displayed and the application doesn’t download. Upon timeout, the
handset once again displays the browser. For information about “Memory Full” and other error codes, see
“Status and Error Codes” on page 123.

If an application developer adds the Mot-Data-Space-Requirements and Mot-Program-Space-
Requirements attributes to the JAD file, a Motorola handset can determine if enough memory exists on the
handset before the MIDlet is downloaded. These attributes may or may not be provided in all MIDlets. Two
separate prompts are displayed, depending on whether these attributes are present.

In cases where there is not enough memory to download the application, the user must be given a
message to delete existing applications to free additional memory.

For more information, see the technical article, “Using JAD Attributes.”

The handset must be able to send and receive at least 30 kilobytes of data using HTTP, between the
server and the client in either direction, according to the Over the Air User Initiated Provisioning
specification.

Rules
• If the Mot-Data-Space-Requirements and Mot-Program-Space-Requirements attributes are present in

the JAD, the message, “Memory Full” is displayed. This value takes into account the memory
requirements of the MIDlet and the current memory usage on the handset to tell the user exactly how
much memory is required. The memory usage is based in kilobyte units. When this error condition
occurs, the download is canceled.

• The label, “Mot-Data-Space-Requirements:”, and the value of the data space should be on separate
lines. The label, “Mot-Program-Space-Requirements:” and the value of the program space should be
on separate lines.

http://developer.motorola.com/docstools/technicalarticles/JAD_05012007.pdf

Java ME Developer Guide for Motorola OS
Downloading and Managing MIDlets

11

• The “Memory Full” message disappears. A dialog screen with a Help softkey and a Back softkey is
displayed instead.

• Clicking Details gives the user a detailed Help screen containing information about the memory
required to download the MIDlet.

• The Help dialog includes a 'More' right softkey label (for those products in which not all the help data
can be displayed on a single screen). This label disappears when the user scrolls to the bottom of the
dialog.

• Clicking Back returns the user to the original browser page.

• If the Mot-Data-Space-Requirements and Mot-Program-Space-Requirements JAD attributes are not
present in the JAD file, the handset cannot determine how much memory to free. Thus, when the
message “Memory Full” appears and the user clicks Details, the message on the Details screen
directs the user to Games and Apps to free-up some memory.

Installing MIDlets
After the MIDlet is successfully downloaded, the installation process begins.

Available memory
During installation, the handset may determine that there is insufficient memory to complete the
installation. This error can occur whether or not the Mot-Data-Space-Requirements and Mot-Program-
Space-Requirements JAD attributes are present. The message “Memory Full” is displayed.

Rules
• When this error occurs, the installation process is canceled.

• The “Memory Full” error disappears. A dialog screen with a Help softkey and a Back softkey is
displayed instead.

• Clicking Details gives the user a detailed Help screen containing information about the additional
memory required to download the MIDlet.

• The Help dialog includes a “More” right softkey label (for those products in which not all the help data
can be displayed on a single screen). This label disappears when the user scrolls to the bottom of the
dialog.

• Clicking Back returns the user to the original browser page.

Java ME Developer Guide for Motorola OS
Downloading and Managing MIDlets

12

Managing MIDlets
This section discusses:

• Downloading a JAR File without a JAD

• Upgrading a MIDlet

• Reporting Status on Installing and Deleting

Downloading a JAR file without a JAD
In Motorola's MIDP 2.0 implementation, you can download a JAR file without a JAD. You simply click the
JAR file link, the file is downloaded, and the download is confirmed before installation begins. The
information presented is obtained from the JAR manifest instead of the JAD.

Upgrading a MIDlet
JSR-118 (MIDP 2.0) rules are followed to help determine if the data from an old MIDlet should be
preserved during a MIDlet upgrade. When these rules cannot determine if the Record Management
System (RMS) should be preserved, you need to make that decision.

• The data is saved if the new MIDlet-version is the same or newer, and if the new MIDlet-data-space
requirements are the same or more than the current MIDlet.

• The data is not saved if the new MIDlet-data-space requirement is smaller than the current MIDlet
requirement.

• The data is not saved if the new MIDlet-version is older than the current version.

If the data cannot be saved, you are warned. If you proceed, the application is downloaded. If you decide
to save the data from the current MIDlet, the data is preserved during the upgrade and made available for
the new application. In any case, an unsigned MIDlet is not allowed to update a signed MIDlet.

Status report on installing and deleting
The status (success or failure) of the installation, upgrade, or deletion of a MIDlet suite is sent to the server
according to the JSR-118 specification. If the status report cannot be sent, the MIDlet suite is still enabled
and the user is allowed to use it. In some instances, if the status report cannot be sent, the MIDlet is
deleted by operator request. Upon successful deletion, the handset sends status code 912 to the MIDlet-
Delete-Notify URL. If this notification cannot be sent due to lack of network connectivity, the notification is
sent at the next available network connection.

Java ME Developer Guide for Motorola OS
MIDP Security Model

13

Chapter 3: MIDP Security Model

Introduction
MIDP 2.0 is a sandbox environment designed to prevent an application (MIDlet) from accessing sensitive
functionality. Sensitive functiionality includes APIs for network connections, APIs for read/write access,
and APIs for messaging. To gain access to protected and restricted APIs, a MIDlet must be trusted via a
digital signature from a signing authority.

This chapter reviews the MIDP 2.0 security environment and Motorola’s general security policy with regard
to MIDlet signing. It assumes that you are familiar with the MIDP 2.0 (JSR 118, Version 1) specification for
Java™ ME and are knowledgeable about public key encryption and digital signatures, including their use
in Java certificates.

Procedures and guidelines for obtaining digital signatures for two distinct phases in MIDlet development
are described:

• During development, you may want to test a MIDlet on a Motorola handset. If the MIDlet uses a
sensitive functionality, you need to obtain a Development Certificate from Motorola.

• After development, sales channels and operators may require the production code to be digitally
signed before it can be installed on handsets.

Other benefits to signing a MIDlet for the market are:

• Signing can improve the consumer experience by removing security prompts that would otherwise
appear.

• Signing ensures that the distributed MIDlet has not been modified.

The procedures described in this chapter apply to the following Motorola handsets, having a Java
environment specified by MIDP 2.0 (JSR 118, Version 1) for Java ME:

• GSM Motorola handsets with the Linux operating system

• 3G and GSM handsets with the Motorola OS (excluding Motorola iDEN handsets)

The MIDP 2.0 security environment
MIDP 2.0 is a sandbox environment designed to limit the ability of a MIDP application (MIDlet) to access
sensitive functionality. The limitation is enforced by way of protected and restricted Application
Programming Interfaces (APIs) within the Java Virtual Machine.

To create compelling handset applications with rich functionality, a MIDlet must have a path to using the
sensitive functionality in a safe manner. This access is accomplished through a system of trust. Namely,
the MIDlet must be trusted by the handset and/or the consumer. Once the MIDlet is trusted, the handset

http://jcp.org/en/jsr/detail?id=118
http://jcp.org/en/jsr/detail?id=118

Java ME Developer Guide for Motorola OS
MIDP Security Model

14

can open a pathway to some or all APIs, allowing the MIDlet to access many additional classes and gain
much wider appeal.

The Motorola security model contains two types of API:

• Protected API - A MIDlet can access this API when the consumer grants permission or when the
MIDlet is trusted by the handset. The consumer grants permission by responding to prompts to deny or
allow access.

Examples (not available on all Motorola Java ME handsets):

• Messaging (JSR 120)

• HTTP/HTTPS

• Restricted API - A MIDlet can access this API only when the MIDlet is trusted by the handset. This
trust cannot be overridden by the consumer.

Examples (not available on all Motorola Java ME handsets):

• JSR 75 FileConnection (Access to the handset file system)

• JSR 75 PIM (Access to the user contacts database)

• JSR 179 Location (Access to Global Positioning System (GPS) subsystem)

MIDP trust
Trust is granted to a MIDlet under the following conditions:

• When it has been digitally signed by a source, known as a Signing Authority, trusted by the handset

• When the consumer has granted the MIDlet permission to access protected (but not restricted) APIs

Signing authority trust
The trust granted by way of digital signing is facilitated through X.509 root certificates embedded in
Motorola handsets. A MIDlet that is digitally signed with a signing certificate whose fingerprint matches one
of the root certificates is deemed trusted by the handset and will be installed into a protection domain
associated with the root certificate. Access to restricted APIs is based on the domain into which a MIDlet is
installed.

The level of access can be limited or restricted further by an API access policy implemented on the
handset by Motorola or a Network Operator.

Signature authority trust is therefore not binary. It is implemented in a layered approach and must be
considered carefully when writing a MIDlet specification that uses restricted APIs. For example, there are
implications for developers in selecting a sales channel for their MIDlets. A MIDlet trusted by an unbranded
handset (generic Motorola retail handset) might not function identically on an operator-branded handset
because the Operator’s trust policy may differ from Motorola’s general trust policy. This is discussed in
more detail in the section “Operator Branding.”

Java ME Developer Guide for Motorola OS
MIDP Security Model

15

Security protection domains provide trust. Motorola’s retail (default) implementation complies with the
MIDP 2.0 Specification (JSR 118) and has four protection domains as follows:

• Untrusted (unsigned MIDlet)

• Trusted Third Party (TTP)

• Operator

• Manufacturer

Consumer consent trust
The trust granted by consumer consent is facilitated by consumer prompts as defined in the MIDP 2.0
specification (JSR 118). Whenever a MIDlet wishes to access a protected API, the consumer is presented
with a menu asking whether to deny or allow the MIDlet to access the API.

In the case of restricted APIs, the MIDlet does not have access and the consumer has no means to
override this restriction.

Motorola’s general security policy
By default, Motorola handsets trust the following signing authorities:

• Motorola (Manufacturer)

• Motorola (Trusted Third Party)

• Unified Testing Initiative (Java Verified – www.javaverified.com)

• Motorola Operator

Generally, a developer can view the certificates that are present on a device by navigating through to the
"Certificate Manager" menu:

Settings -> Security-> Certificate Mgmt->Root Certificate

The resulting list contains Browser SSL Certificates and Java ME Certificates. Example names of Java ME
Certificates are:

USIllinois=Motorola Manufacturing or TTP Root Certificates.

USUnified = Unified Testing Initiative Root (Java Verified)

In addition to the signing domains (with which the root certificates are associated), an API access policy
controls the level of access that the MIDlet has to the API. This level of access is provided to each domain,
and enables control over the level of trust a signing authority (whose root certificate is associated with a
domain) is given by the handset.

www.javaverified.com

Java ME Developer Guide for Motorola OS
MIDP Security Model

16

Figure 1: Example Domain and API Policy Model

On a generic Motorola retail handset (and many branded handsets where the operator has not modified
the root certificate base or the API access policy), MIDlets digitally signed by the Java Verified Program or
Motorola can be installed and run.

Motorola handsets by default (retail/unbranded handsets) provide a trusted signed MIDlet with access to
all sensitive APIs, as listed inTable 3. At the time of writing, this list is accurate for the latest Motorola
handsets. For an up-to-date, handset-specific API list, refer to “Motorola API Device and Demo
Applications Matrix,” in the Software Development Kit associated with the handset.

Java API

MIDlet

API Access Policy (example)

Manufacturer
Domain

Restricted API:

Full Access

Protected API:
Consumer trust

not required.
No Consumer

prompts.

Operator
Domain

Restricted API:

Full Access

Protected API:
Consumer trust

not required.
No Consumer

prompts.

Trusted Third
Party Domain

Restricted API:

Full Access

Protected API:
Consumer trust is

required.
Consumer is

prompted.

Untrusted
Domain

Restricted API:

No Access

Protected API:
Consumer trust is

required.
Consumer is

prompted.

Restricted API, for example:
JSR 75 File System
JSR 75 PIM
…

Protected API, for example:
Messaging (JSR 120)
HTTP
…

Java ME Developer Guide for Motorola OS
MIDP Security Model

17

Table 3: API Access Matrix

Restricted/Sensitive API/Function Untrusted Access
Trusted
Access

Network:

• javax.microedition.io.Connector.http
• javax.microedition.io.Connector.https
• javax.microedition.io.Connector.datagram
• javax.microedition.io.Connector.datagramreceiver
• javax.microedition.io.Connector.socket
• javax.microedition.io.Connector.ssl

Yes
(with consumer confirmation prompt)

Yes

Messaging:

• javax.microedition.io.Connector.sms
• javax.wireless.messaging.sms.send
• javax.wireless.messaging.sms.receive
• javax.microedition.io.Connector.cbs
• javax.wireless.messaging.cbs.receive
• javax.microedition.io.Connector.mms
• javax.wireless.messaging.mms.send
• javax.wireless.messaging.mms.receive

Yes
(with consumer confirmation prompt)

Yes

Push Registry:

• javax.microedition.io.PushRegistry

Yes
(with consumer confirmation prompt)

Yes

Connectivity:

• javax.microedition.io.Connector.comm
• javax.microedition.io.Connector.bluetooth.client
• javax.microedition.io.Connector.bluetooth.server
• javax.microedition.io.Connector.obex.client
• javax.microedition.io.Connector.obex.server

Yes
(with consumer confirmation prompt)

Yes

Multimedia Recording:

• javax.microedition.media.control.RecordControl
• javax.microedition.media.control.VideoControl.getSnapshot

Yes
(with consumer confirmation prompt)

Yes

User Data Read:

• javax.microedition.io.Connector.file.read
• javax.microedition.pim.ContactList.read
• avax.microedition.pim.EventList.read
• javax.microedition.pim.ToDoList.read

No Yes

Java ME Developer Guide for Motorola OS
MIDP Security Model

18

API access — consumer prompts
Consumer prompts may appear to the user whenever a MIDlet attempts to access a protected or restricted
API. These prompts guard the user from actions a MIDlet (not trusted by the Motorola or Operator signing
authority) might take that costs the user network airtime or allows the MIDlet access to private information
such as the user’s personal phone book or the file system containing photographs and other private
content.

These consumer prompts can be intrusive and break the flow of a MIDlet. Using digital signing (in the
correct domain) to trust a MIDlet can remove these prompts and lead to a seamless experience for the
consumer.

However, even a digitally signed MIDlet might provide the consumer with an API access prompt. The
experience depends on the domain into which the MIDlet will be installed and trusted (for example, the root
certificate against which the MIDlet has been digitally signed) and the API access policy implemented on
the handset.

Here is a sample scenario:

• A MIDlet is signed against the UTI/Java Verified Signing Domain Certificate. (For information about the
Unified Testing Initiative (UTI), see http://www.javaverified.com/about_uti.jsp.

• The MIDlet attempts to access the consumer’s contacts database via JSR 75 PIM API.

• The MIDlet is running on a generic Motorola retail handset.

User Data Write:

• javax.microedition.io.Connector.file.write
• javax.microedition.pim.ContactList.write
• javax.microedition.pim.EventList.write
• javax.microedition.pim.ToDoList.write

No Yes

Location:

• javax.microedition.io.Connector.location
• javax.microedition.location.LandmarkStore.read
• javax.microedition.location.LandmarkStore.write
• javax.microedition.location.LandmarkStore.category
• javax.microedition.location.LandmarkStore.management
• javax.microedition.location.Location
• javax.microedition.location.ProximityListener
• javax.microedition.location.Orientation

No Yes

Table 3: API Access Matrix (Continued)

Restricted/Sensitive API/Function Untrusted Access
Trusted
Access

http://www.javaverified.com/about_uti.jsp

Java ME Developer Guide for Motorola OS
MIDP Security Model

19

Thie result of this scenario is this consumer prompt:

Figure 2: Consumer prompt for JSR 75 PIM API Access

If the consumer selects a positive response, the MIDlet gains access to the restricted API. A negative
response renders the restricted API inaccessible either at the time of access or always. Additionally, the
future behavior of the MIDlet might be influenced by the consumer’s response to the prompts. Using the
above example:

• Selecting “Yes, Always Grant Access” grants blanket approval for API access in this instance and
all others in the future. This means that the consumer is not prompted again and future executions
and consequent API access by the MIDlet are seamless to the consumer.

• Selecting “Yes, Ask Once” grants access to the API in this instance and all others for the duration
of the MIDlet execution. This means that the consumer is not prompted again during this session
of using the MIDlet. However, when the MIDlet is terminated and restarted, the consumer is
prompted on at least the next first access of the API.

• Selecting “Yes, Always Ask” grants a one-shot access to the API. The next API access attempt
draws the consumer prompt again.

• Selecting “No, Ask Later” denies access to the API for this instance only. The next API access
attempt draws the consumer prompt again.

• Selecting “No, Never Grant Access” blocks access to the API in this instance and all subsequent
attempts.

Operator branding
Some operators customize the Java ME security implementation as part of their branding policy. This
usually means that a MIDlet must be digitally signed by the Operator as the signing authority for their
branded handsets containing their Java root certificate(s).

As Motorola cannot digitally sign MIDlets for the Operator, we recommend that the developer approach the
specific operator for digital signing of their MIDlet if the MIDlet is going to be targeted for customers using
handsets branded by that specific operator.

Java ME Developer Guide for Motorola OS
MIDP Security Model

20

These operators/carriers are known to customize the Java ME security policy and root certificate usage:

NOTE: MIDlets digitally signed by Motorola or Java Verified may not install or run correctly on handsets
branded by these operators. Check with your operator for more information.

Identifying installed Java ME root certificates
To find all the root certificates installed on a Motorola handset, look in the following Menu:

Menu > Settings > Security Settings > Certificate Management > Root Certificates

Digital signing and MIDlet development lifecycle
Figure 3 shows a typical development lifecycle for a MIDlet that accesses restricted APIs, and therefore
needs to be digitally signed:

Figure 3: Digital Signing During MIDlet Development

MIDlet development is best done in stages:

1 Concept and specification writing

2 Initial development using a device emulator for testing code

3 Final testing on a real handset

Amena Orange Telefonica

AT&T Rogers Ten

H3G (Three) T-Mobile EMEA/T-Mobile NA Vodafone/Vodafone France

H3G IL/Partner LATAM/Movistar Telenor (Nordic)

Telstra

Concept/Idea
requirements

identified

Initial
Development
using SDK and

emulator (no
signing needed)

Final
Development

using real device
(development

signing needed)

Sales Channel
production

signing needed,
including quality

testing

$$

Java ME Developer Guide for Motorola OS
MIDP Security Model

21

4 Project completion, and acceptance

5 Application delivery to a sales channel

If a MIDlet does not need to access restricted APIs, it doesn’t need to be trusted and digital signatures are
not required. However, when a MIDlet needs to access restricted APIs, the MIDlet must be trusted.
Therefore, it is impossible to test an untrusted MIDlet on a real device because the Security Manager
blocks access to restricted APIs.

On-device testing
You can do much of the development of a MIDlet requiring access to restricted APIs using a Motorola
emulator. This is because the APIs are deliberately open and available to the MIDlet in the emulated
environment. When the MIDlet is near completion, you will want to test the MIDlet on a device to ensure
that it will work correctly. However, untrusted MIDlets are blocked from accessing the required API on a
handset, and a SecurityException is raised if an untrusted attempt is made.

To facilitate testing on a device, the MIDlet must be trusted by way of a “limited” development signing
certificate signature. (More information about Motorola development certificates appear later in this paper,
in the section ‘Development Certificates”.) The limitation usually takes the form of a restriction on the
number of devices onto which the MIDlet can be installed or an expiration time/date. It prevents a
potentially untested MIDlet from reaching full production status and being released.

Production signing
Whereas a developer certificate enables final testing on a device during development, a trusted signing
authority provides final production signing. To obtain production signing, the MIDlet must undergo and
pass some form of quality testing by the signing authority.

Once the MIDlet is signed by the trusted signing authority, it is deemed production signed and can be
delivered to a sales channel for wide distribution. It is no longer limited to specific devices or an expiration
time/date.

So where does a digital signature reside in the MIDlet and how is a digital signature identified? A digital
signature consists of two JAD attributes that are placed in the JAD file:

• MIDlet-Jar-RSA-SHA1

• MIDlet-Certificate-1-1

The “MIDlet-Jar-RSA-SHA1” attribute holds the JAR signature. This ensures that the JAR file does not
change between the signing authority generation of the signature and installation onto the target device.

The “MIDlet-Certificate-1-1” attribute holds the signature of the signing certificate that matches a root
certificate in one of the protection domains.

Additionally, if the MIDlet is to access restricted/sensitive APIs, a MIDlet-Permissions attribute is also
required. This attribute must contain all restricted API paths in a comma-separated list as shown in the
following example:

Java ME Developer Guide for Motorola OS
MIDP Security Model

22

MIDlet-Permissions:
 javax.microedition.io.Connector.file.read,javax.microedition.io.Connector.file.write

These attributes can be placed manually (copy/paste) or via an IDE/Tool into the JAD file. For a list of
these attributes, refer to the JSR for the specific API and/or the MIDP 2.0 JSR at http://jcp.org.

Development certificates
Once a MIDlet has been developed as far as possible using the Motorola SDK and emulator, it needs
testing on an actual handset to ensure correct functionality and behavior. If the MIDlet accesses sensitive
functionality, the MIDlet would have to be trusted to access restricted APIs. This trust is achieved by way of
a development certificate.

MIDlets that meet both of the following conditions require a development certificate:

• The MIDlet runs in a CLDC 1.1, MIDP 2.0 Java ME environment

• The MIDlet uses restricted APIs that are otherwise not accessible

MIDlets that do not use the restricted functionality do not require a development certificate.

A development certificate allows the developer to digitally sign the MIDlet in a restrictive way while allowing
the MIDlet to access all restricted APIs for testing before final production digital signing.

Bound certificates
Motorola employs a development certificate on CLDC 1.1 products known as a “Bound” certificate. This
certificate restricts the developer from digitally signing a MIDlet for mass distribution on production
handsets by embedding the processor ID of the handset(s) into the certificate.

A bound certificate restricts the number of handsets onto which the developer can install the development-
signed MIDlet.

When a development certificate is created, the Unique Identifier (UID) is embedded into a Motorola
development certificate, and thus the certificate is deemed to be “Bound” to one or more handsets. These
certificates contain:

• The UID(s) of the developer’s handset(s)

• The Motorola Java root certificate fingerprint

• The developer’s public key

This means that:

• MIDlets signed with the development certificate can only be installed on a handset whose UID
matches one of those embedded in the certificate.

http://jcp.org

Java ME Developer Guide for Motorola OS
MIDP Security Model

23

• MIDlets signed with the development certificate can only be installed on a handset that has the
Motorola Java root certificate embedded.

• The certificate can only be successfully used (to sign a MIDlet) by the developer whose private key
matches the public key that was used to create the development certificate.

UID extraction
Motorola handsets internally store a lot of handset-specific information and configurations. Two examples
of this type of information are the Internation Mobile Equipment Identity (IMEA) and the Universal Identifier
(UID). This data might be needed to perform specific tasks associated with the development of a new Java
MIDlet.

One example of such a need is the internal Motorola process to request a certificate to sign a Java ME
MIDlet suite. In order to do this, you need the UID of the handset. To access the internal configurations of
a handset, it is necessary to connect to the handset via USB. Motorola provides a USB driver package for
their handsets, which may be downloaded from the MOTODEV web site.

MOTODEV Studio for Java ME includes a Config Tool. The main purpose of the MOTODEV Config Tool is
to provide an easy way for developers to read and write certain specific internal Motorola device
configurations. You can extract the device UID using the Config Tool available from MOTODEV Studio on
the MOTODEV web site.

Figure 4: UID Extraction using Motorola Config Tool

If you are not using MOTODEV Studio, you can get the required information by using the UID Extraction
Tool

http://developer.motorola.com
http://developer.motorola.com

Java ME Developer Guide for Motorola OS
MIDP Security Model

24

Figure 5: UID extraction using the Motorola UID Extraction Tool

NOTE: A valid UID must be 14 bytes long. Per the example shown, remove all the ‘0x’ prefixes before
submitting the UID. If a UID is less than 14 bytes long, a developer must append zeros to the
end of the value to make the UID exactly 14 bytes long.

Obtaining a development certificate from Motorola

Step 1: Apply for a development certificate
To request a development certificate, sign up to become a MOTODEV member. If you are already a
member, log in to Developer Technical Support (DTS) and complete the Ask a Question or submit a Bug
Report form as follows:

• Topic: “Developer Certificate Request”

• Category: “J2ME – MIDP2.0 Enabled Handsets”

• Subcategory: Select the applicable handset

• Subject: “Request Development Certificate”

• Question: Include the reason for your submission as well as any additional information that will assist
in processing your request

When the form is complete, click Submit Question.

http://developer.motorola.com/membership/join/
https://developer.motorola.com/techresources/techsupport/

Java ME Developer Guide for Motorola OS
MIDP Security Model

25

NOTE: A developer must attach a CSR file and a UID file in order for Motorola to process and issue a
development certificate. Please carefully review FAQ 940 (using the link that follows) for step-
by-step guidelines and information in generating these two required files.

URL: https://motocoder.custhelp.com/cgi-bin/motocoder.cfg/php/enduser/
std_adp.php?p_faqid=940&p_created=1156562799

Step 2: Order a bound certificate
Submit a request for technical support through the MOTODEV Technical Support web site in accordance
with the following FAQ titled: Bound Certificate User Guide and Request Form.

https://motocoder.custhelp.com/cgi-bin/motocoder.cfg/php/enduser/
std_adp.php?p_faqid=940&p_created=1157562799

Title your request “MIDlet Signing: Developer Certificate Request for <your_company_name>.” Ensure
that you include all the information that you gathered in the previous step.

Follow the guide to extract UIDs and create a private/public key in the correct format for use with a
Motorola bound certificate. You can submit your public key and UIDs in the incident/question created in
step 1.

Step 3: Install the bound certificate
MOTODEV processes your request and sends you a bound certificate in about two business days. You
can then install the certificate and proceed with signing and MIDlet testing on the bound development
handset(s).

Production signing (MIDlet signing)
To place a MIDlet in a sales channel after development and testing, the completed production code (JAR)
must first be signed into one of the MIDP 2.0 security domains that control access to restricted APIs. An
application is assigned to a domain through the digital signature embedded into the MIDlet JAD file. During
MIDlet install, that digital signature is matched to a root certificate on the handset.

https://motocoder.custhelp.com/cgi-bin/motocoder.cfg/php/enduser/std_adp.php?p_faqid=940&p_created=1156562799
https://motocoder.custhelp.com/cgi-bin/motocoder.cfg/php/enduser/std_adp.php?p_faqid=940&p_created=1156562799
https://motocoder.custhelp.com/cgi-bin/motocoder.cfg/php/enduser/std_adp.php?p_faqid=733&p_created=1121847546
https://motocoder.custhelp.com/cgi-bin/motocoder.cfg/php/enduser/std_adp.php?p_faqid=940&p_created=1157562799

Java ME Developer Guide for Motorola OS
MIDP Security Model

26

Figure 6: A signature relates a MIDlet to a MIDP 2.0 Security Domain

Choosing a signing authority
Not all MIDlets need to be signed. Depending on the required features as well as the desired consumer
experience, developers can choose among three signing authorities:

For the majority of MIDlets, MOTODEV recommends the Java Verified Program. Developers should
ascertain that the target handsets for the MIDlet carry the Java Verified or Unified Testing Initiative (UTI)
root certificate. Java Verified maintains a list of supported Motorola phones on the Java Verified Web site.

For MIDlets that rely on features unique to an operator or phones that carry only the operator’s root
certificate, developers must contact the relevant operator.

For special cases where a MIDlet accesses proprietary Motorola features, you may need to apply to
Motorola for a manufacturer’s signature. Motorola reserves the Manufacturer Trusted Domain for
developers with an existing business relationship with Motorola. Because operators customize handsets,
you must confirm with the operators that the targeted handsets continue to contain Motorola’s features and
the Motorola root certificates.

Signature in .jad relates to the
Root Certificate for a Domain

Manufacturer
Trusted
Domain

.jad
Text file containing MIDlet

specific attributes/properties

Untrusted
Domain

Third Party
Trusted
Domain

Operator
Trusted
Domain

.jar
Collection of Java Class files

MIDlet

MIDP 2.0 Security Domains

No signature

http://www.javaverified.com/
http://www.javaverified.com/

Java ME Developer Guide for Motorola OS
MIDP Security Model

27

All MIDlets that are targeted for digital signing by Motorola must be fully tested and undergo Motorola’s
quality assurance process.

The following table, “Comparison of Security Domains,” offers an overview of differences among these four
security domains.

Production signing authority — summation
Depending on the need for certain features on a handset as well as the desired consumer experience,
developers can choose among three signature authorities:

• Java Verified—for signing into the Trusted Third Party domain

• Operator—for signing into the Operator domain

• Motorola—for signing into the Manufacturer domain

Each signing authority has its own testing procedure for the production code and other criteria for issuing
signatures.

Motorola production code signing
Motorola reserves its signing authority for MIDlets that reflect Motorola’s mission of achieving seamless
mobility through iconic design. If your application meets our criteria, we will contact you personally and
assign you a Business Sponsor who will guide you through the production code signing process.

Motorola security configuration
On a generic Motorola retail handset (and many branded handsets where the operator has not modified
the root certificate base or the API access policy), MIDlets digitally signed by the Java Verified Program or
Motorola can be installed and run.

Motorola handsets by default (retail/unbranded handsets) provide a trusted signed MIDlet with access to
all sensitive APIs, as listed in the following table. At the time of writing, this list is accurate for the latest

Table 4: Comparison of MIDP 2.0 Security Domains

Security Domains

Untrusted Trusted
 Third Party

Operator Manufacturer

Signature Not required Required Required Required

API Access Limited Limited Full Full

Limited to an Operator No No Yes No

http://www.javaverified.com/

Java ME Developer Guide for Motorola OS
MIDP Security Model

28

Motorola handsets. For an up-to-date, handset-specific API list, refer to “Motorola API Device and Demo
Applications Matrix,” in the Software Development Kit associated with a specific handset.

Table 5: Trusted signed MIDlet access (default values are shown in parentheses)

API Untrusted Third-
party

Trusted

Operator Manufacturer

DataNetwork

javax.microedition.io.Connector.http

javax.microedition.io.Connector.https

javax.microedition.io.Connector.datagram

javax.microedition.io.Connector.datagramreceiver

javax.microedition.io.Connector.socket

javax.microedition.io.Connector.serversocket

javax.microedition.io.Connector.ssl

session

(oneshot)

blanket

oneshot
(session)

Allow Allow

Messaging

javax.microedition.io.Connector.sms

javax.wireless.messaging.sms.send

javax.wireless.messaging.sms.receive

javax.microedition.io.Connector.cbs

javax.wireless.messaging.cbs.receive

javax.microedition.io.Connector.mms

javax.wireless.messaging.mms.send

javax.wireless.messaging.mms.receive

(oneshot) (oneshot) Allow Allow

AppAutoStart

Javax.microedition.io.PushRegistry

session

(oneshot)

blanket

(session)

oneshot

Allow Allow

ConnectivityOptions

javax.microedition.io.Connector.comm

com.vodafone.io.Remotecontrol

javax.microedition.io.Connector.bluetooth.client

javax.microedition.io.Connector.bluetooth.server

javax.microedition.io.Connector.obex.client

javax.microedition.io.Connector.obex.servr

blanket

(session)

oneshot

Note:
com.vodafo
ne.io is not
allowed

blanket

(session)

Note:
com.vodaf
one.io is
not allowed

Allow

Note:
com.vodaf
one.io.Re
motecontr
ol is not
allowed

Allow

Java ME Developer Guide for Motorola OS
MIDP Security Model

29

MultimediaRecording

javax.microedition.imedia.control.RecordControl

javax.microedition.imedia.control.VideoControl.getS
napshot

session

 (oneshot)

blanket

(session)

Allow Allow

UserDataReadCapability

com.motorola.phonebook.readaccess

com.vodafone.midlet.ResidentMIDlet

javax.microedition.io.Connector.file.read

javax.microedition.pim.contactList.read

javax.microedition.pim.EventtList.read

com.motorola.smsaccess.readaccess

javax.microedition.pim.ToDoList.read

Not allowed blanket

session

(oneshot)

Allow

Note:
com.vodaf
one.midlet
.Resident
MIDlet is
not
allowed

Allow

UserDataWriteCapability

com.motorola.phonebook.writeaccess

javax.microedition.io.Connector.file.write

javax.microedition.pim.contactList.write

javax.microedition.pim.EventList.write

com.motorola.smsaccess.writeaccess

javax.microedition.pim.ToDoList.write

Not allowed blanket

session

(oneshot)

Allow Allow

Location

javax.microedition.io.Connector.location

javax.microedition.location.LandmarkStore.read

javax.microedition.location.LandmarkStore.write

javax.microedition.location.LandmarkStore.category

javax.microedition.location.LandmarkStore.manage
ment

javax.microedition.location.location

javax.microedition.location.ProximityListener

javax.microedition.location.Orientation

Not allowed blanket

(session)

oneshot

Allow Allow

MotoService

com.motorola.io.file.drm.read

com.motorola.io.file.drm.write

Not allowed Not
allowed

Not
allowed

Allow

Table 5: Trusted signed MIDlet access (default values are shown in parentheses)

API Untrusted Third-
party

Trusted

Operator Manufacturer

Java ME Developer Guide for Motorola OS
MIDP Security Model

30

NOTE: javax.microedition.apdu.sat is not allowed for Trusted Third party nor for Manufacturer.

Summary
• Motorola employs two types of trust in its MIDP security model: Certificate Authority (CA) and

consumer consent trust.

• Motorola MIDP 2.0 security is implemented in accordance with the MIDP 2.0 specification using
Manufacturer, Operator, Trusted Third Party, and Untrusted protection domains.

• In Motorola’s generic retail handsets, all APIs are accessible to a (signing authority) trusted MIDlet
installed in any trusted protection domain.

• Consumer prompts may be presented to the consumer depending on the protection domain into which
the MIDlet is installed.

• Operator branding may modify the standard (generic retail) Motorola API access policy. Therefore, the
developer is advised to investigate the operator’s Java security policy before targeting a branded
handset for the MIDlet sales channel.

• When signing a MIDlet, you will need additional attributes in the JAD file.

• For testing MIDlets on a handset, the developer needs a development certificate (known as a “bound
certificate”) for Motorola handsets.

For production signing of MIDlets, Motorola recommends using the Java Verified Program. We
recommend the developer ensure that the targeted handset is supported by the Java Verified program
and, when the handset is branded, that the operator has not removed the UTI (Java Verified) Java root
certificate.

SmartCardCommunications

javax.microedition.apdu.sat (see note following
table)

javax.microedition.apdu.aid

Not allowed blanket

(session)

oneshot

Allow Allow

Table 5: Trusted signed MIDlet access (default values are shown in parentheses)

API Untrusted Third-
party

Trusted

Operator Manufacturer

Java ME Developer Guide for Motorola OS
Network APIs

31

Chapter 4: Network APIs

Network connections
The Motorola implementation of Networking APIs supports the following network connections:

• CommConnection for serial interface

• HTTP connection

• HTTPS connection

• Push registry

• SSL (Secure Socket Layer)

• SocketConnection

• Datagram (UDP or User Datagram Protocol)

Table 6 lists the Network API feature/class support for MIDP 2.0:

The following code sample shows the implementation of Socket Connection:Socket Connection.

Table 6: Network API Feature/Class Support for MIDP

Feature/Class Implementation

All fields, methods, and inherited methods for the Connector class in the
javax.microedition.io package

Supported

Mode parameter for the open() method in the Connector class of the
javax.microedition.io package

READ, WRITE,
READ_WRITE

The timeouts parameter for the open() method in the Connector class of the
javax.microedition.io package

HttpConnection interface in the javax.microedition.io package Supported

HttpsConnection interface in the javax.microedition.io package Supported

SecureConnection interface in the javax.microedition.io package Supported

SecurityInfo interface in the javax.microedition.io package Supported

UDPDDatagramConnection interface in the javax.microedition.io package Supported

Connector class in the javax.microedition.io.package Supported

PushRegistry class in the javax.microedition.io package Supported

CommConnection interface in the javax.microedition.io package Supported

Dynamic DNS allocation through DHCP Supported

Java ME Developer Guide for Motorola OS
Network APIs

32

Code Sample 1: Socket Connection

public void makeSocketConnection() {
...

 try {
// open the connection and i/o streams
sc = (SocketConnection)Connector.open("socket://www.myserver.com:8080",
Connector.READ_WRITE, true);

is = sc.openInputStream();
os = sc.openOutputStream();

 } catch (IOException io) {
 closeAllStreams();
 System.out.println("Open Failed: " + io.getMessage());

 }

 if (os != null && is != null) {
 try {
 os.write(someString.getBytes()); // write some data to server
 int bytes_read = 0;
 int offset = 0;
 int bytes_left = BUFFER_SIZE;

 //read data from server until done
 do {
 bytes_read = is.read(buffer, offset, bytes_left);
 if (bytes_read > 0) {
 offset += bytes_read;
 bytes_left -= bytes_read;
 }
 while (bytes_read > 0);

 } catch (Exception ex) {
 System.out.println("IO failed: " + ex.getMessage());
 } finally {
 closeAllStreams(); // clean up
 }

 } else {
 // add some code here
 }

}

User permission
To add additional network connections, the handset user must explicitly grant permission.

Indicating a connection to the user
When the Java implementation makes additional network connections (the handset is actively interacting
with the network), the network icon (a coffee cup) appears on the handset's status bar (Figure 7).

Java ME Developer Guide for Motorola OS
Network APIs

33

Figure 7: Network Connections Example

Conversely, when the network connection is no longer in use, the network icon disappears from the status
bar.

Some handsets support applications that run when the flip is closed. In such situations, the network icon
appears on the external display when the application is running in an active network connection.

CommConnection API
The CommConnection API defines a logical serial port connection. This port is part of the underlying
operating system. For example, you could configure an IrDA IRCOMM logical serial port. For more
information, see http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/io/
CommConnection.html.

HTTPS connection
The Motorola implementation supports a HyperText Transfer Protocol Secure (HTTPS) connection on the
handset. Additional supported protocols include: Transport Layer Security (TLS) protocol version 1.0, as
defined in http://www.ietf.org/rfc/rfc2246.txt; Secure Socket Layer (SSL) protocol version 3.0 as defined in
http://wp.netscape.com/eng/ssl3/ssl-toc.html.

Code Sample 2 shows the implementation of HTTPS

Code Sample 2: HTTPS

import javax.microedition.io.*;
import java.io.*;
...

 try {
 hc = (HttpConnection)Connector.open("https://" + url + "/");
 } catch (Exception ex) {
 hc = null;
 System.out.println("Open Failed: " + ex.getMessage());
 }

http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/io/CommConnection.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/io/CommConnection.html
http://www.ietf.org/rfc/rfc2246.txt
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/io/CommConnection.html
http://java.sun.com/javame/reference/apis/jsr118/javax/microedition/io/CommConnection.html
http://wp.netscape.com/eng/ssl3/ssl-toc.html

Java ME Developer Guide for Motorola OS
Network APIs

34

 if (hc != null) {
 try {
 is = hc.openInputStream();
 byteCounts = 0;
 readLengths = hc.getLength();
 System.out.println("readLengths = " + readLengths);

 if (readLengths == -1) { readLengths = BUFFER_SIZE; }
 int bytes_read = 0;
 int offset = 0;
 int bytes_left = (int)readLengths;
 do {
 bytes_read = is.read(buffer, offset, bytes_left);
 offset += bytes_read;
 bytes_left -= bytes_read;
 byteCounts += bytes_read;
 } while (bytes_read > 0);

System.out.println("byte read = " + byteCounts);

 } catch (Exception ex) {
 System.out.println("Downloading failed: "+ ex.getMessage());
 numPassed = 0;
 } finally {

 // close input stream
 try {
 is.close();
 is = null;
 } catch (Exception ex) {
 // do something
 System.out.println("Trying to close input stream: " + ex.getMessage());
 }

 // close https connection
 if (hc != null) {
 try {
 hc.close();
 hc = null;
 } catch (Exception ex) {
 // do something
 System.out.println("Trying to close HTTPS connection: " + ex.getMessage());

 }
 }
 }
 }

DNS IP
The Domain Name System (DNS) IP is flexed on or off (per operator requirement). It may or may not be
available under Java Settings as read-only or as user-editable. In some instances, it is flexed with an
operator-specified IP address.

Network access
Untrusted applications use the normal HttpConnection and HttpsConnection APIs to access web and
secure web services. There are no restrictions on web server port numbers through these interfaces. The

Java ME Developer Guide for Motorola OS
Network APIs

35

implementations augment the protocol so that web servers can identify untrusted applications. The
following are implemented:

• The implementation of HttpConnection and HttpsConnection includes a separate User-Agent header
with the Product-Token "UNTRUSTED/1.0". User-Agent headers supplied by the application are not
deleted.

• The implementation of SocketConnection using TCP sockets throws a
java.lang.SecurityException when an untrusted MIDlet suite attempts to connect on ports 80
and 8080 (http) and 443 (https).

• The implementation of SecureConnection using TCP sockets throws a
java.lang.SecurityException when an untrusted MIDlet suites attempts to connect on port 443
(https).

• The implementation of the method DatagramConnection.send throws a
java.lang.SecurityException when an untrusted MIDlet suite attempts to send datagrams to
any of the ports 9200-9203 (WAP Gateway).

The above requirements are applied regardless of the API used to access the network. For example, the
javax.microedition.io.Connector.open and javax.microedition.media.Manager.createPlayer methods throw
a java.lang.SecurityException if access is attempted to these port numbers through a means
other than the normal HttpConnection and HttpsConnection APIs

Push registry
The push registry mechanism allows an application to be automatically started. The push registry
maintains a list of inbound connections.

Mechanisms for push
Motorola’s implementation for push requires the support of the following mechanism:

Short Messages (SMS) push—an SMS with a port number associated with an application used to deliver
the push notification. Restricted ports that must not be used are 2805, 2923, 2948, 2949, 5502, 5503,
5508, 5511, 5512, 9200, 9201, 9203, 9207, 49996, 49999.

The JSR-118 specification details the formats for registering SMS.

Push Registry Declaration
The application descriptor file includes information about static connections that the MIDlet suite needs. If
all static push declarations in the application descriptor cannot be fulfilled during installation, then the
MIDlet suite is not installed. The user is notified of any push registration conflicts. This notification
accurately reflects the error that has occurred.

• Push registration can fail as a result of an Invalid Descriptor.

Java ME Developer Guide for Motorola OS
Network APIs

36

• Syntax errors in the push attributes can cause a declaration error resulting in the MIDlet suite
installation being cancelled.

• A declaration referencing a MIDlet class not listed in the MIDlet-<n> attributes of the same application
descriptor also results in an error and cancellation of the MIDlet installation.

Two types of registration mechanisms are supported.

• Registration during installation through the JAD file entry using a fixed port number

• Dynamic registration using an assigned port number

If the handset’s port number is not available, an installation failure notification is displayed to the user while
the error code 911 push is sent to the server. This error cancels the download of the application.

Applications that wish to register with a fixed port number use the JAD file to identify the push parameters.
The fixed port implementation processes the MIDlet-Push-n parameter through the JAD file.

Code Sample 3 is an example of a Push Registry implementation.

Code Sample 3: Push Registry

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.microedition.io.PushRegistry;

public class MyPushTest extends MIDlet implements CommandListener{

public Display display;

public static Form regForm;
public static Form unregForm;
public static Form mainForm;
public static Form messageForm;

public static Command exitCommand;
public static Command backCommand;
public static Command unregCommand;
public static Command regCommand;

public static TextField regConnection;
public static TextField regFilter;
public static ChoiceGroup registeredConnsCG;
public static String[] registeredConns;

public static Command mc;
public static Displayable ms;

public MyPushTest() {
regConnection = new TextField("Connection port:", "1000", 32,

TextField.PHONENUMBER);
regFilter = new TextField("Filter:", "*", 32, TextField.ANY);

display = Display.getDisplay(this);

regForm = new Form("Register");
unregForm = new Form("Unregister");
mainForm = new Form("PushTest_1");
messageForm = new Form("PushTest_1");

exitCommand = new Command("Exit", Command.EXIT, 0);

Java ME Developer Guide for Motorola OS
Network APIs

37

backCommand = new Command("Back", Command.BACK, 0);
unregCommand = new Command("Unreg", Command.ITEM, 1);
regCommand = new Command("Reg", Command.ITEM, 1);

mainForm.append("Press \"Reg\" softkey to register a new connection.\n" + "Press
\"Unreg\" softkey to unregister a connection.");

mainForm.addCommand(exitCommand);
mainForm.addCommand(unregCommand);
mainForm.addCommand(regCommand);
mainForm.setCommandListener(this);

regForm.append(regConnection);
regForm.append(regFilter);
regForm.addCommand(regCommand);
regForm.addCommand(backCommand);
regForm.setCommandListener(this);

unregForm.addCommand(backCommand);
unregForm.addCommand(unregCommand);
unregForm.setCommandListener(this);

messageForm.addCommand(backCommand);
messageForm.setCommandListener(this);

}

public void pauseApp(){}

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if (messageForm.size() != 0) {
messageForm.delete(0);
messageForm.append(s);
display.setCurrent(messageForm);

}
}

public void commandAction(Command c, Displayable s) {
if((c == unregCommand) && (s == mainForm)) {
mc = c; ms = s;
new runThread().start();

}
if((c == regCommand) && (s == mainForm)) {
display.setCurrent(regForm);

}
if((c == regCommand) && (s == regForm)) {
mc = c;
ms = s;
new runThread().start();

}
if((c == unregCommand) && (s == unregForm)) {
mc = c;
ms = s;
new runThread().start();

}
if((c == backCommand) && (s == unregForm)) {
display.setCurrent(mainForm); }

if((c == backCommand) && (s == regForm)) {
display.setCurrent(mainForm);

}
if((c == backCommand) && (s == messageForm)) {

Java ME Developer Guide for Motorola OS
Network APIs

38

display.setCurrent(mainForm);
}
if((c == exitCommand) && (s == mainForm)) {
destroyApp(false);

}
}

public class runThread extends Thread{
public void run(){
if((mc == unregCommand) && (ms == mainForm)){
 try{
 registeredConns = PushRegistry.listConnections(false);
if(unregForm.size() > 0) unregForm.delete(0);
registeredConnsCG = new ChoiceGroup("Connections", ChoiceGroup.MULTIPLE,

registeredConns, null);

if(registeredConnsCG.size() > 0)
unregForm.append(registeredConnsCG);

else unregForm.append("No registered connections found.");

display.setCurrent(unregForm);
} catch (Exception e) {
showMessage("Unexpected " + e.toString() + ": " + e.getMessage());

}
}

if((mc == regCommand) && (ms == regForm)) {
try {
PushRegistry.registerConnection("sms://:" + regConnection.getString(),

"Receive", regFilter.getString());
showMessage("Connection successfully registered");

} catch (Exception e){
showMessage("Unexpected " + e.toString() + ": " + e.getMessage());

}
}

if((mc == unregCommand) && (ms == unregForm)) {
try {
if(registeredConnsCG.size() > 0) {

for (int i=0; i<registeredConnsCG.size(); i++) {
if (registeredConnsCG.isSelected(i)) {

PushRegistry.unregisterConnection(registeredConnsCG.getString(i));

registeredConnsCG.delete(i);

if(registeredConnsCG.size() == 0){

unregForm.delete(0);

unregForm.append("No registered connections found.");
}

}
}

}
} catch (Exception e) { showMessage("Unexpected " + e.toString() + ": " +
e.getMessage()); }

}

}
}

}

Java ME Developer Guide for Motorola OS
Network APIs

39

Code Sample 4: WakeUp.java

// WakeUp.java

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.io.PushRegistry;
import java.util.*;
import javax.microedition.io.*;

public class WakeUp extends MIDlet implements CommandListener {

public static Display display;
public static Form mainForm;
public static Command exitCommand;
public static TextField tf;
public static Command registerCommand;

public void startApp() {
display = Display.getDisplay(this);

mainForm = new Form("WakeUp");
exitCommand = new Command("Exit", Command.EXIT, 0);
registerCommand = new Command("Register", Command.SCREEN, 0);
tf = new TextField("Delay in seconds", "10", 10, TextField.NUMERIC);
mainForm.addCommand(exitCommand);
mainForm.addCommand(registerCommand);
mainForm.append(tf);
mainForm.setCommandListener(this);

display.setCurrent(mainForm);
}

public void pauseApp() { }

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void commandAction(Command c, Displayable s) {
if((c == exitCommand) && (s == mainForm)) {
destroyApp(false);

}

if(c == registerCommand){
new regThread().start();

}
}

public class regThread extends Thread {
public void run(){
try { long delay = Integer.parseInt(tf.getString()) * 1000;
long curTime = (new Date()).getTime();
System.out.println(curTime + delay);
PushRegistry.registerAlarm("WakeUp", curTime + delay); mainForm.append("Alarm
registered successfully");

} catch (NumberFormatException nfe) {
mainForm.append("FAILED\nCan not decode delay " + nfe);

} catch (ClassNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe);

} catch (ConnectionNotFoundException cnfe) {
mainForm.append("FAILED\nregisterAlarm thrown " + cnfe); }

}
}

}

Java ME Developer Guide for Motorola OS
Network APIs

40

Code Sample 5: SMSSend.java

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;
import javax.wireless.messaging.*;
import javax.microedition.io.*;

public class SmsSend extends MIDlet implements CommandListener{

public Display display;

public static Form messageForm;
public static Form mainForm;

public static Command exitCommand;
public static Command backCommand;
public static Command sendCommand;

public static TextField address_tf;
public static TextField port_tf;
public static TextField message_text_tf;

String[] binary_str = {"Send BINARY message"};
public static ChoiceGroup binary_cg;

byte[] binary_data = {1, 2, 3, 4, 5, 6, 7, 8, 9};
String address;
String text;

MessageConnection conn = null;
TextMessage txt_message = null;
BinaryMessage bin_message = null;

public SmsSend() {
address_tf = new TextField("Address:", "", 32, TextField.PHONENUMBER);
port_tf = new TextField("Port:", "1000", 32, TextField.PHONENUMBER);
message_text_tf = new TextField("Message text:", "test message", 160,

TextField.ANY); binary_cg = new ChoiceGroup(null, Choice.MULTIPLE,
binary_str, null);

display = Display.getDisplay(this);
messageForm = new Form("SMS_send");
mainForm = new Form("SMS_send");
exitCommand = new Command("Exit", Command.EXIT, 0); backCommand = new

Command("Back", Command.BACK, 0); sendCommand = new Command("Send",
Command.ITEM, 1);

mainForm.append(address_tf); mainForm.append(port_tf);
mainForm.append(message_text_tf); mainForm.append(binary_cg);
mainForm.addCommand(exitCommand); mainForm.addCommand(sendCommand);
mainForm.setCommandListener(this);

messageForm.addCommand(backCommand);
messageForm.setCommandListener(this);

}

public void pauseApp(){ }

protected void startApp() {
display.setCurrent(mainForm);

}

public void destroyApp(boolean unconditional) {
notifyDestroyed();

}

public void showMessage(String s) {
if(messageForm.size() != 0)
messageForm.delete(0);

Java ME Developer Guide for Motorola OS
Network APIs

41

messageForm.append(s);
display.setCurrent(messageForm);

}

public void commandAction(Command c, Displayable s) {
if((c == backCommand) && (s == messageForm)){
display.setCurrent(mainForm);

}
if((c == exitCommand) && (s == mainForm)) {
destroyApp(false);

}
if((c == sendCommand) && (s == mainForm)) {
address = "sms://" + address_tf.getString();
if(port_tf.size() != 0) address += ":" + port_tf.getString();
text = message_text_tf.getString();
new send_thread().start();

}
}

// inner class?
public class send_thread extends Thread {
public void run(){
try {
conn = (MessageConnection) Connector.open(address);
if(!binary_cg.isSelected(0)) {
txt_message = (TextMessage)
conn.newMessage(MessageConnection.TEXT_MESSAGE);
txt_message.setPayloadText(text);
conn.send(txt_message);

} else {
bin_message = (BinaryMessage)
conn.newMessage(MessageConnection.BINARY_MESSAGE);
bin_message.setPayloadData(binary_data);
conn.send(bin_message);

}
conn.close();
showMessage("Message sent");

} catch (Throwable t) {
showMessage("Unexpected " + t.toString() + ": " + t.getMessage());

}
}

}

// end SmsSend
}

Push message delivery
A push message intended for a MIDlet on a handset handles the following interactions:

• MIDlet running while receiving a push message—if the application receiving the push message is
currently running, the application consumes the push message without user notification.

• No MIDlet suites running—if no MIDlets are running, the user is notified of the incoming push message
and is given the option to run the intended application (Figure 8).

Java ME Developer Guide for Motorola OS
Network APIs

42

Figure 8: Run Intended Application Query

Deleting an application registered for push
If an application registered in the Push Registry is deleted, the corresponding push entry is deleted,
making the port number available for future push registrations.

Security for push registry
Push Registry is protected by the security framework. The MIDlet registered for the push should have the
necessary permissions. Details on permissions are outlined in JSR-118 dealing with MIDP 2.0 and security
issues.

Table 7: Push Registry Delivery

Push registry with Alarm/Wake-up
time for application

Push registry supports one outstanding wake-up time per MIDlet in the
current suite. An application uses the TimerTask notification of time-based
events while the application is running.

Another MIDlet suite is running
during an incoming push

if another MIDlet is running, the user is presented with an option to launch
the application that had registered for the push message. If the user selects
the launch, the current MIDlet is terminated.

Stacked push messages it is possible for the handset to receive multiple push messages at one time
while the user is running a MIDlet. The user is given the option to allow the
MIDlets to end and new MIDlets to begin. The user is given the ability to
read the messages in a stacked manner (stack of 3 supported), and if not
read, the messages are discarded.

No applications registered for push if there are no applications registered to handle this event, the incoming
push message is ignored.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Platform Request API

43

Chapter 5: Platform Request API

The Platform Request API MIDlet package defines MIDP applications and the interactions between these
application and the environment in which these application runs.

For MIDP 2.0, the javax.microedition.midlet.MIDlet.platformRequest() method is called
and used when the MIDlet is destroyed.

MIDlet request of a URL that interacts with browser
When a MIDlet suite requests a URL, the browser comes to the foreground and connects to that URL. The
user has access to the browser and control over any downloads or network connections. The initiating
MIDlet suite continues running in the background. If it cannot, (upon exiting the requesting MIDlet suite)
the handset brings the browser to the foreground with the specified URL. If the URL specified refers to a
MIDlet suite, JAD, or JAR, the request is treated as a request to install the named package. The user can
control the download and installation process, including cancellation. Note that the normal Java installation
process is used. For more details, see the JAD Attributes chapter.

MIDlet request of a URL that initiates a voice call
If the requested URL takes the form tel: <number>, the handset uses this request to initiate a voice call
as specified in RFC2806. If the MIDlet is exited to handle the URL request, the handset only handles the
last request made. If the MIDlet suite continues to run in the background when the URL request is being
made, all other requests are handled in a timely manner.

The user is asked to acknowledge each request before any actions are taken by the handset, and upon
completion of the platform request, the Java Service Menu is displayed to the user.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Platform Request API

44

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
RMS API

45

Chapter 6: RMS API

The Record Management System (RMS) API manages data stored locally on the handset

If a data space requirement is not specified in the MIDlet’s JAD attribute (MIDlet_data_space_requirement)
or manifest file, 512 KB is the maximum RMS space allowed.

The RMS feature/class support for MIDP 2.0 follows the javax.microedition.rms package, as
described on the Java web site: http://java.sun.com/javame/reference/apis/jsr037/javax/microedition/rms/
package-summary.html. The Motorola implementation supports setting the first record to zero. Motorola
also supports:

Interfaces
• RecordComparator

• RecordEnumeration

• RecordFilter

• RecordListener

Classes
• RecordStore

Exceptions
• InvalidRecordIDException

• RecordStoreException

• RecordStoreFullException

• RecordStoreNotFoundException

• RecordStoreNotOpenException

http://java.sun.com/javame/reference/apis/jsr037/javax/microedition/rms/package-summary.html
http://java.sun.com/javame/reference/apis/jsr037/javax/microedition/rms/package-summary.html

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
RMS API

46

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Gaming API/Multiple Key Press

47

Chapter 7: Gaming API/Multiple Key Press

The Gaming API provides a series of classes that enable rich gaming content for the handset. This API
improves performance by minimizing the amount of work done in Java, decreasing application size. The
Gaming API is structured to provide freedom in implementation, extensive use of native code, hardware
acceleration, and device-specific image data formats, as needed.

The API uses standard low-level graphic classes from MIDP so that the high-level Gaming API classes can
be used in conjunction with graphics primitives. This allows for the rendering of a complex background
while using graphics primitives on top of it.

Methods that modify the state of Layer, LayerManager, Sprite, and TiledLayer objects, generally do not
have any immediate visible side effects. Instead, this state is stored within the object and is used during
subsequent calls to the paint() method. This approach is suitable for gaming applications where there is
a cycle within the objects’ states being updated and the entire screen is redrawn at the end of every game
cycle.

Multiple key press support
Multi-button press support enhances the gaming experience by giving the user the ability to press two (2)
keys simultaneously so that the corresponding actions of both keys occur simultaneously. For example,
simultaneously moving to the right and firing at objects in a game.

The following sets of keys support multi-button press support on the handset. Multi-button press within
each set is supported, while multi-button press across these sets or with other keys is not supported.

Set 1 — Nav (Up), Nav (Down), Nav (Right), Nav (Left), 9

Set 2 — 2, 4, 6, 8, 7

Set 3 — 0, #

Sprite recommended size: 16*16 or 32*32

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Gaming API/Multiple Key Press

48

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
iTAP API

49

Chapter 8: iTAP API

The Java™ ME environment has the ability to use iTAP (Intelligent Keypad Text Entry API). iTAP utilizes
predictive text technology for easier messaging and note-taking on mobile phones. The use of a predictive
entry method is a compelling feature in a MIDlet.

The iTAP API enables a developer to access iTAP, Numeric, Symbol, and Browse text entry methods.
With previous Java™ ME products, the only method available was the standard use of TAP.

Predictive text entry allows a user to simply type in the letters of a word using only one key press per word,
and the software provides suggestions for completion. Whereas the TAP method can require as many as
four or more key presses to complete the desired word. The use of the iTAP method can greatly decrease
text-entry time.

The following Java™ ME text input components support iTAP.

• javax.microedition.lcdui.TextBox

The TextBox class is a Screen that allows the user to edit and enter text.

• javax.microedition.lcdui.TextField

A TextField is an editable text component that is placed into a Form. It is given a piece of text that is
used as the initial value.

Refer to Table 8 for iTAP feature/class support for MIDP 2.0:

Table 8: iTAP Feature/Class

Feature/Class Description

Predictive text This capability is offered when the constraint is set to ANY.

Text input method The user can change the text input method during the input process when the constraint
is set to ANY (if predictive text is available).

Multi-tap input Multi-tap input is offered when the constraint on the text input is set to EMAILADDR,
PASSWORD, or URL.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
iTAP API

50

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-30 CLDC 1.0

51

Chapter 9: JSR-30 CLDC 1.0

Java ME applications targeting resource-limited devices, such as mobile phones, can benefit from using
the Connected Limited Device Configuration (CLDC). On Motorola handsets, the implementation of CLDC
1.0 is based on JSR 30 from the Java Specification Request. Details of the specification are available on
the Java Community Process (JCP) web site, http://jcp.org/en/jsr/detail?id=30.

http://jcp.org/en/jsr/detail?id=30

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-30 CLDC 1.0

52

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-75 PDA Optional Packages

53

Chapter 10: JSR-75 PDA Optional Packages

PIM API
JSR-75 API is an optional package that provides access to Personal Information Management (PIM) data.
The PIM package provides access to personal information—such as Contact, Events, and ToDo lists—that
reside natively on devices.

The management of calendars, contact lists, events and alarms, and tasks, are examples of PIM data in
cellphone devices.

Details of the specification are available on the Java Community Process (JCP) website
http://jcp.org/en/jsr/detail?id=75.

FileConnection API
JSR-75 FileConnection API, provides access to file systems as well as removable storage media, such as
a memory card, supported by Motorola devices.

On Motorola devices, the implementation of the FileConnection API is based on JSR-75 from the Java
Specification Request. Details of the specification are available on the Java Community Process (JCP)
website: http://jcp.org/en/jsr/detail?id=75.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-75 PDA Optional Packages

54

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-82 - Bluetooth API

55

Chapter 11: JSR-82 - Bluetooth API

JSR-82, Bluetooth API, provides wireless, short distance connection between devices for applications
such as peer-to-peer networking.

On handsets supporting Bluetooth, Motorola supports both the javax.bluetooth package and the
javax.obex package.

On Motorola devices, the implementation of the Bluetooth API is based on JSR-82 from the Java
Specification Request. Details of the specification are available on the Java Community Process (JCP)
website: http://jcp.org/en/jsr/detail?id=82.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-82 - Bluetooth API

56

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-118 MIDP 2.0 Application Testing and Signing

57

Chapter 12: JSR-118 MIDP 2.0 Application
Testing and Signing

For almost every mobile application, a handset needs sensitive functionality. Sensitive functionalities
include network access to a local file system, phonebook, or some other feature accessed through the
KVM.

MIDP (Mobile Information Device Profile) 2.0 has a security policy that prevents an application from having
access to these functionalities; however, a MIDlet can gain access to a restricted resource if it has a
trusted digitial signature from a signing authority.

For more information about permissions, certificates and signing processes for a MIDlet, how Motorola
handsets deal with the MIDP 2.0 security policy, and the benefits of having a signed MIDlet, access the
MIDlet Testing and Signing section on the MOTODEV portal. For details on Motorola’s implementation of
MIDP 2.0 security, see Chapter 3 of this guide.

To find out if your handset supports MIDP 2.0 (JSR 118), refer to the latest API Matrix, available on
MOTODEV and also in Motorola Studio and the Motorola SDK.

http://developer.motorola.com/techresources/testingcertification/testing_signing_programs/MIDlet_Testing_and_Signing.pdf

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-118 MIDP 2.0 Application Testing and Signing

58

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-120 - WMA

59

Chapter 13: JSR-120 - WMA

Wireless Messaging API (WMA)
Motorola has implemented certain features that are defined in the Wireless Messaging API (WMA) 1.0.
The complete specification document is defined in JSR-120. The JSR-120 specification states that
developers can be provided access to send (MO - mobile originated) and receive (MT - mobile terminated)
SMS (Short Message Service) on the target device.

A simple example of the WMA is the ability of two J2ME applications using SMS to communicate game
moves running on the handset. This can take the form of chess moves being passed between two players
via the WMA.

Motorola in this implementation of the specification supports the following features.

• Creating an SMS

• Sending an SMS

• Receiving an SMS

• Viewing an SMS

• Deleting an SMS

SMS client mode and server mode connection
The Wireless Messaging API is based on the Generic Connection Framework (GCF), which is defined in
the CLDC specification. The use of the "Connection" framework, in Motorola's case is
MessageConnection.

The MessageConnection can be opened in either server or client mode. A server connection is opened
by providing a URL that specifies an identifier (port number) for an application on the local device for
incoming messages.

(MessageConnection)Connector.open(“sms://:6000”);

Messages received with this identifier will then be delivered to the application by this connection. A server
mode connection can be used for both sending and receiving messages. A client mode connection is
opened by providing a URL which points to another device. A client mode connection can only be used for
sending messages.

(MessageConnection)Connector.open(“sms://+441234567890:6000”);

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-120 - WMA

60

SMS port numbers
When the address contains a port number, the TP-User-Data of the SMS contains a User-Data-Header
with the application port addressing scheme information element. When the recipient address does not
contain a port number, the TP-User-Data does not contain the application port addressing header. The
J2ME MIDlet cannot receive this kind of message, but the SMS will be handled in the usual manner for a
standard SMS to the device. When a message identifying a port number is sent from a server type
MessageConnection, the originating port number in the message is set to the port number of the
MessageConnection. This allows the recipient to send a response to the message that will be received
by this MessageConnection. However, when a client type MessageConnection is used for sending a
message with a port number, the originating port number is set to an implementation specific value and
any possible messages received to this port number are not delivered to the MessageConnection. For
more information refer to sections A.4.0 and A.6.0 of JSR-120.

When a MIDlet in server mode requests a port number (identifier) to use and it is the first MIDlet to request
this identifier it will be allocated. If other applications apply for the same identifier then an IOException
will be thrown when an attempt to open MessageConnection is made. If a system application is using
this identifier, the MIDlet will not be allocated the identifier. The port numbers allowed for this request are
restricted to SMS messages. In addition, a MIDlet is not allowed to send messages to certain restricted
ports; If this is attempted, a SecurityException is thrown. JSR-120 Section A.6.0 Restricted Ports:
2805, 2923, 2948, 2949, 5502, 5503, 5508, 5511, 5512, 9200, 9201, 9203, 9207, 49996, 49999. If you
intend to use SMSC numbers, review A.3.0 in the JSR-120 specification. A MIDlet uses an SMSC to
determine the recipient number.

SMS storing and deleting received messages
When SMS messages are received by the MIDlet, they are removed from the SIM card memory where
they were stored. The storage location (inbox) for the SMS messages has a capacity of up to thirty
messages. If any messages are older than five days then they will be removed, from the inbox by way of a
FIFO stack.

SMS message types
The types of messages that can be sent are TEXT or BINARY, the method of encoding the messages are
defined in GSM 03.38 standard (Part 4 SMS Data Coding Scheme). Refer to section A.5.0 of JSR-120 for
more information.

SMS message structure
The message structure of SMS complies with GSM 03.40 v7.4.0 Digital cellular telecommunications
system (Phase 2+); Technical realization of the Short Message Service (SMS) ETSI 2000.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-120 - WMA

61

Motorola's implementation uses the concatenation feature specified in sections 9.2.3.24.1 and 9.2.3.24.8
of the GSM 03.40 standard for messages that the Java application sends that are too long to fit in a single
SMS protocol message.

This implementation automatically concatenates the received SMS protocol messages and passes the
fully reassembled message to the application via the API. The implementation will support at least three
SMS messages to be received and concatenated together. Also, for sending, support for a minimum of
three messages is supported. Motorola advises that developers should not send messages that will take
up more than three SMS protocol messages unless the recipient's device is known to support more.

SMS notification
Some examples of SMS interaction with a MIDlet are:

• A MIDlet handles an incoming SMS message if the MIDlet is running and registered to receive
messages on the port (identifier).

• When a MIDlet that is registered to receive messages on the port number of the incoming message
pauses, the user is queried to launch the MIDlet.

• If the MIDlet is not running and the Java Virtual Machine is not initialized, then a Push Registry will be
used to initialize the Virtual Machine and launch the J2ME MIDlet. This only applies to trusted, signed
MIDlets.

• If a message is received and the untrusted unsigned application and the KVM are not running then the
message will be discarded.

• There is a SMS Access setting in the Java Settings menu option on the handset that allows the user to
specify when and how often to ask for authorization.

Before the connection is made from the MIDlet, the options available are:

• Always ask for user authorization

• Ask once per application

• Never Ask

The following table lists Messaging features/classes supported in the device.

Table 9: List of Messaging features/classes

Feature/Class Implementation

Number of MessageConnection instances in
the javax.wireless.messaging package

32 maximum

Number of MessageConnection instances in
the javax.wireless.messaging package

16

Number of concatenated messages. 30 messages in inbox, each can be concatenated from 3 parts.
No limitation on outbox (immediately transmitted)

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-120 - WMA

62

Code Sample 6 shows the implementation of the JSR-120 Wireless Messaging API

Code Sample 6: JSR-120 Wireless Messaging API MyBinaryMessage

import javax.wireless.messaging.*;
import javax.microedition.io.*;
import java.util.*;
import java.io.*;

public class MyBinaryMessage implements BinaryMessage {

private BinaryMessage binMsg;
private MessageConnection connClient;
private int msgLength = 140;
private String outAddr = "+17072224444:9532";
private Random rand = new Random();
private String myAddress;

public void makeConnection() {
try {
/* Create a connection */
connClient = (MessageConnection) Connector.open("sms://" + outAddr);

/* Create a new message object */
binMsg = (BinaryMessage)connClient.newMessage(MessageConnection.BINARY_MESSAGE);

byte[] newBin = createMyBinary(msgLength);
binMsg.setPayloadData(newBin);

int num = connClient.numberOfSegments(binMsg);

} catch (IOException io) {
 System.out.println(io.getMessage());

}
}

/* Create BINARY of 'size' bytes for BinaryMsg */
public byte[] createMyBinary(int size) {
int nextByte = 0;
byte[] newBin = new byte[size];

for (int i = 0; i < size; i++) {
nextByte = (rand.nextInt());
newBin[i] = (byte)nextByte;
if ((size > 4) && (i == size / 2)) {
newBin[i-1] = 0x1b;
newBin[i] = 0x7f;

}
}
return newBin;

}

...

}

Code Sample 7: JSR-120 Wireless Messaging API Sample1.java

import javax.microedition.io.*;
import javax.wireless.messaging.*;

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-120 - WMA

63

import java.io.*;

public class JSR120Sample1 {

MessageConnection messageConnection;
MyBinaryMessage messageToSend, receivedMessage = new MyBinaryMessage();
JSR120Sample1Listener listener = new JSR120Sample1Listener();

public void handleMessages() {

// open connection
try {
messageConnection = (MessageConnection)Connector.open("sms://:9532");

} catch (IOException io) {
 System.out.println(io.getMessage());

}

// create a listener for incoming messages
listener.run();

// set payload and address for the message to send
messageToSend.setAddress("sms://+18473297274:9532");

// send message (by invoking a send method)

// set address for received messages
receivedMessage.setAddress("sms://:9532");

// receive message (by invoking a receive method)
}

// inner class
class JSR120Sample1Listener implements MessageListener, Runnable {
private int messages = 0;
private int result;
private final int FAIL = 1;

public void notifyIncomingMessage(MessageConnection connection) {
System.out.println("An incoming message has arrived");
messages++;

}

public void run() {
try {
messageConnection.setMessageListener(listener);

} catch (IOException e) {
result = FAIL;
System.out.println("FAILED: exception while setting listener: " +
e.toString());

}
}

}

}

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-120 - WMA

64

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

65

Chapter 14: JSR-135 - Mobile Media API.

Network connections
The JSR-135 Mobile Media API feature sets are defined for the following types of media:

• Tone Sequence

• Sampled Audio

• MIDI

When a player is created for a particular type, it follows the guidelines and control types listed in the
following sections.

Code Sample 8 is an example of the usage of the JSR-135 Mobile Media API:

Code Sample 8: JSR-135 Mobile Media API

import javax.microedition.media.*;

public class MyMP3Player {

Player player;

public void createPlayer() {
// Create a media player, associate it with a stream containing media data
try {
player = Manager.createPlayer(getClass().getResourceAsStream("MP3.mp3"), "audio/

mp3");
} catch (Exception e) {
System.out.println("FAILED: exception for createPlayer: " + e.toString());

}
}

public void realizePlayer() {
// Obtain the information required to acquire the media resources
try {
player.realize();

} catch (MediaException e) {
System.out.println("FAILED: exception for realize: " + e.toString());

}
}

public void prefetchPlayer() {
//Acquire exclusive resources, fill buffers with media data
try {
player.prefetch();

} catch (MediaException e) {
System.out.println("FAILED: exception for prefetch: " + e.toString());

}
}

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

66

public void startPlayer() {
// Start the media playback
try {
player.start();

} catch (MediaException e) {
System.out.println("FAILED: exception for start: " + e.toString());

}
}

public void pausePlayer() {
// Pause the media playback
try {
player.stop();

} catch (MediaException e) {
System.out.println("FAILED: exception for stop: " + e.toString());

}
}

}

ToneControl
ToneControl is the interface that enables playback of a user-defined monotonic tone sequence. The JSR-
135 Mobile Media API implements the public interface, ToneControl.

A tone sequence is specified as a list of non-tone duration pairs and user-defined sequence blocks. It is
packaged as an array of bytes. The setSequence() method inputs the sequence to the ToneControl.

The available method for ToneControl is:

setSequence(byte[] sequence) : Sets the tone sequence

VolumeControl
VolumeControl is an interface for manipulating the audio volume of a Player.

The JSR-135 Mobile Media API implements the public interface, VolumeControl. VolumeControl settings
are:

Volume Settings specifies the output volume using an integer value between 0 and 100.

Specifying Volume in
the Level Scale

specifies volume in a linear scale. It ranges from 0 - 100, where 0 represents silence and
100 represents the highest volume available.

Mute setting mute on or off does not change the volume level returned by getLevel. If mute is
on, the Player doesn’t produce an audio signal. If mute is off, the player produces an audio
signal and the volume is restored.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

67

Available methods for VolumeControl:

StopTimeControl
StopTimeControl allows a specific preset sleep timer for a player. The JSR-135 Mobile Media API
implements the public interface StopTimeControl.

Available methods for StopTimeControl:

Manager class
Manager Class is the access point for obtaining system dependant resources such as players for
multimedia processing. A Player is an object used to control and render media that is specific to the
content type of the data. Manager provides access to an implementation specific mechanism for
constructing Players. For convenience, Manager also provides a simplified method to generate simple
tones. Primarily, the Multimedia API provides a way to check available/supported content types.

Supported multimedia file types
This section lists media file types (with corresponding Codecs) that are supported in products that are
JSR-135 compliant. The common guideline is that all Codecs and file types supported by the handset are
accessible through the JSR-135 implementation.

getLevel(int level) Gets the current volume setting.

isMuted(boolean mute) Gets the mute state of the signal associated with this VolumeControl.

setLevel(int level) Sets the volume using a linear point scale with values between 0 and 100.

setMute(boolean mute) Mutes or unmutes the Player associated with this VolumeControl.

getStopTime() Gets the last value successfully by setStopTime.

setStopTime(long stopTime) Sets the media time at which you want the Player to stop.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

68

Image Media

Table 10:Image Media

File Type Codec Functionality

JPEG JPEG Capture

Table 11:Image Media

File Type Functionality

JPEG Playback/Capture

Progressive JPEG Playback

PNG Playback

BMP Playback

WBMP Playback

GIF 87a, 89a Playback

Table 12:Media descriptions

Media Description

Types still, audio, video, av

Encodings jpeg, amr, H.264, mp3, mpgeg4

Container wav, mps, avi, mov, 3gp

Container extension .wav, .mp3, .avi. etc.

Mime type audio/amr...

Download/stream Playback

Playback/capture

Print

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

69

Audio media

Table 13:Audio Media

File Type Codec

WAV PCM

WAV ADPCM

SP MIDI General MIDI

MIDI Type 0 General MIDI

MIDI Type 1 General MIDI

iMelody iMelody

CTG CTG

MP3 MPEG-1 layer III

AMR AMR

BAS General MIDI

Table 14:Audio MIME types

File Type MIME Type File Extension

MIDI audio/midi x-midi mid x-mid sp-midi .mid, .midi, .xmi

MP3 Audio audio/mpeg .mp3

WAV audio/wav x-wav .wav, .wave

AMR audio/amr audio/mp4 .amr

iMelody audio/imy .imy

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

70

Video media

Feature/class support for JSR-135
The multimedia engine only supports prefetching one sound at a time, but two exceptions exist where two
sounds can be prefetched at once. These exceptions are:

• Motorola provides the ability to play MIDI and WAV files simultaneously, but the MIDI track must be
started first. The WAV file should have the following format: PCM 8,000 Khz; 8 Bit; Mono.

• When midi, iMelody, mix, and basetracks are involved, two instances of midi, iMelody, mix, or
basetrack sessions can be prefetched at a time, although one of these instances has to be stopped.
This is a strict requirement as (for example) two midi sounds cannot be played simultaneously.

Audio mixing
Must support synchronous mixing of at least two or more sound channels. MIDI+WAV must be supported
and MIDI+MP3 is highly desirable.

Media locators
The Manager and DataSource classes and the RecordControl interface accept media locators. In addition
to normal playback locators specified by JSR -135, the following special locators are supported.

RTSP and RTP locators
Realtime Transport Protocol (RTP) is an Internet Protocol (IP) that supports realtime transmission of voice
and video. RealTime Streaming Protocol (RTSP) is an application layer protocol used to transmit
streaming audio, video, and 3D animation over the Internet. RTP locators must be supported for streaming
media on devices supporting real time streaming using RTSP. This support must be available for audio

Table 15:Video Media

File Type Functionality

H.263 Playback/Capture

MPEG4 Playback

Real Video G2 Playback

Real Video 8 Playback

Real Video 9 Playback

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

71

and video streaming through Manager (for playback media stream). RTP can exist without RTSP, but
RTSP cannot exist without RTP.

HTTP locator
HTTP Locators must be supported for playing back media over network connections. This support is
available through Manager implementation.

For example, Manager.createPlayer("http://webserver/tune.mid").

File locator
File locators must be supported for playback and capture of media. This is specific to Motorola Java ME
implementations supporting file system API and not as per JSR-135. The support is available through
Manager and RecordControl implementations.

For example, Manager.createPlayer("file://motorola/audio/sample.mid").

Capture Locator
Capture Locator is supported for audio and video devices. The Manager.createPlayer() call shall
return camera player as a special type of video player. Camera player implements VideoControl and
supports taking snapShots using VideoControl.getSnapshot() method.

For example, Manager.createPlayer("capture://camera").

Security
Mobile Media API follows the MIDP 2.0 security model. APIs making use of recording functionality need to
be protected. Trusted third party and untrusted applications must utilize user permissions. Specific
permission settings are detailed below.

Policy
The following table shows security policy, set per operator requirements when the handset is shipped.

Table 16:Security Policy

Function Group Multimedia Record

Trusted Third Party Ask once Per App, Always Ask, Never Ask, No Access

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

72

Permissions
The following table lists individual permissions in the MultimediaRecord function group.

NOTE: The Audio/Media formats are carrier and region dependent and may vary in function and
availability.

Basic concepts in OMA DRM
Mobile phone users download ring tones, wallpaper, music, movies and games from service providers
everyday. Content downloading is a huge part of the mobile business. DRM (Digital Rights Management)
prevents the illegal distribution of content and protects the interest of the content owner.

This chapter introduces the basic concepts and mechanisms in Open Mobile alliance (OMA) DRM 1.0/2.0,
and compares the differences between them.

DRM standards in the market
Multiple incompatible DRM standards exist. A brief description of them follows.

OMA DRM

OMA DRM is an open digital rights management standard published by Open Mobile Alliance. Most
companies in the mobile industry, including many of the most popular operators and manufactures, take
OMA DRM as their DRM standard. Now OMA DRM is the governing DRM standard in mobile industry.
Two OMA DRM standards have been released: OMA DRM 1.0 was released in September 2002 and OMA
DRM 2.0 published in March 2006.

Microsoft Windows DRM

Windows Media DRM released in March 1999 is a private Digital Rights Management standard for the
Windows PC and Windows mobile platform. It is designed to provide secure delivery of audio/video

Untrusted Always Ask, Ask Once Per App, Never Ask, No Access

Manufacturer Full Access

Operator Full Access

Table 17:Permissions within Multimedia Record

Permission javax.microedition.media.control.RecordControl.re

Protocol RecordControl.startRecord()

Function Group MultimediaRecord

Table 16:Security Policy

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

73

content over an IP network to a PC or other Windows mobile devices in such a way that the distributor can
control how that content is used.

Apple iTunes DRM

Apple DRM, also called Fairplay, is the private digital rights management technology created and used by
Apple Inc. Apple DRM is used by the iPod and iTunes Store and plugged into Quicktime. The protected
songs purchased from the iTunes Store with iTunes are encoded with Apple DRM. Apple DRM encrypts
Advanced Audio Coding (AAC) audio files and prevents users from playing these files on unauthorized
computers.

Other Private DRM

Other private DRM techniques and products include IBM’s EMMS, Adobe’s Content Server and
Macrovision’s SafeAudio, and so on.

OMA DRM 1.0 model
The OMA DRM 1.0 standard was released in September 2002 and is widely used in mobile devices. It
defines three application models, each of which is described in detail in the following section.

• Forward-lock

• Combined Delivery

• Separate Delivery

Forward Lock
Forward Lock is frequently used for ring tones and wallpaper subscription and can effectively prevent
illegal copying of files. In Forward Lock mode, the content is packaged and sent to the mobile terminal as a
DRM message. The mobile terminal could use the content, but could not forward it to other devices or
modify it. In Motorola handsets, the Forward Lock content is not encrypted when it is received or when
stored in phone memory. When the .dm file is copied to a PC or memory card, it will be encrypted so as to
make sure it cannot be used or transferred from the mobile terminal.

The file extension for a Forward Locked file is .dm, which includes the header and the encoded (but not the
encrypted) content in it.

Combined Delivery
Combined Delivery is an extension of Forward Lock. In Combined Delivery mode, the digital rights are
packaged with a content object in the DRM message. The user could use the content as defined in the
rights object, but could not forward or modify it. The rights object is written in DRMREL (DRM Rights
Expression Language) and defines the number of times and length of time that the content can be used
thus enabling the preview feature.

The file extension for a Combined Delivery file is also .dm, which includes the header, the Rights Object
and encoded content.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

74

Figure 9: Forward Lock and Combined Delivery

Separate Delivery
In the Separate Delivery mode, the content and rights are packaged and delivered separately. The content
is encrypted into DRM Content Format (DCF) using a symmetric cryptograph method and can be
transferred in an unsafe way such as Bluetooth, IrDA and via Email. The Rights Object and the Content
Encryption Key (CEK) are packaged and transferred in a safe way such as an unconfirmed Wireless
Application Protocol (WAP) push. The terminal is allowed to forward the content message but not the
rights message.

Superdistribution is a Separate Delivery application which encourages digital content being transferred
freely and is typically distributed over public channels. But the content recipient has to contact the retailer
to get the Rights object and CEK to use or preview the content.

The encrypted content file type extension is .dcf (DRM Content Format); the right file extension is .dr or
.drc.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

75

Figure 10: Separate Delivery

Defects in OMA DRM 1.0
The OMA DRM 1.0 model is designed for the mobile industry and is based on the assumption that the
mobile terminal is reliable. In the Forward-lock mode and the Combined Delivery mode, the content is not
encrypted. In the Separate Delivery mode, the symmetric encryption key is not encrypted. The media
content can be stolen if the mobile terminal is hacked or the Right Object message with the CEK is
revealed.

OMA DRM 2.0
The OMA DRM 2.0 standard was released in 2006 as an upgrade and extension of version 1.0. It supports
many application scenarios like preview, download, Multimedia Messaging Service (MMS), streaming
media, super distribution, and unconnected device, making the copyright protection more reliable and
flexible.

The OMA DRM 2.0 is composed of four parts:

• Public Key Infrastructure (PKI) security system

• Rights Object Acquisition Protocol (ROAP)

• DRM Content Format (DCF)

• Rights Expression Language (REL)

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

76

The Public Key-based Asymmetric Cryptography is used as the basic security mechanism.

Figure 11: DRM 2.0 architecture diagram from OMA

The diagram above is the DRM System model from OMA Documents. It looks like the Separate Delivery in
DRM 1.0 but the Rights Object is signed and passed with the Public Key Infrastructure (PKI) mechanism to
ensure security, authenticity and integrity. The DRM Agent is the entity in the device that manages
permissions for media objects on the device. With the mobile DRM Agent, devices not connected to a
network could use the DRM content.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

77

Figure 12: DRM 2.0 content download and use

The diagram above shows how the DRM 2.0 content is downloaded and used.

1 First, the Content Issuer encrypts the original digital content with a symmetric cryptograph algorithm
such as AES (Advanced Encryption Standard). The original content is packaged into a DCF-formatted
Content Object (CO) and sent to the Content User. The CO does not include the Cryptograph
Encryption Key.

2 Second, the DRM agent contacts the Rights Issuer (RI) to get the Right Object (RO) which is
generated and managed by RI. In the commercial application this step is fee-based. The CA
(Certificate Authority), who issues and verifies certificate, helps the RI and the content user
authenticate each other. The RI enciphered the RO with user’s public key; then uses the message
digest method to get the hash value and signs the RO with RI’s private key. After receiving the RO, the
user checks the message signature with the RI’s public key and decrypts the RO with the user’s public
key.

3 Third, the user gets the content message digest and symmetric encryption key from RO. Then using
the symmetric key to decrypt the CO and comparing the message digest with the content, makes sure
it has not been changed. The DRM agent will record the Rights constraint from the RO and control how
the content can be used accordingly.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-135 - Mobile Media API.

78

Differences between OMA DRM 1.0 and 2.0

Conclusion
DRM protects the value chain of content download and other value added services. With DRM, the content
owner can be properly paid and encouraged to make more valuable content. Motorola supports OMA DRM
1.0 in most handsets and will support OMA DRM 2.0 in the near future.

Table 18:Differences between OMA DRM 1.0 and 2.0

OMA DRM 1.0 OMA DRM 2.0

Application
mode

Supports Forward-lock, Combined
Delivery, Separate Delivery in content
download.

Supports download, MMS, streaming media and
many application scenarios like preview, super
distribution, unconnected devices, etc.

Domain
support

No domain support. Domain support for a set of devices sharing the
same rights.

Mobile phone
Support

Most handheld devices support OMA 1.0
including almost all 3G terminals.

Few terminals support it.

Security Based on the assumption that the
terminal is reliable, not secure enough.

Base on the assumption that the terminal is not
reliable. The terminal and the server should
authenticate each other using the certificates.

Deployment Easy to deploy Hard to deploy, CA and certificate system required.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-139 - CLDC 1.1

79

Chapter 15: JSR-139 - CLDC 1.1

CLDC 1.1 is an incremental release of CLDC version 1.0. CLDC 1.1 is fully backwards compatible with
CLDC 1.0. Implementation of CLDC 1.1 supports the following:

• Floating Point

• Data Types float and double

• All floating point byte codes

• New Data Type classes Float and Double

• Library classes to handle floating point values

• Weak reference

• Classes Calender, Date and TimeZone are J2SE compliant

• Thread objects are compliant with J2SE

The support of thread objects to be compliant with J2SE requires the addition of Thread.getName and a
few new constructors.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-139 - CLDC 1.1

80

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-172 - Web Services API

81

Chapter 16: JSR-172 - Web Services API

JSR-172, Web Services API, is an extension of the Java ME platform to grant access to web services,
allowing Java ME devices to be web services clients.

The web services API contains two optional packages:

• Java API for Remote Method Invocations (RMI)

• Java API for XML Processing (JAXP)

On Motorola devices, the implementation of Web Services API is based on JSR-172 from the Java
Specification Request. Details of the specification are available on the Java Community Process (JCP)
website: http://jcp.org/en/jsr/detail?id=172.

For Motorola-specific system properties, see “System Properties” on page 127.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-172 - Web Services API

82

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-177- SATSA

83

Chapter 17: JSR-177- SATSA

JSR-177, the Security and Trust Services API (SATSA), provides additional cryptographic security
features for the Security Element (SE) in order to enable access to security and trust services and ensure
the integrity and confidentiality of the information being transmitted. Motorola OS handsets implement the
SATSA-APDU optional package.

SATSA-APDU optional package
The SATSA-Application Protocol Data Units (APDU) package uses an application identifier (AID) to
manage the communication from Java™ ME applications to a smart card and vice versa via the
APDUConnection interface.

On Motorola devices, the implementation of SATSA is based on JSR-177 from the Java Specification
Request. Details of the specification are available on the Java Community Process (JCP) web site:
http://jcp.org/en/jsr/detail?id=177.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-177- SATSA

84

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-179 Location API

85

Chapter 18: JSR-179 Location API

JSR-179 (Location API) is an Optional package used to manipulate the device's geographical data
(location, orientation, and physical information).

Details of the specification are available on the Java Community Process (JCP) website
 http://jcp.org/en/jsr/detail?id=179.

API requirements

Security
The Location API only grants access to trusted applications. If adequate permission is not found, a
SecurityException is thrown. Refer to the MIDP 2.0 specification for details
http://jcp.org/en/jsr/detail?id=118.

Motorola-specific implementation

Location
• The maximum number of location read requests that can be sent simultaneously from all VMs is 5.

• The default location update interval for location listener is 60 seconds.

• The default location update maxAge for location listener is 10 seconds.

• The default location for the getlocation method is 30 seconds.

ProximityListeners
• The maximum number of proximity listeners that can be added simultaneously from all VMs is 10.

Landmark
• The maximum number of landmark store categories is 64.

• The maximum number of the landmarks in the landmark store is 256.

• The maximum length of a landmark name is 32 characters (64 bytes).

• The maximum length of a landmark description is 30 characters (60 bytes).

• The maximum size of the landmark store is 312360 bytes.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-179 Location API

86

AddressInfo
• The maximum length of an AddressInfo item is 30 characters (60 bytes).

Orientation
• There is no support for any methods in the Orientation class.

LandmarkStore
• For the LandmarkStore class, neither the create nor the delete LandmarkStore methods are

supported.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-184 - Mobile 3D Graphics

87

Chapter 19: JSR-184 - Mobile 3D Graphics

This powerful API generates 3D graphics on resource-constrained devices. Even without a GPU this API is
capable of drawing sophisticated complex animations and three-dimensional scenes.

Applications for this API include:

• User Interfaces

• Maps Visualization

• Screen Savers

• Games

• Animated Messages

Details of the JSR-184 specification are available on the Java Community Process (JCP) website: http://
jcp.org/en/jsr/detail?id=184.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-184 - Mobile 3D Graphics

88

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-185 - JTWI

89

Chapter 20: JSR-185 - JTWI

JTWI (Java Technology for the Wireless Industry) specifies a set of services that enable you to develop
highly portable, interoperable Java applications. JTWI reduces API fragmentation and broadens the
number of applications for mobile phones.

Any Motorola device implementing JTWI, supports the following minimum hardware requirements in
addition to the minimum requirements specified in MIDP 2.0:

• A screen size of at least 125 x 125 pixels screen size as returned by full screen mode
Canvas.getHeight () and Canvas.getWidth ()

• A color depth of at least 4096 colors (12-bit) as returned by Display.numColors ()

• Pixel shape of 1:1 ratio

• A Java Heap Size of at least 512 KB

• Sound mixer with at least 2 sounds

• A JAD file size of at least 5 KB

• A JAR file size of at least 64 KB

• An RMS data size of at least 30 KB

For more information, see the JSR-185 specification. In addition, specifications for JSR-120 (Wireless
Messaging API 1.1) and JSR-135 (Mobile Media API 1.1) have some content related to JTWI.

http://jcp.org/en/jsr/detail?id=185
http://www.jcp.org/en/jsr/detail?id=120
http://www.jcp.org/en/jsr/detail?id=135

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-185 - JTWI

90

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-205 - WMA 2.0

91

Chapter 21: JSR-205 - WMA 2.0

Wireless Messaging API-2.0 (WMA-2.0) is an enhancement of WMA-1.0 (JSR-120) and is supported by
many MIDP 2.0 handsets. It enables handsets to send and receive messages of the type, Short
Messaging Services (SMS), Cell Broadcast Services (CBS), and Multimedia Messaging Services (MMS),
though it is mainly used for sending MMS messages. It handles text, binary, and multipart messages.

For more information about WMA 2.0, see http://jcp.org/en/jsr/detail?id=205, http://java.sun.com/products/
wma/index.jsp, and http://developers.sun.com/mobility/midp/articles/wma2/.

http://jcp.org/en/jsr/detail?id=205
http://java.sun.com/products/wma/index.jsp
http://java.sun.com/products/wma/index.jsp
http://developers.sun.com/mobility/midp/articles/wma2/

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-205 - WMA 2.0

92

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-226 - Scalable 2D Vector Graphics API

93

Chapter 22: JSR-226 - Scalable 2D Vector
Graphics API

The Scalable 2D Vector Graphics API, JSR-226, renders Scalable 2D Vector Graphics (SVG) images.
SVG Basic (SVGB), a subset of SVG, is designed for use in mobile devices. SVG Tiny (SVGT) is a further
subset of SVGB and is designed for use in cell phones and devices with limited screen size, memory, and
bandwidth. The advantage of using vector graphics is that the images scale without distortion to fit the size
of the viewing window. Another advantage is that vector graphics file sizes are often smaller and therefore,
better suited to resource limited devices.

Applications for this API include any kind of scalable image, zoomable maps, technical illustrations,
resizable icons, animated graphics, etc.

On Motorola devices, the implementation of the Scalable 2D Vector Graphics API is based on JSR-226
from Java Specification Request. Details of the specification are available on the Java Community Process
(JCP) website: http://jcp.org/en/jsr/detail?id=226.

To find out if your handset supports MIDP 2.0 (JSR 118), refer to the latest API Matrix, available on
MOTODEV and also in Motorola Studio and the Motorola SDK.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
JSR-226 - Scalable 2D Vector Graphics API

94

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Get URL

95

Chapter 23: Motorola Get URL

The existing functionality allows current Java™ applications to use a dedicated URL to inform users of the
location from which a new level of a game can be downloaded. This new functionality allows carriers to
specify the URL for content download.

Flexible URL for downloading functionality
The following rules apply:

• All URLs follow the guidelines outlined in RFC 1738: Uniform Resource Locators (URL). For more
information, see http://www.w3.org/addressing/rfc1738.txt.

• URLs are limited to 128 characters.

The Java Application uses the System.getProperty method to access the URL. The key for accessing
the URL is com.mot.carrier.URL. The System.getProperty method returns NULL if no URL is
present.

Security policy
Only trusted applications have permission to access the Flex system property.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Get URL

96

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola PIM Enhancement API

97

Chapter 24: Motorola PIM Enhancement API

The Motorola PIM Enhancement API implementation provides some extra features that are not supported
by the JSR-75 PIM API implementation. It is available in the com.motorola.pim package.

The Motorola PIM Enhancement is available in two different versions:

• GSM version

• 3G version

Motorola PIM Enhancement API
Some extra features provided by this API over JSR-75 PIM API are:

• For a given contact, a phone number and email address can be stored simultaneously.

• The name for a contact is stored using the NAME field instead of FORMATTED_NAME field.

• Storing multiple telephone numbers and emails per contact, as compared to a single telephone
number and email for a contact.

• Several new data storage fields, for example the javax.microedition.pim.Contact.EMAIL
field, for adding email information to a contact.

• The 3G version of JSR 75 Enhancement supports the ToDoList; the GSM version does not.

NOTE: For information about handsets that support the PIM API, see the latest version of the Device
Matrix, available on the MOTODEV website.

The following table shows the features of the Motorola PIM Enhancement API.I

Table 19:Motorola PIM Enhancement API

Feature JSR 75 PIM Enhancement

Name Addition to a Contact Yes

Phone Number Addition to a Contact Yes

Email Addition to a Contact Yes

Multiple Email and Phone number Addition Yes

ToDo List Yes for 3G; No for GSM.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola PIM Enhancement API

98

NOTE: To add the contact ‘s email address, use javax.microedition.pim.Contact.EMAIL.

Contact List
Table 20 lists the fields supported by the Contact item of the ContactList for Motorola PIM Enhancement
implementation.

• The Motorola extension of the Contact class (com.motorola.pim.Contact) is depicted by the term
Motorola Extended.

• The Java application cannot set the field, DEFAULT_INDEX (default index of the contact). However, if
the native phone book sets this field, then the contact has this value.

• The field, LOCATION (integer representation of the UID), supports mailing lists.

Table 20:Contact List - Fields - Motorola PIM Enhancement

Field Description JSR 75 PIM Enhancement Field Data Field

Contact Address ADDR STRING_ARRAY

Birthdate BIRTHDAY DATE

Contact Name NAME STRING_ARRAY

Contact Nickname NICKNAME STRING

Contact Telephone Number TELEPHONE STRING

Contact Email EMAIL STRING

Contact Unique ID UID INT

Contact Type (Phone, SIM, Mailing List) CONTACT_TYPE (Motorola Extended) INT

Contact Photo URL MOT_PHOTO_URL (Motorola Extended) STRING

Contact Light ID Not Supported N/A

Contact Location LOCATION (Motorola Extended) INT

Mailing List Member IDs MEMBER (Motorola Extended) INT

Contact Voice Tag VOICE TAG (Motorola Extended) INT

Contact Ringtone URL RINGTONE (Motorola Extended) STRING

Contact Default Index DEFAULT_INDEX (Motorola Extended) INT

Mailing List Type (MESSAGING or MAIL) MAILING_LIST_TYPE (Motorola Extended) INT

Contact URL URL STRING

Contact Astrological Sign (3G only) ZODIAC (Motorola Extended) (3G only) INT

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola PIM Enhancement API

99

NOTE: The following fields are only supported for the JSR PIM Enhancements: DEFAULT_INDEX,
MAILING_LIST_TYPE, URL, ZODIAC, NOTE, and CLASS.

Table 21 shows supported attributes for some of the Contact fields.

Event list
Table 22 lists various fields supported by an Event item for Motorola PIM Enhancement implementation.

ToDo list

NOTE: This section is only supported by some devices. For specifics, refer to the Device API Matrix.

Contact Supplemental information/Notes
(3G only)

NOTE (3G only) N/A

Content Access Level: CLASS_PRIVATE,
CLASS_PUBLIC or CLASS_CONFIDENTIAL

Class (3G only) N/A

Table 21:Contact List - Attributes - Motorola PIM Enhancement

Field Label Attributes in JSR 75 PIM Enhancement

TELEPHONE PAGER, MOBILE, OTHER, HOME, WORK, FAX, NONE

EMAIL OTHER, HOME, WORK, NONE

ADDR (3G only) OTHER, HOME, WORK, NONE (3G only)

Table 22:Event List - Motorola PIM Enhancement

Field Description JSR 75 PIM Enhancement Field Data Type

Relative time for an alarm ALARM INT

End time of event END DATE

Start time of event START DATE

Summary/Subject of event SUMMARY STRING

Unique ID for event UID STRING

Table 20:Contact List - Fields - Motorola PIM Enhancement (Continued)

Field Description JSR 75 PIM Enhancement Field Data Field

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola PIM Enhancement API

100

The ToDo database contains entries for tasks that must be executed on determined data and times.
Motorola PIM Enhancement 3G is the only implementation type that supports ToDo. Table 23 lists various
fields and their data types supported by this implementation.

Table 23:ToDo List - Motorola PIM Enhancement 3G

Field JSR 75 PIM Enhancement 3G Field Data Type

Unique ID for a ToDo UID STRING

Summary or Subject of the ToDo SUMMARY STRING

Priority of the ToDo PRIORITY INT

Completion Date for the ToDo COMPLETION_DATE DATE

Due date for the ToDo DUE DATE

Start date for the ToDo START (Motorola Extended) DATE

Status of the ToDo STATUS (Motorola Extended) DATE

Motorola Category MOT_CATEGORY_ID (Motorola Extended) INT

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Scalable Image APIs

101

Chapter 25: Motorola Scalable Image APIs

This proprietary feature provides two Java™ ME APIs, Motorola Scalable Image and Motorola Scalable
Image Enhancements, that perform various rescaling operations on arbitrary images.

With this feature a developer can, for example, create thumbnails of pictures taken with the device's
camera, or can stretch small icons to fit a rectangular area greater than the icon's original dimensions.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Scalable Image APIs

102

Image scaling modes

The following diagram demonstrates the modes, with diagram (3) applying only to the enhanced API. The
proportional scaling mode minimize is not shown.

Figure 13: Scaled Image Example

NOTE: In (1) the original image is compressed to fit the destination rectangle.
In (2) the original image is expanded to fit the larger destination rectangle.
In (3) the original image is expanded and cut to fit the destination area (applies to enhancement
API only).

Table 24:Available scale modes and their costants

SCALING_MODE_
NON_PROPORTIONAL

This constant sets the non-proportional scaling mode, where the original image
will be stretched - width and height will be expanded or reduced to fit the
destination area. The scaled image will have horizontal and vertical dimensions
equal to that of the destination area. With this operation you can, for example,
create a rectangular image from a square image.

SCALING_MODE_
PROPORTIONAL_FIT

This constant sets the proportional scaling mode, where the size of the original
image is reduced to a destination area smaller than the original image size. The
scaled image will keep both horizontal and vertical dimensions proportional to
the original image dimensions. Using this mode you can display a hi-resolution
picture taken with the device's camera on its display.

SCALING_MODE_
PROPORTIONAL_EXPAND

This constant sets the proportional scaling mode, where the size of the original
image is expanded to a destination area greater than the original image size.
The scaled image will keep both horizontal and vertical dimensions proportional
to the original image dimensions. Using this mode you can create a "full screen"
image from a low-resolution picture taken with the device's camera.

Only in Enhancements API

SCALING_MODE_PROPORTI
ONAL_CUT_CENTERED

Only in Enhancements API

This constant sets the proportional scaling mode, where the image is resized
and then centered in the target area, being cropped to fit the destination
rectangle, if necessary. The scaled image will keep a proportional aspect,
although its dimensions after cropping may not be proportional and some details
from the original image's borders may also be discarded. With this mode you
can create a cropped image from a hi-resolution picture taken with device's
camera, removing the borders of the original image and keeping only the middle
of the image.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Scalable Image APIs

103

Creating a scaled image
Some snippets of code (following), demonstrate how this Motorola feature works. Your application must
import the class, com.motorola.extensions.ScalableImage.

To create the scaled image, call one of the overloaded versions of the static CreateImage method.
These overloaded methods are divided into three groups:

After the scaled image is created, you can access its internal Image object, using the getImage method,
and the original image size can be retrieved using getOrigWidth and getOrigHeight methods.

Code Sample 9 demonstrates how to implement Scalable Image:

Code Sample 9: Scalable Image implementation

import javax.microedition.lcdui.*;
import java.io.*;
import com.motorola.extensions.*;

public class ExpandableScalableImage {

Graphics myGraphics;
...

public void expandImage(String name) {

try {
// load the image data
InputStream myStream = getClass().getResourceAsStream("/small-image.jpg");
byte[] iconData = new byte[myStream.available()];
myStream.read(iconData);

// create a scalable image
ScalableImage imgFromArray = ScalableImage.createImage(iconData,176, 220, 400,

500, ScalableImage.SCALING_MODE_PROPORTIONAL_EXPAND);

// draw the resized image
myGraphics.drawImage(imgFromArray.getImage(), 0, 0, 0);

} catch (IOException ioe) {
ioe.printStackTrace();

}

}

Table 25: Overloaded method groups

Raw data arrays These arrays contain the image data before decoding, including format-specific headers and
other non-pixel data. These raw data arrays are internally decoded by the Scalable Image
Enhancements API, regardless of the format, assuming that the device can handle this image
type.

Input streams The Scalable Image API can use an arbitrary previously-opened InputStream to fetch the raw
image data. These raw image data is internally decoded, as described above.

Image filenames This API can also load a picture that is inside the device's file system, using a fully qualified
filename. It is important to remember that this API does not use the file connection (JSR-75)
for file operations, so the protocol suffix "file://" cannot be inserted in the beginning of the
filename string.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Scalable Image APIs

104

}

Code Sample 10: Expanded Non-proportional scalable image example

import javax.microedition.lcdui.*;
import java.io.*;
import com.motorola.extensions.*;

public class ExpandedNonPropScalableImage {

Graphics myGraphics;
...

public void createNonPropImage() {

try {
// create a scalable image from a file in phone memory
String file1 = "/a/mobile/picture/motorola.gif";
ScalableImage imgFromFile1 = ScalableImage.createImage(file1, 176, 220,

ScalableImage.SCALING_MODE_PROPORTIONAL_EXPAND);

// draw the resized image
myGraphics.drawImage(imgFromFile1.getImage(), 0, 0, 0);

// create a scalable image from a file in a removable card
String file2 = "/b/mobile/picture/photo-2007.jpg";
ScalableImage imgFromFile2 = ScalableImage.createImage(file2, 176, 220,

ScalableImage.SCALING_MODE_NON_PROPORTIONAL);

// draw the resized image
myGraphics.drawImage(imgFromFile2.getImage(), 0, 0, 0);

} catch (IOException ioe) {
ioe.printStackTrace();

}

}

Code Sample 11: Shrunk Scalable Image Example

import javax.microedition.lcdui.*;
import java.io.*;
import com.motorola.extensions.*;

public class ShrunkScalableImage {

Graphics myGraphics;
...

public void shrinkImage() {

try {
// create a scalable image from a resource input stream
InputStream myStream = getClass().getResourceAsStream("/image.png");
ScalableImage imgFromStream = ScalableImage.createImage(myStream, 44, 55,

ScalableImage.SCALING_MODE_PROPORTIONAL_FIT);

// draws the resized image
myGraphics.drawImage(imgFromStream.getImage(), 0, 0, 0);

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Scalable Image APIs

105

} catch (IOException ioe) {
ioe.printStackTrace();

}

}

}

NOTE: }Code Sample 12 applies to Scalable Image Enhancements only.

Code Sample 12: Scalable Image Enhancement Implementation

import javax.microedition.lcdui.*;
import java.io.*;
import com.motorola.extensions.*;

public class ExpandedCutCenteredImage {

Graphics myGraphics;
...

public void createScalableImage() {

try {
// create a ScalableImage from a file in phone memory
String file1 = "/a/mobile/picture/motorola.gif";
ScalableImage imgFromFile1 =
ScalableImage.createImage(file1, 176, 220,

ScalableImage.SCALING_MODE_PROPORTIONAL_EXPAND);

// draw the resized image
myGraphics.drawImage(imgFromFile1.getImage(), 0, 0, 0);

// create a ScalableImage from a file in a removable card
String file2 = "/b/mobile/picture/photo-2007.jpg";
ScalableImage imgFromFile2 =
ScalableImage.createImage(file2, 176, 220,
ScalableImage.SCALING_MODE_PROPORTIONAL_CUT_CENTERED);

// draw the resized image
myGraphics.drawImage(imgFromFile2.getImage(), 0, 0, 0);

} catch (IOException ioe) {
ioe.printStackTrace();

}
}

}

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Scalable Image APIs

106

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Secondary Display API

107

Chapter 26: Motorola Secondary Display API

This chapter details the capability for Java™ ME applications to render content to Motorola devices that
feature a secondary display.

Motorola devices that feature a secondary display provides the capability to extend application UI to the
secondary display.

User interface restrictions
The Secondary Display API provides functionality to access the secondary display:

• The secondary display API does not support Screen or Screen’s subclasses (Form, TextBox, etc.).
Screen and its subclasses support high-level layout and input support.

• The Secondary Display API does not support any input elements like Choice, Item, Text-Field, etc.

• Secondary Display API supports setting Ticker on secondary display.

• The Secondary Display API supports key event processing. Key mappings are supported for Voice
and Camera/Smart keys. Extra keys are supported depending on device requirements.

• Only one display, either primary or secondary can have focus at a given time. Primary display is active
when flip is open and secondary display is active when flip is closed. Events including key events are
delivered to the current active display only.

• The secondary canvas supports full-screen and normal modes. In full-screen mode, the whole
secondary display area is available for the MIDlet. In normal mode, the status area is not available for
display.

• The Secondary Display API supports all Graphics class functionality.

• Multimedia resources are available for MIDlets running on secondary display, playing audio media and
decoding images when the flip is closed.

Flip-open/Flip-close event handling
A running MIDlet can continue to run on the secondary display when the flip is closed.

A MIDlet running on secondary display can switch to primary display if the flip is opened.

The MIDlet receives Flip-Open/Flip-Close events and can take appropriate action based on these events.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola Secondary Display API

108

Exception handling
For portability purposes, the design of the API allows the developer to handle exceptions related to the
instantiation of the secondary display context. Appropriate exceptions are generated for invocation of
methods not supported by secondary display.

Push enabled applications
While the flip is closed, it is desirable to start up MIDlets if a push is received on a registered port and the
associated MIDlet can run on secondary display. This is subject to user confirmation.

Feature interaction
Any incoming call, message, or scheduled native application has priority over a MIDlet running in the
secondary display. If a native application requests focus, the running MIDlet is suspended.

Security
The Secondary Display API follows the MIDP security model.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola CMCC Enhancements API

109

Chapter 27: Motorola CMCC Enhancements API

This China Mobile Communications Corp (CMCC) API consists of two parts:

• User Interface, which implements the scale package

• Phonebook

User interface

Overview
This section describes interface functions applicable to small screens and with simple MIDP operations.
The javax.microedition.lcdui and javax.microedition.lcdui.game packages in the MIDP
2.0 specification define the User Interface. In addition, the com.cmcc.scale package is extended
according to the requirements of the Java™ service SP in order to implement the function SCALE.

Package
The User Interface part implements the following package, com.cmcc.scale.

Interface/class implementation
During SPs provide value-added applications for CMCC, they need stronger system support. So the UI
part is extended in Java specification to implement the scale function. The package, com.cmcc.scale,
implements the interface/class, ScaleImage.

ScaleImage
drawScaledRegion

•public static void drawscaledRegion throws ScaleImageException

•IllegalArgumentException, NotSupportScaleReq

This method implements image zoom via copy specified image to target area. The example is in below.
The specified method of target area is easy for floating point numbers supporting in the future

src Source Image

dst Destination Graphics

x_src Left/right abscissa of the copied area

y_src Left/right ordinate of the copied area

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola CMCC Enhancements API

110

The error in the new definition is inherited from java.lang.Exception.

Phonebook

NOTE: This section is only supported by some devices. For specifics, refer to the Device API Matrix.

Overview
This part defines the application program interfaces for accessing the device's phonebook (including
information on device and SIM card). These application program interfaces enable third-party developers
to conveniently access phonebook information and to better establish point-to-point applications.

Package
The Phonebook part implements the package, com.cmcc.phonebook.

Interface/class implementation
Package javax.wireless.messaging implements the following interface/class:

• PhoneBookEntry

• PhoneBook

w_src The width of the origin area

h_src The height of the origin area

transform Transform mode, refer to the definition of javax.microedition.lcdui.Graphics

x_dest Abscissa of the target anchor

y_dest Ordinate of the target anchor

w_dst The width of the destination area

h_dst The height of the destination area

anchor Refer to the definition of javax.microedition.lcdui.Graphics

IllegalArgumentException transform parameter illegal

NotSupportScaleReq Not support scale requirement defined in the parameter

ScaleImageException Error in scale operation

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola CMCC Enhancements API

111

Definition of Class
Classes PhoneBookEntry and PhoneBook are defined In package com.cmcc. phonebook.

public class PhoneBook extends java.lang.object

PhoneBookEntry retrieves a record from the address book. Its data structure is identical to the SIM data structure.
The variables in the class are public. If the record in the address book of the phone or SIM card does not match these
variables, the phone does not process the variables and the variables will be NULL.

Field summary for the field Java.lang.string

Table 26: PhoneBookEntry Field Summary:

PhoneBook provides the read record method from the address book. Field summary for static int:

Name Contact Person name, default is NULL

Mobile number Contact Person mobile number, default is NULL

Home number Contact Person home number, default is NULL

Office phone Contact Person office number, default is NULL

Email Contact Person email address, default is NULL

Reserve Reserved, default is NULL (same as SIM)

Table 27: PhoneBook Field Summary

DEVICE_ALL Constant, operation for both phone and SIM

DEVICE_PHONE Constant, operation for phone only

DEVICE_SIM Constant, operation for SIM card only

SORT_BY_EMAIL Constant, sorting by email for address book. If no email record is available,
sorting by name instead

SORT_BY_Name Constant, sorting by name for address book

SORT_BY_NOCHANGE Constant, no sort for address book again

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola CMCC Enhancements API

112

:

Methods inherited from class java.lang.Object are: equals, getClass, hashCode, notify, notifyAll,
toString, and wait.

Table 28: PhoneBook Method Summary

static void SetOperateStyle (int sort, int device) — Set address book operation mode, device
identifies operate object (SIM or Phone or ALL) default is DEVICE_ALL, sort identifies
type of sorting, default is SORT_BY_NAME

static int SetOperateStyle (int sort, int device) — Return record number in address book

static PhoneBookEntry getEntry (int index) — Get the record of specified record

static int findEntryByEmail(java.lang.String email) — get the first record series number suited to
email parameter

static int findEntryByNamel (java.lang.String name) — get the first record series number suited to
the first part of name

static int findEntryByTelNol(java.lang.String tel)get the first record series number suited to phone
number

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola 3D API

113

Chapter 28: Motorola 3D API

Recently, more and more phones are starting to support JSR 184 specification (Mobile 3D Graphics API).
For many Motorola Java ME devices, such as C975, C980, E1000/E1000R, V975, V980, A780 and E680,
the 3D function extends the device’s multimedia ability and brings to the customer a new visual
experience. It is expected that 3D games or applications based on Mobile 3D Graphics will be significantly
increasing with the growing of 3D functions in mobile devices.

Mobile 3D Graphics API introduction
The Mobile 3D Graphics API is an optional package comprising about 250 methods in about 30 classes.
This package contains several import classes, as follows:

Basic 3D application framework
A 3D image should be rendered on a Canvas or GameCanvas object, so you need to define a class that
extends from Canvas or GameCanvas. Besides this, the application usually also needs a timer or thread to
show animation or control the movement of the object. A basic 3D canvas implementation follows.

Code Sample 13: M3gCanvas.java

import javax.microedition.lcdui.Graphics;
import javax.microedition.lcdui.game.GameCanvas;
import javax.microedition.m3g.Graphics3D;
import javax.microedition.m3g.World;

class M3GCanvas extends GameCanvas implements Runnable {

Graphics3D g3d;
World world;

public M3GCanvas(){
super(false);

Object3D class The most important class because it is the base class of almost all the classes in the
package. All the extended classes from Object3D class can be rendered and loaded from
m3g file.

World class The root of the scene graph structure. All 3D objects should be added into the world
object. When loading an M3G file, the root 3D object usually is the world object. While
rendering a scene, the world object should be passed to Graphics3D object as a
rendered object.

Graphics3D class A singleton 3D graphics context that can be bound to a rendering target. All rendering is
done here.

Loader class A synchronous loader (deserializer) for entire scene graphs, individual branches, and
attribute objects. This class can be used to load an M3G file which contains all the 3D
objects.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola 3D API

114

setFullScreenMode(true);
// create and load world and other objects
Thread t = new Thread(this);
t.start();

}

public void run() {
Graphics g = getGraphics();
while (true) {
// rotate, move or animate object
try {
// bind the given Graphics or mutable Image2D
// as the rendering target of this Graphics3D
g3d.bindTarget(g);
// render the world
g3d.render(world);

} finally {
g3d.releaseTarget();

}
flushGraphics();
try {
Thread.sleep(100);

} catch (Exception e) {
}

}
}

...
}

Adding a thread sleep statement here (see following code), frees up CPU resources and allows other
threads to run.

Code Sample 14: Thread sleep statement

try {
Thread.sleep(100);
}catch (Exception e) {
}

The following code is a 3D MIDlet implementation. It creates a 3D canvas in startApp() method.

Code Sample 15: 3D MIDlet implementation

import javax.microedition.m3g.*;

public class CreateTetrahedron {

private void createTetrahedron() {

Mesh tetrahedron;
World world;

// the vertices used by the tetrahedron
short []POINTS = new short[] {0, 2, 0, // point 0, top

 0, 0, 1, // point 1
 -1, 0, -1, // point 2
 1, 0, -1 // point 3
 };

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola 3D API

115

// the points sequence
int []INDICES = new int[] {3, 0, 1,

 0, 1, 2,
 1, 2, 3,
 2, 3, 0

};

// the color for each point
byte []COLORS = new byte[] { 127, 127, 0,

 127, 0, 0, // R
 0, 127, 0, // G
 0, 0, 127 // B

};

// the length of each sequence in the indices array
// the tetrahedron is built by four triangles
int []LENGTH = new int[] {3, 3, 3, 3};
VertexArray POSITION_ARRAY, COLOR_ARRAY;
IndexBuffer INDEX_BUFFER;

// create a VertexArray to be used by the VertexBuffer
POSITION_ARRAY = new VertexArray(POINTS.length / 3, 3, 2);
POSITION_ARRAY.set(0, POINTS.length / 3, POINTS);
COLOR_ARRAY = new VertexArray(COLORS.length / 3, 3, 1);
COLOR_ARRAY.set(0, COLORS.length / 3, COLORS);
INDEX_BUFFER = new TriangleStripArray(INDICES, LENGTH);

// the VertexBuffer holds references to VertexArrays that
// contain the positions, colors, normals, and texture coordinates
// for a set of vertices
VertexBuffer vertexBuffer = new VertexBuffer();
vertexBuffer.setPositions(POSITION_ARRAY, 1.0f, null);
vertexBuffer.setColors(COLOR_ARRAY);

// create the 3D object defined as a polygonal surface
tetrahedron = new Mesh(vertexBuffer, INDEX_BUFFER, null);

// set the appearance of the mesh object
Appearance appearance = new Appearance();
PolygonMode polygonMode = new PolygonMode();
polygonMode.setPerspectiveCorrectionEnable(true);

// specify that both faces of a polygon are to be drawn
polygonMode.setCulling(PolygonMode.CULL_NONE);

// specify smooth shading
polygonMode.setShading(PolygonMode.SHADE_SMOOTH);
polygonMode.setTwoSidedLightingEnable(true);
appearance.setPolygonMode(polygonMode);

// set the appearance of the 3D object
tetrahedron.setAppearance(0, appearance);

// move the tetrahedron into the screen
tetrahedron.setTranslation(0.0f, -1.0f, -3.0f);
world = new World();
world.addChild(tetrahedron);

}

}

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola 3D API

116

Loading a 3D object
The previous code shows a basic 3D application framework without showing how to create a 3D object.
There are two ways to acquire a 3D object: from a data array or from an M3G file. The M3G file format is
defined in the JSR 184 specification and is provided as a compact and standardized way of populating a
scene graph. The following code shows how to create a world object from an M3G file

Code Sample 16: Creating a world object from an M3G file

public void loadFile() {
try {
// Load a m3g file, returns all root object3d object.
Object3D[] roots = Loader.load("mytest.m3g");
// Usually, the world is the first root node loaded.
myWorld = (World)roots[0];

} catch(Exception e) {
e.printStackTrace();

}
}

Loading 3D content from an M3G file is an easy way to program and get 3D content. It can be used to load
a complex scene. However, you must use a third-party tool to obtain an M3G file. For some simple
applications, it is not necessary to purchase such a tool before programming. Instead of loading 3D
content from an M3G file, the object data can be stored in arrays. Using this method, the 3D object is
created manually inside the program. The following method creates a colored tetrahedron.

Code Sample 17: Creatig a colored tetrahedron

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;
import javax.microedition.m3g.*;
import M3GCanvas;

public class TetrahedronDemo extends MIDlet implements CommandListener {

private Command cmdExit;
private Display d;
private M3GCanvas m3gCanvas;
private World myWorld;

public TetrahedronDemo(){
d = Display.getDisplay(this);
cmdExit = new Command("Exit", Command.EXIT, 0);
m3gCanvas = new M3GCanvas();
m3gCanvas.addCommand(cmdExit);
m3gCanvas.setCommandListener(this);

}

public void startApp() {
d.setCurrent(m3gCanvas);

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

public void commandAction(Command c, Displayable d){
notifyDestroyed();

}

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola 3D API

117

}

The code looks quite complex, but in fact you can re-use many statements. To create another 3D object,
you just need to change vertices, indices, colors (if needed), and norm (if necessary) arrays, and a little
code. The previous code creates a tetrahedron object as shown in Figure 14.

Figure 14: Tetrahedron object

Loading from an array method can create a simple object or a complex scene. To convert a complex scene
into a data array, you might need a converter tool. Unlike converting M3G file format, many free tools are
available to download. We recommend that you convert a 3D scene file into obj file format and then
convert the obj file into a data array. Java 3D API supports obj file format by providing ObjectFile class,
which can load obj file into a scene object.

Except for JSR 184 API, some Motorola phones support Motorola 3D API. The two sets of API are not the
same, so please pay close attention to device capabilities when choosing a device. For details of which
handsets support JSR 184 API and which support Motorola 3D API, see the API Matrix in either the SDK
or the MOTODEV Studio documentation.

JAVA ME DEVELOPER GUIDE FOR MOTOROLA OS
Motorola 3D API

118

Java ME Developer Guide for Motorola OS
Key Mapping

119

Appendix A: Key Mapping

The following table identifies key names and corresponding Java assignments. Java does NOT process
any other keys..

Table 29:Key Mapping

Key Assignment

0 Num0

1 Num1

2 Num2

3 Num3

4 Num4

5 Select, followed by Num5

6 Num6

7 Num7

8 Num8

9 Num9

Star (*) Asterisk

Pound (#) Pound

Joystick Left Left

Joystick Right Right

Joystick Up Up

Joystick Down Down

Scroll Up Up

Scroll Down Down

Softkey 1 Soft1

Softkey 2 Soft2

Menu Soft3 (Menu)

Send Select (Also, call placed if pressed on
lcdui.TextField or lcdui.TestBox with
PHONENUMBER constraint set)

Center Select Select

Java ME Developer Guide for Motorola OS
Key Mapping

120

End Handled according to Motorola specification.
Pause/End/Resume/Background menu invoked.

Table 29:Key Mapping

Key Assignment

Java ME Developer Guide for Motorola OS
JAD Attributes

121

Appendix B: JAD Attributes

JAD/manifest attribute implementations
The JAR manifest defines attributes that the Application Manager Software (AMS) uses to identify and
install the MIDlet suite. These attributes may or may not be found in the application descriptor.

The Application Manager Software uses the application descriptor in conjunction with the JAR manifest, to
manage the MIDlet. The application descriptor is also used:

• By the MIDlet, for configuration specific attributes.

• To allow the Application Manager Software on the handset to verify that the MIDlet is suited to the
handset before loading the JAR file.

• To allow configuration-specific attributes (parameters) to be supplied to the MIDlet(s) without
modifying the JAR file.

Motorola has implemented the following support for the MIDP 2.0 Java Application Descriptor (JAD)
attributes as outlined in JSR-118. Table 30 lists all MIDlet attributes, descriptions, and locations in the JAD
and/or JAR manifest that are supported in the Motorola implementation. Please note that the MIDlet is not
installed if the MIDlet-Data-Size is greater than 512k.

Table 30:MIDlet Attributes, Descriptions, JAD, and JAR Manifest

Attribute Name Attribute Description
JAR

Manifest JAD

MIDlet-Name The name of the MIDlet suite that identifies the MIDlet to
the user.

Yes Yes

MIDlet-Version The version number of the MIDlet suite. Yes Yes

MIDlet-Vendor The organization that provides the MIDlet suite. Yes Yes

MIDlet-Icon The case-sensitive absolute name of a PNG file within
the JAR, used to represent the MIDlet suite.

Yes Yes

MIDlet-Description The description of the MIDlet suite. No No

MIDlet-Info-URL A URL for further information describing the MIDlet suite. Yes No

MIDlet-<n> The name, icon, and class of the nth MIDlet in the JAR
file. The name identifies this MIDlet to the user. Icon is as
stated above. Class is the name of the class extending
the
javax.microedition.midlet.MIDletclass.

Yes, or no
if included
in the JAD.

Yes, or no if
included in the
JAR manifest.

MIDlet-Jar-URL The URL from which the JAR file is loaded. Yes

MIDlet-Jar-Size The number of bytes in the JAR file. Yes

Java ME Developer Guide for Motorola OS
JAD Attributes

122

MIDlet-Data-Size The minimum number of bytes of persistent data
required by the MIDlet.

Yes Yes

MicroEdition-Profile The Java™ ME profiles required. If any of the profiles are
not implemented, the installation fails.

Yes, or no
if included
in the JAD.

Yes, or no if
included in the
JAR manifest.

MicroEdition-
Configuration

The Java™ ME Configuration required, that is, CLDC. Yes, or no
if included
in the JAD.

Yes, or no if
included in the
JAR manifest.

MIDlet-Permissions Zero or more permissions that are critical to the function
of the MIDlet suite.

Yes Yes

MIDlet-Permissions-
Opt

Zero or more permissions that are non-critical to the
function of the MIDlet suite.

Yes Yes

MIDlet-Push-<n> Register a MIDlet to handle inbound connections. Yes Yes

MIDlet-Install-Notify The URL to which a POST request is sent to report
installation status of the MIDlet suite.

Yes Yes

MIDlet-Delete-Notify The URL to which a POST request is sent to report
deletion of the MIDlet suite.

Yes Yes

MIDlet-Delete-
Confirm

A text message to be provided to the user when
prompted, to confirm deletion of the MIDlet suite.

Yes Yes

Table 30:MIDlet Attributes, Descriptions, JAD, and JAR Manifest (Continued)

Attribute Name Attribute Description
JAR

Manifest JAD

Java ME Developer Guide for Motorola OS
Status and Error Codes

123

Appendix C: Status and Error Codes

The following status codes and messages are supported:

• 900 Success

• 901 Insufficient Memory

• 902 User Cancelled

• 903 Loss Of Service

• 904 JAR Size Mismatch

• 905 Attribute Mismatch

• 906 Invalid Descriptor

• 907 Invalid JAR

• 908 Incompatible Configuration or Profile

• 909 Application Authentication Failure

• 910 Application Authorization Failure

• 911 Push Registration Failure

• 912 Deletion Notification

Notification
When the MIDlet file size exceeds the maximum value set, a notice informs the user that the MIDlet file
download has been aborted.

When the MIDlet file size exceeds the maximum value set and the download is aborted, the following
notification is sent to the server: “901 Insufficient Memory.”

Java ME Developer Guide for Motorola OS
Status and Error Codes

124

Downloading MIDLets
Table 31: Actions and Results

Error logs
Table 32 shows the error logs associated with downloading MIDlets.

Action Result

Browser
connection
interrupted/ended

If the browser connection is interrupted/ended during the download/installation process, the
device is unable to send the HTTP POST with the MIDlet-Install Notify attribute. In this case,
the MIDlet is deleted to ensure that the user does not get a free MIDlet. This can occur when
a phone call is accepted and terminated during installation, because then the browser is not
in the state necessary to return the MIDlet Install Notify attribute.

Installation
completion

Upon completing installation, the handset displays a transient notice 'Installed to Games and
Apps'.

Timeout Upon timeout, the handset goes back to Browser.

Failed file Corrupt During Installation, if the MANIFEST file is wrong, the handset displays a transient notice
'Failed File Corrupt'. Upon timeout, the handset goes back to browser display.

Failed Invalid File If the JAD does not contain mandatory attributes, a “Failed Invalid File” message appears.

Handset flip closed During the installation process, if the handset’s flip is closed, the installation process
continues and the handset does not return to the idle display. When the flip is opened, the
'Installing...' dialog should appear on the screen and should be dynamic.

Timeout Upon timeout, the handset goes back to browser display.

Voice behavior During download and installation, voice record, voice commands, voice shortcuts, and
volume control are not supported, but incoming calls and SMS messages can be received.

Table 32:Error logs

Error Dialog Scenario Possible Cause Install-Notify

Failed: Invalid
File

JAD Download Missing or incorrectly formatted mandatory JAD
attributes: Mandatory: MIDlet-Name (up to 32
symbols); MIDlet-Version MIDlet-Vendor (up to
32 symbols); MIDlet-JAR-URL (up to 256
symbols); MIDlet-JAR_Size.

906 Invalid descriptor

Download
Failed

OTA JAR
Download

The received JAR size does not match the size
indicated.

904 JAR Size Mismatch

Cancelled:
<Icon>
<Filename>

OTA JAR
Download

User cancelled download. 902 User Cancelled

Java ME Developer Guide for Motorola OS
Status and Error Codes

125

Messages displayed after download
Table 33: Description of error messages

Download
Failed

OTA JAR
Download

Browser lost connection with server: Certification
path cannot be validated; JAD signature
verification failed; Unknown error during JAD
validation; See 'Details' field in the dialog for
information about specific error.

903 Loss of Service

Insufficient
Storage

OTA JAR
Download

Insufficient data space to temporarily store the
JAR file.

901 Insufficient Memory

Application
Already Exists

OTA JAR
Download

MIDlet version numbers are identical. 905 Attribute Mismatch

Different
Version Exists

OTA JAR
Download

MIDlet version on handset supersedes version
being downloaded.

Failed File
Corrupt

Installation Attributes are not identical to respective JAD
attributes.

Insufficient
Storage

Installation Insufficient program space or data space to
install suite.

901 Insufficient Memory

Application
Error

Installation Class references: non-existent class or method
Security Certificate verification failure;
Checksum of JAR file is not equal to Checksum
in MIDlet-JAR-SHA attribute; Application not
authorized.

Application
Expired

MIDlet
Launching

Security Certificates expired or removed. 910

Application
Error

MIDlet
Execution

Authorization failure during MIDlet execution:
Incorrect MIDlet.

Message Description

Download Failed If an error, such as a loss of service, occurs during download, then the transient notice
'Download Failed' must be displayed. Upon timeout, the handset goes back to an idle
state.

Download Cancelled A downloading application can be cancelled by pressing the END key. The transient
notice, 'Download Cancelled,' is displayed. Upon timeout, handset goes back to
Browser. When the download is cancelled, the handset cleans up all files, including any
partial JAR files and temporary files created during the download process.

Failed Invalid File This message is displayed if JAR -file size does not match the specified size. Upon
timeout, the handset goes back to Browser.

Table 32:Error logs (Continued)

Error Dialog Scenario Possible Cause Install-Notify

Java ME Developer Guide for Motorola OS
Status and Error Codes

126

Download Completed When downloading is done, the handset displays a transient notice “Download
Completed.” The handset then starts to install the application. After an application is
successfully downloaded, a status message must be sent back to the network server.
This allows for charging of the downloaded application. Charging is per the Over the Air
(OTA) User Initiated Provisioning (UIP) specification. The status of an install is reported
by means of an HTTP POST request to the URL contained in the MIDlet-Install-Notify
attribute. The only protocol that MUST be supported is 'http://'. During installation, if the
MANIFEST file is wrong, the handset displays the transient notice “Failed File corrupt.”

Message Description

Java ME Developer Guide for Motorola OS
System Properties

127

Appendix D: System Properties

Java.lang implementation
Motorola’s implementation for the java.lang.System.getProperty method supports additional system
properties to those specified in JSR 118.

The additional system properties are:

The IMEI and MSISDN properties are not available for unsigned MIDlets. For more information on this
class, go to http://java.sun.com/j2se/1.4.2/docs/api/java/lang/System.html. The following code sample
shows the java.lang implementation.

System.getProperty("batterylevel")
System.getProperty("MSISDN")
System.getProperty("CellID")
System.getProperty("IMEI")

The following information is provided from the java-tips.org web site and can be seen in its entirety at
http://www.java-tips.org/java-me-tips/midp/how-to-retrieve-system-properties-in-a-midlet.html.

This Java ME tip illustrates the retrieval of system properties in a MIDlet. MIDlets have direct access to all
four of the standard system properties defined by the CLDC specification.

Code Sample 18: Hello world program

import javax.microedition.lcdui.Display;
import javax.microedition.lcdui.Form;
import javax.microedition.midlet.MIDlet;

/*
 * A Hello, World program in Java ME MIDP, JSR 118.
 * The class must be public so the device
 * application management software can instantiate it.
 *
 */
public class HelloWorld extends MIDlet {

public HelloWorld() {}

public void startApp() {
// create a widget from a subclass of Displayable
Form form = new Form("Hello World");

CellID The device’s current Cell ID is returned during implementation.

batterylevel The application’s current battery level is returned, during implementation, as a percentage of full
charge

IMEI International Mobile Equipment Identity. The device’s IMEI number is returned during implementation.

MSISDN Mobile Station Integrated Services Digital Network. The device’s MSISDN of the device is returned
during implementation.

http://java.sun.com/j2se/1.4.2/docs/api/java/lang/System.html
http://www.java-tips.org/java-me-tips/midp/how-to-retrieve-system-properties-in-a-midlet.html

Java ME Developer Guide for Motorola OS
System Properties

128

// add a string to the form
String msg = "My first MIDlet!";
form.append(msg);

// display the form
Display display = Display.getDisplay(this);
display.setCurrent(form);
printSystemProperties();

}

/*
 * Display the values of standard system properties.
 *
 */
protected void printSystemProperties() {
String conf;
String profiles;
String platform;
String encoding;
String locale;

conf = System.getProperty("microedition.configuration");
System.out.println(conf);

profiles = System.getProperty("microedition.profiles");
System.out.println(profiles);

platform = System.getProperty("microedition.platform");
System.out.println(platform);

encoding = System.getProperty("microedition.encoding");
System.out.println(encoding);

locale = System.getProperty("microedition.locale");
System.out.println(locale);
System.out.println();

}

protected void pauseApp() {
notifyPaused();

}

protected void destroyApp(boolean flag) {
notifyDestroyed();

}
}

The following table is from the Sun Developer Network (SDN) web page,
 http://developers.sun.com/mobility/midp/questions/properties/index.html.

This table lists the defined system properties, drawing them from JSRs that are in the public review, final
ballot, or final state, as defined in the Java Community Process (JCP):

http://developers.sun.com/mobility/midp/questions/properties/index.html
http://jcp.org/en/home/index

Java ME Developer Guide for Motorola OS
System Properties

129

Java ME defined system properties

Table 34: Java ME system properties (from the Sun Developer Network)

JSR Property Name Default Valuea

a. (impl-dep) indicates that the default value is implementation-dependent.

30 microedition.platform null

microedition.encoding ISO8859_1

microedition.configuration CLDC-1.0

microedition.profiles null

37 microedition.locale null

microedition.profiles MIDP-1.0

75 microedition.io.file.FileConnection.v
ersion

1.0

file.separator (impl-dep)

microedition.pim.version 1.0

118 microedition.locale null

microedition.profiles MIDP-2.0

microedition.commports (impl-dep)

microedition.hostname (impl-dep)

120 wireless.messaging.sms.smsc (impl-dep)

139 microedition.platform (impl-dep)

microedition.encoding ISO8859-1

microedition.configuration CLDC-1.1

microedition.profiles (impl-dep)

177 microedition.smartcardslots (impl-dep)

179 microedition.location.version 1.0

180 microedition.sip.version 1.0

184 microedition.m3g.version 1.0

185 microedition.jtwi.version 1.0

195 microedition.locale (impl-dep)

microedition.profiles IMP-1.0

205 wireless.messaging.sms.smsc (impl-dep)

205 wireless.messaging.mms.mmsc (impl-dep)

211 CHAPI-Version 1.0

Java ME Developer Guide for Motorola OS
System Properties

130

Motorola getsystemProperty() keys for Motorola OS devices
The table that follows contains the Motorola getsystemProperty() keys. However, not all properties are
available on all Motorola OS handsets. In addition, new properties are added from time to time. Check the
MOTODEV website to get the most current information and the API Matrix to get device specifications.

Table 35:Motorola getsystemProperty() keys and their corresponding values

Key Value

MIDP

microedition.timezone Current timezone

microedition.configuration <Not implemented>

microedition.platform <Not implemented>

microedition.locale Locale: <language code>-<country code>

microedition.encoding <Not implemented>

microedition.profiles MIDP version and optional VSCL version.

microedition.hostname Local address to which the socket is bound.

microedition.commports Discover available comm ports

commports.maxbaudrate Maximum baud rate of comm ports. For P2K device is 115200

Device

device.software.version Device software version

device.flex.version Device flex version

device.model Device model ID

batterylevel Current battery level. Battery values are the following: 0, 1, 2, and 3, based on the
battery level.

IMSI International Mobile Subscriber Identity Code

default.timezone Current time zone information from the network

language.direction “0” if left-to-right, otherwise “1”

com.mot.network.airplanemode Status of Airplane Mode.

JSR75

microedition.io.file.FileConnectio
n.version

Version of the Java APIs for File Connection. For this version it will be set to "1.0".

microedition.pim.version Version of the Java APIs for PIM. For this version it will be set to "1.0".

file.separator File separator: '/'

JSR135

microedition.media.version Version of the Java APIs for Multimedia. For this version it will be set to "1.1".

supports.mixing Sound mixing is supported

supports.audio.capture Audio capture is supported

Java ME Developer Guide for Motorola OS
System Properties

131

supports.video.capture Video capture is supported

supports.recording Video recording is supported

audio.encodings Supported audio encodings (e.g., encoding=audio/amr encoding=audio/amr-wb)

video.encodings Supported video encodings

video.snapshot.encodings Supported video snapshots (e.g., encoding=jpeg encoding=image/jpeg)

MAType

GPRSState

JSR82

bluetooth.api.version Version of the Java APIs for Bluetooth wireless technology that is supported. For this
version it will be set to "1.0".

bluetooth.l2cap.receiveMTU.max The maximum ReceiveMTU size in bytes supported in L2CAP. The string will be in
Base 10 digits, e.g., "672". This value is product dependent. The maximum value is 64
Kb.

bluetooth.connected.devices.max Maximum number of connected devices supported (includes parked devices). The
string will be in Base10 digits. This value is product dependent.

bluetooth.connected.inquiry Is inquiry allowed during a connection? Valid values are either "true" or "false". This
value is product dependent.

bluetooth.connected.page Is paging allowed during a connection? Valid values are either "true" or "false". This
value is product dependent.

bluetooth.connected.inquiry.scan Is inquiry scanning allowed during connection? Valid values are either "true" or "false".
This value is product dependent.

bluetooth.connected.page.scan Is page scanning allowed during connection? Valid values are either "true" or "false".
This value is product dependent.

bluetooth.master.switch Is master/slave switch allowed? Valid values are either "true" or "false". This value is
product dependent.

bluetooth.sd.trans.max Maximum number of concurrent service discovery transactions. The string will be in
Base10 digits. This value is product dependent.

bluetooth.sd.attr.retrievable.max Maximum number of service attributes to be retrieved per service record. The string will
be in Base10 digits. This value is product dependent.

JSR120

wireless.messaging.sms.smsc SMS Message Center (SMSC) address

JSR205

wireless.messaging.sms.mmsc MMS Message Center (MMSC) address

JSR185

microedition.jtwi.version Version of the JTWI that is supported. For this version it is set to "1.0".

JSR177

microedition.smartcardslots Smartcard slots

Table 35:Motorola getsystemProperty() keys and their corresponding values (Continued)

Key Value

Java ME Developer Guide for Motorola OS
System Properties

132

JSR184

microedition.m3g.version Version of the Java APIs for Mobile 3G. For this version, it is set to "1.0" or absent

VSCL

vscl.device.backlight

vscl.device.blink

vscl.system.wakeupmode

vscl.system.silentmode

vscl.system.javasettingvolume

vscl.system.javasettingvibration

Table 35:Motorola getsystemProperty() keys and their corresponding values (Continued)

Key Value

	Java ME Developer Guide for Motorola OS
	Contents
	Purpose and audience
	Developer tools
	MOTODEV Studio for Java ME
	MOTODEV SDK for Java ME

	Additional resources
	Technical articles
	Developer knowledge base
	Other developer documentation
	JSR specifications

	Supported handsets
	Methods of downloading
	Method 1-OTA
	Method 2-Bluetooth
	Method 3-IrDA
	Method 4-Direct cable and Motorola MIDway tool
	The USER_AGENT string
	Available memory
	Rules
	Installing MIDlets
	Downloading a JAR file without a JAD
	Upgrading a MIDlet
	Status report on installing and deleting

	Introduction
	The MIDP 2.0 security environment
	MIDP trust
	Motorola’s general security policy

	API access - consumer prompts
	Operator branding
	Identifying installed Java ME root certificates

	Digital signing and MIDlet development lifecycle
	On-device testing
	Production signing

	Development certificates
	Bound certificates
	Obtaining a development certificate from Motorola

	Production signing (MIDlet signing)
	Choosing a signing authority
	Production signing authority - summation
	Motorola production code signing

	Motorola security configuration
	Summary

	Network connections
	User permission
	Indicating a connection to the user

	CommConnection API
	HTTPS connection
	DNS IP
	Network access
	Push registry
	Mechanisms for push
	Push Registry Declaration
	Push message delivery
	Deleting an application registered for push
	Security for push registry

	MIDlet request of a URL that interacts with browser
	MIDlet request of a URL that initiates a voice call
	Interfaces
	Classes
	Exceptions
	Multiple key press support
	PIM API
	FileConnection API
	Wireless Messaging API (WMA)
	SMS client mode and server mode connection
	SMS port numbers
	SMS storing and deleting received messages
	SMS message types
	SMS message structure
	SMS notification
	Network connections
	ToneControl
	VolumeControl
	StopTimeControl
	Manager class
	Supported multimedia file types
	Image Media
	Audio media
	Video media
	Feature/class support for JSR-135

	Audio mixing
	Media locators
	RTSP and RTP locators
	HTTP locator
	File locator
	Capture Locator
	Security
	Policy
	Permissions

	Basic concepts in OMA DRM
	DRM standards in the market

	Differences between OMA DRM 1.0 and 2.0
	SATSA-APDU optional package
	API requirements
	Security

	Motorola-specific implementation
	Location
	ProximityListeners
	Landmark
	AddressInfo
	Orientation
	LandmarkStore

	Flexible URL for downloading functionality
	Security policy
	Motorola PIM Enhancement API
	Contact List
	Event list
	ToDo list

	Image scaling modes
	Creating a scaled image
	User interface restrictions
	Flip-open/Flip-close event handling
	Exception handling
	Push enabled applications
	Feature interaction
	Security
	User interface
	Overview
	Package
	Interface/class implementation
	ScaleImage

	Phonebook
	Overview
	Package
	Interface/class implementation
	Definition of Class

	Mobile 3D Graphics API introduction
	Basic 3D application framework
	Loading a 3D object
	Appendix A: Key Mapping
	Appendix B: JAD Attributes
	JAD/manifest attribute implementations

	Appendix C: Status and Error Codes
	Notification
	Downloading MIDLets
	Error logs
	Messages displayed after download

	Appendix D: System Properties
	Java.lang implementation
	Java ME defined system properties
	Motorola getsystemProperty() keys for Motorola OS devices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

