
FLEX® ScriptFLEX® Script
Language ReferenceLanguage Reference

Version 2.0

April 1999

Copyright ©1998, 1999 Motorola, Inc. All rights reserved.

, Motorola, FLEX, and FLEX Script are trademarks or registered trademarks of Motorola, Inc.

All other brand or corporate names are trademarks or registered trademarks of their respective owners.

Motorola Platform Software Division

Messaging Information and Media Sector (MIMS)

200 North Point Center East

Suite 400

Alpharetta, GA 30022-8250

Document Number: 6881004B07

 CHAPTER 1

Alphabetical Language Reference

2 Introduction

Introduction

This reference manual is an alphabetical reference to the keywords that make up the
FLEX™ Script programming language. This manual provides information on the
following language components:

• Object classes and their associated methods and properties

• Events

• Functions

• Statements

• Operators

• Structures

Appendix A, “FLEX Script Class Reference, “ illustrates the properties and methods
used in the object classes of FLEX Script. Each page of the appendix shows the
properties and methods of the subclasses, as well as the lineage of the subclasses.

In addition to this volume, more information about programming with FLEX Script
and using the Integrated Development Environment (IDE) can be found in the FLEX
Script Programmer’s Guide and Tutorial, contains conceptual and procedural
information about FLEX Script, as well as a set of IDE tutorials.

Note The entire contents of the FLEX Script Language Reference and the FLEX Script
Programmer’s Guide and Tutorial can be found in the IDE online help system.

Tip To view help on a FLEX Script keyword in the IDE Source Editor, click on the keyword
and press F1.

For each item described in this manual, a sub-section titled Version compatibility is
provided. This information lists the versions of FLEX OS with which the item is
compatible.

FLEX Script
class reference

Other
documentation
resources

Version
compatibility

$$FLEX_INCLUDE statement 3

$$FLEX_INCLUDE statement

This environment variable defines the paths that the compiler will search for included
($$INCLUDE) files.

$$FLEX_INCLUDE "path-1[;path-2]"

A path (path-1, path-2, etc.) is the complete directory (folder) name of the included
file. Multiple path names must be separated by semicolons.

FLEX OS 1.0, 2.0

The compiler uses the following order of precedence when searching for included files;
first, it checks the path information of $$FLEX_INCLUDE; second, it checks the value
of the -I switch on the compiler command line; finally, it uses the path information
given with the $$INCLUDE statement.

No specific error code is returned if the compiler fails to find an included file
(although many error codes usually result).

When using the FLEX Script IDE, the compiler automatically searches in
\FLEXIDE\IDE\INCLUDE for included files.

The example causes the compiler to check two directories for included files.

$$FLEX_INCLUDE = "c:\flexide\IDE\include2;c:\flexide\IDE\include3"

$$INCLUDE, $$IFDEF__IFDEF_Statement

Purpose

Syntax

Arguments

Version
Compatibility
Remarks

Example

See also

4 $$IFDEF statement

$$IFDEF statement

The $$IFDEF statement allows you to conditionally compile source code based on the
existence of the specified DOS variable or program constant.

$$IFDEF symbol

 // TRUE statements

[$$ELSEIF]

[// FALSE statements]

$$ENDIF

Symbol can be either a program constant or a DOS environment variable. The
optional $$ELSEIF keyword defines a block of statements to execute if the $$IFDEF
condition is false. An $$IFDEF statement must be ended with an $$ENDIF keyword.

Symbol can be either a DOS variable or a program constant.

To create a DOS variable, start a DOS session and use the following syntax:

SET DOS_Variable = AnyValue

where DOS_Variable is the name of the variable and AnyValue is any numeric or
alphanumeric value. The variable exists only as long as the DOS session exists (unless
you place the statement in your AUTOEXEC.BAT file).

To create a program constant, define a constant of any type in the header region of the
application source code.

Const DataType APP_CONSTANT = AnyValue

where APP_CONSTANT is the name of the application constant, DataType is the data
type of the constant, and AnyValue is a value of the appropriate data type.

The compiler checks only for the existence of the variable or constant, hence the values
are not important.

FLEX OS 1.0, 2.0

Purpose

Syntax

Arguments

Settings

Version
Compatibility

$$IFDEF statement 5

$$IFDEF statements can be nested.

An $$IFDEF must be explicitly ended with an $$ENDIF. There must an equal number
of $$IFDEF and $$ENDIF keywords.

An $$ELSEIF keyword is always paired with the nearest $$IFDEF.

A possible use of conditional compilation is building applications based on the target
device. Another use is compiling in or out of debug mode.

Like all compiler directives, $$IFDEF, $$ELSEIF, and $$ENDIF are case-sensitive.

The example shows a skeleton for conditional compilation based on debugging.

const Integer DEBUG = 1

$$IFDEF DEBUG

// source with debug statements

$$ELSEIF

// source without debug statements

$$ENDIF

$$FLEX_INCLUDE, $$INCLUDE

Remarks

Example

See also

6 $$INCLUDE statement

$$INCLUDE statement

Includes the contents of the specified Include file (INC) in the compile.

$$INCLUDE "[path]filename.inc"

FLEX OS 1.0, 2.0

Include files usually contain declarations for variables, constants, and objects.

The following example shows how you can include files that are not in the source
directory.

$$INCLUDE "c:\MyProject\include\database.inc"

$$INCLUDE "c:\MyProject\include\MsgFormat.inc"

$$INCLUDE "c:\common\custom.inc"

Include files (INC)

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Accept() method 7

Accept() method

The Accept() method marks the mail object as accepted.

mailObjectClass

Accept()

FLEX OS 1.0, 2.0

This is an acknowledgment flag, typically set when the message is loaded for the first
time, to indicate that an application has received and dealt with the message.

When using this method, be sure to include MailObj.Inc.

Creates a mail object named M then accepts the message.

$$INCLUDE "MailObj.Inc"

Object M isa mailObjectClass //Instantiate it

EndObject

M.Accept() //Accept the message

ContentSymbolLen method, ContentType method, EnvStatus method, Lock method,
RcvErrCnt method, RcvQuality method, ReplyAllowed method, TimeRcv method,
TimeSent method, MailObjectClass

Purpose

Applies To

Syntax

Version
Compatibility

Remarks

Example

See also

8 ActivateLCD function

ActivateLCD function

Turns on the LCD.

ActivateLCD()

FLEX OS 1.0, 2.0

The LCD is turned on under program control. The LCD remains on until the LCD
Timeout() period has expired.

Turns on the LCD.

ActivateLCD()

DeactivateLCD function

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Add_Bitmap() method 9

Add_Bitmap() method

statusBarClass

The Add_Bitmap method adds an active icon to the status bar.

Add_Bitmap(string BitmapName, integer TaskID, integer Method)

Argument Description

BitmapName String constant that indicates the bitmap file to use for the icon.

TaskID Identifier of the task to be notified when the icon is selected. (Selected icons
may only be used in the floating cursor implementation.

Method Function of the particular TaskID to be invoked when the icon is selected.
(Selected icons may only be used in the floating cursor implementation.)

FLEX OS 1.0, 2.0

Icons are added from right to left on the status bar; each icon added further limits the
space available for text on the left end of the status bar.

For status bars: Bitmaps and status bar text are shared across all instances of
statusBarClass. Be careful adjusting the contents of a status bar since all are affected.

Creates an object of type statusBarClass and adds an icon to it.

Object M isa statusBarClass // Instantiate the object

EndObject

M.Add_Bitmap("BitmapFile", 101, 1004) // Add the bitmap to the

// status bar

Remove_Bitmap method, Insert_Bitmap method

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

10 Add_field() method

Add_field() method

DbcreateClass, DataObject

The add_field method describes the record format of the database to be created from
the DBcreate object.

add_field(string schema)

schema is a string representing the format of the record in the database or dataObject.

FLEX OS 1.0, 2.0

Schema = a type identifier. The types define the field type and, for strings, the size
(length specifier).

Data type Description

Sn String, where n is the length of the string

R Real type

I Integer type

D Date type

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Add_field() method 11

A database or dataObject created with the following schema would have records that
look like this:

1st field = String that can hold up to 11 characters

2nd field = Real (floating point) number

3rd field = String that can hold 1 character

4th field = Integer

5th and 6th fields = Two dates

7th field = Another real number

8th field = String of up to 100 characters

Object newDBObject isa DBCreateClass

EndObject

newDBObject.add_field("S11RS1IDDRS100")

DBCreate(newDBObject, NewDatabaseName)

Note Trailing unused space after the last used character will not be saved to FIS. If a string is
the last field in the database, it can be considered variable length, up to the maximum defined
size. The unused portion will not use up FIS space.

DBcreate, DBCreateClass, GetData, PutData

Example

See also

12 Add_Item() method

Add_Item() method

listBoxClass

Adds a new item with Text to a list at the Location specified.

Add_Item(integer Location, string Text)

Argument Description

Location Position in the list where the new item should be placed.

Text Text to be displayed on the new item.

FLEX OS 1.0, 2.0

If Location is negative, or not less than the number of items currently in the list, the
new item is added after the last element.

Adding at Location 0 adds before the first element.

Creates a listBoxClass named M and adds an item to it.

Object M isa listObjectClass // instantiate it

EndObject

M.Add_Item (0, "New item") // add new item to the start of the list

Remove_Item method, Clear method, Number_Items method

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

Additive operators 13

Additive operators

The addition operator (+) is used to add two expressions, while the subtraction operator
(–) implements subtraction.

The operand types supported by the additive operators: Integer, Real, String, Date. If
the operands are of type String or Date, they are converted into integers before being
computed. If the operands are of dissimilar types, the operand with the lower
precedence is converted into the type of the higher precedence operand, with the left-
hand side of an assignment expression taking on the highest precedence. The type
precedence (in decreasing order): Real, Integer, String, Date. The return type is always
the type of the highest precedence operand.

Note All additive operators have left-to-right associativity.

FLEX OS 1.0, 2.0

Overview

Version
Compatibility

14 Additive operators

Additive operators

integer x, z

real y, result

x = 10

y = 20.5

z = 2

result = x + y

result = y - x

// The line below is evaluated as: (x + y) + z due to

// left-to-right associativity

result = x + y + z

AND operator, Equality operators, Multiplicative operators, OR operator, Relational
operators, Unary operators, XOR operator

Example

See also

AddPlayElement function 15

AddPlayElement function

Adds an element to the specified playlist. The element can be a tone on, tone off,
vibrate on, vibrate off, LED on, LED off, event, or wait.

AddPlayElement(integer ListID, structureType PlayListStruct)

This function has the following arguments.

Argument Description

ListID The handle for the playlist to which an element is added

PlayListStruct The element structure used to add elements to the playlist (tone
on/off, vibrate on/off, LED on/off, event, wait, and short wait)

This function’s arguments have the following values:

Field Value Description

NTF_TYPE_NULL 0

NTF_TYPE_TONE 1 Used with function 1 or 2 below

NTF_TYPE_VIBRATE 2 Used with function 3 or 4 below

NTF_TYPE_LED 3 Used with function 5 or 6 below

NTF_TYPE_EVENT 4

NTF_TYPE_WAIT 5

NTF_TYPE_SHORT_WAIT 6

Purpose

Syntax

Parameters

16 AddPlayElement function

Function Value Description

NTF_FUNC_NOP 0 Used with field 0 above

NTF_FUNC_TONE_ON 1 Used with field 1 above

NTF_FUNC_TONE_OFF 2 Used with field 1 above

NTF_FUNC_VIBRATE_ON 3 Used with field 2 above

NTF_FUNC_VIBRATE_OFF 4 Used with field 2 above

NTF_FUNC_LED_ON 5 Used with field 3 above

NTF_FUNC_LED_OFF 6 Used with field 3 above

This function returns the following:

NTFERR_NO_ERROR

NTFERR_INVALID_LIST_ID

NTFERR_OUT_OF_MEMORY

NTFERR_ILLEGAL_DEVICE

FLEX OS 1.0, 2.0

None

Returns

Version
Compatibility

Remarks

AddPlayElement function 17

Three elements will be created and added to a playlist. The playlist will be saved to a
file, then deleted from memory. (Deleting from memory does not destroy the saved
copy.)

integer CurrPlayList

PlayListStruct tempStruct

CurrPlayList = CreatePlayList()

tempStruct.field1 = Freq //frequency

tempStruct.field2 = Vol //volume

tempStruct.field3 = NTF_TYPE_TONE //device

tempStruct.field4 = NTF_FUNC_TONE_ON //device action

AddPlayElement(CurrPlayList, tempStruct) //Turn tone of freq and vol on

tempStruct.field1 = Duration

tempStruct.field3 = NTF_TYPE_WAIT

AddPlayElement(CurrPlayList, tempStruct) // Wait for duration

tempStruct.field3 = NTF_TYPE_TONE

tempStruct.field4 = NTF_FUNC_TONE_OFF

AddPlayElement(CurrPlayList,tempStruct) // Turn tone off

tempStruct.field3 = NTF_TYPE_VIBRATE //device

tempStruct.field4 = NTF_FUNC_VIBRATE_ON //device action

AddPlayElement(CurrPlayList, tempStruct) // Turn vibrate on

tempStruct.field3 = NTF_TYPE_LED //device

tempStruct.field4 = NTF_FUNC_LED_ON //device action

AddPlayElement(CurrPlayList, tempStruct) // Turn LED on

tempStruct.field1 = Duration

tempStruct.field3 = NTF_TYPE_WAIT

AddPlayElement(CurrPlayList, tempStruct) // Wait for duration

tempStruct.field3 = NTF_TYPE_VIBRATE

tempStruct.field4 = NTF_FUNC_VIBRATE_OFF

AddPlayElement(CurrPlayList,tempStruct) // Turn vibrate off

tempStruct.field3 = NTF_TYPE_LED

tempStruct.field4 = NTF_FUNC_LED_OFF

AddPlayElement(CurrPlayList,tempStruct) // Turn LED off

SavePlayList(CurrPlayList,"FIS:7.1")

DestroyPlayList(CurrPlayList)

The result of this playlist being called by StartPlaylist would be a tone on, wait
duration, tone off, vibrate on, LED on, wait duration, vibrate off, LED off.

CancelPlaylist function, CreatePlayList function, DestroyPlayList function,
LoadPlayList function, PlayBeep function, SavePlayList function, StartPlayList
function

Example

See also

18 AdrListCnt property

AdrListCnt property

mailObjectClass

Sets or gets the number of items in an address list for an outgoing message, indicating
the maximum index for AdrType[1], AdrRef[1], AdrVal[1], and AdrValType[1]
properties.

MailObject.AdrListCnt

FLEX OS 1.0, 2.0

Default = 1

When using the AdrListCnt property, be sure to include MailObj.Inc.

It is usually not necessary to set the AdrListCnt property. FLEX script will
automaticlly set it when any of the address properties, AdrType[1], AdrRef[1],
AdrVal[1], or AdrValType[1] are set. For example, if the very first address property
set by a program is M.AdrType[10] = AdrType-Email, then M.AdrLstCnt is
automatically set to 10, and the first 9 addresses are blank. However, it is faster and
more efficient to set the count explicitly before writing any addresses.

Note The property is valid only if the objects CarrierID property is CARRIER_REFLEX_50.

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Usage Note

AdrListCnt property 19

Creates and sends a message using text from the message pad as the text of the
message. The AdrListCnt property in this example set the Address List Count to 2
before writing the elements of the addresses. Note that the default values are used for
AdrValType and AdrRef.

$$INCLUDE "MailObj.Inc"

// Define Variables

string szMessage

integer OutGoingMsgID

// Construct a message object:

Object OutGoingMsg isa mailObjectClass

EndObject

// Assign the message text from the message pad to a

// local string variable:

szMessage = Outbox.MsgTextbox.Text

// Prepare the message by assigning the properties of the

// message object

OutGoingMsg.msgbasetype = BASE-TYPE-PERSONAL

// NEW_MESSAGE

OutGoingMsg.carrierID = CARRIER-REFLEX-50 // REFLEX_PAGER

OutGoingMsg.adrlistcnt = 2// Address list

OutGoingMsg.adrtype[1] = ADR-TYPE-EMAIL // EMAIL_MESSAGE

OutGoingMsg.adrval[1] = "user1@email.mot.com"

// Email address

OutGoingMsg.adrtype[2] = ADR-TYPE-PAGER-2WAY

// PAGER_MESSAGE

OutGoingMsg.adrval[2] = "219910216" // PAGER PIN

OutGoingMsg.contentlistcnt = 1 // Message content count

OutGoingMsg.contentval[1] = szMessage // Message body

// Save the message to the FIS memory:

OutGoingMsgID = OutGoingMsg.Save()

// Send the message: this will cause the message file to

// be read

// and sent by the framework messaging sub-system:

SendMail(OutGoingMsgID)

// Clean up

OutGoingMsg.Destroy_Object()

AdrRef property, AdrType property, AdrVal property, AdrValType property,
mailObjectClass

Example

See also

20 AdrListCnt() method

AdrListCnt() method

carrierObjectClass

The AdrListCnt() method sets or gets the number of items in an address list for an
outgoing message, indicating the maximum index for AdrType[], AdrRef[],
AdrVal[], and AdrValType[] properties.

AdrListCnt()

FLEX OS 1.0, 2.0

When using the AdrListCnt() method, be sure to include MailObj.Inc.

iCount is the number of items in an address list.

$$INCLUDE "MailObj.Inc"

Integer iCount

Object C isa CarrierObjectClass

EndObject

iCount = C.AdrListCnt()

C.DestroyObject()

AdrListCnt[] property, AdrType method, CannedReply method, FormatType method,
MailboxCnt method, MailboxID method, MailboxName method, MaxLength method,
MinLength method, ProfileFormat method, ProfileUpdateFlag method, ServiceName
method, UpdateTimePermitted method, carrierObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

AdrRef[] property 21

AdrRef[] property

mailObjectClass

When AdrValType[] is CONTENT_BY_REF, then the AdrRef[] property is a code
mutually understood by originator and receiver as a shorthand substitution for an
address. AdrVal[] would be undefined.

Integer AdrRef[integer ItemNum]

ItemNum is an integer varying from 1 to the number of items on the list, as returned by
the AdrListCnt property.

FLEX OS 1.0, 2.0

The AdrRef[] property is implemented syntactactically but not semantically in FLEX
OS 1.0. Reading always yields the default value of 0, writing it has no effect.

When using the AdrRef[] property, be sure to include MailObj.Inc.

This property is valid only if the objects CarrierID property is
CARRIER_REFLEX_50.

The AdrRef[] property iCode is the shorthand substitution for an address.

$$INCLUDE "MailObj.Inc"

Integer iCount

Integer iCode

Object M isa MailObjectClass

EndObject

iCount = M.AdrListCnt

iCode = 42 //an arbitrary code

M.AdrRef[iCount] = iCode

M.DestroyObject()

AdrListCnt property, AdrType property, AdrVal property, AdrValType property,
mailObjectClass

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

22 AdrType() method

AdrType() method

carrierObjectClass

The AdrType(integer Item) method returns a code denoting the address type.

AdrType(integer Item)

Item is an integer varying from 1 to the number of items in the list.

FLEX OS 1.0, 2.0

Indexed by the return of AdrListCnt.

The code is mutually understood by originator and receiver, and in FLEX OS 1.0, has
one of the following values:

ADR_TYPE_VIRTUAL

ADR_TYPE_SERVER

ADR_TYPE_PHONE

ADR_TYPE_FAX

ADR_TYPE_PAGER1WAY

ADR_TYPE_PAGER2WAY

ADR_TYPE_DTMF

ADR_TYPE_EMAIL

ADR_TYPE_CARRIER_REPLY

When using the AdrType() method, be sure to include MailObj.Inc.

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

AdrType() method 23

Item is an integer varying from 1 to the number of items in the list.

$$INCLUDE "MailObj.Inc"

Object C isa CarrierObjectClass

EndObject

integer Val, Item

Item = 1

Val = C.AdrType(Item)

AdrType[] property, AdrListCnt method, CannedReply method, FormatType method,
MailboxCnt method, MailboxID method, MailboxName method, MaxLength method,
MinLength method, ProfileFormat method, ProfileUpdateFlag method, ServiceName
method, UpdateTimePermitted method, carrierObjectClass

Example

See also

24 AdrType[] property

AdrType[] property

mailObjectClass

Sets or gets a code referring to an address type.

integer AdrType[integer ItemNum]

ItemNum is an integer varying from 1 to the number of items on the list.

Default = BY_VAL..

FLEX OS 1.0, 2.0

Indexed by AdrListCnt.

When using the AdrType property, be sure to include MailObj.Inc.

The code is mutually understood by originator and receiver, and in FLEX version 1.0,
has one of these values:

• ADR_TYPE_VIRTUAL

• ADR_TYPE_SERVER

• ADR_TYPE_PHONE

• ADR_TYPE_FAX

• ADR_TYPE_PAGER1WAY

• ADR_TYPE_PAGER2WAY

• ADR_TYPE_EMAIL

• ADR_TYPE_DTMF

• ADR_TYPE_CARRIER_REPLY

Note This property is valid only if the object's CarrierID property is CARRIER_REFLEX_50.

Applies To

Purpose

Syntax

Parameters

Settings

Version
Compatibility

Remarks

AdrType[] property 25

iVal is an integer. ItemNum is an integer varying from 1 to the number of items in the
list.

$$INCLUDE "MailObj.Inc"

integer iVal, ItemNum

iVal = ObjectName.AdrType[ItemNum]

//Reading a list property

ObjectName.AdrType[ItemNum] = iVal

//Writing a list property

AdrListCnt property, AdrRef property, AdrVal property, AdrValType property,
mailObjectClass

Example

See also

26 AdrVal[] property

AdrVal[] property

mailObjectClass

Sets or gets a string describing the address.

String AdrVal[ItemNum]

ItemNum is an integer varying from 1 to the number of items in the list.

FLEX OS 1.0, 2.0

The text string constituting the AdrVal property must be mutually understood between
the originator and receiver.

This property is defined only when AdrValType[1] is CONTENT_BY_VAL or
CONTENT_BY_REF_FILE.

Note This property is valid only if the object's CarrierID property is CARRIER_REFLEX_50.

szVal is a string variable. ItemNum is an integer varying from 1 to the number of items
in the list.

String szVal

Integer ItemNum

szVal = ObjectName.AdrVal[ItemNum]

//Reading a list property

ObjectName.AdrVal[ItemNum] = szVal

//Writing a list property

AdrListCnt property, AdrRef property, AdrType property, AdrValType property,
mailObjectClass

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

AdrValType[] property 27

AdrValType[] property

mailObjectClass

The AdrValType property sets or gets the format of AdrVal[].

integer AdrValType[integer ItemNum]

ItemNum is an integer varying from 1 to the number of items in the list.

Default = BY_VAL.

FLEX OS 1.0, 2.0

The AdrValType[I] property has the following values:

• CONTENT_BY_VAL means that the AdrVal[I] property is a text string denoting
the address.

• CONTENT_BY_REF_CODE means that the AdrRefCode[I] property holds the
code substituting for the address.

• CONTENT_BY_REF_FILE means that the AdrVal[I] property is a file name.
The contents of the file is a text string denoting the address.

When using the AdrValType[] property, be sure to include MailObj.Inc.

Note This property is valid only if the object's CarrierID property is CARRIER_REFLEX_50.

iVal is an integer. ItemNum is an integer varying from 1 to the number of items in the
list.

$$INCLUDE "MailObj.Inc"

integer iVal, ItemNum

iVal = ObjectName.AdrValType[ItemNum] //Reading a list property

ObjectName.AdrValType[ItemNum] = Val //Writing a list property

AdrListCnt property, AdrRef property, AdrType property, AdrVal property,
mailObjectClass

Applies To

Purpose

Syntax

Parameters

Settings

Version
Compatibility

Remarks

Example

See also

28 Allocate_Items() method

Allocate_Items() method

Preallocates space for items in a listbox.

listBoxClass

Allocate_Items(Integer NumberofItems)

The maximum value for NumberofItems in a listbox is 250.

FLEX OS 1.0, 2.0

The Allocate_Items method lets you preallocate up to 250 items. All items are created
blank.

If you use Set_Item_Values on an item beyond the number you have allocated, the call
to Set_Item_Values will fail. Add_Items, however, will automatically allocate
additional items if necessary..

You can use Allocate_Items to shrink the list of items after you have preallocated
items.

Preallocate a 100-item list of bitmaps.

AList.Allocate_Items(100)

Alist.Bitmap[25] = "Foo.ROB"

ListBoxClass, Set_Item_Values method

Purpose

Applies To

Syntax

Arguments

Version
Compatibility

Remarks

Example

See also

AND operator 29

AND operator

The AND operator returns a logical or bitwise value, depending on its usage.

Bitwise AND

The AND operator returns the bitwise AND of two integer operands. Bits that are ON
(1) in both operands are ON in the result; bits that are OFF (0) in both operands are
OFF in the result. The AND operator has left-to-right associativity.

Logical AND

The AND operator returns a logical (or boolean) value when used with boolean
operands. (Relational expressions are an example of boolean operands.) The logical
AND operator returns TRUE (1) only when both operands are TRUE and returns
FALSE (0) otherwise.

FLEX OS 1.0, 2.0

// Used as logical AND operator

integer x, y, z

x = 1

y = 2

z = 0

If ((x > y) AND (x > z))

 // x is the largest number

else

 // x is not the largest number

// Used as bitwise AND operator

1011 1110

AND 0010 1010

0010 1010

Unary operators, Multiplicative operators, Additive operators, Relational operators,
Equality operators, OR operator, XOR operator

Overview

Version
Compatibility

Examples

See also

30 AppFrom property

AppFrom property

mailObjectClass

Sets or gets a code denoting the source application.

integer AppFrom

Default = 0.

FLEX OS 1.0, 2.0

When using the AppFrom property, be sure to include MailObj.Inc.

Note This property is defined only when AppFrom is CARRIER_IR, CARRIER_LOOPBACK,
or CARRIER_LOCAL.

$$INCLUDE "MailObj.Inc"

integer iVal

iVal = ObjectName.AppFrom //Reading a non-list property

ObjectName.AppFrom = iVal //Writing a non-list property

AppTo property, mailObjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

ApplicationInstalledEvent() 31

ApplicationInstalledEvent()

Applications to Shell

Notifies the Shell application that an application has been installed successfully.

Event ApplicationInstalledEvent (integer TaskID, integer Unused-2)

 // code to handle event

End Event

Argument Description

TaskID Logical task ID of the installed application

Unused-2 Not used

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

At boot time an application communicates its status to the Shell application by using
the ApplicationInstalledEvent(). The application should send this event to the Shell
when it has completed its initialization and is ready to run.

28

About event handlers, Event Classification

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

32 AppTo property

AppTo property

mailObjectClass

Sets or gets a code denoting the destination application.

integer AppTo

Default = 0.

FLEX OS 1.0, 2.0

This property is valid for any valid CarrierID.

When using the AppTo property, be sure to include MailObj.Inc.

$$INCLUDE "MailObj.Inc"

integer iVal

iVal = ObjectName.AppTo //Reading a non-list property

ObjectName.AppTo = Val //Writing a non-list property

AppFrom property, mailObjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

ASC function 33

ASC function

Returns the ASCII value of the first character of a given string.

integer ASC(string CharToConvert)

Needs the ASCII value of the first character of CharToConvert.

Returns an integer.

FLEX OS 1.0, 2.0

The ASC function is the inverse of the CHR() function.

The ASC function is often used to decode strings where only the first character is used.

Returns the Ascii value of the string someStr ("H").

integer ascValueOfH

string someStr

someStr = “H”

ascValueOfH = ASC(someStr)

CHR function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

34 AtEdgeEvent

AtEdgeEvent

Generated when the user attempts to navigate off the screen in a super ListBox or
virtual ListBox. This event can be trapped in a FLEX Script application.

When used for superListBoxes:

Event AtEdgeEvent (sListBoxClass MyObject, integer WhichEdge)

 // code to handle event

End Event

When used for virtual listboxes:

Event AtEdgeEvent (ListBoxClass MyObject, integer CurrentItem)

 // code to handle event

End Event

When used for superListBoxes:

Argument Description

MyObject Indicates the superListBox object being modified.

WhichEdge Symbolic constant indicating which edge of the screen boundary was
crossed while using the Superlist box. The constants include:
EDGE_NONE, EDGE_TOP, EDGE_BOTTOM, EDGE_LEFT,
EDGE_RIGHT, EDGE_PGUP, and EDGE_PGDOWN.

When used for virtual ListBoxes:

Argument Description

MyObject Indicates the virtual ListBox object being modified.

CurrentItem Current item (item in the listbox, not the actual database).

Purpose

Syntax

Parameters

AtEdgeEvent 35

FLEX OS 1.0, 2.0

The WhichEdge argument indicates which edge of the screen was crossed.

35

sListBoxClass

Version
Compatibility

Remarks

Event Code

See also

36 AttachmentCnt property

AttachmentCnt property

mailObjectClass

Sets or gets the number of attachments in a message.

Integer AttachmentCnt

Default = 0.

FLEX OS 1.0, 2.0

FLEX OS 1.0 support a maximum value of 1 for this property.

It is usually necessary to set this property. If AttachmentSpec[I] is set,
AttachmentCnt is automatically set to 1.

Note that multiple attachments must have consecutive FIS IDs.

When using the AttachmentCnt property, be sure to include MailObj.Inc.

$$INCLUDE "MailObj.Inc"

integer iVal

iVal = ObjectName.AttachmentCnt

//Reading a non-list property

ObjectName.AttachmentCnt = Val

//Writing a non-list property

AttachmentSpec property, mailObjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

AttachmentSpec[] property 37

AttachmentSpec[] property

mailObjectClass

Gets the full FIS item specification of the attached FIS item specified.

String AttachmentSpec[1]

Default = '""

FLEX OS 1.0, 2.0

The string has the form FIS:m.n where m and n are integers in the FIS specification.

When using the AttachmentSpec[] property, be sure to include MailObj.Inc.

$$INCLUDE "MailObj.Inc"

string iVal

iVal = ObjectName.AttachmentSpec[1]

// Reading a non-list property

ObjectName.AttachmentSpec[1] = iVal

// Writing a non-list property

AttachmentCnt property, mailObjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

38 Autoupdate_State property

Autoupdate_State property

UIobjectClass

Defers the redrawing of a screen object while a series of changes is being made.

integer Autoupdate_State

TRUE (1) or FALSE (0). (Default = TRUE)

FLEX OS 1.0, 2.0

By default, when a visual property of an object changes, the change is shown
immediately to the user. If a series of changes needs to be made and you don’t want to
redraw the object repeatedly, set Autoupdate_State to FALSE to defer the update.
When Autoupdate_State is set back to TRUE, the object is painted with the changes.

Note Setting Autoupdate_State of a container to FALSE will cause it to suspend any
broadcast painting to its children.

Function Main()

// Define a desktop & button

Object TMain isa desktopClass

 Object buttonClass1 isa buttonClass

 endobject

Endobject

// Set the Autoupdate_State property to false

TMain.buttonClass1.Autoupdate_State = FALSE

//change visual properties

 :

 :

TMain.buttonClass1.Autoupdate_State = TRUE

 :

end function

UIobjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

BackBuffer_State property 39

BackBuffer_State property

UIobjectClass

Defines the back buffer state.

Integer Object.BackBuffer_State

TRUE (1) or FALSE (0). Default = FALSE.

FLEX OS 1.0, 2.0

When an object is first displayed, it can take a snapshot of the screen beneath it before
it’s placed on the screen. This snapshot is then used to restore the screen’s contents
when the object is hidden. This is the fastest method of hiding an object.

Warning This is an extremely memory-intensive operation; use it with care.

Note When the object is visible and its BackBuffer_State is FALSE, no activities
are recorded.

The memory for this option is used only while the object is visible; then it’s released.
While an object is visible, you can release the memory used by the back buffer by
setting BackBuffer_State to FALSE.

By default when a visible object is moved, sized, or hidden, its parent is painted to
restore the screen image. If the BackBuffer_State is TRUE, this will not happen. It
causes significantly less screen redrawing at the expense of memory.

Defines a back buffer state so that when a visible object is moved, sized, or hidden, its
parent is not painted to restore the screen image.

function SetBuffer()

Object TMain isa desktopClass

Object labelClass1 isa labelClass

Endobject

Endobject

:

TMain.labelClass1.BackBuffer_State = TRUE

:

end function

UIobjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

40 BackLightState function

BackLightState function

Turns the device's backlight on or off.

BackLightState(integer State)

State is a value indicating the operation to be performed on the backlight.

The State argument must have one of the following values.

Value Description

0 Turn backlight off

1 Turn backlight on

2 Toggle backlight

FLEX OS 1.0, 2.0

The device's backlight remains on until a BackLightState(0) function (turn backlight
off) or BackLightState(2) function (toggle backlight) is called.

This example turns the device's backlight off, then turns it on, then toggles it.

// Turn backlight off

backlightstate(0)

// Now turn it on

backlightstate(1)

// Toggle backlight (in this case, turn it off)

backlightstate(2)

ActivateLCD function, ClearScreen function, DeactivateLCD function,
DecrementContrast function, IncrementContrast function

Purpose

Syntax

Parameters

Parameters

Version
Compatibility

Remarks

Example

See also

Bar_Color property 41

Bar_Color property

progressBarClass

Defines the color of the drawn bar.

progressBarObject.Bar_Color = Color

Color is a string indicating the desired color. Default = BLACK.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

FLEX OS 1.0, 2.0

Defines the color of the drawn bar inside the progressBarClass object. It does not
affect the color of the bar object background.

Sets the bar color to LIGHTGREY and sets the bar position.

function SetBar()

Object TMain isa desktopClass

 Object Bar1 isa progressbarClass

 Endobject

Endobject

// Set the bar color

TMain.Bar1.Bar_Color = LIGHTGRAY

// Set the bar position

TMain.Bar1.Position = 89

:

end function

Bar_Style property, progressBarClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

42 Bar_Style property

Bar_Style property

progressBarClass

Defines the style of a progress bar as either vertical or horizontal.

progressBarObject.Bar_Style = Style

Style must be either Horizontal or Vertical.

FLEX OS 1.0, 2.0

This property defines the orientation of the progress bar. A horizontal bar displays
progress from left to right; a vertical bar displays progress from bottom to top.

Sets the bar style to a Vertical style and sets the bar position.

function SetBar()

Object TMain isa desktopClass

 Object Bar1 isa progressbarClass

 Endobject

EndObject

// Set the bar color

TMain.Bar1.Bar_Style = VERTICAL

// Set the bar position

TMain.Bar1.Position = 50

:

end function

Bar_Color property, progressBarClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

BatteryDoorCloseEvent() 43

BatteryDoorCloseEvent()

Operating system to Shell

Generated when the battery compartment door has been closed.

Event BatteryDoorCloseEvent (integer Unused-1, integer Unused-2)

 // code to handle event

End Event

Unused-1 (not used)

Unused-2 (not used)

FLEX OS 1.0, 2.0

Used as a complement to BatteryDoorOpenEvent.

Dummy placeholders must be entered for all unused parameters.

2

BatteryDoorOpenEvent, BatteryStatusEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

44 BatteryDoorOpenEvent()

BatteryDoorOpenEvent()

Operating system to Shell

Generated when the battery compartment door has been opened.

Event BatteryDoorOpenEvent (integer Unused-1, integer Unused-2)

 // code to handle event

End Event

Unused-1 (not used)

Unused-2 (not used)

FLEX OS 1.0, 2.0

May be used to send a warning to the user, assuming that the door is being opened
prior to the battery’s removal.

Dummy placeholders must be entered for all unused parameters.

1

BatteryDoorCloseEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

BatteryStatusEvent() 45

BatteryStatusEvent()

MMDS to Shell

Generated when the battery level has crossed some pre-determined threshold, or a
polling timer has expired.

Event BatteryStatusEvent (integer BatteryLevel, integer Incharger)

 // code to handle event

Argument Description

BatteryLevel Value indicating the percentage of battery capacity remaining. Valid
values are 100, 66, 33, 1, and 0.

Incharger Specifies whether the unit is in the charger.

FLEX OS 1.0, 2.0

None

17

BatteryDoorCloseEvent

Generated By

Purpose

Syntax

End Event
Parameters

Version
Compatibility

Remarks

Event Code

See also

46 Begin... End statement

Begin... End statement

The Begin and End statements allow you to define a code block. A code block is a
group of statements that is treated as a single entity by the compiler. A code block
usually forms a clause of an If statement or the body of a While, Do While, or For
statement. Code blocks are not necessary if the clause or body consists only of a single
statement.

 Begin

 /* statement-1 */

 /* statement-2 */

 ..

 /* statement-n */

 End

FLEX OS 1.0, 2.0

You can place any number of statements in a code block. Code blocks can also be
nested.

Purpose

Syntax

Version
Compatibility

Remarks

Begin... End statement 47

The example below illustrates nested code blocks within an If structure.

If (Len(EditIndividual1.NameText.Text) = 0)

begin

SetCurrentName()

If (Len(CurrentName) > 0)

begin

If (ViewedIt = 0)

LoadAddressValList()

end

else

begin

EntryList.Clear()

For ItemSelected = 0 to 9

begin

EntryList.Add_Item(-1, "")

EntryList.HiddenData[ItemSelected] = -1

end

end

end

Do...While statement, For statement, If... Else statement, While Statement

Example

See also

48 Bitmap property

Bitmap property

UIobjectClass

Defines the bitmap picture to be displayed as the background for an object.

Desktop.Object.Bitmap = BitmapFileName

Object is any screen object supported in FLEX and the FLEX Script IDE (with the
exceptions of listbox and textbox). BitmapFileName is the name of the bitmap.
Default = NULL (not set).

FLEX OS 1.0, 2.0

When an object background is drawn, if the object has a bitmap assigned to it, the
bitmap is drawn within the object’s rectangle. All additional renderings for this object
are drawn on top of this bitmap.

If the size of the object is equal to or larger than the bitmap picture dimension, the
entire bitmap will be shown. If the size of the object is smaller than the bitmap picture
dimension, the bitmap will blend beyond its borders.

The name of the file can be the bitmap file itself if the bitmap file is defined within the
IDE. Otherwise, one of the compiled bitmap files types (ROB, RC1, or RC2) should be
used.

In defining bitmaps, follow these guidelines:

1 - Create bitmaps with a Windows drawing program such as Paint.

2 - Bitmaps should be defined in 256-color resolution but use only four of the colors.

3 - Convert the bitmap file with the IDE or BmpToRob.exe program.

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Bitmap property 49

Defines the bitmap MYPIC.ROB to be displayed as a background for a text label.

function XYZ()

Object Desktop isa desktopClass

 Object TextLabel1 isa labelClass

 endobject

endobject

Desktop.TextLabel1.Bitmap = “Mypic.ROB”

end function

Bitmap[] property, Picture_Disabled property, Picture_Down property, UIobjectClass

Example

See also

50 Bitmap[] property

Bitmap[] property

listBoxClass

Defines the bitmap image to be used with a list item in a listBoxClass object.

Desktop.Listbox.Bitmap[1]

FLEX OS 1.0, 2.0

Use this property to set the bitmap used in a list box. The bitmap item will be
displayed left-justified in the list. The index number defines the position of the bitmap
in the list.

Each item can have a bitmap. The height of the bitmap cannot be larger than
line_spacing.

In defining bitmaps, follow these guidelines:

1 Create bitmaps with a Windows drawing program such as Paint.

2 Bitmaps should be defined in 256-color resolution but use only four of the colors.

3 Convert the bitmap file with the IDE or BmpToRob.exe program.

In an sListBoxClass object, this property defines the background image to be placed in
a superlist cell, if any. This image contains all of the icons to be placed in the cell in
the appropriate positions.

Sets the bitmap MYPIC.ROB as the bitmap used in a list box. The bitmap item will be
displayed left-justified in the list. The index number 1 defines the position of the
bitmap in the list.

Function MyList()

Object TMain isa desktopClass

Object listBoxClass1 isa listboxClass

EndObject

EndObject

TMain.listBoxClass1.Add_Item(-1, "List Item One")

TMain.listBoxClass1.Bitmap[1]="mypic.rob"

:

end function

Bitmap property, listBoxClass, Add_Item method

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

BitmapResource function 51

BitmapResource function

Resource files enable application programmers to separate resources (such as bitmaps,
strings, etc.) from the application source code. Resources are used in source code via
resource identifiers rather than actual resource values. This allows the actual resources
to be changed without a re-compilation of the source, as long as the resource identifiers
remain unchanged.

BitmapType BitmapResource(Locale, Resource, Ordinal)

Locale refers to the FIS type for the resource file.

Resource refers to the FIS ID of the resource item.

Ordinal refers to the 16-bit identifier for the specific resource data.

BitmapType – Returns the bitmap defined in the resource file.

FLEX OS 2.0

Resource files permit the sharing of resources by allowing for the creation of image
libraries. Most applications make use of bitmap images. These images can be shared
between applications and standardized within program suites. In addition, they allow
for the use of locale-specific icons. Often different locales have specific icons that
denote operations or concepts. Resource files can contain the icons for a specific
locale, separating that data from the application code.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

52 BitmapResource function

When the following program is compiled, the file “11.22” is created in addition to the
standard MYRES.AIR.

// The myres.rcs file

resource_string IDS_TESTSTR1 9 "hello world"

resource_integer IDS_TESTINT1 8 11

resource_string IDS_TESTSTR2 14 "the second string"

resource_integer IDS_TESTINT2 10 29

resource_string IDS_TESTSTR3 11 "hmmmmm"

resource_integer IDS_TESTINT3 14 12

resource_integer IDS_TESTINT4 19 441

resource_real IDS_TESTREAL5 2 16.22

resource_real IDS_TESTREAL1 29 12.21

resource_date IDS_DATE1 77 "11/20/1993"

resource_date IDS_DATE2 78 "01/17/1988 10:15"

resource_binary IDS_BITMAP1 88 "c:\flexide\inbox.rob"

resource_binary IDS_BITMAP2 89 "c:\flexide\outbox.rob"

// The myres.src file

$$INCLUDE "datatype.inc"

$$RESOURCE "myres.rcs,11.22"

function main()

 integer aInt

 string aStr

 real aReal

 date aDate

 pointtype aPoint

 bitmaptype aBitmap

 aInt = intResource(11, 22, IDS_TESTINT1)

 dbgShow("int = " + str(aint))

 aReal = realResource(11, 22, IDS_TESTREAL1)

 dbgShow("real = " + realtostr(aReal))

 SetDateAndTimeFormat("%m/%d/%Y")

 aDate = dateResource(11, 22, IDS_DATE1)

 dbgShow("date1 = " + dateToStr(aDate))

 setdateandtimeformat("%m/%d/%Y %H:%M:%S")

 aDate = dateResource(11, 22, IDS_DATE2)

 dbgShow("date2 = " + dateToStr(aDate))

 aPoint.x = 10

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP1)

Example

Resource file

FLEX Script file

BitmapResource function 53

 displaybitmap(aPoint, aBitmap)

 aPoint.x = 100

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP2)

 displaybitmap(aPoint, aBitmap)

 Astr = strResource(11,22,IDS_TESTSTR1)

 DbgShow(“Str = “ + Astr)

end function

About resource files, StrResource function, RealResource function, IntResource
function, DateResource function

See also

54 BitmapType structure

BitmapType structure

This structure holds the characteristics of a bitmap used on the device.

Structure BitmapType

 Integer Type

 Integer Width

 Integer Height

 Integer WidthBytes

 Integer TotalBytes

 Integer Planes

 Integer BitsPixel

 Integer Bits

EndStruct

Property Value Description

Type 00 = uncompressed file
C1 = compressed method
1
C2 = compressed method
2

These are three conversion files when
changing from bitmap to ROB format

Width 0-maximum
(PageWriter max = 239)

Width in pixels

Height 0-maximum
(PageWriter max = 159)

Height in pixels

WidthBytes 0-maximum
(PageWriter max = 60)

Width in bytes

TotalBytes 0-9600 bytes Total bytes of stored bitmap

Planes 1 (the only valid value
on PageWriter)

Colors

BitsPixel 2 bits Pixel depth of the current device in bits

Bits Array of bits in memory

Purpose

Syntax

Settings

BitmapType structure 55

FLEX OS 1.0, 2.0

This structure describes the ROB file in which the bitmap is stored. A ROB file is
made up of the BMP file and all the information of the BitmapType structure. The
Type field is the result of the conversion from bitmap to ROB file. Only the smallest of
the three conversions will be used.

Note Sometimes the uncompressed ROB file is smaller than either of the compressed
versions.

DestroyBitmap function, DisplayBitmap function, LoadBitmap function, SaveBitmap
function, ScreenToBitmap function

Version
Compatibility
Remarks

See also

56 BlockEnd property

BlockEnd property

textBoxClass

Mark the last character in a textbox string to be included in a block. This is used to
indicate the ending position of a block.

Desktop.TextBox.BlockEnd = Value

Value is an integer indicating the position of the last character in a text box block. The
position is zero-based, which means that the first position in the textbox string is 0.
For example, the BlockEnd position for a block made up of the first sixteen characters
in a textbox would be 15.

FLEX OS 1.0, 2.0

Block marking defines a portion of text to be operated on. Only one block may be
marked at a time. Several internal variables are maintained within the textBox to
support block marking including:

• Block start offset

• Block end offset

Blocks marked (using the BlockStart and BlockEnd properties) are inclusive. This
means that the BlockStart and BlockEnd character positions are included in the block.

This function defines a textbox with some text in it, and then sets the block end
marker. Since BlockStart has not also been set, this will have no visible effect.

Function MyMarkedBlock()

Object TMain isa desktopClass

 Object textBoxClass1 isa texttboxClass

 EndObject

EndObject

TMain.textBoxClass1.Text = “This is a huge bunch of text”

Tmain.textBoxClass1.BlockEnd = 4

:

end function

BlockStart property, Cursor property, EditMask property, InsertMode property,
Max_Characters property, Read_Only_State property, textBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

BlockStart property 57

BlockStart property

textBoxClass

Mark the first character in a text box string to be included in a block. This is used to
indicate the starting position of a block.

Desktop.TextBox.BlockStart = Value

Value is an integer indicating the position of the first character in a block. The
position is zero-based, which means that the first position in the textbox string is 0.

FLEX OS 1.0, 2.0

Block marking defines a portion of text to be operated on. Only one block may be
marked at a time. Several internal variables are maintained within the textBox to
support block marking including:

• Block start offset

• Block end offset

Blocks marked (using the BlockStart and BlockEnd properties) are inclusive. This
means that the BlockStart and BlockEnd character positions are included in the block.

This function defines a textbox with some text in it, and then sets the block start
marker. Since BlockEnd has not also been set, this will have no visible effect.

function MyMarkedBlock()

Object TMain isa desktopClass

Object textBoxClass1 isa texttboxClass

EndObject

EndObject

TMain.textBoxClass1.Text = “This is a huge bunch of text”

Tmain.textBoxClass1.BlockStart = 2

:

end function

BlockEnd property, Cursor property, EditMask property, InsertMode property,
Max_Characters property, Read_Only_State property, textBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

58 Border_Color property

Border_Color property

UIobjectClass

Defines the color of the object’s border. This property sets the color of the surrounding
frame of an object. This is useful to set off objects on the screen.

Desktop.Object.Border_Color = Color

Color is a string indicating the desired color. Default = BLACK.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

FLEX OS 1.0, 2.0

Borders are drawn in Border_Thickness width.

Borders are simply a visual property; they have nothing to do with focus.

This property sets the border color of a text label to LIGHTGRAY, which hides the
border of the label.

Function SetBorder()

Object TMain isa desktopClass

Object labelClass1 isa LabelClass

endobject

endobject

// Hide the border of a text label

TMain.labelClass1.Border_Color = LIGHTGRAY

end function

Border_Thickness property, UIobjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

Border_Thickness property 59

Border_Thickness property

UIobjectClass

Defines the thickness (in pixels) of an object’s border.

Desktop.Object.Border_Thickness = Number

Number is an integer value in the range of 0 to 255. (Number is interpreted as an 8-bit
unsigned integer.)

Default value = 0 for certain object classes; 1 for others.

FLEX OS 1.0, 2.0

An object's border is drawn with the thickness and color specified. (Border default =
?.) Set Number to 0 if you want to hide the border of an object; if the value is 0, the
border is not shown.

This example sets the border thickness of a text label to 0, which hides the border of
the label. The label thickness is then changed to 1 to show the border. Border
thickness is measured in pixels.

Function SetBorder()

Object TMain isa desktopClass

Object labelClass1 isa labelClass

Endobject

Endobject

// Hide the border of a text label

TMain.labelClass1.Border_Thickness = 0

// Show the border

TMain.labelClass1. Border_Thickness = 1

end function

Border_Color property, UIobjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

60 Bring_To_Front() method

Bring_To_Front() method

UIobjectClass

The Bring_To_Front() method redraws any object as the topmost object on the screen.

ObjectName.Bring_To_Front()

FLEX OS 1.0, 2.0

In containerClass, the container and all of its children will be brought to the front.

Containers broadcast the Bring_To_Front method to all children.

The position of an object redrawn with the Bring_To_Front method is a temporary
position. Objects are drawn in child number order by default.

For good screen design, avoid overlapping objects.

Brings object Foo to the front.

Foo.Bring_To_Front()

Autoupdate_State property, HideObject method, Location property, Paint method,
ShowObject method, Size property, Visible_State property

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

BroadcastEvent function 61

BroadcastEvent function

Sends an interprocess communication event to all running tasks. Use this function to
inform other programs of events that have device-wide repercussions.

BroadcastEvent(integer EventID, integer Parameter1, integer Parameter2)

This function has the following arguments:

Argument Description

EventID The type of event being sent

Parameter 1, Parameter2 The event parameters being passed to all programs

This function returns the following:

OK

FLEX OS 1.0, 2.0

Note All tasks, including the current running task, will get this event.

This function will sometimes cause the called application to take the focus. Care should be
taken so that only one application has the focus at any given time. You may need to use
GetFocus and SetFocus in subsequent code to make sure the appropriate application has the
focus.

A complete list of events can be found in FLEX.INC, a file automatically included with
the IDE.

The shell application has received a low space event. It informs all running tasks by
sending a broadcast message.

BroadcastEvent(EVENT_LOW_SPACE, FREESPACE, 0)

GetCurrentTask function, GetFocus function, GetFocusObject function, SendEvent
function, SendRemoteEvent function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

62 Button_Position property

Button_Position property

radioButtonClass

Defines the logic state (checked or unchecked) of radio buttons.

Desktop.RadioButton.Button_Position = State

State is either 0 (unselected = OFF) or 1 (selected = ON). Default = unselected.

FLEX OS 1.0, 2.0

Use this property to set or change the state of radio buttons. When you have more than
one button in a mutually exclusive selection group, use this function to set one radio
button to ON.

Creates three radio buttons and defines the logic state of the buttons as Unchecked (0).

Function SetBorder()

Object TMain isa desktopClass

Object RadioButton1 isa radioButtonClass

endobject

Object RadioButton2 isa radioButtonClass

endobject

Object RadioButton3 isa radioButtonClass

endobject

Endobject

// The first choice is checked by default

TMain.RadioButton1.Button_position = 0

TMain.RadioButton2.Button_position = 0

TMain.RadioButton3.Button_position = 0

:

end function

Button_Style property, radioButtonClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

Button_Style property 63

Button_Style property

buttonClass

Defines the visual style of the button object.

Desktop.Button.Button_Style = Style

Style is one of the following constants:

Constant Description Example

ThreeDSquare
(default)

Three-dimensional square button.

ThreeDRounded Three-dimensional rounded button

Flat Flat button

Raised Slightly raised windows-like button

FLEX OS 1.0, 2.0

To give a button a Windows-like style, use Button_Style = Raised, Border_Thickness
= 1, and Border_Color = BLACK.

Sets the button MyButton to a button style of RAISED.

Function SetButton()

Object MyDesktop isa desktopClass

Object MyButton isa buttonClass

endobject

Endobject

 :

 MyDesktop.MyButton.Button_Style = RAISED

 :

end function

Button_Position property, buttonClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

64 buttonClass

buttonClass

Used to implement the button object, which generates an event when the user selects
the button.

buttonClass has the following superclasses.

objectClass

uiObjectClass

textClass

selectClass

buttonClass

controlClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

Button_Style

Icon

Picture_Disabled

Picture_Down

None None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

buttonClass 65

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

Buttons can contain pictures and text. They can also be selected by hot keys, if there is
a key modifier (ALT).

ButtonClass is the main selection class.

Select Class, Control Class

Version
Compatibility

Remarks

See also

66 CalendarType structure

CalendarType structure

This structure holds the calendar settings for the device in terms of year, month, and
day.

Structure CalendarType

 Integer Year

 Integer Month

 Integer Day

EndStruct

Property Value Description

Year 4 digits The year and the century.

Month 1-12 The month (1 = January, 12 = December)

Day 1-31 The day of the month.

FLEX OS 1.0, 2.0

None

Changing the system date and time, GetCalendar function, GetDateAndTime function,
GetTimeOfDay function, Getting the date and time, SetCalendar function,
SetDateAndTime function, SetTimeOfDay function, SysClockType Structure

Purpose

Syntax

Settings

Version
Compatibility
Remarks

See also

CancelMail() function 67

CancelMail() function

Withdraws an outgoing message from its queue, aborting the transmission.

CancelMail(integer FileID)

FileID is the file identifier, as returned by the Save method of a mail object.

This function returns the following:

OK

FLEX OS 1.0, 2.0

None

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

68 CancelMail() function

CancelMail() function

Cancels the message stored in the file FileID (after making sure message is OK to
cancel).

function ChangedMyMind (integer FileID)

integer MsgFlag

msgFlag = ChkStatus (FileID) // This is an example function

If (MsgFlag = OK)

CancelMail (FileID)

End function

CopyMail function, DeleteMail function, mailObjectClass, SendMail function

Example

See also

CancelPlaylist function 69

CancelPlaylist function

This function is used to cancel (“kill”) the specified playlist or the currently running
playlist.

CancelPlaylist(integer PlayListID)

Integer PlayListID represents the handle of the playlist to be canceled and stopped. If
a –1 is specified for the handle, the current playlist will be canceled.

The function returns the following error code:

OK, NTF_ERROR_NO_ERROR

FLEX OS 2.0

None

Integer Travel PlaylistHandle, custom PlaylistHandle

TravelPlaylistHandle = CreatePlayList()

CustomPlaylistHandle = CreatePlayList()

.

.

.

//Fill playlists here

.

.

.

select Case (whichAlarm)

Case Travel_Alarm

CancelPlaylist(TravelPlayListHandle)

Case Custom_Alarm

CancelPlaylist(CustomPlaylistHandle)

end Select

AddPlayElement function, CreatePlayList function, DestroyPlayList function,
LoadPlayList function, PlayBeep function, SavePlayList function, StartPlayList
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

70 CannedReply() method

CannedReply() method

carrierObjectClass

Returns the text of a canned reply for a specific carrier according to the item number
assigned to the reply for that carrier.

String CannedReply(integer Item)

Item is an integer from 1 to 16.

A text string containing the canned replay assigned to Item.

FLEX OS 1.0, 2.0

Canned replies are standard messages that are assigned an integer from 1 to 16 for a
specific carrier. (For example, 1 - the reply "Yes" ; 2 - the reply "No" ; 3 - the reply
"Pick Up" ; 4 - the reply "Call ASAP", etc.)

When using the CannedReply() method, be sure to include MailObj.Inc.

Returns the canned reply for the item specified. Val is a string. Item is an integer
varying from 1 to 16.

$$INCLUDE "MailObj.Inc"

Object.Name isa CarrierObjectClass

EndObject

String sVal

ObjectName.Load

sVal = ObjectName.CannedReply(Item) // Reading a list method

FormatType method, MailboxCnt method, MailboxID method, MailboxName method,
MaxLength method, MinLength method, ProfileFormat method, ProfileUpdateFlag
method, ServiceName method, UpdateTimePermitted method, carrierObjectClass

Applies To

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

CarrierID property 71

CarrierID property

mailObjectClass

Sets or gets a number used to identify the specific carrier - an integer that is used to
identify the specific carrier driver over which a message has been received (or, for
outgoing messages, the carrier on which the message is to be sent).

integer CarrierID

CarrierID is a value representing the specific carrier. It must have one of the
following values:

Value Description

CARRIER_REFLEX_50 ReFLEX 50 carrier.

CARRIER_REFLEX_25 ReFLEX 25 carrier

CARRIER_FLEX FLEX carrier. This carrier will be used by the MDS sample
main at a later date (when the FLEX OS/wrap is changed
to use FLEX headers).

CARRIER_IR Infrared port

CARRIER_SERIAL Serial port

CARRIER_SYSTEM_ERROR From internal error logger

CARRIER_LOOPBACK Loopback

CARRIER_LOCAL Local

FLEX OS 1.0, 2.0

Default = CARRIER_REFLEX_50.

Make sure this value is set correctly in the code if the application is sending message
tasks. If the application is running within the FLEX Script IDE, this number should
be the same in the Messenger in order to use the Simulator.

When using the CarrierID property, be sure to include MailObj.Inc.

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

72 CarrierID property

The following is a sample function that sets the CarrierID property to
REFLEX_PAGER and sends out a pager message:

$$INCLUDE "MailObj.Inc"

function SendMsg()

// Local Variables

string szMessage

integer EISMsgID

// Construct a message object

Object EISMessage isa mailObjectClass

EndObject

// Assign the message text from the message pad to a

// local string variable

szMessage = Outbox.MsgTextbox.Text

// Prepare the message by assigning the properties of the

// message object

EISMessage.msgbasetype = 0 // NEW_MESSAGE

EISMessage.carrierID = CARRIER_REFLEX_50

// REFLEX_PAGER

EISMessage.adrlistcnt = 1 // Address list

EISMessage.adrtype[1] = 7 // EMAIL_MESSAGE

EISMessage.adrval[1] = "user1@email.mot.com"

// Email address

EISMessage.contentlistcnt = 1// Message content count

EISMessage.contentval[1] = szMessage// Message body

// Save the message to a file

EISMsgID = EISMessage.Save()

// Send message to cause the message file to be read &

// sent by framework

SendMail(EISMsgID)

// Clean up

EISMessage.Destroy_Object()

end function

mailObjectClass

Example

See also

carrierObjectClass 73

carrierObjectClass

Used to create a new carrier profile object in the application.

carrierObjectClass has the following superclass.

objectClass

carrierObjectClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclass.

Unique properties Unique methods Unique events

None AdrListCnt method

AdrType method

CannedReply()

FormatType()

Load()

MailboxCnt()

MailboxID()

MailboxName()

MaxLength()

MinLength()

ProfileFormat()

ProfileUpdateFlag()

ServiceName()

UpdateTimePermitted()

None

Purpose

Class hierarchy

74 carrierObjectClass

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

A carrier profile is a set of data that describes certain characteristics of a mail carrier.

The major methods of this class let the application create, load, save, and destroy the
object. The other methods allow for accessing various read-only characteristics of the
object.

Internally, a pointer to the object structure is returned as the object ID of the object.

mailObjectClass

Syntax

Version
Compatibility

Remarks

See also

checkBoxClass 75

checkBoxClass

Used to implement the check box object, which provides the functionality of a two-
position switch. The switch is represented by a square box with a label beside it; the
box can be filled with an x (checked) or can be empty (cleared).

checkBoxClass has the following superclasses.

objectClass

uiObjectClass

textClass

selectClass

checkBoxClass

controlClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

Position None None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

76 checkBoxClass

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

• A check box is a non-exclusive selection device; that is, more than one check box
in a group of check boxes can be checked at the same time.

• By default, check boxes are left-justified.

• The size of the X symbol in the check box is determined by the size of the font.

SelectClass, Control Class

Version
Compatibility

Remarks

See also

Chr function 77

Chr function

Converts a font character number to a string.

CHR(integer FontValue)

Argument Description

FontValue The font character number to be converted.

Returns a one-character string containing the specified character in the current font
set.

FLEX OS 1.0, 2.0

The CHR function is used to create non-printable characters such as CR/LF and
special symbols. This function is limited by the number of characters in the character
set.

If you plan to display the returned string, FontValue must be a character defined in the
font you are using.

The CHR function is the inverse of the ASC function.

Adds a carriage return between two lines of text.

string Line1

string Line2

string WholeThing

Line1 = "This is the first line"

Line2 = "This is the second line"

WholeThing = Line1 + Chr(13) + Line2

// WholeThing = "This is the first line

// This is the second line"

ASC function, Str function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

78 Clear() method

Clear() method

listBoxClass, radioButtonClass

Removes all items from the list or deselects the radio button.

Object.Clear()

FLEX OS 1.0, 2.0

When sent to an object of type listBoxClass, Clear() removes all elements from the list
box and frees their memory.

When Clear() is sent to an object of type radioButtonClass, it deselects the currently
selected radio button.

Creates an object of type listBoxClass and clears all the items from it.

LC isa listBoxClass

EndObject

LC.Clear()

Add_Item method, Remove_Item method, Number_Items method

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

ClearRect function 79

ClearRect function

Clears a rectangular portion of the screen with the passed-in integer ClearColor.

integer ClearRect(RectType WhatToClear, integer ClearColor)

This function has the following arguments:

Argument Description

WhatToClear Defines the rectangle coordinates.

ClearColor Clears the display to this color.

The ClearColor argument must have one of the following values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

OK

SCREEN_ERROR_DISPLAY_NOT_INIT

SCREEN_ERROR_INVALID_RECTANGLE

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Returns

Version
Compatibility

80 ClearRect function

ClearRect is used to initialize a new dialog (used by the windowing system). Use
ClearRect to clear the portion of the display area of the screen where you are going to
place the new dialog, such as a pop-up.

The drawing cursor will be located at the upper left hand corner of the cleared
rectangle when ClearRect is finished. The rectangle portion of the display is cleared to
the color passed to the function.

Note All functions that receive RectType as a designator of a valid screen area will clip the
designated area to the actual screen size, if necessary.

Clears the lower right quarter of a 240x160 screen and fills the area with black.

PointType TopLeft, BottomRight

RectType WhatToClear

TopLeft.x = 120

TopLeft.y = 80

BottomRight.x = 240

BottomRight.y = 160

WhatToClear.ulCorner = TopLeft

WhatToClear.brCorner = BottomRight

ReturnValue = ClearRect(WhatToClear, BLACK))

ClearScreen function, DrawBox function

Remarks

Example

See also

ClearScreen function 81

ClearScreen function

Clears the entire screen of text and graphics.

integer ClearScreen(integer Color)

This function has the following argument:

Argument Description

Color Clears the display to this color

The Color argument must have one of the following values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

OK

SCREEN_ERROR_DISPLAY_NOT_INIT

FLEX OS 1.0, 2.0

Use this function to clear the screen before starting up a new full-screen application.
The screen is cleared to the color passed in, and the cursor remains in the same
position.

Changes the entire screen to white.

ReturnValue = ClearScreen(WHITE)

ClearRect function, Point function

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

82 ClockUpdateEvent()

ClockUpdateEvent()

Operating system

To give the application an indication of when the system clock gains another minute.

Shell

ClockUpdateEvent(Integer Unused-1, Integer Unused-2)

 // code to handle event

End Event

FLEX OS 1.0, 2.0

None

20

About event handlers, Event Classification, Timer event

Generated By

Purpose

Applies To

Syntax

Version
Compatibility

Remarks

Event Code

See also

CloseFile function 83

CloseFile function

Closes a valid, open file based on the file handle passed to it.

integer CloseFile(integer FileHandle)

This function has the following argument:

Argument Description

FileHandle The file handle returned from a previous call to OpenFile or CreateFile

This function returns the following:

OK

FILE_ERROR_FILE_NOT_OPEN

FLEX OS 1.0, 2.0

There are a limited number of file handles available. If you do not close files when you
are finished with them, eventually you will be unable to open files.

Demonstrates working with file handles; specifically, opening a file, manipulating the
file via its file handle, and then closing that file using the CloseFile function.

PrefsFile = OpenFile("FIS:16.32555”) // Get file handle

...

// Work with file

...

ReturnValue = CloseFile(PrefsFile) // Finished working with file

CreateFile function, OpenFile function, ReadFile function, RemoveFile function,
SeekFile function, WriteFile function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

84 Color property

Color property

UIobjectClass

Defines the background color of the object.

Desktop.Object.Color = Color

Color is a string indicating the desired color. Default = LIGHTGRAY.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

FLEX OS 1.0, 2.0

If the object is a selectable control such as a button, the object's color reverses when the
object gets focus. A WHITE object changes to BLACK (and vice versa); LIGHTGRAY
changes to DARKGRAY (and vice versa).

Sets the color of the button MyButton to DARKGRAY.

Function SetButton()

Object MyDesktop isa desktopClass

Object MyButton isa buttonClass

endobject

endobject

:

MyDesktop.MyButton.Color = DARKGRAY

:

end function

Bar_Color property, Border_Color property, Text_Color property, UIobjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

ConcatStr function 85

ConcatStr function

Concatenates two strings into a single string.

string ConcatStr(string strConcat1, string strConcat2)

This function has the following arguments:

Argument Description

strConcat1 The string which will be the first part of the new string

strConcat2 The string which will be the second part of the new string

This function returns the new string.

FLEX OS 1.0, 2.0

The + operator may be used in string expressions with the ConcatStr function.

Combines the string FirstName with the string LastName to produce the string Name.

string FirstName

string LastName

string Name

FirstName = "Joe"

LastName = "Smith"

Name = ConcatStr(FirstName, " ") // Name = "Joe "

Name = ConcatStr(Name, LastName) // Name = "Joe Smith"

InStr function, Left function, Len function, Mid function, Right function, StrEq
function, StrGe function, StrGt function, StrLe function, StrLt function, StrNe function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

86 Const statement

Const statement

The Const statement allows you to give symbolic names to the values that are used in
your application. The use of constants allows you to write code that is readable and
easier to maintain.

Note Error codes are implemented as constants in FLEX Script. Refer to ERRORS.INC for
an example.

Const Datatype Identifier = value

FLEX OS 1.0, 2.0

Like variables, constants are usually placed at the beginning of the source code. If
your program uses many constants, it’s a good strategy to create an Include file to
contain the constant declarations and insert it via an $$INCLUDE statement.

Initializing constants

• A constant’s value must be assigned when it is declared.

• A constant can be initialized with a previously defined constant or variable. When
assigning a variable’s or constant’s value to another constant, do not use quotes.

• Literal strings must be enclosed by quotes when assigned to a constant. Integer,
real, and date values do not use quotes.

Rules for naming constants

Constant names are identifiers. Refer to the rules for naming identifiers for
information on naming constants.

Declares a constant and sets it equal to the value of Pi to five decimal places.

Const Real Pi = 3.14159

Declaring constants, Declaring variables, Naming identifiers

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

containerClass 87

containerClass

ContainerClass is an abstract class. You do not instantiate abstract classes; they are
used to create other classes.

You do not use containerClass objects in FLEX applications. You can, however, use
objects belonging to the subclasses of containerClass to contain other objects. The
subclasses include frameClass, dialogClass, and deskTopClass.

containerClass has the following superclasses and subclasses.

objectClass

uiObjectClass

textClass

containerClass

deskTopClass

controlClass

dialogBoxClass

frameClass

This object class has the following unique property, in addition to those it inherits from
its superclasses.

Unique properties Unique methods Unique events

ModalPopupState None None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

88 containerClass

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

If an object is not a member of containerClass, it cannot contain other objects.

These methods are broadcast to the children of a container: Bring_To_Front(),
Destroy_Object(), Paint(), ShowObject(), and HideObject().

Containers "ring" their children on navigation.

None

Version
Compatibility

Remarks

See also

ContentLen[] property 89

ContentLen[] property

mailObjectClass

Sets or gets the length in bytes of a Content item. Note that content and content length
are maintained as separate properties.

Integer ContentLen[]

ContentLen[] is the length (in bytes) of an item. (Default = 0.)

FLEX OS 1.0, 2.0

Use this property to check the length of the incoming message.

ContentLen[I] = x may be used to truncate existing text, if x is less than the actual
length. Setting ContentLen to a number greater than the actual length has no effect.

When using the ContentLen[] property, be sure to include MailObj.Inc.

FLEX OS 1.0 allows only one Content per mailObject. Therefore, the index (in square
brackets) must always be 1.

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

90 ContentLen[] property

The following example retrieves the message length of an incoming pager message.

$$INCLUDE "MailObj.Inc"

Function GetMsgLength()

// Define the message length variable

Integer iContentLength

// Create NewmessageObj

Object NewMessageObj IsA mailObjectClass

EndObject

// Load the ojbect message

NewMessageObj.Load(iMailBins[iCurrentMailIndex])

// Get the message content length

iContentLength = NewMessageObj.ContentLen[1]

// Show the length in the IDE debug window

dbgShow("Response Choice Count = " + str(iContentLength))

// Destroy the message object

NewMessageObj.Destroy_Object()

end function

ContentListCnt property, ContentVal property, ContentValType property,
mailObjectClass

Example

See also

ContentListCnt property 91

ContentListCnt property

mailObjectClass

Sets or gets the number of items in the Contents list of a mail object.

integer ContentListCnt

ContentListCnt is the number of items in a content list. (Default = 1.)

FLEX OS 1.0, 2.0

FLEX OS 1.0 allow only one Content per mailObject. Therefore, this always returns 0
or 1 and sets are ignored.

When using the ContentListCnt property, be sure to include MailObj.Inc.

Setting ContentVal[] will automatically set this to the correct value. It is usually
unnecessary to set ContentListCnt [] explicitly.

Gets the number of items in the contents list of the mail object, EISMessage.

$$INCLUDE "MailObj.Inc"

:

// Construct a message object:

Object EISMessage isa mailObjectClass

EndObject

If EISMessage.contentlistcnt = 1

GetContent()

Else

Return(0)

:

:

ContentLen property, ContentVal property, ContentValType property, mailObjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

92 ContentRefCode[] property

ContentRefCode[] property

mailObjectClass

The ContentRefCode[] property sets or gets an integer code referring to a content
string.

ContentRefCode[]

FLEX OS 1.0, 2.0

When the ContentValType[] property is CONTENT_BY_REF, ContentRefCode[I]
is a number mutually understood by the originator and receiver as a shorthand
substitute for a content string. ContentVal[I] would be undefined.

FLEX OS 1.0 allows only one Content per mailObject, therefore the index (in square
brackets) must always be 1.

The ContentRefCode[I] property is valid only if the object's CarrierID property is
CARRIER_REFLEX_50 or CARRIER-FLEX.

When using the ContentRefCode[] property, be sure to include MAILOBJ.INC.

If iVal is an integer and M is a mailObject class, the following is used.

$$INCLUDE "MailObj.Inc"

integer iVal

M.ContentRefCode[I] = iVal //Setting

iVal = M.ContentRefCode //Getting

ContentVal[I] property, MailObject class

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

ContentSymbolLen() method 93

ContentSymbolLen() method

mailObjectClass

Returns the value for ContentSymbolLen, also known as the blocking factor or
number of bits per character in the ContentsVal[] string.

Integer ContentSymbolLen(integer itemNum)

itemNum is the identifier of the item for which the symbol length is requested.
ItemNum is an integer varying from 1 to the number of items in the list.

FLEX OS 1.0, 2.0

Default = 8.

When using the ContentSymbolLen method, be sure to include MailObj.Inc.

Note: The method is valid only if the object's CarrierID property is CARRIER_REFLEX_50 or
CARRIER_FLEX.

Creates a mail object named M, then gets the ContentSymbolLen of item 1.

$$INCLUDE "MailObj.Inc"

integer iVal

Object M isa mailObjectClass // Instantiate it

EndObject

iVal = M.ContentSymbolLen(1) // Get ContentSymbolLen of item 1

Accept method, ContentType method, EnvStatus method, Lock method, RcvErrCnt
method, RcvQuality method, ReplyAllowed method, TimeRcv method, TimeSent
method, MailObjectClass

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

94 ContentType() method

ContentType() method

mailObjectClass

The ContentType() method returns the value for ContentType.

Integer ContentType(integer itemNum)

itemNum is the identifier of the item for which the content type is requested. ItemNum
is an integer varying from 1 to the number of items in the list.

FLEX OS 1.0, 2.0

Default = CONTENT_TYPE_ALPHA

ContentType() method returns one of the following values:

CONTENT_TYPE_ALPHA

CONTENT_TYPE_NUMERIC

CONTENT_TYPE_DTMF

CONTENT_TYPE_GRAPHIC

CONTENT_TYPE_SOUND

CONTENT_TYPE_BINARY

CONTENT_TYPE_ACTIVE

CONTENT_TYPE_ATTENTION

When using the ContentType method, be sure to include MailObj.Inc.

ContentVal[] is not necessarily a text string. ContentType[] provides information
about the nature of ContentVal[]. When using the ContentSymbolLen method, be
sure to include MailObj.Inc. The value and precise meaning of ContentType[] must
be mutually understood by originator and receiver.

Note: The method is valid only if the object's CarrierID property is CARRIER_REFLEX_50 or
CARRIER_FLEX.

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

ContentType() method 95

Creates a mail object named M then gets the ContentType.

$$INCLUDE "MailObj.Inc"

Object M isa mailObjectClass // Instantiate it

EndObject

integer iVal

iVal = M.ContentType(1) // Get the ContentType

Accept method, ContentSymbolLen method, EnvStatus method, Lock method,
RcvErrCnt method, RcvQuality method, ReplyAllowed method, TimeRcv method,
TimeSent method, MailObjectClass

Example

See also

96 ContentVal[] property

ContentVal[] property

mailObjectClass

Defines or contains the body of the message of a Content item. For an outgoing
message, this property defines the message. For an incoming message, this property
contains the message body.

string ContentVal[1]

FLEX OS 1.0, 2.0

When using the ContentVal[] property, be sure to include MailObj.Inc.

Gets and displays the text of a mail object. This function assumes that the message is
simple text; for example using: ContentValType[] = CONTENT-BY-VAL

ContentType[] = CONTENT-TYPE-ALPHA

$$INCLUDE "MailObj.Inc"

Function GetMsg()

// Define the message string

String szMessage

Integer iCurrentMailIndex

iCurrentMailIndex = 1

// Instantiate NewmessageObj

Object NewMessageObj IsA mailObjectClass

EndObject

// Load the object message:

NewMessageObj.Load(iMailBins[iCurrentMailIndex])

// Get the message content:

szMessage = NewMessageObj.ContentVal[1]

// Show the content in the IDE debug window:

dbgShow("Message Content = " + szMessage)

// Destroy the message object:

NewMessageObj.Destroy_Object()

end function

ContentLen property, ContentListCnt property, ContentValType property,
mailObjectClass, ContentType() method

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

ContentValType[] property 97

ContentValType[] property

mailObjectClass

Defines the value type for a Content item such as content by value, by reference code,
or by reference to a file.

integer ContentValType[1]

ContentValType must have one of the following values:

Value Description

CONTENT_BY_VAL ContentVal is by value (that is, by the actual content of
the message).

CONTENT_BY_REF_CODE ContentRefCode is by reference (that is, by a mutually
understood code, such as a canned message).
ContentVal is undefined.

CONTENT_BY_REF_FILE ContentVal supplies a FIS item name; the FIS item
contains the message.

FLEX OS 1.0, 2.0

Default = CONTENT_BY_VAL. Use the default if your application just processes
normal text string messages.

FLEX OS 1.0 supports a maximum index value of 1 for this property.

When using the ContentValType[] property, be sure to include MailObj.Inc.

Note The property is valid only if the objects CarrierID property is CARRIER_REFLEX_50 or
CARRIER_FLEX.

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

98 ContentValType[] property

Contructs the message object, MyAppMessage, and assigns the properties of the
message object to the value type CONTENT_BY_VAL.

$$INCLUDE "MailObj.Inc"

:

Function xyz ()

string szMessage

integer EISMsgID

// Construct a message object

Object MyAppMessage isa mailObjectClass

EndObject

// Prepare the message by assigning the properties of the message object

MyAppMessage.ContentValType[1] = CONTENT_BY_VAL

:

end function

ContentLen property, ContentListCnt property, ContentVal property, mailObjectClass

Example

See also

controlClass 99

controlClass

Adds navigation and help text properties to its subclasses. controClass is an abstract
class. You do not instantiate abstract classes; they are used to create other classes.

You do not use controlClass objects in FLEX Script applications. However, you can
use the objects belonging to the subclasses of controlClass, which include lineClass,
pictureClass, progressBarClass, and textClass.

controlClass has the following superclasses and subclasses.

objectClass

uiObjectClass

controlClass

lineClass

pictureClass

progressBarClass

textClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

TabIndex

TabDirection[] property

None OnNextOnPrevious

Purpose

Class hierarchy

100 controlClass

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

None

None

Syntax

Version
Compatibility

Remarks

See also

CopyBitmap function 101

CopyBitmap function

Copies a portion of the screen defined by RectType to another location on the screen
starting at PointType.

integer CopyBitmap(RectType WhatToCopy, PointType WhereTo)

This function has the following arguments:

Argument Description

WhatToCopy Defines the rectangle coordinates of the bitmap

WhereTo The new coordinates of the bitmap’s top left corner

This function returns the following:

OK

SCREEN_ERROR_DISPLAY_NOT_INIT

SCREEN_ERROR_INVALID_RECTANGLE

SCREEN_ERROR_INVALID_POINT

SCREEN_ERROR_BITMAP_OFF_SCREEN

SYSTEM_MEMORY_ERROR

DECOMPRESSION_ERROR_UNSUPPORTED_FORMAT

COMPRESSION_ERROR_UNSUPPORTED_FORMAT

COMPRESSED_FILE_BIGGER_THAN_RAW

FLEX OS 1.0, 2.0

CopyBitmap is typically used to copy a portion of the screen to another position on the
screen, as in dragging a dialog box to a new location.

Note All functions that receive RectType as a designator of a valid screen area will clip the
designated area to the actual screen size, if necessary.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

102 CopyBitmap function

Copies the lower right quarter of a 240x160 screen to the upper left corner.

PointType TopLeftOfRectangle, BottomRightOfRectangle, NewLocation

RectType WhatToCopy

TopLeftOfRectangle.x = 120

TopLeftOfRectangle.y = 80

BottomRightOfRectangle.x = 240

BottomRightOfRectangle.y = 160

WhatToCopy.ulCorner = TopLeftOfRectangle

WhatToCopy.brCorner = BottomRightOfRectangle

NewLocation.x = 0

NewLocation.y = 0

ReturnValue = CopyBitmap(WhatToCopy, NewLocation)

DestroyBitmap function, DisplayBitmap function, DisplayBitmapFile function,
LoadBitmap function, SaveBitmap function, ScreenToBitmap function

Example

See also

CopyMail function 103

CopyMail function

Copies an existing incoming mailbin file into a new file (which it creates), formatting
it as an outgoing mailbin file.

CopyMail (integer InputID, integer NewFileSpec, integer ReFlag) returns

integer

This function has the following arguments:

Argument Description

InputID The FileID of the incoming message that is to be copied; a number that
represents the unique part of the file name under FIS or DOS as supplied by
the new-mail event.

NewFileSpec Points to the location where the new FIS identifier is to be stored.

ReFlag A flag. If non-zero, the message text (ContentVal property) is copied into the
new message. If zero, only the message characteristics (header and address
information) are copied to the new file.

This function returns the integer FileID representing the name of the new file into
which the old message was copied. The new file will be in the same format as InputID.

CopyMail is intended to assist in generating messages that serve as replies, and for
forwarding messages to other recipients.

This function returns the following:

OK

MAIL_ERROR_FILE_SYSTEM

MAIL_ERROR_MEMORY

MAIL_ERROR_ACCESS_DENIED

MAIL_ERROR_BAD_TAG

MAIL_ERROR_FORMAT_FAILURE

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Returns

Version
Compatibility

104 CopyMail function

The new mail file is always in the form of an outgoing message. By default, a reply to a
message is just copied.

This function is used to forward a message or reply. Typically, you would clear
retainContent to zero for replying and set it to 1 for forwarding. However, many
replies retain the original content for reference.

CopyMail copies and sets all the necessary attributes for an outgoing message on the
same carrier as the copied message. It is not useful for making outbound messages on
a different carrier.

Generates a new message in response to an incoming message. The incoming message
is passed as messageID; the new message will be stored in SavedMailMessage.
Creates response text "Got your message."

function AckMessage (integer messageID)

integer SavedMailMessage // ID of new file

mailObjectClass ReturnMessage

Object ReturnMessage isa mailObjectClass// Outgoing mail

EndObject

ReturnMessage.Load (CopyMail (messageID, 0))

ReturnMessage.ContentVal[1] = "Got your message."

SavedMailMessage = ReturnMessage.Save()//Save the return

// mail.

SendMail (SavedMailMessage) // Send the return mail.

ReturnMessage.Destroy_Object()

End function

CancelMail()function, DeleteMail function, SendMail function function,
SystemErrorEvent, mailObjectClass

Remarks

Example

See also

Create_Object() method 105

Create_Object() method

objectClass

Instantiates an object. Creates dynamic storage for the new instance of the class,
initializing all properties to default values, and creates the object identifier.

Object ObjectName isa ObjectClassName

EndObject

FLEX OS 1.0, 2.0

The syntax for this method differs from all other methods: it is invoked with the
keyword isa. Note that the method name itself (Create_Object) does not appear in the
code.

Create_Object allocates the minimum memory for an object. Further memory may be
allocated as the object is manipulated. All properties are set to defaults.

Create_Object is represented in each class in the system. All classes draw from their
superclass implementation, and add initialization of the object to documented default
values. Refer to each class for the value of these default values.

Note An object is declared in global space if it is to be referenced by other functions. A
object used in only a single function does not need to be declared.

Creates a mail object named M, making the object M ready for access with properties
and methods.

Object M isa mailObjectClass // Instantiate it

EndObject

Destroy_Object method, Defining objects

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

106 CreateFile function

CreateFile function

Creates and opens a new file.

integer CreateFile(string FileName)

This function has the following argument:

Argument Description

FileName The name of a file to be created. If a file by this name already exists, it will be
opened. The filename must be referenced with the FIS file type.

This function returns the following:

Positive integer = The file handle created

-1 = Invalid filename

FILE_ERROR_OUT_OF_HANDLES

FILE_ERROR_SYSTEM

FLEX OS 1.0, 2.0

Warning If CreateFile is used and a file of the same name already exists, creating the file will
destroy the previously stored data.

Creates a file named Preferences.

PrefsFile = OpenFile("FIS:16.32555") // Get file handle

If (PrefsFile = < 0) // Did not find file

PrefsFile = CreateFile("16.32555")

...

// Work with file

...

ReturnValue = CloseFile(PrefsFile) // Finished working with file

CloseFile function, OpenFile function, ReadFile function, RemoveFile function,
SeekFile function, WriteFile function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

CreateFont function 107

CreateFont function

Creates a handle to a font that is defined in the file system.

integer CreateFont(FontType FontInfo)

This function has the following argument:

Argument Description

FontInfo A font data structure containing the desired font parameters

This function returns the following:

TXERR_NO_ERROR

TXERR_NO_HANDLES_AVAILABLE

TXERR_NO_MATCHING_FONT

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Returns

Version
Compatibility

108 CreateFont function

This function must be called for each new font you need, before the font can be selected
and used. You can create several fonts at once, then select between them as necessary
by using the SelectFont function. When you are finished with the font, be sure to
remove it with DestroyFont.

Note You must define the font data structure and fill in the values before making this call.
Currently only the height, width, and description of the font are active in the FontType structure.
In future versions, more attributes will be supported.

The following handles are predefined, which means they can be used without calling
CreateFont.

Purpose Handle

Body Text 0

Emphasized Body Text 1

Large Body Text 2

Emphasized Large Body text 3

Error Text 4

Caption Bar Text 5

Highlighted (selected) Body Text 6

Widget Text 7

Highlighted (selected) Widget Text 8

Inactive Widget Text 9

Large Widget Text 10

Highlighted (selected) Large Widget Text 11

Inactive Large Widget Text 12

Status Bar Text 13

Inactive Widget Text 14

Remarks

CreateFont function 109

Defines a font named Nelson Standard and saves it in the variable CurrFont. A font is
created with the specifications given in CurrFont, and given the handle FontHandle.
The font pointed to by FontHandle is then used when the text in TextToShow is
displayed.

FontType CurrFont

integer FontHandle

CurrFont.Height = 10

CurrFont.Width = 8

CurrFont.FaceName = "Nelson Standard"

FontHandle = CreateFont(CurrFont)

Object TextToShow IsA LabelClass // Create a label

EndObject

TextToShow.Font = FontHandle //text in this object uses this font

TextToShow.Text = "To Do List"

integer FontHandle

FontHandle = 2 //Large body text

Object TextToShow IsA LabelClass //Create a label

EndObject

TextToShow.Font = FontHandle //text in this object uses this font

TextToShow.Text = "Tasks Completed"

DestroyFont function, GetPointingCursor function, SelectFont function,
SetPointingCursor function, SetTextColor function, SetTextPoint function

Example

See also

110 CreatePlayList function

CreatePlayList function

Creates a handle for a playlist.

integer CreatePlayList()

This function returns a positive integer handle for the playlist, or the following error:

NTFERR_NO_HANDLES

FLEX OS 1.0, 2.0

Use this function to generate an empty playlist. After creation, load the playlist
elements into the playlist.

There is a limit of 32 playlist handles. This is why it's important to destroy the handles
when you are finished with them. If a playlist handle is not destroyed, it continues to
count against the total.

Creates a playlist called CurrPlayList, adds two values to CurrPlayList, and saves it to
the file FIS:7.100.

Note In the following example, AddToneToPlayList is not a FLEX Script function, but
rather a wrapper function that uses AddPlayElement to add a tone element to a playlist. Refer
to "Saving Playlists" in the FLEX Script Programmer's Guide for more information on
AddToneToPlayList.

CurrPlayList = CreatePlayList()

AddToneToPlayList(CurrPlayList, 392, 255, 2)

AddToneToPlayList(CurrPlayList, 494, 255, 2)

SavePlayList(CurrPlayList,"FIS:7.100")

DestroyPlayList(CurrPlayList)

AddPlayElement function, CancelPlaylist function, DestroyPlayList function,
LoadPlayList function, PlayBeep function, SavePlayList function, StartPlayList
function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

CreateTimerID function 111

CreateTimerID function

Reserves a timer ID from a global pool.

CreateTimerID()

This function returns:

 A positive integer value representing the TimerID

-1: Timer ID could not be created

FLEX OS 1.0, 2.0

Timer Ids are shared between ALL applications

The timer ID returned is guaranteed to be unique.

The timer ID is selected from a limited number available (valid timer IDs are from 1-
31) and is used as an argument to the SetTimer function.

Purpose

Syntax

Returns

Version
Compatibility

Remarks

112 CreateTimerID function

A clock application wants to set a timer every second (to make a “tick” sound), and
stop it if a certain button is pressed.

Integer TIDTickerTIDTicker = CreateTimerID() // reserve a timer

if (TIDTicker > 0)begin

SetTimer(TIDTicker, 256, TIMER_WAKE_FROM_SLEEP) // 1 sec timer

end

else

dbgshow ("No timer IDs available")

Event TimerEvent (integer TimerID, integer OtherData)

If (TimerID = TIDTicker)

begin

TIDTicker = CreateTimerID() // reserve another timer

MakeTickSound() // defined elsewhere

If (TIDTicker > 0)

SetTimer(TIDTicker, 256, TIMER_WAKE_FROM_SLEEP)

else

dbgshow ("No timer IDs available")

end

end Event

Event MuteButtonPressed (integer Data1, integer Data2)

If (TIDTicker > 0)

SetTimer(TIDTicker, 0, 0) // destroy timer

end Event

SetTimer function

Example

See also

Current_Item property 113

Current_Item property

listBoxClass

Indicates the selected item in a listBoxClass object.

Desktop.ListBoxObject.Current_Item

FLEX OS 1.0, 2.0

Use this property to handle a user's selection within a listbox. A listbox item has a
HiddenData property that can be used as a link to a database. Default: uninitialized.

// Get the index of the current list box

iListIndex = MyDesktop.MyListBox.Current_Item

:

HiddenData[1] property

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

114 Cursor property

Cursor property

textBoxClass

Defines location (in characters) of the cursor.

Desktop.Object.Cursor = Value

Value is an integer indicating the position of the cursor in a textbox. The position is
zero-based, which means that the first position in the textbox string is 0.

FLEX OS 1.0, 2.0

If the cursor is not displayed, the screen is updated.

The value for Cursor must be greater than or equal to zero. The value for the length
of the text must be greater than the cursor value.

Increments the cursor location by 1.

Object.Cursor = Object.Cursor + 1 // Increment cursor location

OnKey Event, Scroll method, Text[1] property

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

dataObjectClass 115

dataObjectClass

Stores data structures in memory and in FIS. DataObjectClass is used to pass data
between applications.

DataObjectClass has the following superclass.

objectClass

dbCreateClass

dataObjectClass

This class has the following unique properties, methods, and events, in addition to
those it inherits from its superclass.

Unique properties Unique methods Unique events

None GetData

Load

PutData

Save

None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

116 dataObjectClass

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

PutData() and GetData() move data between the application and the object. Load()
and Save() put data to persistent storage (FIS).

Flash

Program

Struct

Buffer

GetDataPutData

LoadSave

Schema is defined as in dbCreateClass Addfield().

GetData method, PutData method, Load method, Save method

Version
Compatibility

Remarks

See also

Date statement 117

Date statement

The Date statement declares a variable of Date data type.

Date Identifier-1, [..Identifier-2]

FLEX OS 1.0, 2.0

The Date data type is a numeric type that is capable of representing any date and time
within the range of 1/1/1970 to 12/31/2032. Date variables are initialized to zero upon
creation.

Declares two date variables.

Date dtDay1, dtDay2

About data types, Changing the system date and time, Formatting the system date and
time, Getting the date and time

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

118 DateResource function

DateResource function

Resource files enable application programmers to separate resources (such as bitmaps,
strings, etc.) from the application source code. Resources are used in source code via
resource identifiers rather than actual resource values. This allows the actual resources
to be changed without a re-compilation of the source, as long as the resource identifiers
remain unchanged.

Date DateResource(Locale, Resource, Ordinal)

Locale refers to the FIS type for the resource file.

Resource refers to the FIS ID of the resource item.

Ordinal refers to the 16-bit identifier for the specific resource data.

Date – returns the date defined in the resource file.

FLEX OS 2.0

The date constant syntax is fixed because the resource compiler does not have enough
information about the locale to interpret the date format. The date format is US
mm/dd/yyyy.

When the following program is compiled, the file “11.22” is created in addition to the
standard MYRES.AIR.

// The myres.rcs file

resource_string IDS_TESTSTR1 9 "hello world"

resource_integer IDS_TESTINT1 8 11

resource_string IDS_TESTSTR2 14 "the second string"

resource_integer IDS_TESTINT2 10 29

resource_string IDS_TESTSTR3 11 "hmmmmm"

resource_integer IDS_TESTINT3 14 12

resource_integer IDS_TESTINT4 19 441

resource_real IDS_TESTREAL5 2 16.22

resource_real IDS_TESTREAL1 29 12.21

resource_date IDS_DATE1 77 "11/20/1993"

resource_date IDS_DATE2 78 "01/17/1988 10:15"

resource_binary IDS_BITMAP1 88 "c:\flexide\inbox.rob"

resource_binary IDS_BITMAP2 89 "c:\flexide\outbox.rob"

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

Resource file

DateResource function 119

// The myres.src file

$$INCLUDE "datatype.inc"

$$RESOURCE "myres.rcs,11.22"

function main()

 integer aInt

 string aStr

 real aReal

 date aDate

 pointtype aPoint

 bitmaptype aBitmap

 aInt = intResource(11, 22, IDS_TESTINT1)

 dbgShow("int = " + str(aint))

 aReal = realResource(11, 22, IDS_TESTREAL1)

 dbgShow("real = " + realtostr(aReal))

 SetDateAndTimeFormat("%m/%d/%Y")

 aDate = dateResource(11, 22, IDS_DATE1)

 dbgShow("date1 = " + dateToStr(aDate))

 setdateandtimeformat("%m/%d/%Y %H:%M:%S")

 aDate = dateResource(11, 22, IDS_DATE2)

 dbgShow("date2 = " + dateToStr(aDate))

 aPoint.x = 10

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP1)

 displaybitmap(aPoint, aBitmap)

 aPoint.x = 100

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP2)

 displaybitmap(aPoint, aBitmap)

 Astr = strResource(11,22,IDS_TESTSTR1)

 DbgShow(“Str = “ + Astr)

end function

About resource files, BitmapResource function, IntResource function, RealResource
function, StrResource function

FLEX Script file

See also

120 DatetoInt function

DatetoInt function

Converts a date to an integer

Integer DatetoInt(Date DateVal)

DateVal is the date value to be converted.

Returns the integer value of the date.

FLEX OS 2.0

The date must be in the format yyyy.mm.dd.hh:mm:ss, where yyyy.mm.dd represents
the year, month, and day, and hh:mm:ss represents the hours, minutes, and seconds.

date CurrentDate

integer iDate

CurrentDate = 1998.10.28.12:00:00

iDate = DatetoInt(CurrentDate)

InttoDate function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

DateToStr function 121

DateToStr function

Converts a date to a string based on the format set by the SetDateAndTimeFormat
function.

string DateToStr(Date DateVal)

DateVal is the date value to be converted.

FLEX OS 1.0, 2.0

The conversion specifiers used for SetDateAndTimeFormat are listed in "Working
with the date and time" in the FLEX Script Programmer's Guide. This information is
also available in the See Also section of this function.

Sets the date/time format to Month/Day/Year and converts the current date/time to a
string value.

Date dtval

String DateDisplay

dtval = GetDateAndTime() // get current date & time

SetDateAndTimeFormat("%m/%d/%y") // set d/t format - month, day, year

DateDisplay = DateToStr(dtval)

GetDateAndTime function, SetDateAndTime function, SetDateAndTimeFormat
function, StrToDate function

Date/time formats

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

122 DBactive function

DBactive function

This function returns TRUE if the record in the buffer will be edited on save.

DBactive(integer DatabaseHandle)

This function has the following argument:

Argument Description

DatabaseHandle Identifier that specifies the database.

This function returns:

DB_ERROR_INVALID_DATABUFFER

TRUE: if a record is found using one of the following functions (meaning the record
already exists):

DBfirst

DBnext

Dbprev

Dblast

DBfindByNumber

FALSE: The record has been created (not editing a previously existing record)

FLEX OS 1.0, 2.0

DBactive is reset by Dbclear().

Writes a string indicating that a record is being edited.

If (DBactive(DBID))

DBGShow("Editing Record")

DBchanged function, DBclear function, DBdelete function, DBsave function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

DBchanged function 123

DBchanged function

Compares a file's record buffer against an internally maintained change buffer.
Currently in FLEX Script, the only way to change the contents of the record buffer is
by using the DBSave function.

DBchanged(integer DatabaseHandle)

This function has the following argument:

Argument Description

DatabaseHandle Identifier that specifies the database.

This function returns TRUE (1) if the record buffer is different from the internally
maintained change buffer. The function returns FALSE (0) if the record buffer and the
change buffer are the same.

This function returns:

DB_ERROR_INVALID_DATABUFFER

TRUE (1): if the record buffer is different from the internally maintained change
buffer.

FALSE (0) if: the record buffer and the change buffer are the same.

FLEX OS 1.0, 2.0

None

Writes a string if the record has been changed.

If (DBchanged(DBID))

DbgShow("Record has been changed")

DBactive function, DBchanged function, DBclear function, DBdelete function, DBsave
function

Purpose

Syntax

Parameters

Returns

Returns

Version
Compatibility

Remarks

Example

See also

124 DBclear function

DBclear function

Clears the record buffer for an open database.

Integer DBclear(integer DatabaseHandle)

This function has the following argument:

Argument Description

DatabaseHandle Unique identifier for the database.

This function returns the following:

OK

SUCCESS

DB_ERROR_INVALID_DATABUFFER

FLEX OS 1.0, 2.0

The function gets its name from the fact that it clears the record buffer. When
DBclear is called, a new record number is provided if the record is saved with
DBsave. In the record buffer, numeric data is initialized to zero and string data is
initialized to NULL. The record buffer is also set to Not Active and Not Changed.
After you populate the record buffer, use DBsave to commit the new record to the
database.

Warning If DBsave is used without calling DBclear, the contents of the last accessed record
will be overwritten.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

DBclear function 125

Adds two records to the Preferences database.

Structure PrefsRecord

integer PrefID

string Data

EndStruct

PrefsRecord Preference

integer PrefsDB, ReturnValue

PrefsDB = DBopen(PrefsDatabaseName) // Get database handle

Preference.PrefID = 1

Preference.Data = "1"

ReturnValue = DBsave(PrefsDB, Preference) // Commit to database

ReturnValue = DBclear(PrefsDB)

// If DBclear is NOT used, the next record will overwrite the first

// record since the current record pointer still points to the first

// record

Preference.PrefID = 2

Preference.Data = "1"

ReturnValue = DBsave(PrefsDB, Preference) // Commit to database

ReturnValue = DBclose(PrefsDB) // Finished working with database

DBactive function, DBchanged function, DBclose function, DBcreate function,
DBdelete function, DBopen function, DBremove function, DBsave function

Example

See also

126 DBclose function

DBclose function

Closes access to a particular database and frees the database handle associated with it.

integer DBclose(integer DatabaseHandle)

This function has the following argument:

Argument Description

DatabaseHandle Identifier that specifies the database to be closed.

This function returns the following:

OK

SUCCESS

DB_ERROR_INVALID_DATABUFFER

FLEX OS 1.0, 2.0

Use this function to close a database when you are finished using it. Closing the
database frees up all resources being used by the database. If there are any open
datasets associated with the database, their resources are also freed.

Note If DBclose is not called, the database handle is not freed. Since there are a limited
number of handles available (64), failing to free the handle may eventually prevent you from
opening files. The 64-file limit is system-wide, not application-wide.

Closes the database named PrefsDB.

Integer PrefsDB, rval

PrefsDB = DBopen(PrefsDatabaseName) // Get database handle

...

// Work with file

...

rval = DBclose(PrefsDB) // Finished working with database

DBcreate function, DBfindByNumber function, DBgetCurrent function,
DBgetNumberOfRecords function, DBopen function, DBremove function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

DBcloseFind function 127

DBcloseFind function

Closes a dataset (created by DBfind) and frees the dataset handle associated with it.

integer DBcloseFind(integer DatasetHandle)

This function has the following argument:

Argument Description

DatasetHandle The handle of the dataset.

This function returns the following:

OK

SUCCESS

DB_ERROR_INVALID_DATABUFFER

FLEX OS 1.0, 2.0

Use this function when you are finished with a DBfind action. DBcloseFind frees up
the memory in use by the dataset. Closing a database properly via Dbclose also frees
the memory used by any datasets associated with that database.

Note If DBcloseFind and DBclose are not called, the handles are not freed. Since there
are a limited number of file handles available (64), failing to free the file handle may eventually
prevent you from opening files. The 64-file limit is system-wide, not application-wide.

Note Closing a database also closes any associated datasets. Therefore DBcloseFind
followed by DBclose is unnecessary. You can simply code DBclose if you're ready to close
both dataset and database.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

128 DBcloseFind function

Closes the dataset named PersonQuery and releases the dataset handle.

Integer TempList, rval

TempList = DBfind(PersonDB, PersonQuery)

...

// work with dataset

...

rval = DBcloseFind(TempList)

DBfind function, DBfirst function, DBgetCount function, DBlast function, DBnext
function, DBprev function

Example

See also

DBcreate function 129

DBcreate function

Creates a database with the specified structure and name.

integer DBcreate(dbCreateClass FileStructure, string FileName)

This function has the following arguments:

Argument Description

FileStructure File data structure of the new file (the name of a previously created
dbCreateClass object).

FileName Name of the database file.

This function returns the following:

OK

SUCCESS

DB_ERROR_INVALID_FILE_NAME

FILE_ERROR_WRITE_FAILURE

FLEX OS 1.0, 2.0

Use this function to create a database in persistent storage. To free resources, be sure
you use DBremove to delete databases that you are not going to use again.

FileStructure must use the same sequence of fields as the structure uses.

I Integer

R Real

D Date

S String

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

130 DBcreate function

Creates a database whose records contain an integer and a string of up to 51
characters. Database records are fixed length.

Const string PrefSchema = "IS51"

// Open Database = 99

Const string PrefsDatabaseName = "99"

Object PrefsSchemaHolder IsA dbCreateClass

EndObject

PrefsSchemaHolder.add_field(PrefSchema)

DBcreate(PrefsSchemaHolder, PrefsDatabaseName)

PrefsSchemaHolder.Destroy_Object() // Clean up memory usage

DBclose function, DBfindByNumber function, DBgetCurrent function,
DBgetNumberOfRecords function, DBopen function, DBremove function

Example

See also

dbCreateClass 131

dbCreateClass

Used to implement the functions necessary to maintain database schemas.

dbCreateClass has the following superclass.

objectClass

dbCreateClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclass.

Unique properties Unique methods Unique events

None Add_field() None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

132 dbCreateClass

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

An instance of this class is used in the DBcreate function.

None

Version
Compatibility

Remarks

See also

DBdelete function 133

DBdelete function

Deletes the record pointed to by the current record pointer and specified by the
database handle.

integer DBdelete(integer DatabaseHandle)

This function has the following argument:

Argument Description

DatabaseHandle Handle of the database to be deleted.

This function returns the following:

OK

DB_ERROR_INVALID_DATABUFFER

DB_ERROR_INVALID_RECORD

FLEX OS 1.0, 2.0

Use DBdelete to remove a specific record from the database.

Warning DBdelete always deletes the current record. Be sure the record you want to delete is
the current record.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

134 DBdelete function

Opens the database ApplicationDatabaseName and searches for a record defined in
ApplicationQuery. If matching records are found, it sets the current record pointer to
the first record in the dataset. If the AppName portion of this first record contains the
phrase I’m a bad app, that record is deleted.

integer AppDB, AppList

AppDataStruct TempApp

QueryType ApplicationQuery

AppDB = DBopen(ApplicationDatabaseName) // Open the database

AppList = DBfind(AppDB, ApplicationQuery) // Get the dataset

If (AppList >= 0)

Begin

ReturnValue = DBfirst(AppList, TempApp)

// Set the current record pointer to the first record in

// the dataset

if (StrEq(TempApp.AppName, "I’m a bad app"))

ReturnValue = DBdelete(AppDB)

End

DBcloseFind(AppList)

DBclose(AppDB)

DBactive function, DBchanged function, DBclear function, DBsave function

Example

See also

DBDeleteAll function 135

DBDeleteAll function

Deletes all of the records in the specified database.

Intger DBDeleteAll(string databasename)

This function has the following argument:

Databasename Name of the database for which all records will be deleted.

This function returns the following error codes:

SUCCESS

DB_ERROR_INVALID_FILE_NAME

DB_ERROR_NO_RECORDS_FOUND

FLEX OS 2.0

This function permanently destroys all data in the database. However, the schema is
left in tact. This function should be used for re-initializing the database.

integer PrefsDB, ReturnValue

PrefsDB = DBopen(PrefsDatabaseName) // Get database handle

...

ReturnValue = DBDeleteAll(PrefsDatabaseName)

...

ReturnValue = DBclose(PrefsDB) // Finished working with database

DBDelete function, DBRemove function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

136 DBfind function

DBfind function

Creates an in-memory listing (or query dataset) of the records matching the selection
constraints set up in the query, sorted according to the sort constraints set up in the
query.

integer DBfind(integer DatabaseHandle, queryType Query)

This function has the following arguments:

Argument Description

DatabaseHandle Handle of the database to be accessed.

Query Structure that specifies the search and sort criteria.

This function returns the following:

Zero or greater returns the handle to the dataset.

-1 if the device could not do a search/sort based on lack of memory

OK

SUCCESS

E_ITEM_NOT_FOUND

E_ITEM_TOO_BIG

DB_ERROR_INVALID_DATASET

DB_ERROR_OUT_OF_DATASETS

DB_ERROR_DATABUFFER_CHANGED

DB_ERROR_NO_RECORDS_FOUND

DB_ERROR_INVALID_DATABUFFER

DB_ERROR_RECORD_READ_ERROR

DB_ERROR_INVALID_SORT

DB_ERROR_INVALID_SEARCH

Purpose

Syntax

Parameters

Returns

DBfind function 137

FLEX OS 1.0, 2.0

Use this function to generate a list of database records that match a specific query, such
as all unread messages. You first define a query, including any sorts, then call DBfind
to create the dataset. Use DBcloseFind to close the query dataset.

Output: Query dataset, an in-memory structure that contains the records that match
the Find criteria.

Refer to QueryType structure in the See Also section for information on setting up
search/sort criteria.

Opens the database ApplicationDatabaseName and searches for a record defined in
ApplicationQuery. If matching records are found, it sets the current record pointer to
the first record in the dataset. If the AppName portion of this first record contains the
phrase I’m a bad app, that record is deleted.

function TMain_OpenButton_OnSelect()

// Set the status display

Tmain.ActivityLabel.Text="Open database"

iIndex = 0

// Clear the list first in case we switch to the dislay again and

// again

DBSaveDT.NotePickListBox.Clear()

// Open the DB

iDBHandle = DBOpen(szDBName)

// Get the list of notes in the DB

iNoteList = DBFind(iDBHandle, NoteQuery)

// If the list number is non-negative, it means there are

// records in

// the DB

if (iNoteList >= 0)

begin

// Set the current DB record to the first entry in the

// search list

iRtnValue = DBFirst(iNoteList, strNote)

// Get the first record number:

iRecordNumber = DBGetCurrent(iDBHandle)

// As long as there are items in the list, put them

// in the pick list:

// (When the end of the DB is reached, the return value

Version
Compatibility

Remarks

Example

138 DBfind function

// of the NextINDB() call will become a negative one)

while(iRtnValue = 0)

begin

// First get the date of the note and

// convert it to string:

szListEntry = DateToStr(strNote.dLastEditDate)

// Append a space and the text of the note

// to the list text

szListEntry = szListEntry + " " + strNote.szInfo

// Add the item to the list box, use -1 to

// put to the end of the list:

DBSaveDT.NotePickListBox.Add_Item(-1, szListEntry)

// Set the hidden data field of the

// picklist to the DB record

// number of that note:

DBSaveDT.NotePickListBox.HiddenData[iIndex]=

iRecordNumber

// Increment the index to the next item

iIndex = iIndex + 1

// Point to the next record in DB

iRtnValue = DBNext(iNoteList, strNote)

// Retrieve the record number:

iRecordNumber = DBGetCurrent(iDBHandle)

end

// Done working with the database, close it

iRtnValue=DBClose(iDBHandle)

// Save the current index number as the number of

// records in DB

iNotesRemain = iIndex

// Use the index number to display the total number of

// records in the database

DBSaveDT.StatusLabel.Text="There are " + str(iIndex) + " notes

to select"

// Now display the pick list

ShowNotePickList()

end

DBfind function 139

else //if (iNoteList < 0)

// If no notes find, set the proper text in the status

// display

Tmain.ActivityLabel.text="No notes to open"

//Tmain.ActivityLabel.text=cvtinttostr(iNoteList)

// Done retrieving data, close the database:

iRtnValue=DBClose(iDBHandle)

end function

DBclear function, DBcloseFind function, DBfindByNumber function, DBfirst function,
DBgetCount function, DBlast function, DBnext functionDBSubFind function,
QueryType Structure, Searches Structure, Sorts Structure

See also

140 DBfindByNumber function

DBfindByNumber function

Sets the current record pointer to the record specifed by RecordNum and loads it into
the structure provided.

integer DBfindByNumber(integer DatabaseHandle, integer RecordNum,

structureType DatabaseStructure)

This function has the following arguments:

Argument Description

DatabaseHandle Identifier that specifies the database to be searched

RecordNum Number of the record to be returned

DatabaseStructure The structure in which the record is stored.

This function returns the following:

OK

SUCCESS

E_ITEM_NOT_FOUND

E_ITEM_TOO_BIG

DB_ERROR_INVALID_DATABUFFER

DB_ERROR_RECORD_READ_ERROR

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Returns

Version
Compatibility

DBfindByNumber function 141

The record number of any particular record is assigned by the database manager.
Record numbers are not guaranteed to be sequential, nor reused in any particular order.
They are, however, guaranteed to be unique within any particular database file. For
this reason, you cannot construct a For loop to read each record of the database in
succession. You must instead use the DBfind command.

To return the record number of the current record, use the DBgetCurrent function.

This function is typically used when you are selecting a known record number from a
dataset and therefore don’t have to do a query. For example, you would call DBopen to
open a specific database, then use DBfindByNumber to locate a specific record, which
might have been stored in a variable from a previous query.

Another use of the function for databases that do not contain a key field: when a
record is placed in a list for selection, the record number can be placed in the hidden
data field and used to relocate that specific record.

Finds record number 5 in the message database and loads its contents into the
TempMsg structure.

Result = DBfindByNumber(MsgDB, 5, TempMsg)

DBclose function, DBcreate function, DBgetCurrent function,
DBgetNumberOfRecords function, DBopen function, DBremove function

Remarks

Example

See also

142 DBfirst function

DBfirst function

Sets the first record in the query dataset as the current record.

integer DBfirst(integer DatasetHandle, structureType DatabaseStructure)

This function has the following arguments:

Argument Description

DatasetHandle The identifier of the query dataset.

DatabaseStructure Structure in which the record is stored (must be identical to the
structure of the associated database).

This function returns the following:

OK

SUCCESS

E_ITEM_NOT_FOUND

E_ITEM_TOO_BIG

DB_ERROR_INVALID_DATASET

DB_ERROR_INVALID_DATABUFFER

DB_ERROR_RECORD_READ_ERROR

FLEX OS 1.0, 2.0

Use this function to set the first record in the dataset as the current record.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

DBfirst function 143

Opens a database called TimerDatabaseName and searches it for records matching
TimerIDQuery and stores the results in TempList. The DBfirst function stores the first
matching record from TempList in the variable CurrentTimerItem, where actions are
performed on it. The function DBnext moves successive records into
CurrentTimerItem for processing, after which TempList and CurrentDB are closed.

function TMain_OpenButton_OnSelect()

// Set the status display

Tmain.ActivityLabel.Text="Open database"

iIndex = 0

// Clear the list first in case we switch to the dislay again and

// again

DBSaveDT.NotePickListBox.Clear()

// Open the DB

iDBHandle = DBOpen(szDBName)

// Get the list of notes in the DB

iNoteList = DBFind(iDBHandle, NoteQuery)

// If the list number is non-negative, it means there are

// records in

// the DB

if (iNoteList >= 0)

begin

// Set the current DB record to the first entry in the

// search list

iRtnValue = DBFirst(iNoteList, strNote)

// Get the first record number:

iRecordNumber = DBGetCurrent(iDBHandle)

// As long as there are items in the list, put them

// in the pick list:

// (When the end of the DB is reached, the return value

// of the NextINDB() call will become a negative one)

while(iRtnValue = 0)

begin

// First get the date of the note and

// convert it to string:

szListEntry = DateToStr(strNote.dLastEditDate)

// Append a space and the text of the note

// to the list text

szListEntry = szListEntry + " " + strNote.szInfo

// Add the item to the list box, use -1 to

// put to the end of the list:

Example

144 DBfirst function

DBSaveDT.NotePickListBox.Add_Item(-1, szListEntry)

// Set the hidden data field of the

// picklist to the DB record

// number of that note:

DBSaveDT.NotePickListBox.HiddenData[iIndex]=

iRecordNumber

// Increment the index to the next item

iIndex = iIndex + 1

// Point to the next record in DB

iRtnValue = DBNext(iNoteList, strNote)

// Retrieve the record number:

iRecordNumber = DBGetCurrent(iDBHandle)

end

// Done working with the database, close it

iRtnValue=DBClose(iDBHandle)

// Save the current index number as the number of

// records in DB

iNotesRemain = iIndex

// Use the index number to display the total number of

// records in the database

DBSaveDT.StatusLabel.Text="There are " + str(iIndex) + " notes

to select"

// Now display the pick list

ShowNotePickList()

end

else //if (iNoteList < 0)

// If no notes find, set the proper text in the status

// display

Tmain.ActivityLabel.text="No notes to open"

//Tmain.ActivityLabel.text=cvtinttostr(iNoteList)

// Done retrieving data, close the database:

iRtnValue=DBClose(iDBHandle)

end function

DBcloseFind function, DBfind function, DBgetCount function, DBlast function,
DBnext function, DBopen function, DBprev function

See also

DBgetCount function 145

DBgetCount function

Returns the number of records found in the query dataset.

integer DBgetCount(integer DatasetHandle)

This function has the following argument:

Argument Description

DatasetHandle Identifier that specifies the dataset

This function returns the following:

Zero or greater = The number of records found in the dataset

SUCCESS

DB_ERROR_INVALID_DATABUFFER

FLEX OS 1.0, 2.0

Use this function in situations where you would perform different actions based on the
number of records found, such as opening a file if only one record is found, but
displaying a list box of choices when two or more are found.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

146 DBgetCount function

Creates a database called PrefsDB and uses the DBfind function to search through
PrefsDB and find all records that match the record PrefQuery; uses the DBgetCount
function to determine the number of matching records, and stores the number in the
variable PrefsList.

QueryType PrefQuery

integer PrefsDB

integer PrefsList

integer ReturnValue

PrefsDB = DBopen(PrefsDatabaseName)

PrefsList = DBfind(PrefsDB, PrefQuery) // Find matching records

ReturnValue = DBgetCount(PrefsList)

If (ReturnValue = 0)

// Inform user that record doesn’t exist

else if (ReturnValue = 1)

// Inform user that all is OK

else if (ReturnValue > 1)

// Inform user that duplicate records exist

else

// Inform user that error occurred

ReturnValue = DBcloseFind(PrefsList)

ReturnValue = DBclose(PrefsDB) // Finished working with database

DBcloseFind function, DBfind function, DBfirst function, DBlast function, DBnext
function, DBprev function

Example

See also

DBgetCurrent function 147

DBgetCurrent function

Returns the record number of the current record in the database.

integer DBgetCurrent(integer DatabaseHandle)

This function has the following argument:

Argument Description

DatabaseHandle Handle of the database generated.

This function returns the following:

Record # = The number of the "current record"

SUCCESS

DB_ERROR_INVALID_DATABUFFER

FLEX OS 1.0, 2.0

Record number provides for direct access to any record in the database. The record
number of any particular record is assigned by the database manager. Record numbers
are not guaranteed to be sequential, nor reused in any particular order. They are,
however, guaranteed to be unique within any particular database file. For this reason,
you cannot construct a For loop to read each record of the database in succession. You
must use the DBfind command.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

148 DBgetCurrent function

This example creates a list of text drafts that are stored in a database. Since the user
can edit or delete drafts, some method of finding the selected draft must be used. The
record number of the draft is stored in the hidden data section of the list. When an
action is taken on a draft in the list, the draft record can be found in the database by
using DBfindByNumber and the record number that was saved.

integer CurrentDB

integer TempList

integer Counter

QueryType DraftQuery

TimerDBStruct CurrentDraftItem

Object DraftList IsA ListBoxClass

EndObject

DraftList.Clear() // Make sure the list of drafts is empty

CurrentDB = DBopen(DraftDatabaseName)

TempList = DBfind(CurrentDB, DraftQuery)

If (TempList >= 0)

Begin

Counter = 1

ReturnValue = DBfirst(TempList, CurrentDraftItem)

While (ReturnValue = OK)

Begin

DraftList.Add_Item(-1, CurrentDraftItem.Contents)

DraftList.HiddenData[Counter] = DBgetCurrent(CurrentDB)

ReturnValue = DBnext(TempList, CurrentDraftItem)

Counter = Counter + 1

End

End

ReturnValue = DBcloseFind(TempList)

ReturnValue = DBclose(CurrentDB)

DBcloseFind function, DBcreate function, DBfindByNumber function, DBgetCount
function, DBgetNumberOfRecords function, DBopen function, DBremove function

Example

See also

DBgetNumberOfRecords function 149

DBgetNumberOfRecords function

Returns the number of records stored in the database.

integer DBgetNumberOfRecords(integer DatabaseHandle)

This function has the following argument:

Argument Description

DatabaseHandle Handle of the database to be searched

This function returns the following:

Zero or greater = The number of records in this database

FLEX OS 1.0, 2.0

You can use the results of this function for a variety of tasks and validations, such as
checking to see how many records have been used so that you can limit the number of
records created by the user.

Limits the number of records in the database to 2000.

integer DirectoryDB

integer NumberOfEntries

DirectoryDB = DBopen(DirectoryDatabaseName)

NumberOfEntries = DBgetNumberOfRecords(DirectoryDB)

// The maximum number of records you are allowing is 2000

If (NumberOfEntries < 2000)

// Save the data

else

// Tell the user the database is full

DBclose function, DBcreate functionDBfindByNumber function, DBgetCurrent
function, DBopen function, DBremove function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

150 DbgShow function

DbgShow function

Writes a string to the attached terminal display or to the debug window, based on how
the application is run.

DbgShow(string StringToDisplay)

This function has the following argument:

Argument Description

StringToDisplay Debug data to display

FLEX OS 1.0, 2.0

Use this function to aid in debugging. This function always advances to the next line
after printing the string.

There is a special compiler flag (-r) that will ignore all DbgShow calls from the
program.

Shows the current Visible_State of the screen.

DbgShow("screen state is " + Str(Screen.Visible_State))

DateToStr function, InStr function, Len function, Run function, RunRemove function,
RunSetup function, Setup function, Shl function, Shr function, Stop function, Str
function, Val

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

DBlast function 151

DBlast function

Sets the last record in the query dataset as the current record.

integer DBlast(integer DatasetHandle, structureType DatabaseStructure)

This function has the following arguments:

Argument Description

DatasetHandle The identifier of the query dataset.

DatabaseStructure The structure in which the last record is stored (must be identical to the
structure of the associated database)

This function returns the following:

OK

SUCCESS

DB_ERROR_INVALID_DATASET

DB_ERROR_INVALID_DATABUFFER

E_ITEM_NOT_FOUND

E_ITEM_TOO_BIG

DB_ERROR_RECORD_READ_ERROR

FLEX OS 1.0, 2.0

Use this function to set the last record in the dataset as the current record.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

152 DBlast function

Opens the database called TimerDatabaseName and searches for all records matching
TimerIDQuery; stores the results in TempList. Function DBlast stores the last
matching item from TempList.

integer CurrentDB

integer TempList

QueryType TimerIDQuery

TimerDBStruct CurrentTimerItem

CurrentDB = DBopen(TimerDatabaseName)

TempList = DBfind(CurrentDB, TimerIDQuery)

If (TempList >= 0)

Begin

ReturnValue = DBlast(TempList, CurrentTimerItem)

If (ReturnValue = OK)

Begin

// Perform actions on the record

End

End

ReturnValue = DBcloseFind(TempList)

ReturnValue = DBclose(CurrentDB)

DBcloseFind function, DBfind function, DBfirst function, DBgetCount function,
DBnext function, DBprev function

Example

See also

DBnext function 153

DBnext function

Sets the next record in the query dataset as the current record.

integer DBnext(integer DatasetHandle, structureType DatabaseStructure)

This function has the following arguments:

Argument Description

DatasetHandle The identifier of the set of records

DatabaseStructure The structure in which the next record in the dataset is stored (must be
identical to the structure of the associated database).

This function returns the following:

OK

SUCCESS

E_ITEM_NOT_FOUND

E_ITEM_TOO_BIG

DB_ERROR_BOTTOM_OF_SET

DB_ERROR_INVALID_DATASET

DB_ERROR_INVALID_DATABUFFER

DB_ERROR_RECORD_READ_ERROR

FLEX OS 1.0, 2.0

None

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

154 DBnext function

Opens a database called TimerDatabaseName and searches it for any records matching
TimerIDQuery; stores the results in TempList. The DBfirst function stores the first
matching record from TempList in the variable CurrentTimerItem, where actions are
performed on it. The function DBnext moves successive records into
CurrentTimerItem for processing, after which TempList and CurrentDB are closed.

function TMain_OpenButton_OnSelect()

// Set the status display

Tmain.ActivityLabel.Text="Open database"

iIndex = 0

// Clear the list first in case we switch to the dislay again and

// again

DBSaveDT.NotePickListBox.Clear()

// Open the DB

iDBHandle = DBOpen(szDBName)

// Get the list of notes in the DB

iNoteList = DBFind(iDBHandle, NoteQuery)

// If the list number is non-negative, it means there are

// records in

// the DB

if (iNoteList >= 0)

begin

// Set the current DB record to the first entry in the

// search list

iRtnValue = DBFirst(iNoteList, strNote)

// Get the first record number:

iRecordNumber = DBGetCurrent(iDBHandle)

// As long as there are items in the list, put them

// in the pick list:

// (When the end of the DB is reached, the return value

// of the NextINDB() call will become a negative one)

while(iRtnValue = 0)

begin

// First get the date of the note and

// convert it to string:

szListEntry = DateToStr(strNote.dLastEditDate)

// Append a space and the text of the note

// to the list text

szListEntry = szListEntry + " " + strNote.szInfo

// Add the item to the list box, use -1 to

// put to the end of the list:

Example

DBnext function 155

DBSaveDT.NotePickListBox.Add_Item(-1, szListEntry)

// Set the hidden data field of the

// picklist to the DB record

// number of that note:

DBSaveDT.NotePickListBox.HiddenData[iIndex]=

iRecordNumber

// Increment the index to the next item

iIndex = iIndex + 1

// Point to the next record in DB

iRtnValue = DBNext(iNoteList, strNote)

// Retrieve the record number of DBs

iRecordNumber = DBGetCurrent(iDBHandle)

end

// Done working with the database, close it

iRtnValue=DBClose(iDBHandle)

// Save the current index number as the number of

// records in DB

iNotesRemain = iIndex

// Use the index number to display the total number of

// records in the database

DBSaveDT.StatusLabel.Text="There are " + str(iIndex) + " notes

to select"

// Now display the pick list

ShowNotePickList()

end

else //if (iNoteList < 0)

// If no notes find, set the proper text in the status

// display

Tmain.ActivityLabel.text="No notes to open"

//Tmain.ActivityLabel.text=cvtinttostr(iNoteList)

// Done retrieving data, close the database:

iRtnValue=DBClose(iDBHandle)

end function

DBcloseFind function, DBfind function, DBfirst function, DBgetCount function,
DBlast function, DBprev function

See also

156 DBopen function

DBopen function

Opens the requested database file and returns the database handle. The handle is then
used as the database identifier by all subsequent database activities.

integer DBopen(string DatabaseName)

This function has the following argument:

Argument Description

DatabaseName Name of the database to be opened

This function returns the following:

Zero or greater = The handle associated with this database

SUCCESS

DB_ERROR_INVALID_DATABUFFER

DB_ERROR_INVALID_HEADER

E_ITEM_NOT_FOUND

E_ITEM_TOO_BIG

DB_ERROR_INVALID_FILE_NAME

DB_ERROR_FILE_NOT_FOUND

DB_ERROR_OUT_OF_DATABUFFERS

FLEX OS 1.0, 2.0

Database names are numeric, the DatabaseName value passed into this function is a
string representation of that numeric filename. You must open the database before
trying to access specific records to add, modify, or delete. Always use DBclose to close
a database when finished.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

DBopen function 157

Opens the database called PrefsDatabaseName.

PrefsDB = DBopen(PrefsDatabaseName)

...

// Use the database

...

ReturnValue = DBclose(PrefsDB) // Finished working with database

DBclose function, DBcreate function, DBfindByNumber function, DBgetCurrent
function, DBgetNumberOfRecords function, DBopen function, DBremove function

Example

See also

158 DBprev function

DBprev function

Sets the previous record in the query dataset as the current record.

integer DBprev(integer DatasetHandle, structureType DatabaseStructure)

This function has the following arguments:

Argument Description

DatasetHandle The identifier of the dataset.

DatabaseStructure Structure in which the previous record in the dataset is stored (must be
identical to the structure of the associated database)

This function returns the following:

OK

SUCCESS

E_ITEM_NOT_FOUND

E_ITEM_TOO_BIG

DB_ERROR_TOP_OF_SET

DB_ERROR_INVALID_DATASET

DB_ERROR_INVALID_DATABUFFER

DB_ERROR_RECORD_READ_ERROR

FLEX OS 1.0, 2.0

Use this function to set the previous record in the dataset as the current record.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

DBprev function 159

Opens a database called TimerDatabaseName and searches it for any records matching
TimerIDQuery; stores the results in TempList. The DBlast function stores the last
matching record from TempList in the variable CurrentTimerItem, where actions are
performed on it. The function DBprev moves successive prior records into
CurrentTimerItem for processing, after which TempList and CurrentDB are closed.

integer CurrentDB

integer TempList

QueryType TimerIDQuery

TimerDBStruct CurrentTimerItem

CurrentDB = DBopen(TimerDatabaseName)

TempList = DBfind(CurrentDB, TimerIDQuery)

If (TempList >= 0)

Begin

ReturnValue = DBlast(TempList, CurrentTimerItem)

If (ReturnValue = OK)

Begin

ReturnValue = DBprev(TempList, CurrentTimerItem)

// Perform actions on the next to last record in the database

End

End

ReturnValue = DBcloseFind(TempList)

ReturnValue = DBclose(CurrentDB)

DBcloseFind function, DBfind function, DBfirst function, DBgetCount function,
DBlast function, DBnext function

Example

See also

160 DBremove function

DBremove function

Removes the database, thereby destroying all data residing in the database, and frees
persistent storage occupied by the database.

integer DBremove(string DatabaseName)

This function has the following argument:

Argument Description

DatabaseName Name of the database to be destroyed

This function returns the following:

SUCCESS

DB_ERROR_INVALID_FILE_NAME

DB_ERROR_NO_RECORDS_FOUND

DB_ERROR_CANNOT_REMOVE_DB

FLEX OS 1.0, 2.0

Use this function to delete databases that are no longer needed. This function accepts a
string representation of the numerical database name not its handle.

Checks for an old database and, if it exists, uses its data to generate a new database.
Removes the old database when finished.

integer OldDB, NewDB

integer TempList

QueryType OldDBQuery

OldDBStruct OldItem

NewDBStruct NewItem

OldDB = DBopen(OldDatabaseName)

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

DBremove function 161

if (oldDB >= 0)

Begin

Object NewSchemaHolder IsA dbCreateClass

EndObject

PrefsSchemaHolder.add_field(NewSchema)

DBcreate(NewSchemaHolder, NewDatabaseName)

NewSchemaHolder.Destroy_Object()

NewDB = DBopen(NewDatabaseName)

TempList = DBfind(OldDB, OldDBQuery)

If (TempList >= 0)

Begin

ReturnValue = DBfirst(TempList, OldItem)

While (ReturnValue = OK)

Begin

// Copy items out of the old record into the new

// and add new data

NewItem.Data = OldItem.Data

NewItem.NewData = SomeNewData

// Save the new record in the new database

ReturnValue = DBsave(NewDB, NewItem)

ReturnValue = DBclear(NewDB)

ReturnValue = DBnext(TempList, OldItem)

End

End

ReturnValue = DBcloseFind(TempList)

End

ReturnValue = DBclose(NewDB)

ReturnValue = DBclose(OldDB)

ReturnValue = DBremove(OldDatabaseName) // Delete the old database

DBclose function, DBcreate function, DBfindByNumber function, DBfirst function,
DBgetCurrent function, DBgetNumberOfRecords function, DBopen function, DBsave
function

See also

162 DBRequest property

DBRequest property

listboxClass

Creates a virtual listbox and fills it with the specified dataset.

Listboxobject.DBRequest = integer (datasethandle)

None

FLEX OS 2.0

None

function createList()

integer tasklist

Object vlist IsA listboxclass

EndObject

size.x = 150

size.y = 100

vlist.size = size

location.x = 50

location.y = 10

tasklist = DBFind(Adatabase, Aquery)

vlist.location = location

vlist.dbrequest = tasklist

vlist.searchmode = searchincremental

object more isa buttonclass

endobject

size.x = 35

size.y = 17

more.size = size

location.x = 50

location.y = 125

more.location = location

more.text = "More"

more.method = &makeMore

object recs isa labelclass

endobject

size.x = 45

size.y = 17

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

DBRequest property 163

recs.size = size

location.x = 100

location.y = 125

recs.location = location

recs.text = str(DBGetNumberOfRecords(iDBHandle))

end function

164 DBsave function

DBsave function

Commits the data in the record buffer to the database file.

integer DBsave(integer DatabaseHandle, StructType DatabaseStructure)

This function has the following arguments:

Argument Description

DatabaseHandle Identifier of the database.

DatabaseStructure The structure containing data to be written to the database.

This function returns the following:

SUCCESS

DB_ERROR_INVALID_DATABUFFER

DB_ERROR_RECORD_WRITE_ERROR

FLEX OS 1.0, 2.0

If a record is new, DBclear must be called before DBsave. Otherwise, DBsave writes
the data to the current record.

For more information on creating and editing database records, refer to Working with
databases in the FLEX Script Programmer's Guide.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

DBsave function 165

Creates two new database records for the preferences database. If the DBclear function
is not called, only one new record (the second) will be added.

integer PrefsDB

integer TempList

NewDBStruct PrefItem

PrefsDB = DBopen(PrefsDatabaseName)

if (PrefsDB >= 0)

Begin

PrefItem.Data = "What you want to store"

PrefItem.PrefID = 12

ReturnValue = DBsave(PrefsDB, PrefItem)

 ReturnValue = DBclear(PrefsDB)

PrefItem.Data = "The other thing you want to store"

PrefItem.PrefID = 13

ReturnValue = DBsave(PrefsDB, PrefItem)

End

ReturnValue = DBclose(PrefsDB)

DBactive function, DBchanged function, DBclear function, DBdelete function

Example

See also

166 DBSubFind function

DBSubFind function

Creates a subset of a query dataset that is created by DBFind. The results of the
DBSubFind are equivalent to any other dataset.

integer DBSubFind(integer DatasetHandle, queryType Query)

This function has the following arguments:

Argument Description

DatasetHandle Handle of the dataset to be accessed.

Query Structure that specifies the search and sort criteria.

This function returns the following:

Zero or greater returns the handle to the dataset.

-1 if the device could not do a search/sort based on lack of memory

OK

SUCCESS

DB_ERROR_INVALID_DATASET

DB_ERROR_OUT_OF_DATASETS

DB_ERROR_DATABUFFER_CHANGED

DB_ERROR_NO_RECORDS_FOUND

DB_ERROR_INVALID_DATABUFFER

DB_ERROR_RECORD_READ_ERROR

DB_ERROR_INVALID_SORT

FLEX OS 2.0

The subset can be sorted according to its own criteria. If duplicate records are found,
the dataset will be sorted by the criteria set by the original dataset. For example,
suppose a list of names were sorted by last name. Then suppose, in another context of
the program, the user wanted a list of names that started with “B.” Since all of the last
names start with “B,” it might be easier for the user if the sub-list were sorted by first
name.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

DBSubFind function 167

Const String szDBName = "998"

Const String szDBSchema = "S200S10I"

structure TaskType

string Description

string TaskDate

integer Priority

endstruct

TaskType Task

integer tasklist, tasklist1, tasklist2

integer iDBhandle

function fillDBMS()

 integer i

 integer iRtnValue

 QueryType TaskQuery

 iDBHandle=DBOpen(szDBName)

 // If the handle is a negative value, the database doesn't exist:

 TaskQuery.NumSearchs = 0

 TaskQuery.NumSorts = 1

 TaskQuery.SortList[1].Direction = ASCENDING_SORT

// Will invert when loading list

 TaskQuery.SortList[1].FieldID = 1

// Sort on the date

 TaskList = DBFind(iDBHandle, TaskQuery)

end function

Function testSubSearch()

 QueryType TaskQuery

 TaskQuery.NumSearchs = 1

 TaskQuery.NumSorts = 0

 TaskQuery.SearchList[1].Type = EQUAL_SEARCH

 TaskQuery.SearchList[1].FieldID = 3

 TaskQuery.SearchList[1].Value = "5"

 TaskList1 = DBSubFind(TaskList, TaskQuery)

 dumpRecords(tasklist1)

End Function

Example

168 DBSubFind function

Function testSubSort()

 QueryType TaskQuery

 TaskQuery.NumSearchs = 0

 TaskQuery.NumSorts = 1

 TaskQuery.SortList[1].Direction = DESCENDING_SORT

// Will invert when loading list

 TaskQuery.SortList[1].FieldID = 2

// Sort on the date

 TaskList2 = DBSubFind(TaskList1, TaskQuery)

 dumpRecords(tasklist2)

End Function

DBFind functionSee also

DeactivateLCD function 169

DeactivateLCD function

Turns off LCD screen

DeactivateLCD()

FLEX OS 1.0, 2.0

The system is still awake after execution of the DeactivateLCD function. Any writes to
the screen are still respected and will show when the LCD is turned back on.

The ActivateLCD function or any user interface action (such as pressing the buttons on
the keyboard or opening the lid on the device) will turn the LCD on.

Turns off LCD screen.

DeactivateLCD()

ActivateLCD function

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

170 DecrementContrast function

DecrementContrast function

Changes the screen contrast toward dark.

DecrementContrast()

FLEX OS 1.0, 2.0

Use this function to darken the display in conditions of bright light.

The are 100 contrast steps available with this function. There is no inquiry function
for DecrementContrast().

If you need to calibrate using this function, decrement the contrast down 100 steps,
then up to a specific value.

DecrementContrast() and IncrementContrast() have no effect in the Simulator.

Warning If this function is called too many times, the screen will become completely black and
nothing will display as desired. Calling IncrementContrast() a few times will alleviate this
problem. One option to prevent this is to cause the application to ‘loop’ in the use of contrast so
that at some point the darkest contrast will loop to the lightest contrast.

Increases or decreases contrast based on the keypress.

integer ContrastFlag // Used to flag contrast change direction

If (KeyPressed = CONTRAST_KEY)

Begin

If (ContrastFlag > 0)

DecrementContrast()

else

IncrementContrast()

End

ActivateLCD function, BackLightState function, DeactivateLCD function,
IncrementContrast function, IR_Mode function, KeyboardDelay function, KeyClick
function, LedOff function, LedOn function

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Delete_Block() method 171

Delete_Block() method

textBoxClass

Deletes the marked block of text in a textbox. The block includes all characters from
the BlockStart to the BlockEnd position inclusive. Delete_Block lets you mark sub-
strings for deletion by moving the text cursor.

Object.Delete_Block()

Block marking defines a portion of text to be operated on. Only one block may be
marked at a time. Internal variables are maintained within the textbox to support
block marking including:

• Block start offset

• Block end offset

FLEX OS 1.0, 2.0

Delete_Block deletes any text tag combinations rendered meaningless as a result of the
deletion (for example, combinations of tags that cancel each other out without any
intervening text, or tags between which all text is deleted).

This method is void; it does not return anything.

Deletes the textbox string (underlined) after Delete_Block.

Original String:

<3>This <2>is <4>the original<DF> string

(Underlined portion is block-marked.)

<3>This <2>is <DF>

(Textbox string after deleting)

Insert_Block method, Marked_Block method, BlockStart property, BlockEnd property

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

172 DeleteMail function

DeleteMail function

Deletes the specified mail file from the file system and the associated handle in the
handle list.

DeleteMail (integer FileID)

This function has the following argument:

Argument Description

FileID The file identifier, as returned by the Save method. A number that
represents the unique part of the file name under FIS or DOS as supplied by
the new-mail event

This function returns the following:

OK

MAIL_ERROR_FILE_SYSTEM

FLEX OS 1.0, 2.0

Use DeleteMail to free up space in the file system when you are finished with all
operations on a mail file. This function will usually be done for you by the message
manager.

Deletes all mail files from StartID to EndID inclusive.

function CleanUp (integer StartID, integer EndID)

integer Index

for Index = StartID to EndID

DeleteMail (Index)

End function

CancelMail()function, CopyMail function, mailObjectClass, RadioControl function,
Save Method, SendMail function, SystemErrorEvent

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

deskTopClass 173

deskTopClass

Used to implement the desktop object. The desktop object contains all the screen
objects added to it.

deskTopClass has the following superclasses.

Object

UIObject

Text

Container

Desktop

Control

This object class has no unique properties, methods, or events, and inherits all its
characteristics from its superclasses.

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

174 deskTopClass

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

In an application, each screen consists of one desktop. Each desktop object contains, or
is the parent of, all the objects added to it.

These methods are broadcast to the children of a desktop: Bring_To_Front(),
Create_Object(), Destroy_Object(), Error(), Paint(), ShowObject(), and
HideObject().

controlClass

Version
Compatibility

Remarks

See also

Destroy_Object() method 175

Destroy_Object() method

objectClass

Releases all dynamically allocated storage in use by this object. It also removes the
object from its container. If an object is visible, it will be hidden before it's destroyed.
Destroy_Object frees the memory allocated during creation and manipulation of the
object.

ObjectName.Destroy_Object()

FLEX OS 1.0, 2.0

Memory is freed when the object is destroyed or the parent of the object is destroyed.
Memory is also freed when the application terminates. (A container object is the same
as a parent object.)

Objects are not automatically destroyed when they leave scope.

Creates a mail object M and then destroys it.

Function xyz ()

Object M isa mailObjectClass // Instantiate it

EndObject

M.Destroy_Object() // Free it

End Function

Create_Object method

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

176 DestroyBitmap function

DestroyBitmap function

Frees a bitmap from memory.

integer DestroyBitmap(BitmapType BitmapToDestroy)

This function has the following argument:

Argument Description

BitmapToDestroy Structure holding the bitmap

This function returns the following:

OK

SCREEN_ERROR_INVALID_BITMAP_FORMAT

Typical function call order:

1. ScreenToBitmap (save the screen or a portion of the screen to an in-memory
bitmap)

2. SaveBitmap (store the new bitmap as a file to be used later)

3. DestroyBitmap (destroy the in-memory bitmap to free the memory)

Use DestroyBitmap when you have an in-memory bitmap that you no longer need. By
destroying the in-memory bitmap you will be freeing allocated memory.

Purpose

Syntax

Parameters

Returns

Remarks

DestroyBitmap function 177

Captures a copy of the screen picture in the WhatToGet rectangle and saves it to the
file system as ScreenStuff, then frees the memory used.

PointType TopLeft, BottomRight

RectType WhatToGet

BitmapType BitmapToSave

TopLeft.x = 10

TopLeft.y = 20

BottomRight.x = 50

BottomRight.y = 80

WhatToGet.ulCorner = TopLeft

WhatToGet.brCorner = BottomRight

BitmapToSave = ScreenToBitmap(WhatToGet, "C2")

ReturnValue = SaveBitmap("ScreenStuff", BitmapToSave)

ReturnValue = DestroyBitmap(BitmapToSave)

DisplayBitmap function, DisplayBitmapFile functionLoadBitmap function,
SaveBitmap function, ScreenToBitmap function

Example

See also

178 DestroyFont function

DestroyFont function

Destroys the in-memory version of the font.

integer DestroyFont(integer FontHandle)

This function has the following argument:

Argument Description

FontHandle The font handle of the font to be destroyed. Value must be a valid
number for a handle value (greater than zero but less than the maximum
number of handles allowed).

This function returns the following:

TXERR_NO_ERROR

TXERR_NOT_READY

TXERR_INACTIVE_HANDLE

TXERR_INVALID_HANDLE

FLEX OS 1.0, 2.0

Font handles are supplied by return value of the function CreateFont. The DestroyFont
function frees memory used by a font when you are finished with it. If you are
planning on deleting a program, use Remove for each font you created.

Warning Once a font handle has been destroyed, re-accessing the font through the destroyed
font handle could result in information that is different from what is expected. Take care not to
call a font that has been previously destroyed.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

DestroyFont function 179

Removes the font CurrFont from memory.

FontType CurrFont

Integer FontHandle

CurrFont.Height = 10

CurrFont.Width = 8

CurrFont.FaceName = "Nelson Standard"

FontHandle = CreateFont(CurrFont)

//Use font

ReturnValue = DestroyFont(FontHandle)

CreateFont function, DrawText function, GetPointingCursor function, SelectFont
function, SetTextColor function, SetTextPoint function

Example

See also

180 DestroyPlayList function

DestroyPlayList function

Destroys a previously created playlist based on the handle passed to it.

integer DestroyPlayList(integer ListID)

This function has the following argument:

Argument Description

ListID The handle for the playlist to be destroyed

This function returns the following:

NTFERR_NO_ERROR

NTFERR_INVALID_LIST_ID

FLEX OS 1.0, 2.0

Use this function to free in-memory space and the handle when the playlist is no longer
needed.

Removes the playlist CurrPlayList from memory.

Note In the following example, AddToneToPlayList is not a FLEX Script function, but
rather a wrapper function that uses AddPlayElement to add a tone element to a playlist.

CurrPlayList = CreatePlayList()

AddToneToPlayList(CurrPlayList, 392, 256, 2)

AddToneToPlayList(CurrPlayList, 440, 256, 2)

AddToneToPlayList(CurrPlayList, 494, 256, 2)

SavePlayList(CurrPlayList, "FIS:7.1")

DestroyPlayList(CurrPlayList)

...

LoadPlayList(CurrPlayList, “FIS:7.1”)

AddPlayElement function, CreatePlayList function, LoadPlayList function, PlayBeep
function, SavePlayList function, StartPlayList function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

DevFrom property 181

DevFrom property

mailObjectClass

Defines an identifier of the device from which a message was sent.

integer Mailobject.DevFrom

FLEX OS 1.0, 2.0

Currently used for IR only (mail objects with carrierID of CARRIER_IR). Default = 0.

When using the DevFrom property, be sure to include MailObj.Inc.

Note This property is defined only when DevFrom is CARRIER_IR,
CARRIER_LOOPBACK, or CARRIER_LOCAL.

Sets the device ID of an incoming message.

$$INCLUDE "MailObj.Inc"

:

mailObjectClass MyAppMessage // declare global obj

integer iDeviceID

// Construct a message object

Object MyAppMessage isa mailObjectClass

EndObject

MyAppMessage.Load(iMailBins[1])

// Prepare the message by assigning the properties of the

// message object

iDeviceID = MyAppMessage.DevFrom

:

:

MyAppMessage.Destroy.Object()

DevTo property, mailObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

182 DevTo property

DevTo property

mailObjectClass

Defines an identifier of the device to which the message is to go.

integer DevTo

FLEX OS 1.0, 2.0

Set this property to define the device ID to which a message is to be sent. Currently
used for IR only. Default = 0.

When using the DevTo property, be sure to include MailObj.Inc.

Note This property is defined only when DevTo is CARRIER_IR, CARRIER_LOOPBACK,
or CARRIER_LOCAL.

Sets the device ID of an outgoing message.

$$INCLUDE "MailObj.Inc"

:

mailObjectClass MyAppMessage // declare global obj

function xyz ()

integer iDeviceID

// Construct a message object

Object MyAppMessage isa mailObjectClass

EndObject

iDeviceID = 100

// Prepare the message by assigning the properties of the

// message object

MyAppMessage.DevTo = iDeviceID

:

MyAppMessage.Destroy_Object()

end function

DevFrom property, mailObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

dialogClass 183

dialogClass

Used to implement the dialog box object. The dialog box object contains all the screen
objects added to it.

dialogClass has the following superclasses.

objectClass

uiObjectClass

textClass

containerClass

dialogClass

controlClass

This object class has no unique properties, methods, or events, and inherits all its
characteristics from its superclasses.

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

184 dialogClass

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

In an application, each dialog box object contains, or is the parent of, all the objects
added to it. Dialog box objects can contain other container objects, such as frames and
other dialog boxes, but cannot contain desktop objects.

These methods are broadcast to the children of a dialog box: Bring_To_Front(),
Create_Object(), Destroy_Object(), Error(), Paint(), ShowObject(), and
HideObject().

The title of a dialog box, which is displayed in the title bar, is defined by the Text
property.

containerClass

Version
Compatibility

Remarks

See also

Disabled_State property 185

Disabled_State property

selectClass

Defines whether or not the user is able to interact with a screen object that has this
property.

Desktop.Object.Disabled_State = value

Value is either TRUE or FALSE. Default = FALSE.

FLEX OS 1.0, 2.0

Only buttons, check boxes, radio buttons, and list boxes have this property. When the
value of this property is set to FALSE, the user can no longer interact with the object at
run time; for example, a button cannot be clicked.

Note Focus can still be gained by disabled objects, including buttons, listboxes, super
listboxes, radiobuttons, and checkboxes. It is up to the programmers to implement this
functionality.

Typically, only the button control does anything useful with this property. Disabled
buttons are displayed using the disabled bitmap. The picture below shows a disabled
button.

// Disable the button

MyDesktop.MyButton.Disabled_State = FALSE

:

:

selectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

186 DisplayBitmap function

DisplayBitmap function

Displays the specified bitmap to the screen at the defined coordinates.

DisplayBitmap(PointType TopLeftCorner, BitmapType BitMapToShow)

This function has the following arguments:

Argument Description

TopLeftCorner Structure holding the coordinates of where to place the bitmap’s top left
corner. The point must be on the screen.

BitmapToShow An in-memory bitmap

This function returns the following:

1: Successfully placed bitmap on screen

FLEX OS 1.0, 2.0

The bitmap must be in an in-memory buffer, placed there by ScreenToBitmap or
LoadBitmap. Be sure to use DestroyBitmap to clear the in-memory buffer when you
are through with the bitmap.

Displays WhatToShow with its top left corner at (10, 20).

PointType TopLeft

BitmapType WhatToShow

WhatToShow = LoadBitmap("airplane.rob")

TopLeft.x = 10

TopLeft.y = 20

ReturnValue = DisplayBitmap(TopLeft, WhatToShow)

ClearScreen function, CopyBitmap function, DestroyBitmap function,
DisplayBitmapFile function, LoadBitmap function, SaveBitmap function,
ScreenToBitmap function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

DisplayBitmapFile function 187

DisplayBitmapFile function

Displays a bitmap that is stored on the device, at the specified coordinates.

integer DisplayBitmapFile(string BitmapFileName, PointType TopLeft)

This function has the following arguments:

Argument Description

BitmapFileName The name of the file for the bitmap

TopLeft Coordinates of where to place the bitmap’s top left corner

This function returns the following:

OK

-1: The file could not be opened

0: Closed the bitmap file successfully

1: Bitmap was placed on screen successfully

FILE_ERROR_FILE_NOT_OPEN

FLEX OS 1.0, 2.0

This function is equivalent to using LoadBitmap, DisplayBitmap, DestroyBitmap,
because it moves the bitmap to the screen and does not leave any memory consumed
when it’s done.

If the program needs to perform animations, it is probably best to load the bitmap into
the screen and use other routines in order to increase performance, save battery life,
etc.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

188 DisplayBitmapFile function

Displays a previously stored bitmap called BottomRight in the top right corner of a
240x160 screen.

PointType TopLeftOfDisplayArea

BitmapType BitmapToShow

TopLeftOfDisplayArea.x = 120

TopLeftOfDisplayArea.y = 0

ReturnValue = DisplayBitmapFile("BottomRight", TopLeftOfDisplayArea)

CopyBitmap function, DestroyBitmap function, DisplayBitmap function, LoadBitmap
function, SaveBitmap function, ScreenToBitmap function

Example

See also

DisplayOrientation property 189

DisplayOrientation property

sListBoxClass

Display the data from left to right, or top to bottom in a superlist.

Desktop.Listbox.DisplayOrientation = value

Value is an orientation parameter. Default = HORIZONTAL.

FLEX OS 1.0, 2.0

None

The DisplayOrientation property in the example displays the data in a left to right
(HORIZONTAL) orientation.

Object TMain isa desktopClass

Object MySlist isa sListBoxClass

endobject

endobject

...

TMain.MySlist.DisplayOrientation = Horizontal

Superlist object, Bitmap[1] property, HGridLines property, NumCols property,
NumRows property, SelectState property, Text property, VGridLines property,
WrapMode property

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

190 Do...While statement

Do...While statement

The Do While statement allows you to define a structure that repeatedly executes a
conditional code block.

Do

 begin

/* Code block */

 end

while (expression)

FLEX OS 1.0, 2.0

The Do While statement executes a code block and then evaluates the specified
condition, expression. Expression can be any valid relational or logical expression.

If the condition evaluates to True (non-zero), the loop is repeated. If the condition
evaluates to False (zero), the Do While structure is exited and program execution
continues with the next statement following the While keyword.

Since the condition is tested after the code block is executed, the Do While statement is
always executed at least once.

Note Iteration statements present the potential for infinite looping. Always make sure there
is a termination condition that will occur.

This example Increments index at least once and continues to do so until the count
reaches MAX_COUNT.

Do

begin

index = index + 1

set_new_count()

counter = get_new_count()

end

While (counter < MAX_COUNT)

While statement, For statement, Begin... End statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

DrawArc function 191

DrawArc function

Draws a curved line.

DrawArc(integer Radius, integer StAngle, integer EndAngle, integer Color)

This function has the following arguments.

Argument Description

Radius The radius value of the arc in pixels

StAngle The starting angle for the arc. Zero is the 12 o’clock position in degrees

EndAngle The ending angle for the arc in degrees

Color The color of the arc being displayed

The Color argument must have one of the following values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

OK

SCREEN_ERROR_INVALID_RADIUS

SCREEN_ERROR_DOES_NOT_FIT

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

192 DrawArc function

If the drawing cursor has not yet been set, you will want to set it using the
SetDrawingCursor function. This location will represent the center point of the arc.

The arc is drawn from the center point with a radius defined by the Radius parameter.
The center point is the current drawing cursor location, which does not change. The
arc is drawn from the starting angle (StAngle) to the ending angle (EndAngle). The
zero angle is defined as Top Dead Center, and the direction of drawing is clockwise.

Values for Radius, StAngle, and EndAngle must ALL be on the screen, and the whole
shape must fit on the screen; otherwise errors will be returned.

Creates a black arc with a 20-pixel radius, from 0 to 45 degrees, with its center at the
current drawing cursor.

PointType WhereToStart

WhereToStart.x = 60

WhereToStart.y = 60

ReturnValue = SetDrawingCursor(WhereToStart)

ReturnValue = DrawArc(20, 0, 45, BLACK)

DrawArc function, DrawBox function, DrawCircle functionDrawLine function, Ellipse
function, GetDrawingCursor function

Remarks

Example

See also

DrawBox function 193

DrawBox function

Draws a rectangle using the current drawing cursor as one corner of the shape, and the
values passed in PointType as the diagonally opposite corner of the rectangle.

DrawBox(PointType WhereToEnd, integer Fill, integer Color)

This function has the following arguments:

Argument Description

WhereToEnd x and y coordinates of a point that represents the end point of the DrawBox
function (the corner of the rectangle opposite the current position of the current
drawing cursor). The point must be on the screen.

Fill Indicates whether the shape should be filled with the color specified in the
color parameter. Zero (the default) = do not fill. Any other value = fill.

Color The color for the shape itself and for its filling color.

The Color argument must have one of the following values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

OK

SCREEN_ERROR_INVALID_POINT

FLEX OS 1.0, 2.0

After this function is called, the current drawing cursor points to the value of
PointType, the opposite corner of the box just drawn.

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

Remarks

194 DrawBox function

Creates a 40x40 box with its top left corner at (60, 60). The box fill will be dark gray.

const integer FILLIT = 1

PointType WhereToStart

PointType WhereToEnd

WhereToStart.x = 60

WhereToStart.y = 60

WhereToEnd.x = 100

WhereToEnd.y = 100

ReturnValue = SetDrawingCursor(WhereToStart)

ReturnValue = DrawBox(WhereToEnd, FILLIT, DARKGRAY)

DrawArc function, DrawCircle functionDrawLine functionDrawLine function, Ellipse
function, GetDrawingCursor function

Example

See also

DrawCircle function 195

DrawCircle function

Draws a circle using the current drawing cursor as the center point of the circle, and
the value of Radius as the radius of the circle.

DrawCircle(integer Radius, integer Fill, integer Color)

This function has the following arguments:

Argument Description

Radius The value used as the radius of the circle; must be greater than zero, and the
whole circle must fit on the screen.

Fill Indicates whether the shape should be filled with the color specified in the
color parameter. Zero (the default) = do not fill. Any other value = fill.

Color The color for the shape itself and for its filling color.

The Color argument must have one of the following values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

OK

SCREEN_ERROR_INVALID_RADIUS

SCREEN_ERROR_DOES_NOT_FIT

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

196 DrawCircle function

Make sure that no point of the circle is off the screen.

After this function is called, the current drawing cursor continues to point at the center
point of the circle.

Creates a circle with a 40-pixel radius and its center at (60, 60). The circle will be
filled with light gray.

const integer FILLIT = 1

PointType WhereToStart

WhereToStart.x = 60

WhereToStart.y = 60

ReturnValue = SetDrawingCursor(WhereToStart)

ReturnValue = DrawCircle(40, FILLIT, LIGHTGRAY)

DrawArc function, DrawBox function, DrawLine function, Ellipse function,
GetDrawingCursor function

Remarks

Example

See also

DrawLine function 197

DrawLine function

Draws a straight line from the current drawing cursor to the screen coordinate passed
to the function in the first parameter.

integer DrawLine(PointType WhereToEnd, integer Color)

This function has the following arguments:

Argument Description

WhereToEnd A structure of x and y coordinates equal to the desired end point of the line
to be drawn. The passed point must be on the screen.

Color Defines the color of the line being displayed

The Color argument must have one of the following values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

OK

SCREEN_ERROR_INVALID_POINT

FLEX OS 1.0, 2.0

Graphs and grids can be created using the DrawLine function.

After this function is called, the current drawing cursor points to the location of the
point at the end of the line just drawn.

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

Remarks

198 DrawLine function

Creates a 5x5 grid on the screen.

integer XValue, YValue

integer I, J

PointType SetSpot

For I = 1 to 4 // Create the vertical lines

Begin

XValue = SCREENWIDTH * I / 5

SetSpot.X = XValue

SetSpot.Y = 0

SetDrawingCursor(SetSpot)

SetSpot.Y = SCREENHEIGHT

DrawLine(SetSpot)

End

For I = 1 to 4 // Create the horizontal lines

Begin

YValue = SCREENHEIGHT * I / 5

SetSpot.X = 0

SetSpot.Y = YValue

SetDrawingCursor(SetSpot)

SetSpot.X = SCREENWIDTH

DrawLine(SetSpot)

End

ClearScreen function, DrawArc function, DrawBox function, DrawCircle
functionEllipse function, GetDrawingCursor function

Example

See also

DrawText function 199

DrawText function

Draws the text TextToDraw in the current font.

integer DrawText(string TextToDraw, integer Length)

This function has the following arguments:

Argument Description

TextToDraw Character string to write to the display. The string element values pointed
to by this parameter are usually in the range 20(hex) to 127(hex), but are
not required to be in this range. The range is a function of the particular
font being used.

Length Length of the string to write, or -1 if string is null-terminated.

This function returns the following error:

TXERR_NO_ERROR

FLEX OS 1.0, 2.0

The current font is set by calling the SelectFont function. The character string is
displayed on the screen beginning at the text cursor location. The text cursor location
will be at the end of the string after this function call. The length of the string to be
drawn is defined by the passed Length parameter. If text extends past the side of the
screen it is wrapped. If the text continues past the bottom of the screen, the screen is
scrolled to accommodate all the text.

Note If all coordinates are not on the screen, the function places it on a valid part of the
screen starting in the upper left corner.

Note Control or non-printable characters should not be passed to this function.

DrawText is the primary means of placing text on the screen. You must use
CreateFont before you can DrawText.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

200 DrawText function

Creating Fonts

You may create as many fonts as you need for the application before you start, but the
last one created will be the current font used by DrawText.

Changing the Font

Use SelectFont to change from the currently selected font to any previously created
one. You may also change the current font by creating a new one with CreateFont.

Changing the Color of the Text

Colors are independent of the font and can be changed as necessary. Use SetTextColor
to change the text color. The system-wide default when the font is created is a black
foreground with a transparent background.

Setting the Beginning Location

Use SetTextPoint to specify the location where the text will start. (If another program
takes focus away from this screen in the middle of a DrawText action, as in a timed
event, you can use GetTextCursor to determine where the cursor was when you left
off.)

Writes Help! in white letters with a black background in the top left corner, using the
current font. Then prints the first three letters of the string below Help!

PointType WhereToStart

SetTextColor(WHITE, BLACK)// Text color, background color

WhereToStart.x = 0

WhereToStart.y = 0

SetTextPoint(WhereToStart)

DrawText("Help!", -1) // Display "Help!"

WhereToStart.x = 0

WhereToStart.y = 20

SetTextPoint(WhereToStart)

DrawText("Help!", 3) // Display "Help!"

CreateFont function, DestroyFont function, SelectFont function, SetTextColor
function, SetTextPoint function

Example

See also

DuplicateMailEvent() 201

DuplicateMailEvent()

MMDS to Read

MMDS generates this event when it has received a mail message that contains
corrections to a previous message.

Event DuplicateMailEvent (integer MsgName, integer

DestinationApplication)

 // code to handle event

End Event

Argument Description

MsgName FIS ID of the file containing the mail message that was
duplicated.

DestinationApplication Logical task ID of the application that was given as the
address of the message.

FLEX OS 1.0, 2.0

None

52

MailStatusEvent, NewAppMailEvent, NewCommandMailEvent, NewPostedMailEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

202 EditMask property

EditMask property

textBoxClass

Defines the mask characters for the editing window of a textBoxClass object.

Desktop.Textbox.EditMask = StringVal

StringVal is the masking string of characters.

FLEX OS 1.0, 2.0

Use this property to set a text entry mask for a text box in your application. The
characters defined by this property are the only characters that can be entered in the
text box. For example, if this mask is defined as “ABCD”, only the letters A, B, C,
and D can be entered into the text box during run time. All invalid characters entered
in the text box result in a beep tone being sounded by the device.

The EditMask property is case-sensitive.

EditMask is used to define characters, not for defining navigation keys (such as ↑, ↓,
→, or ←, Return or BS.

Set the text entry mask for MyTextbox to be "Mailbox name is."

The characters defined by this property are the only characters that can be entered in
the text box.

:

// Only allow “Mailbox name is” to be entered into the edit window

TMain.MyTextbox.EditMask = “Mailbox name is”

:

:

BlockEnd property, BlockStart property, Cursor property, InsertMode property,
Max_Characters property, Read_Only_State property, textBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

Ellipse function 203

Ellipse function

Draws an ellipse on the screen using the current drawing cursor as the center point of
the ellipse, and the values of Radius x, and Radius y as the radii of the ellipse.

Ellipse(integer Radius x, Radius Y, integer Fill, integer Color))

This function has the following arguments:

Argument Description

Radius x The horizontal value used as the radius of the ellipse; must be greater than
zero, and the whole ellipse must fit on the screen.

Radius y The vertical value used as the radius of the ellipse; must be greater than zero,
and the whole ellipse must fit on the screen.

Fill Indicates whether the shape should be filled with the color specified in the color
parameter. Zero (the default) = do not fill. Any other value = fill.

Color The color for the shape itself and for its fill color.

The Color argument must have one of the following values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

OK

SCREEN_ERROR_INVALID_RADIUS

SCREEN_ERROR_DOES_NOT_FIT

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

204 Ellipse function

Make sure that no point of the ellipse is off the screen.

After this function is called, the current drawing cursor continues to point at the center
point of the ellipse.

Draws an ellipse with a white border, but does not fill the ellipse.

Ellipse(5, 3, 0, WHITE)

ClearRect function, ClearScreen function, DrawArc function, DrawBox function,
DrawCircle functionDrawLine function

Remarks

Example

See also

EndPoint property 205

EndPoint property

lineClass

Defines the end-point of a lineClass object.

PointType Object.EndPoint

The (x, y) values of this property must be in the range of (0, 0) to (239, 159).

Default = (0, 0)

FLEX OS 1.0, 2.0

This property has two values associated with it - the X and Y coordinates. Use a
PointType structure to load or receive the values associated with this property.

Defines an end-point for a line with (x,y) coordinates of (50, 80).

// Function : MakePoint

// Description: common function used to create point structures

// quickly for those processes which call for a point as input.

// x = x value of the point

// y = y value of the point

// Returns a pointType structure

function MakePoint(Integer x, Integer y) returns PointType

PointType tempPoint

tempPoint.x = x

tempPoint.y = y

return(tempPoint)

end Function

TMain.MyLine.EndPoint = MakePoint(50, 80)

lineClass, LocationLocation_Property, SizeSize_Property

Applies To

Purpose

Definition

Settings

Version
Compatibility

Remarks

Example

See also

206 Enum statement

Enum statement

The Enum statement provides a special type of constant called enumerated or enum
type.

Enum Identifier (enum_item-1, enum_item-2,..)

FLEX OS 1.0, 2.0

The Enum identifier can take on only those values in the enumerator list. The Enum
data type is integer and zero-based (i.e., the first element is assigned zero, the second is
assigned one, and so on.)

Note Enumerated types in FLEX Script behave as in the C-language.

Declares iColor as an Enum type.

 Enum iColor (Red, Green, Blue)

iColor is an integer variable that can be assigned only the values Red (0), Green (1), or
Blue (2).

Declaring constants, The Select statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

EnvStatus() method 207

EnvStatus() method

mailObjectClass

Returns a code indicating the Envelope status.

integer EnvStatus()

FLEX OS 1.0, 2.0

Default = 255

The EnvStatus byte is a bitwise code. The default for all bits is 1. (Bit 0 is the LSB.)
If a zero (0) appears for the bit value, it has the following meaning:

Bit position Description

0 Message text

1 Receive ack

2 Read ack

3 Accepted

4 Error

5 Message locked

6 (Reserved)

7 (Reserved)

When using the EnvStatus() method, be sure to include MailObj.Inc.

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

208 EnvStatus() method

Creates a mail object named M then gets the EnvStatus.

$$INCLUDE "MailObj.Inc"

Object M isa mailObjectClass // Instantiate it

EndObject

integer Val

Val = M.EnvStatus() // Get the EnvStatus

Accept method, ContentSymbolLen method, ContentType method, Lock method,
RcvErrCnt method, RcvQuality method, ReplyAllowed method, TimeRcv method,
TimeSent method, MailObjectClass

Example

See also

Equality operators 209

Equality operators

The equality operators supported by FLEX Script are:

• Equal To (=)

• Not Equal To (< >)

The equality operators have lower precedence than the relational operators, but they
behave similarly. The Equal To operator returns TRUE if both operands have the same
value; otherwise, it returns FALSE. The Not Equal To operator returns TRUE if the
operands do not have the same value; otherwise, it returns FALSE.

The operand types supported by the equality operators are: Integer, Real, String, Date.
If the operands are of type String or Date, they are converted into integers before being
compared. If the operands are of dissimilar types, the operand with the lower
precedence is converted into the type of the higher precedence operand. The type
precedence is (in decreasing order): Real, Integer, String, Date.

The return value is of either Integer or Real type and the value returned is 0 if the
expression is false; otherwise, it is 1.

FLEX OS 1.0, 2.0

integer x, y

x = 1

y = 2

If (x = y)

// x is equal to y

else

// x is not equal to y

Unary operators, Multiplicative operators, Additive operators, Relational operators,
AND operator, OR operator, XOR operator

Overview

Version
Compatibility

Example

See also

210 Error method

Error method

objectClass

The Error method is invoked when the object receives a method it does not
understand. The error is generated after the message has been delegated to all possible
containers and the method still can't be processed.

ObjectName.Error(integer ErrorNum)

ErrorNum is the error number of the error being declared.

FLEX OS 1.0, 2.0

This method is used to declare errors in the object system. The error numbers are
dependent upon the object and the type of error that is generated. Use this method to
declare any errors you have while processing a method or function.

The Error method is invoked for object NewObject and error number 42 is declared.

NewObject.Error(42)

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

Event statement 211

Event statement

The Event statement defines an event handler. The keyword End Event indicates the
end of the event handler.

Event EventName(integer Param-1, integer Param-2)

..// statements

End Event

FLEX OS 1.0, 2.0

Do not confuse event handlers, denoted by Event..End Event, with the UI object event
handlers. UI object event handlers are similar to regular functions and are triggered by
a UI event.

The example checks if P1 is equal to 1 and calls Stop if true.

Event ProgramEvent(Integer P1, Integer P2)

If (P1 = 1)

Stop()

end Event

About event handlers, Generating and receiving events

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

212 external statement

external statement

Identifies all exported functions of the shared library. These public entry points are
defined in the interface file associated with the shared library.

external Function Identifier ([datatype ar-1,..]) [returns datatype]

{asordinal##}

FLEX OS 2.0

As ordinal## represents a unique number for the shared list function. These numbers
can be from 0 to 255. The FLEX Script compiler will recognize the external keyword
in defining the signature of an external function. Each function within a shared library
has a listing (with the above syntax) in the interface file.

The following example shows you how to identify functions as external (public entry
points) in the interface file (notice that Ordinal 0 is used for initialization and Ordinal
1 is used for deinitialization):

external function simpLibInitialize() asOrdinal 0

external function simpLibDeInitialize() asOrdinal 1

external function simpSrand(integer seed) asOrdinal 2

external function simpRand() returns integer asOrdinal 3

StopEvents() function, LoadLibrary() function, UnloadLibrary() function, Interface
statements, Ways to use a shared library

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

FileInfo function 213

FileInfo function

Provides file size information on a specified file or files.

Integer FileInfo(string Filename)

Filename: a valid FIS filename

This functions returns:

• The size of the file(s) in bytes.

• -1: If the filename was invalid or the file could not be opened.

FLEX OS 1.0, 2.0

If a FIS type file is used, a wild card ID may be used. (65535 is the wild card ID.) For
example, you could enter FileInfo("FIS:1100.65535"). This returns all "FIS:1100.*"
items.

Suppose you wanted to find the size of a database. You could use the wildcard
character to accomplish this.

Integer DBsize

...

DBsize = FileInfo ("FIS:1008.65535")

// Check Dbsize for neg value, otherwise it contains size

// (in bytes) of DB 1008

CloseFile function, CreateFile function, OpenFile function, Remove function,
RenameFile function, SeekFile function

Purpose

Syntax

Parameters:

Returns

Version
Compatibility

Remarks

Example

See also

214 FileSystemStats function

FileSystemStats function

This function returns the amount of free space currently in FIS.

FileSystemStats(filesystem)

The filesystem contains the following values:

FreeSpaceAfterReorg

LargestItem

LargestItemAfterReorg

FLEX OS 2.0

This function is similar to the FreeSpace function, except it takes a file system as input.

function stats()

fileSystemStatsType fs

fs = fileSystemStats("FIS:")

dbgShow(Str(fs.freeSpace) + "," +

Str(fs.freeSpaceAfterReorg) + "," +

Str(fs.largestItem) + "," +

Str(fs.largestItemAfterReorg))

end function

FreeSpace function

Purpose

Syntax

Parameters

Returns
Version
Compatibility

Remarks

Example

See also

Find_Bitmap() method 215

Find_Bitmap() method

Finds a bitmap in a status bar object by name.

statusBarClass

Integer Find_Bitmap(string BitMapName)

Returns item position (0 - n) of the bitmap or -1 if the bitmap is not found.

FLEX OS 1.0, 2.0

None

Finds the position of a bitmap and removes it if the position is greater than or equal to
zero.

Integer post

post = obj.find_bitmap("Foo.ROB")

If (post >= 0)

Obj.Remove_Bitmap(post)

Add_Bitmap method, Remove_Bitmap method

Purpose

Applies To

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

216 First_Displayed property

First_Displayed property

listBoxClass

To indicate the first item in a list box display.

Object.listBoxClass.First_Displayed = value

Returns the item number of the item at the top of the list box display (Top Item).

FLEX OS 1.0, 2.0

The range of values for First_Displayed property is 0 through n where n is (number of
items in the list) -1.

Scrolls a list box upward or downward if the item displayed is not the first item on the
list box.

If (MyDesktop.MyListbox.First_Displayed > 0)

MyDesktop.MyListbox.Scroll(-1)

Scroll method

Applies To

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

First_Line() method 217

First_Line() method

textBoxClass

Returns the line number of the first visible line of a textbox, taking into consideration
word-wrap. This method allows an application to determine if there is text above the
visible portion of the textbox (i.e., if the textbox is scrolled down past the first line).

Integer Object.First_Line()

The integer return value is the line number of the first visible line of the textbox.

FLEX OS 1.0, 2.0

First_Line() is used for navigation when the user needs up- and down-arrows to scroll
through a textbox.

Integer iVal

iVal = MyDesktop.MyTextBox.First_Line ()

Last_Line method, Page_Down method, Page_Up method, Scroll method, Total_Lines
method

Applies To

Purpose

Definition

Returns

Version
Compatibility

Remarks

Example

See also

218 FocusEvent()

FocusEvent()

Applications to any programs that are always running.

This is the event handler which receives notification when an application returns focus
to another application. Determines what an application does when it receives an
EVENT_FOCUS from SendEvent.

FocusEvent(integer Param1, integer Param2)

 // code to handle event

End Event

Param1 – Determined by convention

Param2 – Logical Task ID

Determined by convention on a program-by-program basis. For example, in the
DateTime application, the following settings are used for Parameter1.

Value Description

0 Causes the application to appear in Set Time and Date mode.

998 Causes the application to appear in Select Time and Date to Send mode.

994 Causes the application to appear in Select Alarm Time and Date mode.

FLEX OS 1.0, 2.0

Used to set up how an application will show itself when it is called. Not used in
programs that are run on demand.

32

ProgramEvent, KeyEvent, SysKeyEvent

Generated By

Purpose

Syntax

Parameters

Setting

Version
Compatibility

Remarks

Event Code

See also

Font property 219

Font property

textClass

To set the font used by an object.

Desktop.Object.Font = FontHandle

Value Description

FontHandle Handle for the font returned from CreateFont function.

These fonts are created by the system and can be used without calling CreateFont.

Font Handle
value

Body Text 0

Emphasized Body Text 1

Large Body Text 2

Emphasized Large Body text 3

Error Text 4

Caption Bar Text 5

Highlighted (selected) Body Text 6

Widget Text 7

Highlighted (selected) Widget Text 8

Inactive Widget Text 9

Large Widget Text 10

Highlighted (selected) Large Widget Text 11

Inactive Large Widget Text 12

Status Bar Text 13

Inactive Widget Text 14

FLEX OS 1.0, 2.0

Applies To

Purpose

Syntax

Parameters

Settings

Version
Compatibility

220 Font property

For user-defined fonts, the Font property setting is dependent on the font handle
returned by the CreateFont function. Refer to CreateFont for more information.

The default font is Body text.

Defines the font for TextToShow as large body text.

integer FontHandle

FontHandle = 2 //Large body text

Object TextToShow IsA LabelClass //Create a label

EndObject

TextToShow.Font = FontHandle

TextToShow.Text = "Tasks Completed"

TextClass, CreateFont

Remarks

Example

See also

FontType structure 221

FontType structure

This structure holds the characteristics of a particular font. Currently, only font width
and font height are being used to alter a font’s characteristics. Also included is the
ability to give a font a face name that can be used to reference it.

Structure FontType

 Integer Height

 Integer Width

 Integer Orientation

 Integer Weight

 Integer Italic

 Integer Underline

 Integer CharSet

 String FaceName

EndStruct

Property Value Description

Height 8,10,20 Height of font in pixels

Width 6,8,16 Width of font in pixels

Orientation Not currently implemented

Weight Not currently implemented

Italic Not currently implemented

Underline Not currently implemented

CharSet Not currently implemented

FaceName Not currently implemented

FLEX OS 1.0, 2.0

Note Currently the width and height can only be used in these pairs: 6x8, 8x10, and 16x20.

CreateFont function

Purpose

Syntax

Settings

Version
Compatibility
Remarks

See also

222 For statement

For statement

The For statement implements a loop for which initial and termination conditions are
specified. You can also specify the value by which to increment the loop counter (or
index).

For index = Init_Val to[downto] Final_Val [By increment]

FLEX OS 1.0, 2.0

The For statement consists of:

• an initializing expression (evaluated when the loop begins)

• a test expression (evaluated before each iteration of the loop)

• a modifying expression (evaluated after each iteration of the loop). The modifying
expression defines the amount to increment or decrement the loop. If this
expression is omitted, the default is 1.

Note Index must be of integer type.

This example stores the selected addresses.

Integer MessageCounter, NumItems

for MessageCounter = 1 to NumItems

begin

ItemSelected = MyData[MessageCounter - 1]

SendMsgObj.AdrType[MessageCounter] = ItemSelected

end

Begin... End statement, Do...While statement, While Statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

FormatType() method 223

FormatType() method

carrierObjectClass

Returns a code denoting the address format type.

Integer FormatType(integer Item)

Item is an integer varying from 1 to the number of items in the lsit.

FLEX OS 1.0, 2.0

Indexed by the return of AdrListCnt.

When using the FormatType() method, be sure to include MailObj.Inc.

Note: This is a code mutually understood by originator and receiver. It is implemented but not
currently used.

Item is an integer varying from 1 to the number of items in the lsit.

$$INCLUDE "MailObj.Inc"

integer iVal, Item

iVal = ObjectName.FormatType(Item) // Reading a list method

CannedReply method, MailboxCnt method, MailboxID method, MailboxName
method, MaxLength method, MinLength method, ProfileFormat method,
ProfileUpdateFlag method, ServiceName method, UpdateTimePermitted method,
carrierObjectClass

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

224 frameClass

frameClass

Used to implement the frame object, which groups related screen objects such as radio
buttons or check boxes. The frame object contains all the screen objects added to it.

frameClass has the following superclasses.

objectClass

uiObjectClass

textClass

container

frameClass

controlClass

This object class has no unique properties, methods, or events, and inherits all its
characteristics from its superclasses.

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

frameClass 225

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

In an application, each frame object contains, or is the parent of, all the objects added
to it. Frame objects can contain other container objects, such as dialog boxes and other
frames, but cannot contain desktop objects.

These methods are broadcast to the children of a frame object: Bring_To_Front(),
Destroy_Object(), Paint(), ShowObject(), and HideObject().

The title of a frame, which is displayed at the top of the frame, is defined by the Text
property.

containerClass

Version
Compatibility

Remarks

See also

226 FreeSpace function

FreeSpace function

This function returns the amount of free space currently in FIS.

integer FreeSpace(“FIS:”)

None

FLEX OS 2.0

The return value from this function corresponds to the FreeSpaceAfterReorg member
of the structure for the FileSystemStats function.

function showFree()

int free

free = freeSpace("FIS:")

dbgShow(Str(free))

end function

InttoDate function

Purpose

Syntax

Parameters

Returns
Version
Compatibility

Remarks

Example

See also

Function statement 227

Function statement

The Function statement declares the name, arguments, and any return values of a
function. A function is a sequence of statements, usually with constants, variables, and
structures, that performs a single task within an application. A function is terminated
by the End Function statement. FLEX Script applications consist of one or more
functions.

Function Identifier ([datatype arg-1,..]) [returns datatype]

 // Executable code

End Function

FLEX OS 1.0, 2.0

All executable code in an application resides within functions.

A function cannot be defined inside another function. (In other words, functions
cannot be nested.)

Every FLEX Script application must have a Main () function.

The example illustrates a simple, but valid, Main () function.

Function Main ()

processEvents ()

End function

Event statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

228 GetCalendar function

GetCalendar function

Retrieves the calendar date from the internal real-time clock.

CalendarType GetCalendar()

This function returns the CalendarType (structure with the calendar in the correct
format):

Return Description

integer Year 4 numeric digits for the year, such as 1999

integer Month 1 to 2 numeric digits representing the month, where 0 is January, 11 is
December

integer Day 1 to 2 numeric digits representing the day of the month, 1-31

FLEX OS 1.0, 2.0

Use this function when you want to get the system date and you don’t need the system
time or the ability to do date arithmetic.

Note that Month is zero-based, while Day is one-based.

Saves the calendar date in variable TodaysDate, then uses it to test whether this year is
a leap year.

CalendarType TodaysDate

integer IsItALeapYear

TodaysDate = GetCalendar()

IsItALeapYear = TRUE

If ((TodaysDate.year % 4) <> 0)

IsItALeapYear = FALSE

If (((TodaysDate.year % 100) = 0) and ((TodaysDate.year % 400) <> 0))

IsItALeapYear = FALSE

BroadcastEvent function, GetCurrentTask function, GetDateAndTime function,
GetTimeOfDay function, SetCalendar function, SetDateAndTime function,
SetDateAndTimeFormat function, SetTimeOfDay function, SetTimer function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

GetCurrentMemory function 229

GetCurrentMemory function

Determines the amount of RAM available.

integer GetCurrentMemory()

This function returns the amount of available RAM.

FLEX OS 1.0, 2.0

Use this function to determine if there is enough RAM available for a large process
before launching it, or as a debugging aid to determine if there are memory leaks in
your application.

Displays the amount of available RAM both before and after an application is run.

DbgShow("The RAM at start is " + Str(getCurrentMemory()))

// Run an application

// Terminate the application

DbgShow("The RAM at end is " + Str(getCurrentMemory()))

GetCurrentTask function, GetDesktop function, GetFocus function, GetFocusObject
function, Main function, ProcessEvents function, Remove function, Run function,
RunRemove function, RunSetup function, SetFocus function, SetFocusObject function,
SetTaskName function, Setup function, Stop function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

230 GetCurrentTask function

GetCurrentTask function

Determines the task ID of the current task.

integer GetCurrentTask()

This function returns the TaskID (the identification number of the current task).

FLEX OS 1.0, 2.0

This function is used primarily to find the current task ID so that a SetFocus command
can be used to make the current task receive keyboard events. It is also used in
SendEvent calls to let one task know the task ID of another task so that the two tasks
can pass information back and forth.

Gets the current task ready for keyboard input

SetFocus(GetCurrentTask())

Allows task #32773 to communicate with the current task.

SendEvent(32773, 28, GetCurrentTask(), 0) // TaskNumber, EventID,

// TaskID, WheelButtonNumber

GetDesktop function, GetFocus function, GetFocusObject function, Main function, Run
function, RunRemove function, RunSetup function, SetFocus function, SetFocusObject
function, SetTaskName function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

GetData() method 231

GetData() method

dataObject Class

Copies data stored in an object to a structure.

Object.GetData(ref StructName)

FLEX OS 1.0, 2.0

GetData moves data between an object and an application.

Flash

Program

Struct

Buffer

GetDataPutData

LoadSave

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

232 GetData() method

Writes the data stored in object Objx to the structure App.

Structure AppStruct

Integer iNum1

Integer iNum2

String szText

End struct

Function Datavals(Dataobjectclass Objx)

AppStruct App

...

Objx.GetData (ref App)

...

If (App.iNum1 = 1)

...

End Function

PutData method, add_field method

Example

See also

GetDateAndTime function 233

GetDateAndTime function

Retrieves the date and time from the PageWriter’s operating system.

Date GetDateAndTime()

This function returns the date and time

FLEX OS 1.0, 2.0

This function is not available in the Simulator. GetDateAndTime is designed to obtain
the date and time from the PageWriter’s operating system. However, the Simulator
uses the PC system date and time.

A value representing the day is stored in the variable called DayOfWeek, then used to
find out if the day is Sunday (or how many days until Sunday).

integer DayOfWeek

SetDateAndTimeFormat("%w") // The day of the week (0 - 6)

DayOfWeek = Val(DateToStr(GetDateAndTime())

If (DayOfWeek = 0)

DbgShow("Today is Sunday.")

else

DbgShow("There are " + Str(7 - DayOfWeek) + "days ’til Sunday.")

GetCalendar function, GetCurrentTask function, GetTimeOfDay function, SetCalendar
function, SetDateAndTime function, SetDateAndTimeFormat function, SetTimeOfDay
function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

234 GetDesktop function

GetDesktop function

Retrieves the object ID of the specified application's desktop object.

desktopClass GetDesktop(integer TaskID)

TaskID = The task ID of the application whose desktop is to be retrieved.

This function returns the object ID of the desktop.

FLEX OS 1.0, 2.0

Applications automatically create a desktop upon program initialization. This desktop
contains all objects created by the program. Programmers may access the desktop in
order to affect the properties of that desktop or, because the desktop is a container, the
properties of its children. Typically this function is used to hide the desktop of an
application.

function HideTheDesktop()

desktopClass OurDesktop

OurDesktop = GetDesktop(GetCurrentTask())

OurDesktop.HideObject()

end function

GetFocus function, GetFocusObject function, SetFocus function, SetFocusObject
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

GetDrawingCursor function 235

GetDrawingCursor function

Gets the location of the drawing cursor.

PointType GetDrawingCursor()

This function returns the coordinates of the drawing cursor in the PointType structure.

FLEX OS 1.0, 2.0

This function allows you to locate the current location of the drawing cursor on the
screen. This can be used to relocate the drawing cursor after an interrupt by another
program or time event.

Returns to the current drawing cursor location after another program is run.

PointType WhereIWas

function Leaving()

WhereIWas = GetDrawingCursor()

// Set focus to the other program

End function

Event FocusEvent

ReturnValue = SetDrawingCursor(WhereIWas)

// Display your program

End Event

GetPointingCursor function, SetDrawingCursor function, SetPointingCursor function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

236 GetFocus function

GetFocus function

Determines which task currently has the focus.

integer GetFocus()

This function returns the ID of the task that has the focus.

FLEX OS 1.0, 2.0

Use this function when you want to return to the current task after another task is
finished.

Note The GetFocus function returns only the foreground program, not the object within that
program that has the focus. To get that object, use GetFocusObject().

Stores the task with the current focus in the variable WhereWeWere, executes another
event, then goes back to the original task.

integer WhereWeWere

Event FocusEvent(integer param1, integer param2)

WhereWeWere = GetFocus()

SetFocus(GetCurrentTask())

...

// Go do whatever this program does

End Event

// When you are ready to go back to the previous task

SendEvent(WhereWeWere, SET_FOCUS, 0, 0)

GetCurrentTask function, GetFocusObject function, SetFocus function, SetFocusObject
function, SetTaskName function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

GetFocusObject function 237

GetFocusObject function

Determines which object currently has the focus.

UIobjectClass GetFocusObject()

This function returns the object ID of the screen object that currently has the focus.

FLEX OS 1.0, 2.0

Use this function when you want to be able to return to the screen object that currently
has the focus after some other action has been performed.

Note Use the GetFocusObject function to return the object that has the focus inside the
program that has the focus. Use the GetFocus function if you want to find out which program
has the focus.

Determines which object currently has the focus and then sets the focus to NewFocus.

function SaveOldFocus()

UIobjectClass OldFocus

OldFocus = GetFocusObject()

SetFocusObject(NewFocus)

end function

GetCurrentTask function, GetFocus function, SetFocus function, SetFocusObject
function, SetTaskName function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

238 GetPointingCursor function

GetPointingCursor function

Gets the location of the pointing cursor.

PointType GetPointingCursor()

This function returns the coordinates of the pointing cursor in the PointType structure.

FLEX OS 1.0, 2.0

This function is only used where there is a floating point environment.

NOTE: Not all FLEX devices support the floating point environment.

Moves the pointing cursor halfway to the top left corner.

PointType CurrentLocation

CurrentLocation = GetPointingCursor()

CurrentLocation.X = CurrentLocation.X / 2

CurrentLocation.Y = CurrentLocation.Y / 2

SetPointingCursor(CurrentLocation)

GetDrawingCursor function, Point function, SetDrawingCursor function,
SetPointingCursor function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

GetSysInfo function 239

GetSysInfo function

This function is used to access system information, such as system version and
attributes.

Integer GetSysInfo(integer subfunction)

The subfunction can be one of the following:

1 SI_OS_FLASH_SIZE

2 SI_FIS_FLASH_SIZE

3 SI_RAM_SIZE

4 SI_DEBUG_FLASH_SIZE

5 SI_DEBUG_PRESENT

6 SI_OS_KEYBOARD_REV

7 SI_OS_REV

Integer – Returns the value of the subfunction that is passed in.

FLEX OS 2.0

None

function GetSysInfo(integer subfunc) returns string

// GetSysInfo subfunctions

SI_OS_FLASH_SIZE

SI_FIS_FLASH_SIZE

SI_RAM_SIZE

SI_DEBUG_FLASH_SIZE

SI_DEBUG_PRESENT

SI_OS_KEYBOARD_REV

SI_OS_REV

Function ShowFISSize()

 Integer totalMemory

 totalMemory = GetSysInfo(SI_FIS_FLASH_SIZE)

 dbgShow("total FIS storage= " + str(totalMemory))

end function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

240 GetTimeOfDay function

GetTimeOfDay function

Retrieves the time of day from the internal real-time clock.

sysClockType GetTimeOfDay()

This function returns the following:

SysClockType - the time was successfully received. The structure holds the following
values:

Return Description

integer Hour 1-2 numeric digits representing the hour in 24-hour format, where zero is
midnight, 12 is noon

integer Minute 1-2 numeric digits representing the minutes; 1-59

integer Second 1-2 numeric digits representing the seconds; 1-59

FLEX OS 1.0, 2.0

Use this function when you want to get the system time and you don’t need the system
date or the ability to do date arithmetic.

Saves the time in the variable CurrentTime, then finds out whether it’s afternoon.

SysClockType CurrentTime

integer IsItAfternoon

CurrentTime = GetTimeOfDay()

IsItAfternoon = TRUE

If (CurrentTime. Hour < 12)

IsItAfternoon = FALSE

GetCalendar function, GetDateAndTime function, SetCalendar function,
SetDateAndTime function, SetDateAndTimeFormat function, SetTimeOfDay function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

GetWordWrapLocation function 241

GetWordWrapLocation function

Lets the programmer implement word wrap outside of the standard text objects.

integer GetWordWrapLocation(string StringToCheck, integer StartPos,

integer MaxLineChars)

This function has the following arguments:

Argument Description

StringToCheck The string you want to word wrap

StartPos This parameter is ignored

MaxLineChars The maximum number of characters you want to display on one line

This function returns the position of the last white space character in StringToCheck
before MaxLineChars, or MaxLineChars itself if there are no white space characters.

FLEX OS 1.0, 2.0

This function is used by text objects to do word wrapping. It could also be used to
perform word wrapping when using DrawText.

Note If there are more than MaxLineChars letters in a word, the word will be split after
MaxLineChars letters.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

242 GetWordWrapLocation function

Sets word wrap at a specified location.

Const string WhatToWrap = "Four score and seven years ago, our

fathers..."

PointType WhereToStart

integer LengthOfQuote

integer LineHeight

integer CurrentSpot

string TempString

WhereToStart.X = 0

WhereToStart.Y = 0

LengthOfQuote = Len(WhatToWrap)

ReturnValue = SetTextCursor(WhereToStart)

CurrentSpot = GetWordWrapLocation(WhatToWrap, 0,20)

DrawText(WhatToWrap, CurrentSpot

CreateFont function, DbgShow function, DrawText function, SelectFont function,
SetTextPoint function, SetTextColor function

Example

See also

H_Justified property 243

H_Justified property

textClass

Defines the horizontal justification of the text (Left, Center, or Right) on an object.

Desktop.Object.H_Justified = Value

Value must be one of the following constants:

• LEFTJUSTIFY

• CENTERJUSTIFY

• RIGHTJUSTIFY

Default = CENTERJUSTIFY

FLEX OS 1.0, 2.0

LEFTJUSTIFY aligns the text with the left edge of the object. CENTERJUSTIFY
places the text at the center of the object left to right. RIGHTJUSTIFY aligns the text
with the right edge of the object.

Note textBoxClass does not respect this property.

Defines the horzontal justification of MyLabel as LeftJustify.

:

MyLabel.H_Justified = LEFTJUSTIFY

:

V_Justified property, textClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

244 HelpText property

HelpText property

Provides help text for UI objects. If a UI object receives focus and has a value for
HelpText, the HelpText string is displayed on the status bar.

controlClass

Desktop.controlClassObject.HelpText = String HelpTextValue

HelpTextValue is a string value limited to 29 characters. Any characters beyond this
limit will be truncated.

FLEX OS 1.0, 2.0

This property can be set for any navigable object. Help text is displayed only when the
object receives focus. Focus can be given via the Tab key, NavDisc key, or
programmatically with SetFocusObject().

If an object has no help text and is given focus, any existing help text (from a previous
object) remains on the status bar. (The status bar is not cleared.) For this reason, you
should either give all UI objects help text or give help text only for the first UI object
on the screen.

Although help text can be assigned per object, a more practical approach is to use it to
provide help for the screen itself. Used in this way, you can provide help based on
screen navigation.

The example sets help text for a list box. Later in the code, focus is set to the list box,
causing the help text to be displayed.

MyDesktop.ListBox01.HelpText="Enter item, set priority"

...

SetFocusObject (MyDesktop.Listbox01) //displays help text

UIobjectClass

Purpose

Applies To

Syntax

Arguments

Version
Compatibility

Remarks

Example

See also

HGridLines property 245

HGridLines property

sListBoxClass

Displays horizontal grid lines in this color.

Desktop.Listbox.HGridLines = value

Value is a color parameter. Default = BLACK.

FLEX OS 1.0, 2.0

You cannot turn individual grid lines on and off; you can only turn on and off all
horizontal or all vertical lines as a group.

This sample program shows how the superlist object might be created and manipulated
in FLEX Script. It generates and displays a calendar page with the current month
filled in. The HGridLines property displays horizontal gridlines in black.

$$INCLUDE "Flex.inc"

DesktopClass TMain

sListBoxClass TMain.MySList

Const Integer SecondsPerDay = 86400

Const integer ScreenWidth = 239

Const integer ScreenHeight = 159

String DateStr

Date CurrDate

Integer DayofWeek

Integer i

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

246 HGridLines property

function main()

integer i

string testString

object TMain isa desktopClass

object MySlist isa sListBoxClass

endobject

endobject

TMain.color = White

Location.X = 0

Location.Y = 0

TMain.MySlist.Location = Location

Size.X = ScreenWidth

Size.Y = ScreenHeight - 15

TMain.MySlist.Size = Size

TMain.MySlist.HGridLines = Black

TMain.MySlist.VGridLines = Black

TMain.MySlist.ViewRows = 4

TMain.MySlist.NumRows = 6

TMain.MySlist.NumCols = 7

TMain.MySlist.Color = White

TMain.MySlist.DisplayOrientation = Horizontal

TMain.MySlist.WrapMode = Next

TMain.MySlist.Allocate_items(42)

// fill in the days of the week

TMain.MySlist.Set_Item_Values(0, "Sunday", "",0)

TMain.MySlist.Set_Item_Values(1, "Monday", "",0)

TMain.MySlist.Set_Item_Values(2, "Tuesday", "",0)

TMain.MySlist.Set_Item_Values(3, "Wednesday", "",0)

TMain.MySlist.Set_Item_Values(4, "Thursday", "",0)

TMain.MySlist.Set_Item_Values(5, "Friday", "",0)

TMain.MySlist.Set_Item_Values(6, "Saturday","",0)

// figure out which day lands on Sunday of the first week

CurrDate = GetDateAndTime()

SetDateAndTimeFormat("%Y/%m") // get only the year and

// month

DateStr = DateToStr(CurrDate) + "/01 12:00"

CurrDate = StrToDate(DateStr)

SetDateAndTimeFormat("%w")// get the day of the week

DayOfWeek = Val(DateToStr(CurrDate))

CurrDate = CurrDate - (DayOfWeek * SecondsPerDay)

SetDateAndTimeFormat("%d") // get number of the day

HGridLines property 247

// fill in the days

 for i = 0 to 34

 begin

TMain.MySlist.Set_Item_Values(i + 7, DateToStr(CurrDate),

"", 0)

 if (AppointmentOn(CurrDate)

 TMain.MyList.Set_Bitmap(i + 7, APPOINTMENT_ROB)

 CurrDate = CurrDate + SecondsPerDay

 end

SetFocusObject(TMain.MySlist)

TMain.ShowObject()

processEvents()

end function

Superlist object, Bitmap[1] property, DisplayOrientation property, NumCols property,
NumRows property, SelectState property, Text property, VGridLines property,
WrapMode property

See also

248 HiddenData[] property

HiddenData[] property

listBoxClass

Lets you associate an item in a list box with other data in the program.

Desktop.Listbox.HiddenData[index]

Index is any positive integer value from 1 to the number of entries in the listbox.
Default = NULL.

FLEX OS 1.0, 2.0

The item can represent a data number or a calculated value.

HiddenData[] stores a 32-bit integer value.

:

// Add the item to the list box, use -1 to put it at the

// end of the list

MainDesktop.MyListBox.Add_Item(-1, szListEntry)

// Set the hidden data field of list to the DB record

// number of that note

MainDesktop.MyListBox.HiddenData[iIndex]= iRecordNumber

:

:

listBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

HideObject() method 249

HideObject() method

UIobjectClass

Changes the Visible_State of an object to FALSE (0) and replaces any object that was
concealed beneath the visible object, including the desktop.

ObjectName.HideObject()

FLEX OS 1.0, 2.0

HideObject restores objects beneath it by one of two methods:

• If BackBuffer_State of the object is FALSE, it sends a Paint message to the
parent of the object being hidden. This will remove the object from the screen by
writing over it.

Note There is an implied rule that all children of an object must be located within the
rectangular area of their parent in order for this to produce the desired effect.

• If BackBuffer_State is TRUE, the back buffer will be copied to the screen.

Note Back buffers are extremely expensive in memory and should be used with caution.

Checks to see if the object Foo is visible. If so, it hides it.

If (Foo.Visible_State())

Foo.HideObject()

BackBuffer_State property, ShowObject method, Visible_State property

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

250 Horizontal_Spacing property

Horizontal_Spacing property

Specifies the number of blank columns of pixels between bitmaps on the status bar.

statusBarClass

Horizontal_Spacing()

Set to number of pixels.

Current setting.

FLEX OS 1.0, 2.0

None

Defines the horizontal spacing on a status bar as 2 pixels.

// Specifes a horizontal spacing of 2 pixels on the

// statusbar

Object MyStatusBar isa statusBarClass

Endobject

MyStatusBar.Horizontal_Spacing = 2

statusBarClass, Insert_Bitmap method, Remove_Bitmap method

Purpose

Applies To

Syntax

Settings

Returns

Version
Compatibility

Remarks

Example

See also

Icon property 251

Icon property

buttonClass

Defines the icon placed on top of a button object.

Desktop.Button.Icon = icon_file

icon_file is any valid icon file. Default = NULL (not set).

FLEX OS 1.0, 2.0

None

Defines the icon UP.BMP as the icon placed on top of the button, MyButton.

// Put Up button picture on MyButton

TMain.MyButton.Icon = “Up.bmp”

:

:

buttonClass

Applies To

Purpose

Syntax

Arguments

Version
Compatibility

Remarks

Example

See also

252 If... Else statement

If... Else statement

The If statement evaluates the condition in Expression. If Expression evaluates to a
non-zero value (True), the statement(s) contained under the True clause are executed.
Control is then passed to the first statement outside of the If structure.

If Expression evaluates to zero (False), control moves to the nearest Else clause (if one
exists) and the statement(s) under the Else clause are executed. If the Else clause is
paired with another If statement, the process described above is repeated. If no Else
statement exists, control is passed to the first statement outside the If structure.

If (expression-A)

// True A statements

[else if (expression-B)]

// True B statements

[else]

// False statements]

FLEX OS 1.0, 2.0

Statements within a True or False clause are restricted to one line. If multiple
statements are needed, you must use Begin and End statements to define a code block.

The code example below performs some checks and takes the appropriate action.

If (Page = COMPOSE_MESSAGE)

HideEntry()

else if (Page = CHOOSE_RECIPIENTS)

HideRecip()

else if (Page = REPLIES)

HideRepliesScreen()

else

HideAll()

Begin... End statement, Select... Case statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

IncrementContrast function 253

IncrementContrast function

Lightens the screen contrast.

Integer IncrementContrast()

OK

FLEX OS 1.0, 2.0

Use this function to lighten the display in dim light.

The are 100 contrast steps available with this function. There is no inquiry function
for IncrementContrast().

If you need to calibrate using this function, increment the contrast up 100 steps, then
down to a specific value.

DecrementContrast() and IncrementContrast() do not work in the Simulator.

Increases or decreases contrast based on the keypress.

integer ContrastFlag // Used to flag contrast change direction

If (KeyPressed = CONTRAST_KEY)

Begin

If (ContrastFlag > 0)

DecrementContrast()

else

IncrementContrast()

End

DecrementContrast function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

254 Insert_Bitmap() method

Insert_Bitmap() method

statusBarClass

Adds an active icon to the status bar at the given location.

Insert_Bitmap(string BitmapName, integer TaskID, integer Method, integer

Location)

Argument Description

BitmapName String constant that indicates the bitmap file to use for the icon.

TaskID Identifier of the task to be notified when the icon is selected.

Method Method of the particular TaskID to be invoked when the icon is selected.

Location Where on the status bar to put the new icon.

FLEX OS 1.0, 2.0

If an invalid Location is given, the icon is added to the left of the existing icons, as in
Add_Bitmap.

Creates an object of type statusBarClass and inserts a new bitmap icon.

Object M isa statusBarClass

EndObject

M.InsertBitmap("BitmapFile", 101, 2004, 2)

Add_Bitmap method, Remove_Bitmap method

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

Insert_Block() method 255

Insert_Block() method

textBoxClass

Inserts a string at a specified position within a textbox (e.g. before the cursor position).

Object.Insert_Block (integer Position, string sToInsert)

The integer Position is the position before which a block of text is inserted. Position is
zero-based, which means the first position in the textbox string where the insertion will
occur is 0.

The string sToInsert is the marked block passed for insertion.

FLEX OS 1.0, 2.0

Insert_Block reduces or eliminates any redundant tags within the resultant string. For
example, if a tag is repeated as the result of an insertion, the repeated tag is removed.

To insert a block before the first position in a string of text, use Insert_Block with
Position = 0.

This method is void; it does not return anything.

Inserts the textbox string (underlined) in another string.

Original String:

<3>This string<DF>

Now, insert this string before the word “string”:

<3>is <2>a new

Textbox string after insert

<3>This is <2>a new<3> string

Delete_Block, Marked_Block, BlockStart, BlockEnd

Applies To

Purpose

Definition

Parameters

Version
Compatibility

Remarks

Example

See also

256 InsertMode property

InsertMode property

textBoxClass

Toggles between insert and overstrike mode for textBoxClass objects.

Desktop.TextBox.InsertMode = Value

Value is either TRUE or FALSE. TRUE causes the characters to be inserted before the
cursor; FALSE causes the cursored character to be overwritten. Default = TRUE.

FLEX OS 1.0, 2.0

None

Enables overwriting of characters in a text box class object.

:

function OverwriteTextEntry()

:

TMain.textBoxClass1.InsertMode = TRUE

:

end function

textBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

InStr function 257

InStr function

Searches a source string for a specified string and, if it is found, returns the position
within the source where the string begins.

integer InStr(string SearchIn, string SearchFor, integer startAt)

This function has the following arguments:

Argument Description

SearchIn The source to be searched (string, file, etc.)

SearchFor The string to search for in the source

StartAt Integer representing where the search is to begin within the source

This function returns the starting position of SearchFor if the string is found within
SearchIn. It returns zero if the string is not found.

FLEX OS 1.0, 2.0

Use this function when you need to determine whether one string contains another.
This function also provides the starting location of the contained string. It can be used
to parse a string.

Uses InStr to locate the word and in the phrase stored in the variable baseString, then
breaks the phrase into two parts and removes the word and.

integer Position

string Part1, Part2

string BaseString

BaseString = "I’ve fallen and I can’t get up"

Position = InStr(BaseString, "and", 1)

Part1 = Left(BaseString, Position - 1)

Part2 = Mid(BaseString, Position + 4, 200)

// Part1 = "I’ve fallen "

// Part2 = "I can’t get up"

ConcatStr function, Left function, Len function, Mid function, PrintStr function, Right
function, Shr function, StrEq function, StrGe function, StrGt function, StrLe function,
StrLt function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

258 Integer statement

Integer statement

The Integer statement declares storage for an integer variable.

Integer Identifier-1 [,Identifier-2,..]

FLEX OS 1.0, 2.0

Integer variables are initialized to zero upon creation.

This example declares storage for three integer variables.

Integer iVal1, iVal2, iVal3

About data types, Date statement, Real statement, String statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Interface statement 259

Interface statement

Loads the interface file and associates the library handle by which the shared library
will be accessed.

$$INTERFACE "interfaceFileName" is {handlename}

FLEX OS 2.0

There is no practical limit to the number of $$INTERFACE statements allowed.
However, memory allocation must be carefully considered.

The following example identifies the shared library to be used:

$$INCLUDE "flex.inc"

$$INCLUDE "class.inc"

$$INTERFACE "sh_simple.inf" is libHandle // Load the shared lib

public interface

function main()

integer count, i

dbgShow("in main.src")

libHandle = loadLibrary("sh_simple.air")// Open the library

if (libHandle >= 0) // Test for a successful open

begin

simpSrand(100) // Seed the generator with a constant

// (test mode)

for count = 1 to 10

begin

i = simpRand() // Get a random number from the library

// and show it to the user

dbgShow("Random number " + str(count) + ": " + str(i))

end

unloadLibrary(libHandle) // Close down the lib

end

dbgShow("back in main.src") // Say goodbye

end function

Purpose

Syntax

Version
Compatibility

Remarks

Example

260 Interface statement

function setup()

// Platform-specific activities required to initialize the program

end function

function remove()

// Platform-specific activities required to delete the program and

// all data files

end function

external statement, StopEvents() function, LoadLibrary() function, UnloadLibrary()
function, Ways to use a shared library

See also

IntResource function 261

IntResource function

Resource files enable application programmers to separate resources (such as bitmaps,
strings, etc.) from the application source code. Resources are used in source code via
resource identifiers rather than actual resource values. This allows the actual resources
to be changed without a re-compilation of the source, as long as the resource identifiers
remain unchanged.

Integer IntResource(Locale, Resource, Ordinal)

Locale refers to the FIS type for the resource file.

Resource refers to the FIS ID of the resource item.

Ordinal refers to the 16-bit identifier for the specific resource data.

Integer – returns the integer defined in the resource file.

FLEX OS 2.0

Resource files can be used to contain locale-specific data constants. These constants
are often used as defaults by the system for preferences.

When the following program is compiled, the file “11.22” is created in addition to the
standard MYRES.AIR.

// The myres.rcs file

resource_string IDS_TESTSTR1 9 "hello world"

resource_integer IDS_TESTINT1 8 11

resource_string IDS_TESTSTR2 14 "the second string"

resource_integer IDS_TESTINT2 10 29

resource_string IDS_TESTSTR3 11 "hmmmmm"

resource_integer IDS_TESTINT3 14 12

resource_integer IDS_TESTINT4 19 441

resource_real IDS_TESTREAL5 2 16.22

resource_real IDS_TESTREAL1 29 12.21

resource_date IDS_DATE1 77 "11/20/1993"

resource_date IDS_DATE2 78 "01/17/1988 10:15"

resource_binary IDS_BITMAP1 88 "c:\flexide\inbox.rob"

resource_binary IDS_BITMAP2 89 "c:\flexide\outbox.rob"

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

Resource file

262 IntResource function

// The myres.src file

$$INCLUDE "datatype.inc"

$$RESOURCE "myres.rcs,11.22"

function main()

 integer aInt

 string aStr

 real aReal

 date aDate

 pointtype aPoint

 bitmaptype aBitmap

 aInt = intResource(11, 22, IDS_TESTINT1)

 dbgShow("int = " + str(aint))

 aReal = realResource(11, 22, IDS_TESTREAL1)

 dbgShow("real = " + realtostr(aReal))

 SetDateAndTimeFormat("%m/%d/%Y")

 aDate = dateResource(11, 22, IDS_DATE1)

 dbgShow("date1 = " + dateToStr(aDate))

 setdateandtimeformat("%m/%d/%Y %H:%M:%S")

 aDate = dateResource(11, 22, IDS_DATE2)

 dbgShow("date2 = " + dateToStr(aDate))

 aPoint.x = 10

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP1)

 displaybitmap(aPoint, aBitmap)

 aPoint.x = 100

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP2)

 displaybitmap(aPoint, aBitmap)

 Astr = strResource(11,22,IDS_TESTSTR1)

 DbgShow(“Str = “ + Astr)

end function

About resource files, BitmapResource function, DateResource function, RealResource
function, StrResource function

FLEX Script file

See also

InttoDate function 263

InttoDate function

Converts an integer to a date

date InttoDate(IntToConvert)

IntToConvert is the integer to convert to a date.

Returns the date value of the integer.

FLEX OS 2.0

This function performs a cast. Specifically, it casts an integer value to a date value.
The function does not convert the resulting value into the yyyy.mm.dd.hh:mm:ss format
used by the DatetoInt function. The return value is identical to the passed-in value.

To print out the date, use the DatetoStr function.

Change a date value to an integer value.

integer iDate

date dDateVal

iDate = 1998.10.28.12:00:00

dDateVal = InttoDate(iDate)

DatetoInt function, DatetoStr function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

264 IntToObject function

IntToObject function

The IntToObject() function is the inverse function to the ObjectID method.
IntToObject() returns an object from the object ID passed to it.

The use of IntToObject() with the ObjectID method allows you to pass an object from
one application to another.

Object = IntToObject(Integer ObjectID)

ObjectID is the identifier of an object produced by the ObjectID method.

Object must be the same type of object as ObjectID was derived from.

FLEX OS 2.0

Use this function to pass the handle of a data object as a parameter to the SendEvent
function.

Note In the C-language, the action of this function and its inverse – the ObjectID method –
is called a cast. That is, the object pointer is cast into an integer by ObjectID. The integer is
then cast back into an object pointer by IntToObject().

The example shows how an application can pass a text box to another application.

// First application

Object app1_textbox Isa textBoxClass

EndObject

...

SendEvent (some_app, some_evt, app1_textbox.objectID(), p2)

...

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

IntToObject function 265

// Second application

Event ProgramEvent (Integer PassedTextboxID, Integer p2)

...

Object PassedTextBox Isa textBoxClass

EndObject

...

PassedTextBox = IntToObject(PassedTextboxID)

...

End event

// now work with the object

PassedTextBox.color = White

PassedTextBox.text = "Text box passed from first app"

ObjectID() methodSee also

266 IntToReal function

IntToReal function

Converts an integer to a real.

Real IntToReal(integer IntToConvert)

IntToConvert is the integer to be converted to a real.

Returns the real value of the integer.

FLEX OS 1.0, 2.0

None

Converts the integer 3 to the real number 3.0.

integer iValue

real rValue

iValue = 3

rValue = IntToReal(iValue) // rValue now has the value 3.0

IntToStr function, RealToInt function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

IntToStr function 267

IntToStr function

Converts an integer to a string.

string IntToStr(integer integerToConvert)

IntegerToConvert is the integer to be converted.

This function returns a string representation of the integer.

FLEX OS 1.0, 2.0

Note This function is the same as Str.

Converts the numeric expression 25 + 4 = 29 to string format.

integer CurrValue

string BeforeNafter

CurrValue = 25

BeforeNafter = IntToStr(CurrValue) + " + 4 = "

BeforeNafter = BeforeNafter + IntToStr(CurrValue + 4)

// BeforeNafter = "25 + 4 = 29"

DateToStr function, IntToReal function, RealToInt function, RealToStr function, Str
function, StrToDate function, StrToInt function, StrToReal function, Val function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

268 InvertRect function

InvertRect function

Inverts the color of a rectangular portion of the screen (black ↔ white, light gray ↔
dark gray). The rectangle is defined by the coordinates passed to the function.

integer InvertRect(RectType RectToInvert)

This function has the following argument:

Argument Description

RectToInvert Structure that defines the coordinates of the rectangle to invert

This function returns the following:

OK

SCREEN_ERROR_DISPLAY_NOT_INIT

FLEX OS 1.0, 2.0

Use this function to invert the colors of the text and the background in order to
highlight an area of text.

Note All functions that receive RectType as a designator of a valid screen area will clip the
designated area to the actual screen size, if necessary.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

InvertRect function 269

The user has tried to perform an illegal operation. We will invert the entire screen for
1 second and then change it back.

PointType TopLeft, BottomRight

RectType WhatToInvert

TopLeft.X = 0

TopLeft.Y = 0

BottomRight.X = SCREENWIDTH

TopLeft.Y = SCREENHEIGHT

WhatToInvert.ulCorner = TopLeft

WhatToInvert.brCorner = BottomRight

Event TimerEvent(integer TimerID, integer OtherData)

If (TimerID = 1)

ReturnValue = InvertRect(WhatToInvert)

End Event

// User tries to perform illegal operation

ReturnValue = InvertRect(WhatToInvert)

SetTimer(1, 256) // There are 256 ticks per second

ClearRect function, DrawBox functionScrollRect function

Example

See also

270 IR_Mode function

IR_Mode function

Enables or disables infrared processing of data on a FLEX device.

integer IR_Mode(integer EnableFlag)

EnableFlag = Flag used to disable or enable IR.

The value of EnableFlag must be On or Off.

EVTERR_NO_ERROR

EVTERR_PROCESS_NOT_FOUND

EVTERR_WRITE_ERROR

FLEX OS 1.0, 2.0

This command sends an interprocess communications message to the infrared
communications manager. The results of this command indicate not whether the
operation was successful, but whether the message was successfully sent. If the IR
manager is disabled, connections via the IR will be refused.

Enables IR mode.

IR_Mode(ON) //Enable IR

ActivateLCD function, BackLightState function, DeactivateLCD function, LedOff
function, LedOn function

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

Item_Select_State[] property 271

Item_Select_State[] property

listBoxClass

Allows the change of selection mode in a list box.

Desktop.Listbox.MultiSelect_State = Value

Each item of a list box has an Item_Select_State property set by the program or user
interaction (by navigation or a select key).

FLEX OS 1.0, 2.0

This function interacts with the Multi_Select_State property.

If Multi_Select_State =

Value Description

Auto Current item is always selected.

Single Exclusive selection; only one selection allowed.

Multi Multiple selections allowed.

None No selections allowed.

Sets the selection mode of an item in a list box to TRUE.

MyDesktop.MyListbox.Item_Select_State[1] = TRUE

MultiSelect_State property

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

272 KeyboardDelay function

KeyboardDelay function

Sets keyboard delay. The keyboard delay is the time between a key press and the start
of autorepeat. This is the amount of time that elapses before a character begins
repeating when you hold down a key on the device.

KeyboardDelay(Integer TimeUnits)

TimeUnit: Each TimeUnit has the value of 30 milliseconds.

This function returns:

OK

FLEX OS 1.0, 2.0

The KeyboardDelay function sets the keyboard delay rate for the entire system, not the
delay rate per object.

You can only set the KeyboardDelay value; FLEX Script does not provide a way to
read the delay value.

Sets keyboard delay to 450 milliseconds.

KeyboardDelay(15) // Set keyboard delay to 450 milliseconds

KeyboardRepeat function, KeyClick_function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

KeyboardRate function 273

KeyboardRate function

Sets keyboard autorepeat rate. The keyboard autorepeat rate is the speed at which a
character repeats when you hold down a key on the device.

KeyboardRepeat(Integer TimeUnits)

TimeUnit: Each TimeUnit has the value of 30 milliseconds.

This function returns:

OK

FLEX OS 2.0

The autorepeat rate is set in TimeUnits of 30 milliseconds per unit. For example, if
TimeUnits = 4, the character repeats every 120 milliseconds (4 * 30 milliseconds).

Sets keyboard repeat rate to 300 milliseconds.

KeyboardRepeat(10) // Set keyboard repeat rate to 300 ms

KeyboardDelay function, KeyClick_function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

274 KeyClick function

KeyClick function

Turn audible keyclick on or off

KeyClick(Integer State)

State -integer setting the key click to on or off

The State argument must have one of the following values.

Value Description

TRUE Keyclick on.

FALSE Keyclick off.

FLEX OS 1.0, 2.0

None

Turns keyclick off if SilentKeyboard is set.

If (SilentKeyboard)

Keyclick(False)

KeyboardDelay function

Purpose

Syntax

Parameters

Parameters

Version
Compatibility

Remarks

Example

See also

KeyEvent() 275

KeyEvent()

Operating system to current focus.

Generated when one of the text keys has been pressed. Also valid for some other keys
such as the NAV_UP_KEY and NAV_DOWN_KEY.

Event KeyEvent (integer KeyNumber, integer Unused-2)

 // code to handle event

End Event

Argument Description

KeyNumber ASCII code for the key pressed, between 32 and 127

Unused-2 Not used

FLEX OS 1.0, 2.0

Use SysKeyEvent for keys not covered by this event (some non-text keys such as the
Contrast key)..

Dummy placeholders must be entered for all unused parameters.

5

ModifierStateEvent, SysKeyEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

276 labelClass

labelClass

Used to implement the label object, which displays non-selectable text.

labelClass has the following superclasses.

objectClass

uiObjectClass

textClas

labelClass

controlClass

This object class has no unique properties, methods, or events, and inherits all its
characteristics from its superclasses.

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

labelClass 277

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

None

None

Version
Compatibility

Remarks

See also

278 Last_Line() method

Last_Line() method

textBoxClass

Returns the line number of the last visible line of a textbox, taking into consideration
word-wrap. This method allows applications to determine whether a particular line of
a textbox is visible.

Integer Object.Last_Line()

The integer return value is the line number of the last visible line in the textbox.

FLEX OS 1.0, 2.0

Last_Line () is used for navigation in cases where the user needs up- and down-
arrows to navigate within the textbox.

Integer iVal

iVal = MyDesktop.MyTextBox.Last_Line ()

First_Line method, Page_Down method, Page_Up method, Scroll method, Total_Lines
method

Applies To

Purpose

Definition

Returns

Version
Compatibility

Remarks

Example

See also

LCDTimeout function 279

LCDTimeout function

This function specifies the amount of inactivity before the LCD is blanked. When a
key is pressed, the LCD is reactivated.

LCDTimeout (integer Seconds)

Seconds = The number of seconds of inactivity before the screen is blanked. The
default value is 30 seconds for the timeout.

A value of zero for Seconds disables the time-out feature.

FLEX OS 2.0

LCDTimeout turns off the LCD independently of the power management induced
“sleep."

LCDTimeout (15) // set the LCD to time out in 15 secs

ActivateLCD function, BackLightState function, DeactivateLCD function,
DecrementContrast function, IncrementContrast function, LedOff function, LedOn
function

Purpose

Syntax

Arguments

Parameters

Version
Compatibility

Remarks

Example

See also

280 LedOff function

LedOff function

Turns LED device off.

LedOff()

This function returns:

OK

FLEX OS 1.0, 2.0

None

Turns the LED on and off ten times

Integer i

For i = 1 to 10

Begin

LedOn()

LedOff()

End

LedOn function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

LedOn function 281

LedOn function

Turns LED device on.

LedOn()

This function returns:

OK

FLEX OS 1.0, 2.0

None

Turns the LED on and off ten times.

Integer I

For i = 1 to 10

Begin

LedOn()

LedOff()

End

LedOff function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

282 Left function

Left function

Returns the first Offset characters.

string Left(string InputString, integer Offset)

This function has the following arguments:

Argument Description

InputString Source (string to be manipulated)

Offset Number of characters to read from the source, starting from the left

This function returns a string that equals the first Offset characters of the InputString.

FLEX OS 1.0, 2.0

Use this function when you only want to use part of a string.

The string returned with the Left function includes the character in the Offset position.
For example, if the Offset for the string "123456" is 3, then "123" is returned.

All negative or invalid Offset values are normalized to 1.

Note This function will not pad the result; Left(“hello”, 200) will return just “hello” with no
additional trailing characters.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Left function 283

This function returns the string "123".

$$INCLUDE "Flex.inc"

function main()

string inputStr, searchstr, resultstr

integer offset

inputstr = "12345678"

resultstr = left(inputstr, 3)

dbgshow(resultstr)

end function

function setup()

// Platform-specific activities required to initialize the program

end function

function remove()

// Platform-specific activities required to delete the program and

// all data files.

end function

ConcatStr function, InStr function, Len function, Mid function, Right function, StrEq
function, StrGe function, StrGt function, StrLe function, StrLt function, StrNe function

Example

See also

284 Len function

Len function

Returns the number of characters in a string.

integer Len(string StrString)

This function has the following argument:

Argument Description

StrString Source (string to be searched for the number of characters it contains)

This function returns the length of the passed string.

FLEX OS 1.0, 2.0

Use this function when you want to determine the length of a string.

Warns if the string PasswordEntered is less than three, or more than eight, characters.

If ((strLength(PasswordEntered) < 3) or (strLength(PasswordEntered) > 8))

WarningObject.Text = "Passwords must be 3 to 8 characters long"

ConcatStr function, InStr function, Left function, Mid function function, Right
function, StrEq function, StrGe function, StrGt function, StrLe function, StrLt
function, StrNe function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

LidCloseEvent() 285

LidCloseEvent()

Operating system to Shell

Generated when the device lid has been closed, initiating a power-saving mode when
the device is not being used.

Event LidCloseEvent (integer Unused-1, integer Unused-2)

 // code to handle event

End Event

Unused-1 (not used)

Unused-2 (not used)

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

4

LidOpenEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

286 LidOpenEvent()

LidOpenEvent()

Operating system to Shell

This event is called when the lid of the device is opened.

Event LidOpenEvent (integer Unused-1, integer Unused-2)

 // code to handle event

End Event

Unused-1 (not used)

Unused-2 (not used)

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

3

LidCloseEvent

Generated By

Purpose

Parameters

Version
Compatibility

Remarks

Event Code

See also

Line_Spacing property 287

Line_Spacing property

textClass

Sets the space between the text lines in a text object.

Desktop.Object.Line_Spacing = Value

Value is any positive integer.

FLEX OS 1.0, 2.0

This property defines the space (in pixels) from the top of one line of text to the top of
the next line.

Sets a space of three pixels between multiple lines of text in a text box.

:

//The height of the font is 10 pixels

// Set the space between lines to be 3 pixels

TMain.MyTextbox.Line_Spacing = 13

:

:

textClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

288 lineClass

lineClass

Used to implement the line object, which draws a non-selectable line on the screen.

lineClass has the following superclasses.

objectClass

uiObjectClass

lineClass

controlClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

EndPoint

Thickness

None None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

lineClass 289

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

The line object draws a line from the top left corner of the initial location to the point
specified by the EndPoint property. The Thickness property determines the thickness
of the line.

None

Version
Compatibility

Remarks

See also

290 listBoxClass

listBoxClass

Used to implement the list box object, which provides a way for users to select from a
list of items.

listBoxClass has the following superclasses.

ObjectClass

uiObjectClass

textClass

selectClass

listBoxClass

controlClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

Bitmap[1]

Current_Item

First_Displayed

HiddenData[1]

Item_Select_State[]

MultiSelect_State

SearchMode

Select_Color

Text[1]

Add_Item()

Allocate_Items

Clear()

Number_Items()

Page_Down()

Page_Up()

Remove_Item

Scroll()

Set_Item_Values

None

Purpose

Class hierarchy

listBoxClass 291

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

Syntax

Version
Compatibility

292 listBoxClass

The list box object supports the following.

• A user can select one or multiple items.

• A list can scroll (through the use of screen objects; vertical scroll bars aren’t
available).

• Items can contain pictures and text.

• Item numbers are 0-based; that is, a list of ten items is numbered 0-9.

• The size of the items is determined by the size of the object’s font.

• The selection of an item makes it the current item.

• Selecting an already selected item (or double-clicking an unselected item) invokes
the method associated with the listbox.

If you want to design a list box that has no border, set the bipmap property to an
arbitrary string using FLEX Script code instead of the Inspector.

The selected font for a listbox object uses its own default attributes. Changes made to
fonts apply only to that specific font. For example, if you change the line-spacing in a
listbox, the change is applied only to the current font. Therefore, if you change fonts,
any changes you made to that font are lost. You have to re-apply any customization to
the new font.

None

Remarks

See also

Load() method 293

Load() method

mailObjectClass, carrierObjectClass

Reads an existing mail message or carrier profile and loads it into the object for further
processing.

If M is a mailObject:

M.Load(integer FileID)

If C is a carrierObject:

C.Load(integer CarrierID)

FileID is the identifier of the file containing the mail message. This integer is supplied
by the event that notifies the application that there is mail. The integer CarrierID is
supplied by the CarrierID property of a mailObject.

FLEX OS 1.0, 2.0

Errors in loading trigger SystemErrorEvent.

When using the Load() method, be sure to include MailObj.Inc.

Creates a mail object named M, loads the file containing the mail message into the
object, acts on it, then destroys the object to free memory.

$$INCLUDE "MailObj.Inc"

Event NewPostedMailEvent (integer FileID, integer NotUsedHere)

Object M isa mailObjectClass // Instantiate it

EndObject

M.Load (FileID) // Load the file into object

processMail (M) // This is an example function

M.Destroy_Object() // Free the object

End Event

Create_Object method, Destroy_Object method, Save method, NewPostedMailEvent,
SystemErrorEvent

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

294 LoadBitmap function

LoadBitmap function

Loads the named bitmap from the file system into memory. Once the bitmap is loaded
into memory, it can be placed on the screen.

Header

Header

Bitmap
Bitmap

Bits Bitmap
Data

Declared
Bitmap

Structure

Data
Memory

Storage in memory does not
have to be contiguous

Or RAM

BitmapType LoadBitmap(string BitmapName)

This function has the following argument:

Argument Description

BitmapName Name of the bitmap file

This function returns the following:

Return Description

BitmapType The bitmap structure which has been filled with bitmap data

FLEX OS 1.0, 2.0

This function allocates memory that it does not free.

Used by the control system to put bitmaps in back of controls (for example, a picture on
a button with text on top).

A typical scenario would be LoadBitmap, DisplayBitmap, DestroyBitmap. (You
may also use DisplayBitmapFile in this situation, since it does not leave any memory
consumed when it is done.)

If you know you will need to use a bitmap several times, it might be more efficient to
keep the bitmap in memory until you are finished with it, then destroy it. LoadBitmap,
DisplayBitmap,..., DisplayBitmap,..., DisplayBitmap,..., DestroyBitmap.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

LoadBitmap function 295

Loads WhatToShow into memory from the file system and then displays it with its top
left corner at (10, 20).

PointType TopLeft

BitmapType WhatToShow

WhatToShow = LoadBitmap("airplane.rob")

TopLeft.x = 10

TopLeft.y = 20

ReturnValue = DisplayBitmap(TopLeft, WhatToShow)

CopyBitmap function, DestroyBitmap function, DisplayBitmap function,
DisplayBitmapFile function, SaveBitmap function, ScreenToBitmap function

Example

See also

296 LoadLibrary function

LoadLibrary function

Prepares the system for execution of any of the exported functions in the shared library.

LoadLibrary (string libName) returns Integer

None

Returns the libHandle created or an error code:

ERROR_PROGRAM_NOT_FOUND

ERROR_NOT_A_VALID_PROGRAM

ERROR_NO_PUBLIC_FUNCTIONS

SYSTEM_MEMORY_ERROR

FLEX OS 2.0

LibName refers to a valid shared library and Integer refers to the libHandle created
when the function was run or an error code that resulted. This function will allocate
system resources needed to describe the shared library and each of its exported
functions.

Note Main programs can contain public entry points, just like shared libraries. These entry
points can be used, for example, to handle events that are not accounted for in the shared
libraries. Unlike shared libraries, main program entry points are automatically loaded.
Therefore, LoadLibrary() and UnloadLibary are not required.

Error! Bookmark
not
defined.PurposeSyntax

Parameters

Returns

Version
Compatibility

Remarks

LoadLibrary function 297

The following example shows the loading and unloading of a shared library within a
Main program function:

$$INCLUDE "flex.inc"

$$INCLUDE "class.inc"

$$INTERFACE "sh_simple.inf" is libHandle // Load the shared lib

// public interface

function main()

integer count, i

dbgShow("in main.src")

libHandle = loadLibrary("sh_simple.air")// Open the library

if (libHandle >= 0) // Test for a successful open

begin

simpSrand(100) // Seed the generator with a constant

// (test mode)

for count = 1 to 10

begin

i = simpRand() // Get a random number from the library

// and show it to the user

dbgShow("Random number " + str(count) + ": " + str(i))

end

unloadLibrary(libHandle) // Close down the lib

end

dbgShow("back in main.src") // Say goodbye

end function

function setup()

// Platform-specific activities required to initialize the program

end function

function remove()

// Platform-specific activities required to delete the program and all

data files

end function

external statement, StopEvents() function, UnloadLibrary() function, Interface
statements, Shared Library Example 1 (Functional library), Ways to use a shared
library

Example

See also

298 LoadPlayList function

LoadPlayList function

Reads a PlayList file into a playlist.

integer LoadPlayList(integer ListID, string PlayName)

This function has the following arguments:

Argument Description

ListID The handle for the playlist.

PlayName The name of the file to read, in the FIS file system format. Syntax:
FIS:7.n (where and n = any whole positive number)

This function returns the following:

NTFERR_NO_ERROR

NTFERR_INVALID_LIST_ID

NTFERR_FILE_NOT_FOUND

NTFERR_ILLEGAL_DEVICE

NTFERR_OUT_OF_MEMORY

FLEX OS 1.0, 2.0

If the application allows the user to create or modify a playlist, the playlist could be
stored as a file and reloaded at a later time.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

LoadPlayList function 299

Creates a playlist, adds some tones to it, saves it to memory with the name "FIS:7.1",
then destroys the playlist. Later in the code, it is loaded and given the handle of
CurrPlayList.

Note In the following example, AddToneToPlayList is not a FLEX Script function, but
rather a wrapper function that uses AddPlayElement to add a tone element to a playlist.

Integer CurrPlayList

CurrPlayList = CreatePlayList()

AddToneToPlayList(CurrPlayList, 392, 255, 2)

AddToneToPlayList(CurrPlayList, 494, 255, 2)

SavePlayList(CurrPlayList,"FIS:7.1")

DestroyPlayList(CurrPlayList)

:

:

LoadPlayList(CurrPlayList,"FIS:7.1")

AddPlayElement function, CancelPlaylist function, CreatePlayList function,
DestroyPlayList function, PlayBeep function, SavePlayList function, StartPlayList
function

Example

See also

300 LocalDestAdr property

LocalDestAdr property

mailObjectClass

Defines the local destination address (the inbox number or application task ID to
which an incoming message was directed).

integer LocalDestAdr

Default = 4294967295 (0xFFFFFFFF)

FLEX OS 1.0, 2.0

This value is a part of the embedded code in an incoming message, and represents the
task ID number of the application to which the message is to be sent. The mail object
subsystem MMDS strips out the number and inserts it in this property of the mail
object. The mail application retrieves this value and checks to see if the message is
targeted to another application. If this value is 0 or the default, the message can be
used by a native application such as Shell or Mailbox. Otherwise, the native
application should redirect the message to the application that has the appropriate task
ID number.

When using the LocalDestAdr property, be sure to include MailObj.Inc.

Note The property is valid only if the object's CarrierID property is CARRIER_REFLEX_50
or CARRIER_FLEX.

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

LocalDestAdr property 301

Gets the local destination address of an incoming message.

$$INCLUDE "MailObj.Inc"

Integer iLocalDestAdr

// instantiate NewmessageObj

Object NewMessageObj IsA mailObjectClass

EndObject

// Load the object message

NewMessageObj.Load(iMailBins[iCurrentMailIndex])

// Get the LocalDestAdr of the message

iLocalDestAdr = NewMessageObj.LocalDestAdr

// Based on the task ID value, decide what to do

if (iLocalDestAdr)

// Process the message here

:

else

// Call another application

:

mailObjectClass

Example

See also

302 Location property

Location property

UIobjectClass

Defines the location of the top-left corner of a 2-D object or the beginning point of a
lineClass object.

PointType Object.Location

The (x, y) values of this property must be in the range of (0, 0) to (239, 159).

Default = (0, 0).

Note For statusBarClass (a subclass of UIobjectClass), x is always 0 and is ignored.

FLEX OS 1.0, 2.0

An object can be relocated while on the screen; however, it will be hidden, relocated,
then displayed again.

If defining a rectangular object, use the Size property to complete the object
description. If defining a line object, use the EndPoint property to complete the object
description.

Applies To

Purpose

Definition

Settings

Version
Compatibility

Remarks

Location property 303

Defines the location of the top-left corner of a text box as (100,5).

//--

// Function : MakePoint

// Description: The common function used to create point

// structures for those processes which call for a point

// as input.

// x = x value of the point

// y = y value of the point

// Returns a pointType structure

//---

function MakePoint(Integer x, Integer y) returns PointType

PointType tempPoint

tempPoint.x = x

tempPoint.y = y

return(tempPoint)

end Function

TMain.textBoxClass1.Location = MakePoint(100, 5)

EndPointEndPoint_Property, UIobjectClassSize

Example

See also

304 Lock() method

Lock() method

mailObjectClass

Marks the mail as locked.

Lock()

FLEX OS 1.0, 2.0

This method has no return value.

When using the Lock method, be sure to include MailObj.Inc.

Creates a mail object named M then locks the message.

$$INCLUDE "MailObj.Inc"

Object M isa mailObjectClass //Instantiate it

EndObject

M.Lock() //Set the locked flag

Accept method, ContentSymbolLen method, ContentType method, EnvStatus method,
RcvErrCnt method, RecvQuality method, ReplyAllowed method, Time Rcv method,
TimeSent method, mailObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

LowSpaceEvent() 305

LowSpaceEvent()

MMDS to Read

Generated when the space remaining in the mailbin area goes below a predetermined
threshold.

Event LowSpaceEvent (integer Status, integer BytesLeft)

 // code to handle event

End Event

Argument Description

Status Code indicating which threshold has been crossed

BytesLeft Amount of storage space still available after FIS reorganization

The Status argument must have one of the following values.

Name Value

STORAGE_STATE_NORMAL 0

STORAGE_STATE_LOW 1

STORAGE_STATE_SERIOUS 2

STORAGE_STATE_CRITICAL 3

STORAGE_STATE_CLEANUP 4

STORAGE_STATE_SHUTDOWN 5

FLEX OS 1.0, 2.0

None

56

MailStatusEvent

Generated By

Purpose

Syntax

Parameters

Settings

Version
Compatibility

Remarks

Event Code

See also

306 MailboxCnt() method

MailboxCnt() method

carrierObjectClass

Returns the number of items in the mailbox list.

Integer MailboxCnt()

FLEX OS 1.0, 2.0

When using the MailboxCnt() method, be sure to include MailObj.Inc.

$$INCLUDE "MailObj.Inc"

integer iVal

iVal = ObjectName.MailboxCnt() // Reading a non-list method

CannedReply method, FormatType method, MailboxID method, MailboxName
method, MaxLength method, MinLength method, ProfileFormat method,
ProfileUpdateFlag method, ServiceName method, UpdateTimePermitted method,
carrierObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

MailboxID() method 307

MailboxID() method

carrierObjectClass

Returns an integer code for the mailbox’s type and subtype.

Integer MailboxID(integer Item)

Item is an integer varying from 1 to the number of items in the list.

FLEX OS 1.0, 2.0

Indexed by the return of MailboxCnt.

When using the MailboxID method, be sure to include MailObj.Inc.

This is a code mutually understood by originator and receiver.

Item is an integer varying from 1 to the number of items in the lsit.

$$INCLUDE "MailObj.Inc"

integer iVal

iVal = ObjectName.MailboxID(integer Item) // Reading a list method

CannedReply method, FormatType method, MailboxCnt method, MailboxName
method, MaxLength method, MinLength method, ProfileFormat method,
ProfileUpdateFlag method, ServiceName method, UpdateTimePermitted method,
carrierObjectClass

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

308 MailboxName() method

MailboxName() method

carrierObjectClass

Returns the name of a mailbox.

String MailboxName(integer Item)

Item is an integer varying from 1 to the number of items in the lsit.

FLEX OS 1.0, 2.0

Indexed by the return of MailboxCnt.

When using the MailboxName() method, be sure to include MailObj.Inc.

Item is an integer varying from 1 to the number of items in the lsit.

$$INCLUDE "MailObj.Inc"

string iVal

iVal = ObjectName.MailboxName(Item) // Reading a list method

CannedReply method, FormatType method, MailboxCnt method, MailboxID method,
MaxLength method, MinLength method, ProfileFormat method, ProfileUpdateFlag
method, ServiceName method, UpdateTimePermitted method, carrierObjectClass

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

mailObjectClass 309

mailObjectClass

Processes all the methods handed off to a mail message object.

mailObjectClass has the following superclass.

objectClass

mailObjectClass

Purpose

Class hierarchy

310 mailObjectClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclass.

Unique properties Unique methods Unique events

AdrListCnt

AdrRef[1]

AdrType[1]

AdrVal[1]

AdrValType[1]

AppFrom

AppTo

AttachmentCnt

AttachmentSpec[1]

CarrierID

ContentLen[1]

ContentListCnt

ContentVal[1]

ContentValType[1]

ContentRefCode[] property

DevFrom

DevTo

LocalDestAdr

MsgBaseType

MsgSubType

Priority

RequestAck

RespondCnt

RespondContent[1]

RespondLen[1]

Accept()

ContentSymbolLen()

ContentType()

EnvStatus()

Load()

Lock()

RcvErrCnt()

RcvQuality()

ReplyAllowed()

RetentionType()

Save()

TimeRcv()

TimeSent()

None

mailObjectClass 311

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

Objects of this class are used to manipulate electronic mail, including addressing
information, contents, and attachments.

The PRIORITY_NORMAL, PRIORITY_LOW, and PRIORITY_URGENT constants
are defined in MAILOBJ.INC, which should be included if you want to use these
constants.

carrierObjectClass

Syntax

Version
Compatibility

Remarks

See also

312 MailStatusEvent()

MailStatusEvent()

MMDS to Read

MMDS typically generates this event to notify the application that the status of a mail
message has changed (for example, an outgoing message has been sent, or has failed).

Event MailStatusEvent (integer MsgID, integer MsgStatus)

 // code to handle event

End Event

Argument Description

MsgID FIS ID of the file containing the mail message.

MsgStatus One of several codes determined by MMDS. The new status of the mail
message.

The MsgStatus argument must have one of the following values.

Name Value Notes

STATUS_MSG_SENT 0 Message sent successfully

STATUS_MSG_SUSPENDED 1 Out-of-date?

STATUS_MSG_DELETED 2 Response to low space by MMDS

STATUS_MSG_DELAYED 3

STATUS_MSG_IN_PROCESS 4

STATUS_XOFF 5 MMDS queue is getting full, stop sending

STATUS_XON 6 OK to send again

STATUS_MSG_REJECTED 7 Queue full, msg has been dropped

STATUS_MSG_PENDING 8

STATUS_MSG_WAITING 9

STATUS_MSG_EXPIRED 10 MSN has expired.. can't reply

STATUS_MSG_FAILED 16

FLEX OS 1.0, 2.0

Generated By

Purpose

Syntax

Parameters

Settings

Version
Compatibility

MailStatusEvent() 313

None

54

DuplicateMailEvent, NewAppMailEvent, NewCommandMailEvent,
NewPostedMailEvent

Remarks

Event Code

See also

314 Main function

Main function

The function that is initially called when you run a program.

Function Main()

End function

FLEX OS 1.0, 2.0

This function is where the initializing portions of a program should be placed. For a
program to be run, it must have a Main function.

The Main function is executed when the Run() function is called from another
program.

The Main function is declared.

function Main()

CreateScreenWidgets()

CreateProgramDatabases()

ReturnValue = SetTaskName(42)

// Inform the shell that the program has successfully run

SendEvent(SHELL, APP_INSTALLED, GetCurrentTask(), 0)

end function

Remove function, Run function, Setup function, Stop function

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Marked_Block() method 315

Marked_Block() method

textBoxClass

Returns a string representing the characters between the block start offset and the block
end offset. This provides the ability to mark sub-strings in displayed text by moving
the text cursor and then passing the marked sub-string to an application for further
processing.

String Object.Marked_Block()

Block marking defines a portion of text to be operated on. Only one block can be
marked at a time. Several internal variables are maintained within the textbox to
support block marking including:

• Block start offset

• Block end offset

String value representing the characters between the block start offset and the block
end offset.

FLEX OS 1.0, 2.0

Marked_Block() returns a string that contains all tags necessary to allow the string to
stand on its own. In other words, the string will have a font specifier tag to start,
followed by open and close tags for all attributes specified within the marked area.

Copy, cut, and paste capabilities are supported by textBoxClass to allow
implementation of a clipboard within a FLEX Script application.

Marked_Block() is required to handle embedded escape sequences.

Applies To

Purpose

Definition

Parameters

Returns

Version
Compatibility

Remarks

316 Marked_Block() method

Blockmarks the underlined section of text.

Original string:

<2>This is the <1>original<DF> string.

(Underlined portion is block-marked.)

String returned by Marked_Block:

<2>is the <1>orig<DF>

Delete_Block method, Insert_Block method, BlockStart property, BlockEnd property

Example

See also

Max property 317

Max property

progressBarClass

Defines the maximum position of the bar drawn to show progress.

Desktop.Progressbar.Max = Value

Default = 100

FLEX OS 1.0, 2.0

This property defines the maximum length that a progress bar can be drawn. If this is
set at 80, then the Position property (which defines the length of the bar that shows the
progress) can be no longer than 80.

Notice that the Position property of the progress bar is a percentage of this maximum
range. For example, if the Max property is set at 60 and Position is set at 30, the bar is
drawn to the 50% point, since 30 is 50% of the maximum possible value (60).

This property is the upper boundary for progress bars.

The bar displays its data by normalizing the position to a value between Min and Max.

This code sets the maximum range at 80.

Desktop.Progressbar.Max = 80

This code sets the bar to be drawn at 60, which is the 75% (60/80) position.

Desktop.Progressbar.Position = 60

Min property, Position property, progressBarClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

318 Max_Characters property

Max_Characters property

textBoxClass

Defines the maximum number of characters that can be entered into this object at run-
time.

Desktop.Textbox.Max_Characters = Value

Value can be any positive integer. Default = 0.

FLEX OS 1.0, 2.0

If 0, the length isn’t checked.

All characters greater than the Max_Character value are truncated.

Inserting characters will cause characters greater than Max_Character to be removed.

Sets the limit of characters that can be entered into the textbox to 50.

:

TMain.textBoxClass1.Max_Characters = 50

:

BlockEnd property, BlockStart property, Cursor property, EditMask property,
InsertMode property, Max_Characters property, Read_Only_State property,
textBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

MaxLength() method 319

MaxLength() method

carrierObjectClass

Returns the maximum allowable length of the address.

Integer MaxLength(integer Item)

Item is an integer varying from 1 to the number of items in the lsit.

FLEX OS 1.0, 2.0

Indexed by the return of AdrListCnt.

When using the MaxLength() method, be sure to include MailObj.Inc.

Item is an integer varying from 1 to the number of items in the list.

$$INCLUDE "MailObj.Inc"

integer iVal, Item

iVal = ObjectName.MaxLength(Item) // Reading a list method

CannedReply method, FormatType method, MailboxCnt method, MailboxID method,
MailboxName method, MinLength method, ProfileFormat method, ProfileUpdateFlag
method, ServiceName method, UpdateTimePermitted method, carrierObjectClass

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

320 Method property

Method property

selectClass

Specifies the address of a function to call when the object is selected.

ObjectName.Method = &FunctionName

FunctionName is the name of the function to be executed when the object is selected.

The & operator is the address-of operator. It is a prefix to the function name and no
space appears between the operator and the function.

FLEX OS 1.0, 2.0

The Method property typically performs the application operation appropriate for this
user interface object.

This function is used by selectClass (or its descendants) to address a function. The
function is called when the onSelect event is sent to the instance.

Each instance can have its own handler or several instances may share a handler.

Although Method is an integer property, do not use it without SFN syntax.

Function OnSelect_MyButton ()

...

End function

Function ABC()

...

MyDesktop.MyButton = &OnSelect_MyButton

...

End Function

selectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

Mid function 321

Mid function

Returns a specified number of characters from a specified position in a string.

string Mid(string SearchIn, integer Pos, integer Length)

This function has the following arguments:

Argument Description

SearchIn Source (string to read)

Pos Position (integer representing the point within the string at which to start
the read)

Length Number of characters to read from Pos

This function returns a string representing the characters read from the SearchIn
string.

FLEX OS 1.0, 2.0

Use this function to select specific data from a string; for example, to select the day of
the month from a date in which the first two characters are the month and the next two
are the day: Mid(Date,3,2).

The string returned with the MID function includes the character in the Pos position.

All out of range values are normalized to 1.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

322 Mid function

This function returns the string "345" from the string "12345678."

$$INCLUDE "Flex.inc"

function main()

string inputStr, searchstr, resultstr

integer pos, length

inputstr = "12345678"

resultstr = Mid(inputstr, 3,3)

dbgshow(resultstr)

end function

function setup()

// Platform-specific activities required to initialize the

// program

end function

function remove()

// Platform-specific activities required to delete the program

// and all data files

end function

ConcatStr function, InStr function, Left function, Len function, Right function, StrEq
function, StrGe function, StrGt function, StrLe function, StrLt function, StrNe function

Example

See also

Min property 323

Min property

progressBarClass

Defines the minimum size of the drawn bar.

Desktop.Progressbar.Min = Value

Default = 0

FLEX OS 1.0, 2.0

This property defines the minimum value of the progress bar.

//Sets the minimum value at 10

Desktop.Progressbar.Min = 10

// Sets the maximum value at 50

Desktop.Progressbar.Max = 50

// Sets the drawn bar at the 50% position

// (since the total length is 40, and 30 is

// 20 pixels (50%) more than the minimum of 10

Desktop.Progressbar.Position = 30

Max property, Position property, progressBarClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

324 MinLength() method

MinLength() method

carrierObjectClass

Returns the minimum allowable length of the address.

Integer MinLength(integer Item)

Item is an integer varying from 1 to the number of items in the lsit.

FLEX OS 1.0, 2.0

Indexed by the return of AdrListCnt.

When using the MinLength() method, be sure to include MailObj.Inc.

Item is an integer varying from 1 to the number of items in the lsit.

$$INCLUDE "MailObj.Inc"

integer iVal, Item

iVal = ObjectName.MinLength(Item) // Reading a list method

CannedReply method, FormatType method, MailboxCnt method, MailboxID method,
MailboxName method, MaxLength method, ProfileFormat method, ProfileUpdateFlag
method, ServiceName method, UpdateTimePermitted method

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

Modal_Popup_State property 325

Modal_Popup_State property

containerClass

Disables painting of any object that is not a child of the modal popup. This is used to
freeze display activity that is not in the modal popup or a child of the modal pop-up.

Desktop.Object.Modal_Popup_State = Value

Value is either TRUE or FALSE. Default = FALSE.

FLEX OS 1.0, 2.0

When a modal pop-up is shown (using ShowObject), all paints to children of the
modal pop-up proceed normally. However, paints to all other objects in all other
programs are ignored. When the modal pop-up is removed, the system refreshes the
display to reflect any changes to properties.

Because it is possible to change the focus away from a control on a modal pop-up,
programs must take this into account and prevent it.

Object MPU isa dialogClass

 Object Button01 Isa buttonClass

 End object

 Object Button02 Isa buttonClass

 End object

End Object

MPU.Modal_Popup_State = TRUE \\ set modal popup state

MPU.Show_object() \\ show pop-up

Bring_To_Front method, Create_Object method, Destroy_Object method, HideObject
method, Paint method, ShowObject method, textBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

326 ModifierStateEvent()

ModifierStateEvent()

Operating system to Shell

Generated when a modifier key(ALT and/or SHIFTand/or CAPS) is pressed. Each key
can be detected by using the bitwise AND of ModKeyFlags and ALT_KEY_FLAG,
SHIFT_KEY_FLAG, or CAPS_KEY_FLAG.

Event ModifierStateEvent (integer ModKeyFlags, integer Unused-2)

 // code to handle event

End Event

Argument Description

ModKeyFlags Bit flags for decoding

Unused-2 Not used

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

12

Event ModifierStateEvent(Integer ModKeyFlags, Integer two)

 .

 .

 if((ModKeyFlags AND ALT_KEY_FLAG) > 0)

About event handlers, Event Classification

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

Example

See also

MouseEnterEvent() 327

MouseEnterEvent()

UI, programs

Used for highlighting an area when the mouse pointer has moved into it, prior to
selecting it or granting it focus.

Event MouseEnterEvent (integer Unused-1, integer Unused-2)

 // code to handle event

End Event

Unused-1 (not used)

Unused-2 (not used)

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

9

MouseExitEvent, MouseSelectEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

328 MouseExitEvent()

MouseExitEvent()

UI, programs

Used to restore a display when the mouse pointer has left the area defined by the
application.

Event MouseExitEvent (integer Unused-1, integer Unused-2)

 // code to handle event

End Event

Unused-1 (not used)

Unused-2 (not used)

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

10

MouseEnterEvent, MouseSelectEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

MouseSelectEvent() 329

MouseSelectEvent()

UI, programs

Used to initiate an action when a UI object has been clicked. This event is used when
the existing button is pressed for all objects that are not descendants of selectClass.

Event MouseSelectEvent (integer Unused-1, integer Unused-2)

 // code to handle event

End Event

Unused-1 (not used)

Unused-2 (not used)

Parameter 2 (not used)

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

The MouseSelectEvent generates an OnSelectEvent to the current object.

The MouseSelectEvent is called when the user presses the Select button. It is only
used for objects that are not members of the selectClass (or its descendants). The
selectClass has a different way of doing this, using the Method property.

8

MouseEnterEvent, MouseExitEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

330 MsgBaseType property

MsgBaseType property

mailObjectClass

Defines the message type as a regular pager message, an InfoService message, or one
of the other types.

integer MsgBaseType

The value of MsgBaseType is one of the following:

Value Description

BASE_TYPE_PERSONAL Personal

BASE_TYPE_GROUP Group

BASE_TYPE_BROADCAST Broadcast

BASE_TYPE_REPLY Reply

BASE_TYPE_ACK Acknowledgment

BASE_TYPE_UPDATED Updated message

BASE_TYPE_DUPLICATE Duplicate of a previous message

FLEX OS 1.0, 2.0

Message applications retrieve this value and, based on the message type, further
process the message. (For example, by redirecting the message to a particular program
for message display.)

When using the MsgBaseType property, be sure to include MailObj.Inc.

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

MsgBaseType property 331

Gets the base type of an incoming message and acts according to the type.

$$INCLUDE "MailObj.Inc"

Integer iMsgBaseType

// Instantiate NewMessageObj

Object NewMessageObj IsA mailObjectClass

EndObject

// Load the object message:

NewMessageObj.Load(iMailBins[iCurrentMailIndex])

// Get the MsgBaseType of the message

iMsgBaseType = NewMessageObj.MsgBaseType

// Based on the task ID value, decide what to do

if (iMsgBaseType = BASE_TYPE_GROUP)

// Process the InfoService message here

:

else if (iMsgBaseType = BASE_TYPE_PERSONAL)

// process the regular pager here:

:

else...

MsgSubType property, mailObjectClass

Example

See also

332 MsgSubType property

MsgSubType property

mailObjectClass

Defines the subtype of BASE_TYPE_ACK messages.

Default = SUBTYPE_RCV_ACK.

FLEX OS 1.0, 2.0

This property will only have meaningful values if the MsgSubType property is
BASE_TYPE_ACK; otherwise this property should be ignored.

When using the MsgSubType property, be sure to include MailObj.Inc.

The MsgSubType property has the following values:

SUBTYPE_RCV_ACK

SUBTYPE_READ_ACK

Note The property is valid only if the object's CarrierID property is CARRIER_REFLEX_50.

Gets the subtype of an incoming message.

// Get the MsgSubType of the message

iMsgSubType = NewMessageObj.MsgSubType

MsgBaseType property, mailObjectClass

Applies To

Purpose

Settings

Version
Compatibility

Remarks

Example

See also

MultiLine property 333

MultiLine property

textClass

Defines single-line or multi-line text object.

Desktop.Textbox.MultiLine = Value

Value is either TRUE or FALSE. Defaults: In textBoxClass, default = TRUE. For
objects of all other classes, the default is FALSE.

FLEX OS 1.0, 2.0

Multi-line text is automatically word-wrapped if this property is set to TRUE.

Disables multi-line entry in a text box.

// Disable the multi-line entry option

TMain.textBoxClass1.MultiLine = False

:

Cursor property, Max_Characters property, Scroll method, Text[1] property,
textBoxClass, textClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

334 Multiplicative operators

Multiplicative operators

The multiplication operator (*) is used to multiply two expressions.

The division operator (/) is used to divide one expression by another.

The modulus operator (%) is used to compute the modulo of two operands. The
modulo operator is given as:

exp1 % exp2 = exp1 - ((exp1 / exp2) * exp2))

where both exp1 and exp2 are of type integer.

The operands supplied to multiplicative operators (except the modulus operator) must
be one of these types: Integer, Real, String, Date. If the operands are of type String or
Date, they are converted into integers before being computed. If the operands are of
dissimilar types, the operand with the lower precedence is converted into the type of
the higher precedence operand. The type precedence (in decreasing order) is: Real,
Integer, String, Date.

The return type is always the type of the highest precedence operand, with the left-
hand side of an assignment expression taking on the highest precedence.

The modulus operator imposes the additional constraint that the operands must be of
Integer type. Division by 0 in either a division or a modulus expression is undefined
and causes a run-time error.

Note All multiplicative operators have left-to-right associativity.

FLEX OS 1.0, 2.0

Overview

Version
Compatibility

Multiplicative operators 335

integer x, z, result_1

real y, result_2

x = 10

y = 10.5

z = 4

result_1 = x % z

result_2 = result_1 * y

//The line below is evaluated as (x*y)*z due to left-to-right

associativity

result_2 = x * y * z

Additive operators, AND operator, Equality operators, OR operator, Relational
operators, Unary operators, XOR operator

Example

See also

336 MultiSelect_State property

MultiSelect_State property

listBoxClass

Allows single or multiple selections from a list in a listBoxClass object.

Desktop.Listbox.MultiSelect_State = Value

Value is one of the following text strings:

Value Description

SelectAuto Current item is always selected. Selecting any item immediately invokes
the listbox’s method.

SelectSingle Exclusive selection; only one selection allowed. First select on the item
highlights it (makes it current). Second select on same item invokes the
listbox’s method.

SelectMulti Multiple selections allowed.

SelectNone No selections allowed.

Default = SelectAuto

FLEX OS 1.0, 2.0

This property allows the change of selection mode in a list box.

Sets the listbox selection mode to SelectSingle (exclusive selection; only one selection
allowed).

:

// Set to single-line selection mode

TMain.MyListBox.MultiSelect_State = SelectSingle

:

:

listBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

NewAppMailEvent() 337

NewAppMailEvent()

MMDS to Read

MMDS generates this event when it has received a mail message. The mail has been
designated as going to a specific application.

Event NewAppMailEvent (integer MsgName, integer CarrierID)

 // code to handle event

End Event

Argument Description

MsgName FIS ID of the file containing the mail message

CarrierID ID code of the carrier that delivered the message

FLEX OS 1.0, 2.0

Not currently implemented. Read performs all routing of messages to applications.

51

DuplicateMailEvent, MailStatusEvent, NewCommandMailEvent,
NewPostedMailEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

338 NewCommandMailEvent()

NewCommandMailEvent()

MMDS to any

MMDS generates this event when it has received a mail message. Instead of going to
the Read application (as in NewPostedMailEvent), the mail has been designated as
going to the Command Processor.

Event NewCommandMailEvent (integer MsgName, integer CarrierID)

 // code to handle event

End Event

Argument Description

MsgName FIS ID of the file containing the mail message

CarrierID ID code of the carrier that delivered the message

FLEX OS 1.0, 2.0

Not currently implemented

50

DuplicateMailEvent, MailStatusEvent, NewAppMailEvent, NewPostedMailEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

NewPostedMailEvent() 339

NewPostedMailEvent()

MMDS to Read, Read to applications, IRProc to Connection Services

This event is generated whenever an application receives a new mail message.

Event NewPostedMailEvent (integer MsgName, integer

DestinationApplication)

 // code to handle event

End Event

Argument Description

MsgName FIS ID of the file containing the mail message

DestinationApplication Logical task ID of the application to which the message is
addressed

FLEX OS 1.0, 2.0

None

49

DuplicateMailEvent, MailStatusEvent, NewAppMailEvent, NewCommandMailEvent

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

340 Number_Items() method

Number_Items() method

listBoxClass

Returns the number of items in the list.

Integer Number_Items()

FLEX OS 1.0, 2.0

None

Creates an object of listBoxClass type and queries it for the number of items. Since no
Add_Item calls are made, iVal will necessarily be zero.

Object M isa listBoxClass

EndObject

integer iVal

iVal = M.Number_Items()

Add_Item method, Remove_Item method, Clear method

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

NumCols property 341

NumCols property

sListBoxClass

Specifies the number of columns in a superlist.

Desktop.Listbox.NumCols = value

Value is any positive integer. Default = 1.

FLEX OS 1.0, 2.0

None

The example shows the NumCols property of a superlist set to 7.

Object TMain isa desktopClass

Object MySlist isa sListBoxClass

endobject

endobject

TMain.MySlist.HGridLines = Black

TMain.MySlist.VGridLines = Black

TMain.MySlist.ViewRows = 4

TMain.MySlist.NumRows = 6

TMain.MySlist.NumCols = 7

TMain.MySlist.Color = White

TMain.MySlist.DisplayOrientation = Horizontal

TMain.MySlist.WrapMode = Next

Superlist object, Bitmap[1] property, DisplayOrientation property, HGridLines
property, NumRows property, SelectState property, Text property, VGridLines
property, WrapMode property

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

342 NumRows property

NumRows property

sListBoxClass

Specifies the number of rows in the superlist.

Desktop.SuperListbox.NumRows = value

Value is any positive integer. Default = (Height of Superlist) / (Height of characters in
font)

FLEX OS 1.0, 2.0

None

The NumRows property in this example specifies that the number of rows in the
superlist is 6.

Object TMain isa desktopClass

Object MySlist isa sListBoxClass

endobject

endobject

TMain.MySlist.HGridLines = Black

TMain.MySlist.VGridLines = Black

TMain.MySlist.ViewRows = 4

TMain.MySlist.NumRows = 6

TMain.MySlist.NumCols = 7

TMain.MySlist.Color = White

TMain.MySlist.DisplayOrientation = Horizontal

TMain.MySlist.WrapMode = Next

Superlist object, Bitmap[1] property, DisplayOrientation property, HGridLines
property, NumCols property, SelectState property, Text property, VGridLines property,
WrapMode property

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

Object statement 343

Object statement

The Object statement creates (or instantiates) an object. The Object statement is
terminated by the EndObject keyword.

Object ObjectName Isa ClassName

 // Child Objects

EndObject

FLEX OS 1.0, 2.0

The Object/EndObject construct is the implementation of the Create_object method.

Object declarations must occur in global space (i.e., outside all functions). If
ObjectName is declared, it becomes a global object. If ObjectName is not declared, it
becomes a local object in the function in which it is created.

This example declares AButton as a Buttonclass object. Since AButton is declared
outside the function, AButton is a global object; it can therefore be referenced by any
function in the application.

Buttonclass AButton // Declare AButton

..

Function DrawWidget()

..

Object AButton Isa Buttonclass // Create AButton

EndObject

..

end function

Defining objects

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

344 objectClass

objectClass

An abstract class that creates objects and defines basic storage. objectClass is the top-
most class in the class hierarchy. You do not use objectClass objects in FLEX Script
applications. Instead, you use objects belonging to the subclasses of objectClass, which
include carrierClass, dbCreateClass, mailObjectClass, and uiObjectClass.

objectClass has the following subclasses.

objectClass

carrierObjectClass

dbCreateClass

mailObjectClass

uiObjectClass

This object class has the following unique properties, methods, and events. All
subclasses inherit these properties, methods, and events from objectClass.

Unique properties Unique methods Unique events

None Create_Object()

Destroy_Object()

Error()

None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

objectClass 345

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

All objects, belong to objectClass, and thereby can create and destroy themselves, and
delegate to their parent containers. Delegation is when an object is sent a message that
it can’t bind, and it forwards that message to its container instance. This allows objects
to be placed in containers so that the container handles application-type methods or
operations.

None

Version
Compatibility

Remarks

See also

346 ObjectID() method

ObjectID() method

baseClass

Returns an integer identifier for an object. This identifier is typically used as a
parameter to a function that requires integer arguments.

Integer Object.ObjectID()

Integer identifier for an object.

FLEX OS 1.0, 2.0

The ObjectID method is used to obtain a handle for an object, so that the object can be
passed as an event parameter. (Events can pass only integer values as parameter-1 and
parameter-2.) ObjectID is typically used in interprocess communication.

Note - In the C-language, the action of this method and its inverse function- IntToObject()- is
called a cast. That is, the object pointer is cast into an integer by ObjectID. Then the integer is
cast back into an object pointer by IntToObject().

Returns an integer identifier for the object NewObj. This identifier is typically used as
a parameter to a function that requires integer arguments.

Object NewObj IsA listBoxClass

EndObject

// Send object to another program

SendEvent(Some_App, SomeEvent, NewObj.ObjectID(), 0)

IntToObject function, SendEvent function

Applies To

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

OnGetFocus() event 347

OnGetFocus() event

UI, programs

An object receives the OnGetFocus event when the object gets the focus.

OnGetFocus()

 // code to handle event

End Event

FLEX OS 1.0, 2.0

When the object gets the focus, it’s redrawn in order to show this new state. Objects
may be drawn in several different ways: Borders may be manipulated, or reverse video
or block cursors may be used. These methods are object class-dependent; see the
documentation for each class for implementation details.

None. This event is a method of the object class.

OnLoseFocus event

Generated By

Purpose

Syntax

Version
Compatibility

Remarks

Event Code

See also

348 OnKey() event

OnKey() event

UI, programs

The OnKey event processes keystrokes for the class.

OnKey(integer key, integer Unused-2)

 // code to handle event

End Event

Argument Description

Key The value of the keystroke being sent to the object

Unused-2 Not used

The Key argument can have many different values including but not limited to the
following constants: NAV_DOWN_KEY, NAV_UP_KEY, NAV_PGDOWN_KEY,
NAV_PGUP_KEY, HOME_KEY, CONTRAST_KEY, etc…..

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

This method is almost always augmented in the subclass so that keys that are specific
to the operation of this subclass can be captured. In a subclass, keys are typically
processed to perform typical data entry operations. These may include simple
navigation, or character-based data entry. Often, if a subclass receives an invalid
keystroke, it will forward that keystroke to its superclass. In class UIobjectClass, the
default behavior is to pass these keystrokes on to the FLEX Script program via the
KeyEvent handler.

None. This event is a method of the object class.

OnGetFocus Event, OnPointer_Enter() Event, OnSelect Event, UIobjectClass

Generated By

Purpose

Syntax

Parameters

Settings

Version
Compatibility

Remarks

Event Code

See also

OnLoseFocus() event 349

OnLoseFocus() event

UI, programs

An object receives this event when it has lost the focus.

OnLoseFocus()

 // code to handle event

End Event

FLEX OS 1.0, 2.0

When the object loses the focus, it’s redrawn in order to show this new state and no
longer receives user interface events. Objects may be drawn in several different ways:
Borders may be manipulated, or reverse video or block cursors may be used. These
methods are object class-dependent; see the documentation for each class for
implementation details.

None. This event is a method of the object class.

OnGetFocus event

Generated By

Purpose

Syntax

Version
Compatibility

Remarks

Event Code

See also

350 OnNextEvent()

OnNextEvent()

Sent on navigation to the next object (such as generated by the Tab key).

OnNext(integer Unused-1, integer Unused-2)

 // code to handle event

End Event

Argument Description

Unused-1 Not used

Unused-2 Not used

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

This event is typically sent to the focus object defined in controlClass.

The following navigation rules apply to this event:

• Parents ring children (wrap at edges).

• Navigation uses TabIndex.

• OnNext looks for the next greater TabIndex.

• OnPrevious looks for the next smaller TabIndex.

• A TabIndex of 0 is skipped.

• FrameClass objects do not ring children.

None. This event is a method of the object class.

OnPrevious event, TabIndex property

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

OnPointer_Enter() event 351

OnPointer_Enter() event

UI, programs

Received when the floating pointer enters the rectangle of this object.

OnPointer_Enter()

 // code to handle event

End Event

Argument Description

Unused-1 Not used

Unused-2 Not used

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

This causes the OnGetFocus event to be executed.

This event is only called on FLEX devices that have a floating cursor.

None. This event is a method of the object class.

OnGetFocus event, OnPointer_Exit event

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

352 OnPointer_Exit() event

OnPointer_Exit() event

UI, programs

Received when the floating pointer exits the rectangle of this object.

OnPointer_Exit (integer Unused-1, integer Unused-2)

 // code to handle event

End Event

Argument Description

Unused-1 Not used

Unused-2 Not used

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

This causes the OnLoseFocus event to be executed.

This event is only called on FLEX devices that have a floating cursor.

None. This event is a method of the object class.

OnLoseFocus event, OnPointer_Enter event

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

OnPrevious() event 353

OnPrevious() event

Sent on navigation to the previous object (such as generated by the shift-tab key).

OnPrevious(integer Unused-1, Unused-2)

 // code to handle event

End Event

Argument Description

Unused-1 Not used

Unused-2 Not used

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

This event is typically sent to the focus object defined in controlClass.

The following navigation rules apply to this event:

• Parents ring children (wrap at edges).

• Navigation uses TabIndex.

• OnNext looks for the next greater TabIndex.

• OnPrevious looks for the next smaller TabIndex.

• A TabIndex of 0 is skipped.

• FrameClass objects do not ring children.

None. This event is a method of the object class.

OnNext event, TabIndex property

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

354 OnSelect() event

OnSelect() event

UI, programs

To programmatically simulate the user pressing the Select key on the keyboard.

OnSelect(integer key, integer unused-2)

 // code to handle event

End Event

Argument Description

Key The value of the keystroke being sent to the object.

Unused-2 Not used.

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

This method is almost always augmented in the subclass so that selects that are specific
to the operation of this subclass can be captured. Any class that does not have a
handler for the OnSelect event will forward that event to UIobjectClass. UIobjectClass
will then use the Method property of the object to invoke a function within a FLEX
Script program.

None. This event is a method of the object class.

Method property, OnKey event

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

OpenFile function 355

OpenFile function

Opens an existing file specified by the passed name.

integer OpenFile(string FileName)

The FileName argument is the name of the file to be opened. Filenames must be
referenced using with the FIS file type.

This function returns the following:

Positive integer = The file handle that represents the file name was successfully created

–1 = Invalid file name

FILE_ERROR_OUT_OF_HANDLES

FILE_ERROR_SYSTEM

FLEX OS 1.0, 2.0

If CloseFile is not called, the file handle is not freed. Since there is a limited number
of file handles available (64), failing to free the file handle with CloseFile will
eventually prevent you from opening files. The 64-file limit is system-wide, not
application-wide.

Attempts to open the file Preferences. If the Preferences file existed, a handle is
assigned to the variable PrefsFile. If the Preferences file doesn’t exist, then the
function CreateFile is used to create it.

PrefsFile = OpenFile("FIS:16.32555") // Get file handle

If (PrefsFile < -1) // Did not find file

PrefsFile = CreateFile("FIS:16.32555")

// Work with file

ReturnValue = DBclose(PrefsFile) // Finished working with file

CloseFile function, CreateFile function, ReadFile function, RemoveFile function,
SeekFile function, WriteFile function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

356 OR operator

OR operator

The OR operator returns a bitwise or logical value, depending on its usage.

Bitwise OR

The bitwise OR operator returns the bitwise inclusive OR of two integer operands. All
bits that are ON (1) in either operand (or both) are ON in the result. Bits that are OFF
(0) in both operands are OFF in the result. OR has left-to-right associativity.

Logical OR

The OR operator returns a logical (or boolean) value when used with boolean
operands. (Relational expressions are an example of boolean operands.) The logical
OR operator returns TRUE (1) when either or both operands are TRUE and returns
FALSE (0) only if both operands are FALSE.

FLEX OS 1.0, 2.0

// Used as logical OR operator

integer x, y, z

x = 1

y = 2

z = 0

If ((x > y) OR (x > z))

// x is not the smallest number

else

// x is the smallest number

// Used as bitwise OR operator

1011 1110

OR 0010 1010

1011 1110

Additive operators, AND operator, Equality operators, Multiplicative operators,
Relational operators, Unary operators, XOR operator

Overview

Version
Compatibility

Example

See also

OSVersion function 357

OSVersion function

Returns the operating system version string.

OSVersion()

Operating system version string

FLEX OS 1.0, 2.0

None

Displays the operating system version.

DBGshow(OSVersion())

ProgramVersion function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

358 Page_Down() method

Page_Down() method

textBoxClass, listBoxClass

Scrolls down one page at a time (unless you're less than a page from the bottom).

ObjectName.Page_Down()

FLEX OS 1.0, 2.0

The Page_Down method will move one line below the last line of text, but no further.

The example creates an object of type listBoxClass, adds some elements, and scrolls
down one screen.

Object M isa listBoxClass

EndObject

M.Add_Item(-1, "New Item")

M.Add_Item(-1, "New Item2")

M.Page_Down()

Delete_Block method, First_Line method, Insert_Block
methodInsert_Block____Method, Last_Line method, Marked_Block method, Page_Up
method, Scroll method, Total_Lines method

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Page_Up() method 359

Page_Up() method

textBoxClass, listBoxClass

Scrolls up one page at a time (less if you're less than a page from the top).

ObjectName.Page_Up()

FLEX OS 1.0, 2.0

Page_Up will stop at the beginning of data.

Creates an object of type listBoxClass and scrolls the list up one screen.

Object M isa listBoxClass

EndObject

M.Page_Up()

Delete_Block method, First_Line method, Insert_Block
methodInsert_Block____Method, Last_Line method, Marked_Block method,
Page_Down method, Page_Up method, Scroll method, Total_Lines method

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

360 Paint() method

Paint() method

UIobjectClass

Draws the borders, background color, bitmap, text, and other visual features of any
object in UIObjectClass.

ObjectName.Paint()

FLEX OS 1.0, 2.0

This method is always augmented in a subclass to draw the contents of the object. The
augmented method provides the painting of the textual information within an object.
Its superclass is used to paint the background; its subclasses provide additional
rendering.

If Autoupdate_State is False, the Paint will be ignored.

Draws the borders, background color, and bitmaps of the PunchButton and BigButton
objects.

function PressNextButton()

If (WheelPosition = 0)

begin

BaseScreen.BigButton.Icon = "altdrag1.rob"

WheelPosition = 1

end

else

begin

BaseScreen.BigButton.icon = "altdrag2.rob"

WheelPosition = 0

end

BaseScreen.BigButton.Autoupdate_State = 1

BaseScreen.PunchButton.paint()

BaseScreen.NextButton.paint()

BaseScreen.BigButton.Autoupdate_State = 0

end function

Autoupdate_State property, BackBuffer_State property, Bitmap property,
Bring_To_Front method, HideObject method, Location property, Modal_Popup_State
property, ShowObject method, Size property, Visible_State property

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Parent property 361

Parent property

All classes

Defines the parent (or container) for an object.

Object.Parent = containerClassObject

FLEX OS 1.0, 2.0

All objects have a parent.

The parent should be of containerClass (or its descendants).

Setting parentage is done by:

1. Nested objects

2. Setting the Parent property

The Parent property is often set to take advantage of attributes of containership.

// Use the parent property

Foo.Parent = Bar

// Alternatively, define in nested format

Object Bar Isa dialogClass

ObjectFoo Isa buttonClass

EndObject

EndObject

containerClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

362 Picture_Disabled property

Picture_Disabled property

buttonClass

Defines the picture shown when a button is disabled.

Desktop.Button.Picture_Disabled = Value

Value is the name of the BMP file or ROB file. Default = NULL (not set).

FLEX OS 1.0, 2.0

This property allows a unique bitmap image to be displayed when the button is in a
disabled state.

Defines GRAY.BMP as the picture to be shown when MyButton is disabled.

:

TMain.MyButton.Picture_Disabled = “Gray.bmp”

:

:

Bitmap property, Picture_Down property, buttonClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

Picture_Down property 363

Picture_Down property

buttonClass

Defines the picture shown when a button is pressed.

Desktop.Button.Picture_Down = Value

Value is the name of the picture file, either in BMP or ROB format. Default = NULL
(not set).

FLEX OS 1.0, 2.0

This property allows an application to use a unique picture when a button is selected.

Defines PUSHDOWN.BMP as the picture to be shown when MyButton is pressed.

:

TMain.MyButton.Picture_Down = “Pushdown.bmp”

:

:

Bitmap property, Picture_Disabled property, buttonClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

364 pictureClass

pictureClass

Used to implement the picture object, which displays a non-selectable bitmap on the
screen.

pictureClass has the following superclasses.

objectClass

uiObjectClass

pictureClass

controlClass

This object class has no unique properties, methods, or events, and inherits all its
characteristics from its superclasses.

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

Purpose

Class hierarchy

Syntax

pictureClass 365

FLEX OS 1.0, 2.0

A picture object displays bitmaps specified by the Bitmap property. You can specify a
non-compressed bitmap file (BMP) or a compressed bitmap file (ROB, RC1, RC2).
You must size the bitmap object to fit the displayed graphic.

None

Version
Compatibility

Remarks

See also

366 PlayBeep function

PlayBeep function

Plays a tone for a given duration at the specified volume.

integer PlayBeep(integer Freq, integer Volume, integer Duration)

This function has the following arguments:

Argument Description

Freq The frequency of the tone.
Value range: 16 – 16,000

Volume The volume of the tone.
Value range: 0 – 255

Duration The amount of wait time for the tone to stay on.
Value range: 0 – 2,147,483,647
(unit = 1/32 of a second)

This function returns the following:

NTFERR_NO_ERROR

NTFERR_OUT_OF_MEMORY

NTFERR_BUSY

FLEX OS 1.0, 2.0

Use this function as a shortcut to activate a single tone without having to build a
playlist.

Plays a musical note for 1/8 second at full volume with a frequency of 440.

Const Integer Cnote = 440

PlayBeep(CNote, 255, 4)

AddPlayElement function, CancelPlaylist function, CreatePlayList function,
DestroyPlayList function, LoadPlayList function, SavePlayList function, StartPlayList
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

PlayListEvent() 367

PlayListEvent()

Frameworks

Generated to FLEX Script when a event element in a notification play list occurs in the
play list sequence.

Event PlayListEvent (integer Unused-1, integer Unused-2)

// code to handle event

End Event

Unused-1 (not used)

Unused-2 (not used)

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

26

About event handlers, AddPlayElement function, CreatePlayList function

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event code

See also

368 Point function

Point function

Sets the color of a single pixel element on the screen.

integer Point(PointType PointToColor, integer Color)

This function has the following arguments:

Argument Description

PointToColor A structure of x and y coordinates representing a pixel on the screen. The
point must be on the screen.

Color The color of the point being displayed.

The Color argument must have one of the following values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

OK

SCREEN_ERROR_INVALID_POINT

FLEX OS 1.0, 2.0

This function sets the drawing cursor to a specific location, then colors that pixel to the
color passed to it.

Note This is a very slow method of changing the color of a single pixel.

The xCoord and yCoord passed to the function indicate the location of the point to be
drawn. After this function is called, the value of the current drawing cursor is at the
location of the point that was just drawn.

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

Remarks

Point function 369

Changes the color of the pixel located at the current pointing cursor to black.

PointType WhereToChange

WhereToChange = GetPointingCursor()

Point(WhereToChange, BLACK)

ClearScreen function, SetTextPoint function

Example

See also

370 PointType structure

PointType structure

Structure that is used to define positions on the screen.

Structure PointType

 Integer X

 Integer Y

EndStruct

Field Value Description

X 0-239 Horizontal coordinate on the PageWriter

Y 0-159 Vertical coordinate on the PageWriter

FLEX OS 1.0, 2.0

These positions are measured in pixel locations with (0,0) representing the pixel at the
upper left, and (239,159) representing the pixel at the bottom right.

CopyBitmap function, DisplayBitmap function, DisplayBitmapFile function, DrawBox
function, GetDrawingCursor function, GetPointingCursor function, Point function,
RectType Structure, SetDrawingCursor function, SetPointingCursor function,
SetTextPoint function

Purpose

Syntax

Settings

Version
Compatibility
Remarks

See also

Position property 371

Position property

progressBarClass, checkBoxClass

For the progressBarClass, this property defines the current percentage of completion
shown by the drawn bar.

For the checkBoxClass, this property defines checked or unchecked state.

Desktop.progressBarClass.Position = Value

Desktop.checkBoxClass.Position = Value

For the progressBarClass, Value is any positive integer. Default = 0.

For the checkBoxClass, Value is either 0 or 1. 0 = unchecked, 1 = checked. Default =
(0) unchecked.

FLEX OS 1.0, 2.0

Use this property to set the progress bar percentage, or the logic status of a check box.

Sets the percent complete of a progress bar to 50 per cent and sets a checkbox as
checked.

// Set the progress bar to 50%

Desktop.ProgressBarClass.Position = 50

// Check the check box

Desktop.CheckBoxClass.Position = 1

Max property, Min property, progressBarClass, checkBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

372 PrintInt function

PrintInt function

Displays an integer to the attached terminal display or to the debug window, based on
how the application is run.

PrintInt(integer AnInt)

This function has the following argument:

Argument Description

AnInt An integer that you wish to display

FLEX OS 1.0, 2.0

Use this function when you want to display an integer for debugging purposes.

Note A new line is NOT automatically added to the end of the printed data. Use the
function PrintLn to move down to the next line.

Prints the number stored in Screen.Visible_State.

PrintInt(Screen.Visible_State)

PrintLn function, PrintStr function

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

PrintLn function 373

PrintLn function

Sends a new line command to the attached terminal display or to the debug window,
based on how the application is run.

PrintLn()

FLEX OS 1.0, 2.0

Use this function to add extra vertical space(s) around debug statements.

Shows the current Visible_State of the screen with a blank line above and below it.

PrintLn()

DbgShow("screen state is " + Str(Screen.Visible_State))

PrintLn()

PrintInt function, PrintStr function

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

374 PrintStr function

PrintStr function

Displays a string to the attached terminal display or to the debug window, based on
how the application is run.

PrintStr(string aString)

This function has the following argument:

Argument Description

aString A string that you want to display

FLEX OS 1.0, 2.0

Note A new line is NOT automatically added to the end of the printed data. Use this function
when you want to print strings for debugging purposes. Use the function PrintLn to move down
to the next line.

Displays which of the first 30 records exist in a database.

integer Counter

integer MsgDB

MsgStruct TempMsg

PrintStr("Found records ")

MsgDB = DBopen(MessageDatabaseName)

For Counter = 1 to 30

Begin

ReturnValue = DBfindByNumber(MsgDB, Counter, TempMsg)

If (ReturnValue > 0)

Begin

PrintInt(Counter)

PrintStr(", ")

End

End

PrintLn()

ReturnValue = DBclose(MsgDB)

PrintInt function, PrintLn function

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

Priority property 375

Priority property

mailObjectClass

Defines the transmission priority of the message.

integer Priority

The value of this property is one of the following:

• PRIORITY_NORMAL

• PRIORITY_LOW

• PRIORITY_URGENT

Default = PRIORITY_NORMAL

FLEX OS 1.0, 2.0

Use this property to set the priority of an outgoing message, or get the value of this
property from an incoming message.

The PRIORITY_NORMAL, PRIORITY_LOW, and PRIORITY_URGENT constants
are defined in MailObj.Inc.

When using the Priority property, be sure to include MailObj.Inc.

Note The property is valid only if the object's CarrierID property is CARRIER_REFLEX_50
or CARRIER_FLEX.

Gets the priority value of an incoming message.

$$INCLUDE "MailObj.Inc"

Integer ipriority

// Get the Priority of the message

iPriority = NewMessageObj.Priority

:

:

mailObjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

376 ProcessEvents function

ProcessEvents function

Begins a program's event-driven process loop.

ProcessEvents()

FLEX OS 1.0, 2.0

For more on how an application responds to events, see "Handling events in FLEX
Script" in the Programmer's Guide.

Note If you want a program to respond to ANY events (keyboard input, call from other
programs, etc.), the program must contain a ProcessEvents function.

Enables the program to respond to events.

ProcessEvents()

GetCurrentTask function, GetFocus function, GetFocusObject function, SendEvent
function, SendRemoteEvent function, SetFocus function, SetFocusObject function,
SetTaskName function, SetTimer function

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

ProfileChangeEvent() 377

ProfileChangeEvent()

MMDS to Read

MMDS generates this event when a carrier changes some aspect of its profile

Event ProfileChangeEvent (integer CarrierID, integer Unused-2)

 // code to handle event

End event

Argument Description

CarrierID ID code of the carrier that has changed.

Unused-2 Not used.

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

This event requires that the profile be reread, and that the system respond to the
changes.

58

About event handlers, Event Classification

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

378 ProfileFormat() method

ProfileFormat() method

carrierObjectClass

Returns an integer code indicating the format of the carrier profile.

Integer ProfileFormat()

FLEX OS 1.0, 2.0

The return code is mutually understood by originator and receiver.

When using the ProfileFormat() method, be sure to include MailObj.Inc.

$$INCLUDE "MailObj.Inc"

integer iVal

iVal = ObjectName.ProfileFormat() // Reading a non-list method

CannedReply method, FormatType method, MailboxCnt method, MailboxID method,
MailboxName method, MaxLength method, MinLength method, ProfileUpdateFlag
method, ServiceName method, UpdateTimePermitted method, carrierObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

ProfileUpdateFlag() method 379

ProfileUpdateFlag() method

carrierObjectClass

Returns an integer code indicating the part of the profile that has changed.

Integer ProfileUpdateFlag()

FLEX OS 1.0, 2.0

The ProfileUpdateFlag method returns a bitwise code, with the following bit
assignments (0 is the LSB):

Bit position Description

0 Addressing Services

1 Mailbox Services

2 Canned Replies

3 Canned Codes

4 Special Services

5 (Reserved)

6 (Reserved)

7 OEM data

0 indicates an unchanged status; 1 indicates a changed status.

When using the ProfileUpdateFlag() method, be sure to include MailObj.Inc.

$$INCLUDE "MailObj.Inc"

integer iVal

iVal = ObjectName.ProfileUpdateFlag() // Reading a non-list method

CannedReply method, FormatType method, MailboxCnt method, MailboxID method,
MailboxName method, MaxLength method, MinLength method, ProfileFormat
method, ServiceName method, UpdateTimePermitted method, carrierObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

380 ProgramEvent()

ProgramEvent()

Applications to any

Event handler for the generic program event. Triggered by a process.

Event ProgramEvent (integer Param1, integer Param2)

 // code to handle event

End Event

The parameters can be anything that the application programmer chooses.

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

This is a general purpose event, never generated by the system.

33

About event handlersAbout_event_handlers, Event ClassificationEvent_Classification

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

ProgramVersion function 381

ProgramVersion function

Retrieves the program version of an application.

String ProgramVersion(string ApplicationName)

ApplicationName is the application for which you want the version.

This function returns a signature created at compile time. This signature is guaranteed
to be unique to each individual application. The signature is always 8 characters.
These characters are comprised of letters and numbers only.

FLEX OS 1.0, 2.0

The application name is the ASCII name of the application when it was loaded.

Gets the version of the Shell application.

Function ShowVersion()

string TheVersion

TheVersion = ProgramVersion("shell.air")

SomeObject.Text = TheVersion

End function

OSVersion function, Run function, RunSetup function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

382 progressBarClass

progressBarClass

Used to implement the progress bar object, which displays a non-selectable graphic
that indicates the completion percentage for a process.

progressBarClass has the following superclasses.

objectClass

uiObjectClass

progressBarClass

controlClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

Bar_Color

Bar_Style

Max

Min

Position

None None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

progressBarClass 383

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

The progress bar visually displays the percentage of completion for a process. The
Color property specifies the color of the background, and the Bar_Color property
determines the color of the bar.

None

Version
Compatibility

Remarks

See also

384 Prototype statement

Prototype statement

The Prototype statement is used to declare a function before it is actually defined. In
other words, it tells the compiler that the function exists, but defers the details until
later. The Prototype statement is used exclusively with functions.

The Prototype statement is useful in cases where one function calls another function
that is located after it in the source code. This allows the source code to compile
without generating an unknown reference error.

Prototype FunctionName ([Datatype Arg-1,..])[returns Datatype]

FLEX OS 1.0, 2.0

Note The argument and return definitions of the function prototype statement are optional.

By physically rearranging the source code so that all functions that are referenced
appear before any functions that reference them, you can also solve the unknown
reference problem. Adding a prototype statement is much easier than rearranging
code, however.

In the case where there are two functions that reference each other, the function
prototype statement is required. For example, suppose functions A() and B() reference
each other. In the source, one function must obviously be listed before the other. For
the function that appears first, the reference to the other function would cause the
unknown reference error. Adding a function prototype statement provides a way
around the problem.

Purpose

Syntax

Version
Compatibility

Remarks

Prototype statement 385

In the example, the prototype statement is required because the two functions call each
other.

Prototype B() // B() prototype statement here..

 ..

Function A()

 ..

 B() // prevents an error here

 ..

End function

Function B()

 ..

 A() // OK because A() is already known

 ..

End function

Function statement

Example

See also

386 PutData() method

PutData() method

dataObject Class

Copies data from an application data structure to a data object's memory buffer.

Object.PutData(ref StructName)

FLEX OS 1.0, 2.0

PutData() moves data between the application and the object.

Flash

Program

Struct

Buffer

GetDataPutData

LoadSave

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

PutData() method 387

Data is copied from the App structure to the object Objx.

Structure AppStruct

Integer iNum1

Integer iNum2

String szText

End Struct

...

Object Objx isa dataobjectClass

endobject

...

AppStruct App

App.iNum1 = 1

App.iNum2 = 10

App.szText = "Hello"

Objx.PutData (Ref App)

End Function

GetData method

Example

See also

388 PWspinWheel function

PWspinWheel function

Rotates the bitmap wheel on the device.

integer PWspinWheel(integer SpinDirection, integer BackgndPtr)

This function has the following arguments:

Argument Description

SpinDirection Direction the user wants to rotate the FLEX device wheel

BackgndPtr Unused. May pass in a NULL.

The SpinDirection argument must have one of the following values.

Value Description

SPIN_DIRECTION_UP Spin clockwise

SPIN_DIRECTION_DOWN Spin counterclockwise

FLEX OS 1.0, 2.0

The PWspinWheel function changes the functions presented to the user. The
background remains the same, while the list of application entry points (presented to
the user as buttons) displayed on the background change. The first set of buttons
rotates off the screen and the next set rotates onto the screen.

If the animation cannot run because of low memory, the "spin" doesn't occur, but the
next set of buttons is still presented to the user.

Rotates the bitmap of the wheel clockwise.

spinRes = PWspinWheel(1,NULL)

ActivateLCD function, ClearScreen function, DeactivateLCD function

Purpose

Syntax

Parameters

Parameters

Version
Compatibility

Remarks

Example

See also

QueryType structure 389

QueryType structure

The structure passed to DBFind that specifies the query to be used to build the query
dataset returned by the function.

Structure QueryType

 Searches SearchList[5]

 Sorts SortList[5]

 Integer NumSearchs

 Integer NumSorts

EndStruct

Property Description

Searches SearchList[5] (Array of Searches structures)
List of up to five criteria that each record must meet in order to be
included in the dataset.

Sorts SortList[5] (Array of Sorts structures)
List of up to five sorts to perform on the found records.

NumSearchs Number of searches used in SearchList array.

NumSorts Number of sorts used in SortList array.

FLEX OS 1.0, 2.0

Sorts are performed in the order listed within the array.

There is no facility for the OR operation in the search criteria. Neither are there multi-
table joins.

Creating subsets of a database, DBfind function, Searches_Structure, Sorts_Structure,
Specifying search criteria

Purpose

Syntax

Settings

Version
Compatibility
Remarks

See also

390 radioButtonClass

radioButtonClass

Used to implement the radio button object, which provides a way for the user to select
one, and only one, option from among a group of options.

radioButtonClass has the following superclasses.

objectClass

uiObjectClass

textClass

selectClass

radioButtonClass

controlClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

Button_Position Clear method None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

radioButtonClass 391

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

• Radio buttons options are mutually exclusive. (This must be enforced by the
program.)

• Each button consists of a graphic (a circle) and descriptive text.

• The size of the button is determined by the size of the font.

• When an option is selected, its button has a black dot in the middle. When a
different option is selected, the first option is deselected (its button is cleared) and
the selected option’s button has the black dot.

checkBoxClass

Version
Compatibility

Remarks

See also

392 RadioControl function

RadioControl function

Sends control data to the device's radio.

RadioControl(Integer ControlFlag)

The ControlFlag argument must be one of the following values.

Value Description

TRANSMITTER_OFF Turn radio transmitter off.

TRANSMITTER_ON Turn radio transmitter on.

RECEIVER_OFF Turn receiver off.

RECEIVER_ON Turn receiver on.

This function returns:

EVTERR_NO_ERROR

EVTERR_WRITE_ERROR

EVTERR_PROCESS_NOT_FOUND

FLEX OS 1.0, 2.0

ControlFlag can be constructed with the bitwise OR operator.

Sends control data to turn the device's radio off.

RadioControl(Receiver_Off OR Transmitter_Off) //Turn radio off

CancelMail()function, CopyMail function, DeleteMail function, SendMail function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

RcvErrCnt() method 393

RcvErrCnt() method

mailObjectClass

Returns a value for the Received Error Count. Indicates error count of transmission
received. No notification is given for truncations or missing fragments.

integer RcvErrCnt()

FLEX OS 1.0, 2.0

A return value of 0 indicates no errors.

When using the RcvErrCnt method, be sure to include MailObj.Inc.

Note The method is valid only if the object's CarrierID property is CARRIER_REFLEX_50 or
CARRIER_FLEX.

Creates a mail object named M and then gets the RcvErrCnt.

Object M isa mailObjectClass // Instantiate it

EndObject

integer iVal

...

iVal = M.RcvErrCnt() // Get the RcvErrCnt

Accept method, ContentSymbolLen method, ContentType method, EnvStatus method,
Lock method, RcvQuality method, ReplyAllowed method, TimeRcv method, TimeSent
method, MailObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

394 RcvQuality() method

RcvQuality() method

mailObjectClass

Returns a code for the Receive Quality (quality of transmission received).

integer RcvQuality()

FLEX OS 1.0, 2.0

Default = 0

The ProfileUpdateFlag method returns a bitwise code, with the following bit
assignments. (Bit 0 is the least significant bit).

Bit position Description

0 Parity error

1 Checksum error

2 Fragmentation error

3 Truncation error

A value of 1 indicates error; a value of 0 indicates no error. All other bits are reserved.

When using the RcvQuality method, be sure to include MailObj.Inc.

Note The method is valid only if the object's CarrierID property is CARRIER_REFLEX_50 or
CARRIER_FLEX.

Creates a mail object named M and then gets the RcvQuality.

$$INCLUDE "MailObj.Inc"

...

Object M isa mailObjectClass // Instantiate it

EndObject

...

integer iVal

iVal = M.RcvQuality() // Get the RcvQuality

Accept method, ContentSymbolLen method, ContentType method, EnvStatus method,
Lock method, RcvErrCnt method, ReplyAllowed method, TimeRcv method, TimeSent
method, MailObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Read_Only_State property 395

Read_Only_State property

textBoxClass

Determines whether the user can enter text into a textBoxClass object.

Desktop.textbox.Read_Only_State = Value

Value is either TRUE or FALSE. Default = FALSE.

FLEX OS 1.0, 2.0

If the value of this property is set to TRUE, the user cannot enter or edit text in the text
box. The Text property of the object can still be set programmatically. Also, when
this property is TRUE, the FLEX Script program’s KeyEvent handler is called each
time an alphanumeric key is pressed.

If this property is set to FALSE, text can be entered or edited in the text box.

Sets a text box to Read-Only. (This disables editing.)

:

// Disables text editing

TMain.MyTextBox.Read_Only_State = TRUE

:

:

BlockEnd property, BlockStart property, Cursor property, EditMask property,
InsertMode property, Max_Characters property, Read_Only_State property,
textBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

396 ReadFile function

ReadFile function

This function returns a string of data read from the specified file.

string ReadFile(integer FileHandle, integer NumberToRead)

This function has the following arguments:

Argument Description

FileHandle The handle of a file previously opened using OpenFile

NumberToRead The number of characters to read

This function returns a string of data from the specified file. If that file was NULL at
the specified location a NULL string is returned.

FLEX OS 1.0, 2.0

This function reads in data from the current seek position in a file. Use this function to
retrieve a string of data from a file. Use the function Seekfile to move the current seek
location inside the file.

Note ReadFile starts getting characters from the current location in the file. If the number of
characters to read is greater than the number of characters left in the file, only the remaining
characters will be read. If another ReadFile is done without resetting the current seek location,
you will get an empty string as the result.

Opens a file with the handle Preferences and uses the SeekFile function to move to the
tenth character of the file. The function ReadFile reads the next twenty characters,
then DBclose closes the file.

string WhatWeFound

integer PrefsFile

PrefsFile = OpenFile("FIS:16.32555") // Get file handle

// Go to the 10th character from the beginning of the file

ReturnValue = SeekFile(PrefsFile, 10, 0)

WhatWeFound = ReadFile(PrefsFile, 20) // Read the next 20 characters

ReturnValue = DBclose(PrefsFile) // Finished working with file

CloseFile function, CreateFile function, FileInfo function, OpenFile function, ReadInt
function, RemoveFile function, RenameFile function, SeekFile function, WriteFile
function, WriteInt function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

ReadInt function 397

ReadInt function

Returns an integer read from a file.

integer ReadInt(integer FileHandle)

FileHandle is the handle of a file previously opened using OpenFile.

This function reads in data from the current seek position in a file and returns the
integer read. Use the function Seekfile to move the current seek location inside the
file.

FLEX OS 1.0, 2.0

None

Returns the first integer read from the file, "Preferences."

Integer iCount, PrefsFile, RV

PrefsFile = OpenFile("FIS:16.32555") // Get file handle

iCount = ReadInt(PrefsFile) // Read the first integer

RV = CloseFile(PrefsFile) // Finished working with file

WriteInt function, ReadFile function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

398 Real statement

Real statement

The Real statement declares a real (or floating point) variable.

Real Identifier-1 [,Identifier-2,..]

FLEX OS 1.0, 2.0

Real variables are initialized to 0.0 upon creation.

Declares storage for the Price and Quantity variables.

Real Price, Quantity

About data types, Date statement, Integer statement, String statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

RealResource function 399

RealResource function

Resource files enable application programmers to separate resources (such as bitmaps,
strings, etc.) from the application source code. Resources are used in source code via
resource identifiers rather than actual resource values. This allows the actual resources
to be changed without a re-compilation of the source, as long as the resource identifiers
remain unchanged.

Real ReakResource(Locale, Resource, Ordinal)

Locale refers to the FIS type for the resource file.

Resource refers to the FIS ID of the resource item.

Ordinal refers to the 16-bit identifier for the specific resource data.

Real – returns the bitmap defined in the resource file.

FLEX OS 2.0

Resource files can be used to contain locale-specific data constants. These constants
are often used as defaults by the system for preferences.

When the following program is compiled, the file “11.22” is created in addition to the
standard MYRES.AIR.

// The myres.rcs file

resource_string IDS_TESTSTR1 9 "hello world"

resource_integer IDS_TESTINT1 8 11

resource_string IDS_TESTSTR2 14 "the second string"

resource_integer IDS_TESTINT2 10 29

resource_string IDS_TESTSTR3 11 "hmmmmm"

resource_integer IDS_TESTINT3 14 12

resource_integer IDS_TESTINT4 19 441

resource_real IDS_TESTREAL5 2 16.22

resource_real IDS_TESTREAL1 29 12.21

resource_date IDS_DATE1 77 "11/20/1993"

resource_date IDS_DATE2 78 "01/17/1988 10:15"

resource_binary IDS_BITMAP1 88 "c:\flexide\inbox.rob"

resource_binary IDS_BITMAP2 89 "c:\flexide\outbox.rob"

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

Resource file

400 RealResource function

// The myres.src file

$$INCLUDE "datatype.inc"

$$RESOURCE "myres.rcs,11.22"

function main()

 integer aInt

 string aStr

 real aReal

 date aDate

 pointtype aPoint

 bitmaptype aBitmap

 aInt = intResource(11, 22, IDS_TESTINT1)

 dbgShow("int = " + str(aint))

 aReal = realResource(11, 22, IDS_TESTREAL1)

 dbgShow("real = " + realtostr(aReal))

 SetDateAndTimeFormat("%m/%d/%Y")

 aDate = dateResource(11, 22, IDS_DATE1)

 dbgShow("date1 = " + dateToStr(aDate))

 setdateandtimeformat("%m/%d/%Y %H:%M:%S")

 aDate = dateResource(11, 22, IDS_DATE2)

 dbgShow("date2 = " + dateToStr(aDate))

 aPoint.x = 10

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP1)

 displaybitmap(aPoint, aBitmap)

 aPoint.x = 100

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP2)

 displaybitmap(aPoint, aBitmap)

 Astr = strResource(11,22,IDS_TESTSTR1)

 dbgShow(“Str = “ + Astr)

end function

About resource files, BitmapResource function, DateResource function, IntResource
function, StrResource function

FLEX Script file

See also

RealToInt function 401

RealToInt function

Converts a real value to an integer.

integer RealToInt(real RealToConvert)

RealToConvert is the real number that is to be converted to an integer.

Returns the integer value of the real.

FLEX OS 1.0, 2.0

None

Converts the real 3.142 to the integer 3.

integer iValue

real rValue

rValue = 3.142

iValue = RealToInt(rValue) // iValue now has the value 3

IntToReal function, RealToStr function, StrToReal function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

402 RealToStr function

RealToStr function

Converts a real value to a string.

string RealToStr(real RealToConvert)

RealToConvert is the real value that is to be converted to a string. This value can be
positive or negative.

Returns the string value of the real.

FLEX OS 1.0, 2.0

None

Converts the real value 3.142 to the string "3.142".

string myStr

real rValue

rValue = 3.142

myStr = RealToStr(rValue) // myStr is now “3.142”

RealToInt function, RealToStr function, StringToReal function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

ReColorRect function 403

ReColorRect function

Used to change the color of a rectangular region of the screen to the specified color.
Often used to gray (or darken) the background screen.

ReColorRect(struct RectType, struct ColorType)

This function has the following arguments:

Argument Description

struct RectType A structure holding the coordinates of the upper-left and bottom-
right corner of a rectangle.

struct ColorType A structure that specifies the color to use when filling the rectangle.

ColorType has the following arguments:

Constant Value/description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

This function returns the following:

OK

SCREEN_ERROR_DISPLAY_NOT_INIT

SCREEN_ERROR_INVALID_RECTANGLR

FLEX OS 2.0

This feature allows for the background of pop-up menus to be grayed and restored
upon removal of the pop-ups.

Note All functions that receive RectType as a designator of a valid screen area will clip the
designated area to the actual screen size, if necessary.

Purpose:

Syntax

Parameters

Returns

Version
Compatibility

Remarks

404 ReColorRect function

The example code calls ReColorRect (Rect, Colormap) where Colormap is:

White = LIGHTGRAY

Ltgray = DARKGRAY

Dkgray = BLACK

Black = BLACK

Structure ColorStruct

Integer Colors [4]

End struct

Function main ()

RectType Rect

ColorType ColorMap

Rect.Ulcorner.x = 20

Rect.Ulcorner.y = 21

Rect.Brcorner.x = 40

Rect.Brcorner.y = 41

ColorMap.colors[1] = LIGHTGRAY

ColorMap.colors[2] = DARKGRAY

ColorMap.colors[3] = BLACK

ColorMap.colors[4] = BLACK

ReColorRect (Rect, ColorMap)

end function

ClearRect function, ClearScreen function, DrawBox function, Point function, RectType
Structure, ScrollRect function

Example

See also

RectType structure 405

RectType structure

Structure holding the coordinates of the upper-left and bottom-right corner of a
rectangle.

Structure RectType

 PointType ulCorner

 PointType brCorner

EndStruct

FLEX OS 1.0, 2.0

The two points held by the structure are used to define a rectangular portion of the
screen.

ClearRect function, CopyBitmap function, InvertRect function, PointType Structure,
ScreenToBitmap function, ScrollRect function

Purpose

Syntax

Version
Compatibility
Remarks

See also

406 Ref statement

Ref statement

The Ref statement defines a parameter passed to a function as a reference to the data
itself. (By default, parameters passed to a function without using the Ref keyword are
passed by value.)

Function FunctionName(Ref Datatype Arg-1,..)

FLEX OS 1.0, 2.0

You can only pass variables with the Ref statement. Constants and properties cannot
be passed by reference.

The example illustrates passing an integer variable by reference. Note that when you
pass by reference you no longer need to return a value to the calling function (unless
you want to report success or failure.) Since the storage location of the argument is
known, the called function can access it directly.

Function Bar(Ref Integer Foo)

 Foo = 23

End Function

Function Goo()

 Integer zoo

 Bar(zoo) // zoo = 23 now

End Function

Calling functions, Function arguments and return values

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Relational operators 407

Relational operators

The relational operators supported by FLEX Script are:

• Less Than (<)

• Greater Than (>)

• Less Than or Equal To (<=)

• Greater Than or Equal To (>=).

The operand types supported by the relational operators: Integer, Real, String, Date. If
the operands are of type String or Date, they are converted into integers before being
compared. If the operands are of dissimilar types, the operand with the lower
precedence is converted into the type of the higher precedence operand.

The type precedence (in decreasing order) is: Real, Integer, String, Date. The return
value is of Integer or Real type and the value returned is 0 if the expression is FALSE;
otherwise, it is 1.

Note All relational operators have left-to-right associativity.

FLEX OS 1.0, 2.0

integer x, y

x = 1

y = 2

If (x > y)

// x is greater than y

else

// x is not greater than y

Unary operators, Multiplicative operators, Additive operators, Equality operators, AND
operator, OR operator, XOR operator

Overview

Version
Compatibility

Example

See also

408 Remove function

Remove function

Frees storage space on the device when deleting a program.

function Remove()

...

End function

FLEX OS 1.0, 2.0

Use this function to remove all persistent items (stored databases, bitmaps, etc.) that
are associated with a program. This function should only be called when you are
preparing to delete a program.

This example removes DeleteMyDataBase and DeleteMyBitmaps from memory.

function Remove()

DeleteMyDataBase()

DeleteMyBitmaps()

end function

Run function, RunRemove function, RunSetup function, Setup function, Stop function

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Remove_Bitmap() method 409

Remove_Bitmap() method

statusBarClass

Removes an icon from the specified position on the status bar.

Remove_Bitmap(integer Location)

Location specifies the index of the icon to remove.

FLEX OS 1.0, 2.0

If the index is negative or greater than the number of icons in the status bar, no action
is taken.

Creates an object of type statusBarClass, adds an item, and deletes it.

Object M isa statusBarClass

EndObject

M.Add_Bitmap(-1, "New Item")

M.Remove_Bitmap(0)

Add_Bitmap method, Insert_Bitmap method

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

410 Remove_Item() method

Remove_Item() method

listBoxClass

Removes the item from the specified position in the lsit box.

Remove_Item(integer Location)

Location specifies the index of the item to remove from the list.

FLEX OS 1.0, 2.0

If the index is negative or greater than the number of items in the list, no action is
taken.

Creates an object of type listBoxClass, adds an item, and deletes it.

Object M isa listBoxClass

EndObject

...

M.Add_Item(-1, "New Item")

M.Remove_Item(0)

Add_Item method, Clear method

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

RemoveFile function 411

RemoveFile function

Removes a file that was previously created.

integer RemoveFile(string FileName)

This function has the following argument:

Argument Description

FileName A valid file name

This function returns the following:

Return Description

–1 Invalid file name

FLEX OS 1.0, 2.0

Use RemoveFile to remove files. This will free persistent storage for other uses.

Warning This deletes the file from the file system. Any information stored in the file will be lost.

Removes a file called SOMEFILE.OLD from memory.

integer FileHandle

FileHandle = OpenFile("FIS:16.32555")

If (FileHandle > -1) // The file was found

Begin

ReturnValue = CloseFile(FileHandle)

// Free the handle

ReturnValue = RemoveFile("SomeFile.old")

End

CloseFile function, CreateFile function, OpenFile function, ReadFile function,
SeekFile function, WriteFile function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

412 RenameFile function

RenameFile function

Changes the name of a file from oldname to newname. oldname must exist or an error
is returned.

RenameFile(string "oldname", string "newname")

This function has the following arguments:

Argument Description

OldName A valid file name of the file name to be changed

NewName A valid file name for the new name of the file.

0: File was renamed correctly

Any nonzero integer: Was not able to rename the file

FILE_ERROR_SYSTEM

FLEX OS 1.0, 2.0

None

Renames a file.

RenameFile("Foo.txt","Foo.bak")

CloseFile function, CreateFile function, FileInfo function, OpenFile function, Remove
function, SeekFile function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

ReplyAllowed() method 413

ReplyAllowed() method

mailObjectClass

Returns a code indicating conditions allowing the message to be replied to.

Integer ReplyAllowed()

FLEX OS 1.0, 2.0

Return value is TRUE or FALSE.

Note: The method is valid only if the object's CarrierID property is CARRIER_REFLEX_50.

Creates a mail object named M then gets the ReplyAllowed flag.

Integer iVal

Object M isa mailObjectClass // Instantiate it

EndObject

integer iVal

iVal = M.ReplyAllowed() // Get the Reply Allowed flag

Accept method, ContentSymbolLen method, ContentType method, EnvStatus method,
Lock method, RcvErrCnt method, RcvQuality method, TimeRcv method, TimeSent
method, MailObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

414 RequestAck property

RequestAck property

mailObjectClass

Defines a request acknowledgment (a flag indicating that a Message-Read
acknowledgment is requested by transport).

integer RequestAck

0 = FALSE, 1 = TRUE. Default = 0.

FLEX OS 1.0, 2.0

Use this flag for the type of two-way messages that contain a predefined
acknowledgment.

When using the RequestAck property, be sure to include MailObj.Inc.

Note The method is valid only if the object's CarrierID property is CARRIER_REFLEX_50.

Gets the acknowledgement request of an incoming message.

$$INCLUDE "MailObj.Inc"

:

// Get the ack request of the message

iRequestAck = NewMessageObj.RequestAck

:

:

mailObjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

RespondCnt property 415

RespondCnt property

mailObjectClass

Defines the number of multiple-choice responses (MCRs) supplied with the message.

integer RespondCnt

Default = 0.

FLEX OS 1.0, 2.0

This property sets the number of multiple-choice responses in a message. This is
typically used with two-way paging messages in which the initial message contains a
set of multiple-choice replies; the recipient selects one of these predefined replies.

For example, an initial message might say “Where do you want to go for lunch?”
Attached multiple-choice responses might be “TGI Friday's”, “Chili’s”, and “KFC”. In
this case, the RespondCnt property will be 3 (the number of multiple-choice
responses). The application that receives this message needs to retrieve this value
before it can retrieve the response text.

When using the RespondCnt property, be sure to include MailObj.Inc.

Counts the number of multiple-choice responses in an incoming message, then gets the
text of each, based on the count.

$$INCLUDE "MailObj.Inc"

integer iRespondCnt

:

// Get the number of responses in the message

iRespondCnt = NewMessageObj.RespondCnt

// Based on count number, retrieve the multiple choice response text

For iIndex = 1 to iRespondCnt

Begin

// Retrieve the response text

szResponse[iIndex] = NewMessageObj.RespondContent[iIndex]

:

End

:

:

RespondContent property, RespondLen property, mailObjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

416 RespondContent[] property

RespondContent[] property

mailObjectClass

Defines the text of a response item in a message object that contains multiple-choice
responses.

string RespondContent[1]

FLEX OS 1.0, 2.0

Default = 0. This property contains the actual response text.

When using the RespondContent[] property, be sure to include MailObj.Inc.

Gets the text of a multiple-choice response.

$$INCLUDE "MailObj.Inc"

:

// Retrieve the response text

szResponse[iIndex] = NewMessageObj.RespondContent[iIndex]

:

RespondCnt property, RespondLen property, mailObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

RespondLen[] property 417

RespondLen[] property

mailObjectClass

This property defines the length of a response item (measured in bytes).

integer RespondLen[1]

FLEX OS 1.0, 2.0

Default = 0. This property can be used to retrieve the text length of the response text.

When using the RespondLen[] property, be sure to include MailObj.Inc.

Gets the length of a single multiple-choice response.

$$INCLUDE "MailObj.Inc"

:

// Retrieve the response text

iResponseLength[iIndex] = NewMessageObj.RespondLen[iIndex]

:

:

RespondCnt property, RespondContent property, mailObjectClass

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

418 RetentionType() method

RetentionType() method

mailObjectClass

Returns a flag indicating the Retention type. RetentionType() returns a 0 for normal
messages and 1 for "mail drop" messages, meaning that a new message can replace an
older one.

Integer RetentionType()

FLEX OS 1.0, 2.0

When using the RetentionType() method, be sure to include MailObj.Inc.

Note The method is valid only if the object's CarrierID property is CARRIER_FLEX.

Indicates the RetentionType for mail object M.

$$INCLUDE "MailObj.Inc"

Object M isa mailObjectClass

EndObject

Integer iKeep

M.Load(FileID)

iKeep = M.RetentionType()

M.Destroy_Object()

MailObjectClass, CarrierID property

Applies To

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

Return statement 419

Return statement

The Return statement terminates the execution of a function and returns control to the
calling function. Execution resumes in the calling function at the point immediately
following the call. The return statement can optionally return a value to the calling
function.

Return ([value])

FLEX OS 1.0, 2.0

A Return statement without a return value can be used only in functions that don’t
return a value. It causes the function to terminate but does not pass a value back to the
caller.

A Return statement with a return value is only allowed in functions that are defined as
returning a value. The return value is returned to the caller of the function.

The example illustrates a function returning an integer.

function increment_by_one(integer in) returns integer

 return(in + 1)

end function

Function statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

420 Right function

Right function

Returns the characters to the Right of Offset including the character at Offset.

string Right(string InputString, integer Offset)

This function has the following arguments:

Argument Description

InputString Source (string to be manipulated)

Offset Position where the read begins, starting from the left

This function returns a string that equals all characters in the string starting at the
character in the position Offset of the InputString.

FLEX OS 1.0, 2.0

Use this function when you only want to use part of a string.

The Offset is where the read starts from. The string returned with the Right function
includes the character in the Offset position. For example, if the Offset for the string
"incredible" is 3, then "credible" is returned.

All negative or invalid Offset values are normalized to 1.

The example returns the string "345678".

function main()

string inputStr, searchstr, resultstr

integer offset

inputstr = "12345678"

resultstr = right(inputstr, 3)

dbgshow(resultstr)

end function

ConcatStr function, InStr function, Left function, Len function, Mid function function,
StrEq function, StrGe function, StrGt function, StrLe function, StrLt function, StrNe
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

Run function 421

Run function

Used by one program to start another program.

Run(string ProgramName)

This function has the following argument:

Argument Description

ProgramName The name of the program to start

This function returns the physical task ID of the program being run or a 1 if the task
could not be created to run the program.

FLEX OS 1.0, 2.0

Invokes the Main function in an application.

Warning Running a program that is already running creates another instance of the program;
this can lead to unpredictable results.

Runs the program Prog.air.

Integer TaskID

TaskID = Run("Prog.air")

If (TaskID > 0)

SendEvent(TaskID, SomeEvent, 0, 0)

Remove function, RunRemove function, RunSetup function, Setup function, Stop
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

422 RunRemove function

RunRemove function

Runs the Remove function of a program.

RunRemove(string ProgramName)

This function has the following argument:

Argument Description

ProgramName The name of the program whose Remove function you want to run

This function returns the physical task ID of the program being removed or a 1 if the
task could not be created to remove the program.

FLEX OS 1.0, 2.0

Use this function when you are getting ready to delete a program. The program’s
Remove function will be run; this should clean up anything stored on the device that is
used exclusively by this program.

You will not be able to access the program’s stored databases, bitmaps, etc., without
reinstalling the program.

Tells the program ProgramName to clear any memory it temporarily used, then
removes the program itself.

If (StrEq(AreYouSureYouWantToDeleteThis, "Yes"))

begin

RunRemove(ProgramName) // Tell the program to remove its stuff

RemoveFile(ProgramName) // Remove the program itself

end

Remove function, Run function, RunSetup function, Setup function, Stop function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

RunSetup function 423

RunSetup function

Runs the Setup function of a program.

RunSetup(string ProgramName)

This function has the following argument:

Argument Description

ProgramName The name of the program whose Setup function you want to run.

This function returns the physical task ID of the program being setup or a 1 if the task
could not be created to setup the program.

FLEX OS 1.0, 2.0

Use this function when you have installed a new application, to allow that application
to create any application-specific resources.

Warning Running a program’s Setup function multiple times can lead to unpredictable results.

Tells the application called ProgramToSetUp to run its internal setup function.

RunSetup(ProgramToSetup)

Remove function, Run function, RunRemove function, Setup function, Stop function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

424 Save() method

Save() method

MailObjectClass, dataObject

Saves the object to a mailbin file.

Integer ObjectName.Save()

None

For a mailObject, this method returns a file identifier for the mailbin (i.e., FIS type and
ID) if successful. If the FISWrite operation fails for any reason, the method returns 0.

FLEX OS 1.0, 2.0

Returns a file identifier (integer) for the saved object. If the object was previously
loaded from a file, edited, and saved, the file ID is the same as the loaded file. If this is
a new object, a new file ID is provided.

This method is called before sending a mail message because a file must exist before its
contents can be sent.

When using the Save() method, be sure to include MailObj.Inc.

Errors in saving trigger SystemErrorEvent().

Applies To

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Save() method 425

The example creates the object, loads a file, processes the object, saves it, sends it, and
frees the object.

$$INCLUDE "MailObj.Inc"

Event NewPostedMailEvent (integer FileID, integer NotUsedHere)

Object M isa mailObjectClass // Instantiate it

EndObject

...

integer NewFileID

M.Load (FileID) // Load the file into object

processMail (M) // This is an example function

NewFileID = M.Save() // Save the processed object

SendMail (NewFileID) // Use return value

M.Destroy_Object() // Free the object

End Event

Create_Object method, Destroy_Object method, Load method, SendMail,
SystemErrorEvent, mailObjectClass, dataObject

Example

See also

426 SaveBitmap function

SaveBitmap function

Stores the named bitmap on the device.

integer SaveBitmap(string Name, BitmapType BType)

This function has the following arguments:

Argument Description

Name Name of the bitmap file

BType Bitmap structure in which to store the bitmap

This function returns the following:

OK

SYSTEM_FILE_ERROR – returned if the file could not be created or opened.

FILE_ERROR_FILE_NOT_OPEN

FLEX OS 1.0, 2.0

Output: A file that contains the bitmap based on the Name passed in.

Use this function when an application has created or modified a screen that you want
to save for future use. Typical function call order:

1. ScreenToBitmap (save the screen or a portion of the screen to an in-memory
bitmap)

2. SaveBitmap (store the new bitmap as a file to be used later)

3. DestroyBitmap (destroy the in-memory bitmap to free the memory)

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

SaveBitmap function 427

This example captures a copy of the screen picture in the WhatToGet rectangle, saves it
to the file system as ScreenStuff, then frees the memory used.

PointType TopLeft, BottomRight

RectType WhatToGet

BitmapType BitmapToSave

TopLeft.x = 10

TopLeft.y = 20

BottomRight.x = 50

BottomRight.y = 80

WhatToGet.ulCorner = TopLeft

WhatToGet.brCorner = BottomRight

BitmapToSave = ScreenToBitmap(WhatToGet, "C2")

ReturnValue = SaveBitmap("ScreenStuff", BitmapToSave)

ReturnValue = DestroyBitmap(BitmapToSave)

CopyBitmap function, DestroyBitmap function, DisplayBitmap function,
DisplayBitmapFile function, LoadBitmap function, ScreenToBitmap function

Example

See also

428 SavePlayList function

SavePlayList function

Stores all the elements of a playlist in a specified file.

integer SavePlayList(integer ListID, string PlayName)

This function has the following arguments:

Argument Description

ListID A handle for the playlist, as returned by CreatePlayList()

PlayName An ASCII string, the name of the file to store

This function returns the following:

-1: a file write error

NTFERR_NO_ERROR

NTFERR_INVALID_LIST_ID

NTFERR_FILE_NOT_FOUND

FLEX OS 1.0, 2.0

If the file doesn’t exist, it is created; otherwise the function overwrites existing data.

Saves playlist CurrPlayList to a file called FIS:7.1.

CurrPlayList = CreatePlayList()

AddToneToPlayList(CurrPlayList, 392, 256, 2)

AddToneToPlayList(CurrPlayList, 440, 256, 2)

AddToneToPlayList(CurrPlayList, 494, 256, 2)

SavePlayList(CurrPlayList,"FIS:7.1")

DestroyPlayList(CurrPlayList)

AddPlayElement function, CancelPlaylist function, CreatePlayList function,
DestroyPlayList function, LoadPlayList function, PlayBeep function, StartPlayList
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

ScreenRefreshEvent() 429

ScreenRefreshEvent()

Applications

When a popup or message box overlays a screen and is dismissed, bitmaps and other
drawings that may have been underneath are not automatically refreshed. This results
in a "damaged" screen wherever graphics are overlaid. Graphics affected are those
produced by any of the graphics functions; e.g., DrawBox(), DrawCircle(), and
DrawLine(). Any overlaid bitmaps would also be damaged.

Note Objects are automatically refreshed. This problem applies only to graphics and
bitmaps.

The ScreenRefresh event is broadcast whenever a popup or message box is dismissed.
In order to refresh the screen and restore any graphics or bitmaps, the developer can
place code in this event handler.

Event ScreenRefreshEvent (Integer Unused-1, Integer Unused-2)

 // code to handle event

End Event

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

ScreenRefreshEvent is not generated by the system, but is a convention used by
cooperating applications.

34

About event handlers, Event Classification

Generated by

Purpose

Syntax

Version
Compatibility

Remarks

Event code

See also

430 ScreenToBitmap function

ScreenToBitmap function

Transfers the screen pixels to an in-memory bitmap. The rectangle defined by the
passed coordinates is transferred and the compression type specified is used to store the
bitmap in memory.

BitmapType ScreenToBitmap(RectType WhatToGet, string Comp_type)

This function has the following argument:

Argument Description

WhatToGet A structure containing the values of the rectangle (full or partial screen) to be
transferred to memory as a bitmap

Comp_type A string that holds the compression method type

Valid values are:

 UN -for an uncompressed ROB file

 C1- for ROB compression method 1

 C2- for ROB compression method 2

This function returns the bitmap.

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Returns

Version
Compatibility

ScreenToBitmap function 431

Use this function to capture all or a portion of the screen and place it in memory. You
can use it from memory later by using LoadBitmap, or you can use SaveBitmap to
save it in a file for future use.

Typical function call order:

1. ScreenToBitmap (save the screen or a portion of the screen to an in-memory
bitmap)

2. SaveBitmap (store the new bitmap as a file to be used later)

3. DestroyBitmap (destroy the in-memory bitmap to free the memory)

Three usable values for compression:

1) UN_COMPRESSED_ROB_FILE_TYPE (0)

2) COMPRESSED_ROB_FILE_TYPE_BYTE1 (‘C’) in the first 8 bits

a) ROB_FILE_COMPRESSION_METHOD_RC1 (‘1’) in the
second 8 bits

b) ROB_FILE_COMPRESSION_METHOD_RC2 (‘2’) in the
second 8 bits

Note All functions that receive RectType as a designator of a valid screen area will clip the
designated area to the actual screen size, if necessary.

Captures a copy of the screen picture in the WhatToGet rectangle and saves it in
memory as BitmapToSave.

PointType TopLeft, BottomRight

RectType WhatToGet

BitmapType BitmapToSave

TopLeft.x = 10

TopLeft.y = 20

BottomRight.x = 50

BottomRight.y = 80

WhatToGet.ulCorner = TopLeft

WhatToGet.brCorner = BottomRight

BitmapToSave = ScreenToBitmap(WhatToGet,"C1")

CopyBitmap function, DestroyBitmap function, DisplayBitmap function,
DisplayBitmapFile function, LoadBitmap function, SaveBitmap function

Remarks

Example

See also

432 Scroll() method

Scroll() method

textBoxClass, listBoxClass

Scrolls up or down in the list box by the number of items specified.

Scroll(integer ScrollBy)

ScrollBy indicates how many lines to scroll the contents of the screen object.

FLEX OS 1.0, 2.0

The number of lines to scroll can be either positive or negative. Negative numbers
scroll up; positive numbers scroll down.

Creates an object of type listBoxClass, adds two items, and scrolls down one line.

Object LC isa listBoxClass

EndObject

...

LC.Add_Item(-1, "New item 1")

LC.Add_Item(-1, "New item 2")

LC.Scroll(1)

Add_Item method, Clear method, Delete_Block method, First_Line method,
Insert_Block methodInsert_Block____Method, Last_Line method, Marked_Block
method, Page_Down method, Page_Up method, Scroll method, Total_Lines method

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

ScrollRect function 433

ScrollRect function

Scrolls the contents of a rectangle vertically by dy device units.

integer ScrollRect(RectType InRect, integer dy, integer FillColor)

This function has the following arguments:

Argument Description

InRect A structure that specifies the portion of the client area to be scrolled.

dy The contents of a rectangle are scrolled vertically by dy device units. A negative
value scrolls up. Min = zero; Max = Display height.

FillColor The color to use when filling in the scrolled space.

The FillColor argument must have one of the following values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

OK

SCREEN_ERROR_DISPLAY_NOT_INIT

FLEX OS 1.0, 2.0

Enter a positive value of dy to scroll down, a negative value to scroll up.

Note All functions that receive RectType as a designator of a valid screen area will clip the
designated area to the actual screen size, if necessary.

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

Remarks

434 ScrollRect function

Scrolls a large bitmap through a display window. As you run out of bitmap, fills in the
display with white.

PointType ULOfWindow, BROfWindow

RectType WhereToScroll

integer HeightChange, TimesToScroll

Event TimerEvent(integer TimerID, integer OtherData)

If (TimerID = 1)

 Begin

ReturnValue = ScrollRect(WhereToScroll, HeightChange, WHITE)

If (TimesToScroll > 0)

Begin

TimesToScroll = TimesToScroll - 1

SetTimer(1, 256)

End

End

End Event

// Start the scroll process

TimesToScroll = 10

HeightChange = SCREENHEIGHT / 4

ULOfWindow.X = 0

ULOfWindow.Y = 0

BROfWindow.X = SCREENWIDTH / 2

BROfWindow.Y = SCREENHEIGHT

WhereToScroll.ulCorner = ULOfWindow

WhereToScroll.brCorner = BROfWindow

ReturnValue = DisplayBitmap(ULOfWindow, BitMapToShow)

setTimer(1, 256) // There are 256 ticks per second

ClearRect function, CreateTimerID function, DrawBox function, PWspinWheel
function

Example

See also

Searches structure 435

Searches structure

Represents one criterion that a record must meet in order to be included in a query
dataset.

Structure Searches

 Integer Type

 Integer FieldID

 String Value

EndStruct

Property Value FLEX Script Constant Description

Type 0 = Less than
1 = Greater than
2 = Equivalent
3 = Contains
4 = Begins with
5 = Bitwise search

HIGH_SEARCH
LOW_SEARCH
EQUAL_SEARCH
CONTAINS_SEARCH
BEGINS_SEARCH
BITWISE_SEARCH

Establishes relationship
between the Value
parameter and the field
values being searched.
Types 4 and 5 are reserved
for future use.

FieldID n, where n is the number
of the field to be
seearched.

Identifier of the field to be
searched. The first field in
a record is 1, the secon
field in a record is 2, etc.

Value Any Value to search against.

FLEX OS 1.0, 2.0

This structure is a component of the QueryType structure.

QueryType_Structure, Specifying search criteria

Purpose

Syntax

Settings

Version
Compatibility
Remarks

See also

436 SearchMode property

SearchMode property

listBoxClass

Defines how characters entered while list has focus affect the Current_Item.

Listboxobject.SearchMode = Value

Value is one of the following:

Value Description

SEARCH_NONE No navigation

SEARCH_FIRST_CHARACTER Find next item beginning with typed character

SEARCH_SORTED Same as SEARCH_FIRST_CHARACTER but proceeds
to next entry with wrap at ends

FLEX OS 1.0, 2.0

None

MyListBox.SearchMode = Search_Sorted

Add_Item method, OnKey Event, Remove_Item method

Applies To:

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

SeekFile function 437

SeekFile function

Sets the file seek position relative to the beginning, current position, or end of a file.

integer SeekFile(integer FileHandle, integer Offset, integer

StartingPosition)

This function has the following arguments:

Argument Description

FileHandle The file handle returned from a previous call to OpenFile or CreateFile

Offset The offset from the starting place

StartingPosition The place to begin the seek

The argument StartingPosition must be one of the following:

Value Description

SEEK_FRONT Sets seek position at the beginning of the file

SEEK_CURRENT Sets seek position at the current position

SEEK_END Sets seek position at the end of the file

The value returned will be the location of the seek pointer from the beginning of the
file, or this function will return the following:

FILE_ERROR_FILE_NOT_OPEN

-1: If a file handle could not be found to open the file with

FLEX OS 1.0, 2.0

If you set the seek position for the file to the end of the file and then do a ReadFile,
you will always get an empty string as your returned value.

Open a file and go to the tenth character from the top of the file.

integer FileToRead

FileToRead = OpenFile("FIS:16.32555")

ReturnValue = SeekFile(FileToRead, 10, SEEK_FRONT)

CloseFile function, CreateFile function, OpenFile function, ReadFile function,
RemoveFile function, WriteFile function

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

438 Select Case statement

Select Case statement

The Select statement makes it possible to choose one of several flows of control. Use it
to change the flow of execution based on the value of the expression. The Select
structure is ended by the End Select keyword.

Select Case (Variable)

Case value-1

// statements

Case value-2

// statements

...

[Case Else]

// statements

End Select

FLEX OS 1.0, 2.0

The Case statements can be nested; a case is associated with the nearest Select
enclosing it.

When the Select statement is executed, its expression is evaluated and compared with
each case-expression. Control of the program is then passed to the statement that
follows the Case keyword that matched.

Select… Case does not require a Begin and End statement when using multiple
statements in defining a Case. This differs from other statements that use Begin and
End to define code blocks that form a clause of an If statement or the body of a While,
Do While, or For statement.

If no Case-expression matches the Case value and there is a Case Else, the statements
in the Case Else clause are then executed. In other words, the Case Else clause is
executed if no other clause is executed.

Purpose

Syntax

Version
Compatibility

Remarks

Select Case statement 439

This example selects the action to take based on the value of iNum.

Select Case (iNum)

Case 1

AddToSendList()

Case 2

PressSendButton()

Case 3

ChangePage(COMPOSE_MESSAGE)

Case Else

DefaultOperation()

End Select

If... Else statement

Example

See also

440 Select_Color property

Select_Color property

Sets color of selected items.

listBoxClass

Select_Color()

Color is a string indicating the desired color. Default = LIGHTGRAY.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

FLEX OS 1.0, 2.0

None

Sets the color of the list box to WHITE.

MyDesktop.MyListbox.Select_Color = WHITE

Color property

Purpose

Applies To

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

selectClass 441

selectClass

Adds a disable/enable property and methods to its subclasses. You do not use
selectClass objects in FLEX Script applications. Instead, you use the objects belonging
to the subclasses of selectClass, which includes buttonClass, checkBoxClass,
listBoxClass, and radioButtonClass.

selectClass has the following superclasses and subclasses.

objectClass

uiObjectClass

controlClass

textClass

selectClass

buttonClass

checkBoxClass

listBoxClass

radioButtonClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

Disabled_State

Method

SelectTask

None None

Purpose

Class hierarchy

Syntax

442 selectClass

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

None

None

Version
Compatibility

Remarks

See also

SelectFont function 443

SelectFont function

Selects a different font handle.

integer SelectFont(integer FontHandle)

This function has the following argument:

Argument Description

FontHandle The font handle of the font to be selected

This function returns the following:

TXERR_NO_ERROR

TXERR_NOT_READY

TXERR_INACTIVE_HANDLE

TXERR_INVALID_HANDLE

FLEX OS 1.0, 2.0

DrawText uses the current font until it is changed by a SelectFont call or until a new
font is created by CreateFont. The new font then becomes the current font.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

444 SelectFont function

Creates two fonts (RegFont and BigFont). Checks to see if the string to be displayed is
less than twelve characters long; if it is, uses SelectFont to select BigFont.

integer BigFontHandle, RegFonthandle

FontType BigFont, RegFont

string TextToShow

PointType WhereToStart

SetTextColor(BLACK, WHITE)// Text color, background color

RegFont.Height = 10 // 10

RegFont.Width = 8 // 8

RegFont.FaceName = "Nelson Standard"

RegFonthandle = CreateFont(RegFont)

BigFont.Height = 20 // 20

BigFont.Width = 16 // 16

BigFont.FaceName = "Nelson Big"

BigFontHandle = CreateFont(BigFont)

WhereToStart.x = 0

WhereToStart.y = 0

SetTextPoint(WhereToStart)

TextToShow = AMessage.Content

If (Len(TextToShow) < 12)

ReturnValue = SelectFont(BigFont)

else

ReturnValue = SelectFont(RegFont)

DrawText(TextToShow, -1) // Display message content

CreateFont function, DestroyFont function, DrawText function, SetTextColor function,
SetTextPoint function

Example

See also

SelectState property 445

SelectState property

sListBoxClass

Used to indicate if a given cell is currently selected.

Desktop.Listbox.SelectState = value

True or false. Default = True.

FLEX OS 1.0, 2.0

None

Sets a superlist cell selection mode to TRUE, which indicates selection.

listBoxClass TMain.SuperListBoxCell

:

// Set to single-line selection mode:

TMain.SuperListBoxCell.MultiSelect_State = TRUE

:

:

Superlist object, Bitmap[1] property, DisplayOrientation property, HGridLines
property, MultiSelect_State property, NumCols property, NumRows property, Text
property, VGridLines property, WrapMode property

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

446 SelectTask property

SelectTask property

selectClass

Used to define the task (program) that receives the OnSelect event for the object.

Object.SelectTask = Value

None

By default, the SelectTask property is the current task.

FLEX OS 1.0, 2.0

None

Selects the current task as the task to receive the select event.

T.SelectTask = GetCurrentTask()

Disabled_State property, Method property, OnKey Event, OnSelect Event

Applies To

Purpose

Syntax

Arguments

Settings

Version
Compatibility

Remarks

Example

See also

SendEvent function 447

SendEvent function

Allows one program to communicate with another program.

integer SendEvent(integer TaskNumber, integer EventID, integer

Parameter1, integer Parameter2)

This function has the following arguments:

Argument Description

TaskNumber The task number of the program you want to call

EventID The type of event you are sending

Parameter1, Parameter2 The event parameters being passed to the called program

This function returns the following:

EVTERR_NO_ERROR

EVTERR_WRITE_ERROR

EVTERR_PROCESS_NOT_FOUND

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Returns

Version
Compatibility

448 SendEvent function

Note The SendEvent function will sometimes cause the called application to take the focus.

The following events are available to be sent to any FLEX Script application or
external process. These event identifiers may be found in FLEX.INC (a file
automatically included with the IDE); they are listed here for your convenience.

EVENT_APPLICATION_INSTALLED

EVENT_APPLICATION_REMOVED

EVENT_APPLICATION_STARTED

EVENT_APPLICATION_STOPED

EVENT_ATEDGE

EVENT_BATTERY_STATUS

EVENT_BATTERYDOOR_CLOSE

EVENT_BATTERYDOOR_OPEN

EVENT_CLOCK_UPDATE

EVENT_DUPLICATE_MAIL

EVENT_FOCUS

EVENT_KEY

EVENT_LID_CLOSE

EVENT_LID_OPEN

EVENT_LOW_SPACE

EVENT_MAIL_STATUS

EVENT_MODIFIER_STATE_CHANGE

EVENT_MOUSE_DRAG

EVENT_MOUSE_ENTER

EVENT_MOUSE_EXIT

EVENT_MOUSE_MOVE

EVENT_MOUSE_SELECT

Remarks

SendEvent function 449

EVENT_NEW_APP_MAIL

EVENT_NEW_COMMAND_MAIL

EVENT_NEW_POSTED_MAIL

EVENT_PLAYLIST

EVENT_PREFERENCE_SET

EVENT_PROFILE_CHANGE

EVENT_ROAM

EVENT_SCREEN_REFRESH

EVENT_SIGNAL_STRENGTH

EVENT_SYSKEY

EVENT_SYSTEM_ERROR

EVENT_SYSTEM_EVENT

EVENT_TERMINATE_PROCESS

EVENT_TIMER

EVENT_TRANSMIT_OFF

EVENT_TRANSMIT_ON

EVENT_UPDATED_MAIL

PROGRAM_EVENT

450 SendEvent function

SendEvent is used as part of a function that checks to see if Date and time have ever
been set. If not sets them to 1/1/97.

Function CheckDefault()

Date TestDate, MinDisplayDate

TestDate = GetDateAndTime()

MinDisplayDate = StrToDate("1997/01/01 00:01")

If (TestDate < MinDisplayDate)

begin

TempCal.Month = 1

TempCal.Day = 1

TempCal.Year = 1997

SetCalendar(TempCal)

ResetCleanUp()

SendEvent(CARETAKER_APP, PROGRAM_EVENT_CODE, 999, 0)

// Tell caretaker to requery

end

end function

BroadcastEvent function, CreateTimerID function, ProcessEvents function,
SendRemoteEvent function, SetTimer function

Example

See also

SendMail function 451

SendMail function

Tells the Dispatch Service to send the indicated mail message to its designated
addresses.

SendMail (integer FileID)

This function has the following argument:

Argument Description

FileID A number that represents the unique part of the file name under FIS or DOS, as
supplied by the new-mail event

This function returns the following:

OK

MAIL_ERROR_FILE_SYSTEM

FLEX OS 1.0, 2.0

Copies the mail from the file and fills in the missing and default values. FileID is the
file identifier, as returned by the Save method.

// Send outgoing messages

function SendMsg()

// Local Variables

STRING szMessage

INTEGER EISMsgID

// Construct a message object:

Object EISMessage isa MailObjectClass

EndObject

// Assign the message text from the message pad to a

// local string variable:

szMessage = Outbox.MsgTextbox.Text

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

452 SendMail function

// Prepare the message by assigning the

// properties of the message object:

EISMessage.msgbasetype = 0 // NEW_MESSAGE

EISMessage.carrierID = 1 // REFLEX_PAGER

EISMessage.adrlistcnt = 1 // Address list

EISMessage.adrtype[1] = 7 // EMAIL_MESSAGE

EISMessage.adrval[1] = "user1@email.mot.com" // Email address

EISMessage.contentlistcnt = 1 // Message content count

EISMessage.contentval[1] = szMessage // Message body

dbgShow("About to save message file............")

// Save the message to a file:

EISMsgID = EISMessage.Save()

dbgShow("Save complete!")

// Send the message: this will cause the message file to be read

// and sent by the framework:

SendMail(EISMsgID)

// Clean up:

EISMessage.Destroy_Object()

end function

CancelMail()function, CopyMail function, DeleteMail function, mailObjectClassSee also

SendRemoteEvent function 453

SendRemoteEvent function

Allows FLEX Script programs to send messages to programs that are part of the
device.

integer SendRemoteEvent(string ProcessName, integer TaskID, integer

eventID, integer P1, integer P2)

This function has the following arguments:

Argument Description

ProcessName The name of the device's program you want to call

TaskID The device program’s task ID

EventID The type of message being sent

P1, P2 The event parameters associated with this message

This function returns the following:

OK

EVTERR_NO_ERROR

EVTERR_WRITE_ERROR

EVTERR_PROCESS_NOT_FOUND

FLEX OS 1.0, 2.0

Use this function when you need to communicate with other processes running under
FLEX Script.

A complete list of events can be found in FLEX.INC, a file automatically included with
the IDE.

Sends a message to program Backup to back up the device’s memory.

SendRemoteEvent("BackUp", BACKUP, BACKUPDEVICE, ALL, 0)

BroadcastEvent function, CreateTimerID function, ProcessEvents function, SendEvent
function, SendRemoteEvent function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

454 ServiceName() method

ServiceName() method

carrierObjectClass

Returns a text string indicating the name of the service.

ServiceName(integer Item)

Item is an integer varying from 1 to the number of items in the lsit.

FLEX OS 1.0, 2.0

Indexed by the return of AdrListCnt.

When using the ServiceName() method, be sure to include MailObj.Inc.

Item is an integer varying from 1 to the number of items in the lsit.

$$INCLUDE "MailObj.Inc"

integer iVal, Item

iVal = ObjectName.ServiceName(Item) // Reading a list method

CannedReply method, FormatType method, MailboxCnt method, MailboxID method,
MailboxName method, MaxLength method, MinLength method, ProfileFormat
method, ProfileUpdateFlag method, UpdateTimePermitted method, carrierObjectClass

Applies To

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

Set_Item_Values() method 455

Set_Item_Values() method

Sets all item attributes with one efficient function call.

listBoxClass

Set_Item_Values(integer Loc, string Text, string Bitmap, integer Hidden)

Argument Description

Location Position in the list where the item should be placed.

Text Text to be displayed on the item.

Bitmap Bitmap to be displayed on the item

Hidden Represents a data number or a calculated value.

FLEX OS 1.0, 2.0

This method sets item attributes in the same way as the following calls:

Add_Item(Loc,Text)

Item.Bitmap = Bitmap

Item.Hidden = Hidden

Preallocates 100 items in a listbox and sets list item attributes for position 25, displays
the text "25th Item", the bitmap 25.ROB, and the hidden value represented by 25.

Object Alist Isa listBoxClass

End object

Alist.Allocate_Items(100)

Alist.Set_Item_Values(25,"25th Item", "25.ROB", 25)

listBoxClassLocation property, Bitmap property, HiddenData[] property

Purpose

Applies To

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

456 SetCalendar function

SetCalendar function

Sets the calendar date on the internal, real-time clock.

SetCalendar(CalendarType TheDate)

This function has the following arguments:

Argument Description

TheDate The calendar structure for the date to be set

FLEX OS 1.0, 2.0

CalendarType = structure with the calendar in the correct format

• integer Year = 4 numeric digits for the year, such as 1999

• integer Month = 1-2 numeric digits representing the month, where 1 is January,
12 is December

• integer Day = 1-2 numeric digits representing the day of the month, 1-31

Uses the date stored in CurDate to set a new calendar date.

CalendarType NewDate

string CurDate

// User has entered date in a "##/##/####" format and it’s

// stored in CurDate

NewDate.month = StrToInt(Mid(CurDate, 1, 2))

NewDate.day = StrToInt(Mid(CurDate, 4, 2))

NewDate.year = StrToInt(Mid(CurDate, 7, 4))

SetCalendar(NewDate)

GetCalendar function, GetDateAndTime function, GetTimeOfDay function,
SetDateAndTime function, SetDateAndTimeFormat function, SetTimeOfDay function,
SetTimer function

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

SetDateAndTime function 457

SetDateAndTime function

Sets the operating system time and date.

integer SetDateAndTime(Date NewDateAndTime)

This function has the following argument:

Argument Description

NewDateAndTime A date type variable that represents the new system date and time

This function returns the following:

OK

EVTERR_TIMER_WRITE_FAILURE

FLEX OS 1.0, 2.0

None

Moves the operating system time forward by one hour.

Date CurTime

// Daylight savings time has gone into effect. Set the clock

// forward 1 hour

CurTime = GetDateAndTime()

SetDateAndTime(CurTime + 3600) // Add the number of seconds

// in an hour

GetCalendar function, GetCurrentTask function, GetDateAndTime function,
GetTimeOfDay function, SetCalendar function, SetDateAndTimeFormat function,
SetTimeOfDay function, SetTimer function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

458 SetDateAndTimeFormat function

SetDateAndTimeFormat function

Sets the format for the date and/or time.

SetDateAndTimeFormat(string DateAndTimeFormat)

This function has the following argument:

Argument Description

DateAndTimeFormat A string describing the format. These values are also referred to
below as conversion specifiers.

FLEX OS 1.0, 2.0

For a complete list of the date/time formats, refer to help section ‘formatting the
system date and time’.

Use this function to format the system date and/or time for display. This action
determines the output of the DateToStr function.

You can specify whether the year is entered as two or four digits (MMDDYY or
MMDDYYYY), whether the month or the day is first (MMDDYY or DDMMYY), and
whether the time is in 12-hour or 24-hour format.

Note The conversion specifiers used for SetDateAndTimeFormat are listed in
"Working with the date and time" in the FLEX Script Programmer's Guide.

Get the current time in 12-hour format.

Date CurDate

String TimeToDisplay

CurDate = GetDateAndTime()

SetDateAndTimeFormat("%I:%M %p") //%I switches to 12-hour format

//%p adds am/pm extension

TimeToDisplay = DateToStr(CurDate)

// TimeToDisplay might contain "10:25 pm"

GetCalendar function, GetDateAndTime function, GetTimeOfDay function,
SetCalendar function, SetDateAndTime function, SetTimeOfDay function

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Example

See also

SetDrawingCursor function 459

SetDrawingCursor function

Sets the current drawing cursor location to the value of the PointType structure.

integer SetDrawingCursor(PointType WhereToSetIt)

This function has the following argument:

Argument Description

WhereToSetIt A structure that contains the coordinates of the point within the display
at which the drawing cursor is to be placed to begin the drawing

This function returns the following:

OK

SCREEN_ERROR_INVALID_POINT

FLEX OS 1.0, 2.0

Use this function to initialize all of the drawing shapes (arc, ellipse, box, line, etc.)
unless the call is a continuation of the previous call.

Creates a 40x40 box with its top left corner at (60, 60). The box fill will be dark gray.

const integer FILLIT = 1

PointType WhereToStart

PointType WhereToEnd

WhereToStart.x = 60

WhereToStart.y = 60

WhereToEnd.x = 100

WhereToEnd.y = 100

ReturnValue = SetDrawingCursor(WhereToStart)

ReturnValue = DrawBox(WhereToEnd, FILLIT, DARKGRAY)

GetDrawingCursor function, GetPointingCursor function, SetDrawingCursor function,
SetPointingCursor function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

460 SetFocus function

SetFocus function

Defines the foreground application.

integer SetFocus(integer TaskID)

This function has the following argument:

Argument Description

TaskID The task ID of the program to be brought to the foreground

This function returns the following:

OK

FLEX OS 1.0, 2.0

This function will bring the specified program to the foreground. That program will be
painted on top of any other currently running application, and all events that are routed
to TASK_FOREGROUND will be routed to this application. Typically these events
include keyboard and selection events.

Any program that wants keyboard or selection events should first set focus to itself.

Sets the focus to the current program.

FocusEvent()

.

.

SetFocus(GetCurrentTask())

.

End Event

GetCurrentMemory function, GetDesktop function, GetFocus function, GetFocusObject
function, Main function, ProcessEvents function, SetFocusObject function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

SetFocusObject function 461

SetFocusObject function

Defines the screen object that has the focus.

integer SetFocusObject(UIobjectClass ObjectID)

This function has the following argument:

Argument Description

ObjectID The object ID of the screen object to be given the focus

This function returns the following:

OK

FLEX OS 1.0, 2.0

This function will give the specified object the focus. If the application had the focus
already, the focus object is sent the OnLoseFocus event. The new focus will be sent the
OnGetFocus event.

Note Focus cannot be transferred from one container to another by using the Tab key.
Changing focus can only be done by adding the proper code to the application.

Defines ObjectName as the screen object that has the focus.

SetFocusObject(ObjectName)

GetFocus function, GetFocusObject function, GetCurrentMemory function, GetDesktop
function, GetFocus function, GetFocusObject function, Main function, ProcessEvents
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

462 SetPointingCursor function

SetPointingCursor function

Sets the location of the free-roaming selection cursor.

integer SetPointingCursor(PointType WhereToSetIt)

This function has the following argument:

Argument Description

WhereToSetIt The coordinates of the pointing cursor

This function returns the following:

OK

SCREEN_ERROR_INVALID_POINT

FLEX OS 1.0, 2.0

This function is only used where there is a floating point environment.

Note Not all FLEX devices support the floating point environment.

Use this function when you want to give the user easy access to a specific location or
control on the screen. This is best used when changing screens.

Note This will cause the pointing cursor to jump around on the screen if it is done while the
screen display is active.

Sets the pointing cursor to the middle of the screen.

PointType WhereToSetIt

WhereToSetIt.X = SCREENWIDTH / 2

WhereToSetIt.Y = SCREENHEIGHT / 2

SetPointingCursor(WhereToSetIt)

GetDrawingCursor function, GetPointingCursor function, Point function,
SetDrawingCursor function, SetTextPoint function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

SetTaskName function 463

SetTaskName function

Registers an application for a fixed address that messages and events can be sent to.

integer SetTaskName(integer TaskID)

This function has the following argument:

Argument Description

TaskID The fixed address that your program can be called with

This function returns the following:

OK

FLEX OS 1.0, 2.0

Use this function when you want your program to be readily accessible to several other
programs. The name you call your program is the publicly addressable name for that
application. Any other application that needs to communicate with this program will
use this publicly known name as the address.

Note Motorola PSD assigns these publicly known names. Contact Motorola PSD for an
assignment.

Warning This function should only be used by programs that are expected to have extensive
communications with other programs on the device. Multiple applications with the same logical
task ID can cause inconsistent results.

Gives an application a fixed address of 10.

SetTaskName(10)

GetCurrentTask function, GetFocus function, GetFocusObject function, ProcessEvents
function, SetFocus function, SetFocusObject function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

464 SetTextColor function

SetTextColor function

Changes the text color to the color passed to it.

SetTextColor(integer TextColor, integer BackgroundColor)

This function has the following arguments:

Argument Description

TextColor The new color for the text

BackgroundColor The new color for the background

The TextColor and BackgroundColor arguments must have one of the following
values.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

This function returns the following:

TXERR_NO_ERROR

FLEX OS 1.0, 2.0

When you create a font, it has a default color. The text remains that color until you
perform this function to change to a new current color.

If incorrect values are entered for either the text or background color, they will be set to
their defaults (BLACK for text and TRANSPARENT for background).

Purpose

Syntax

Parameters

Parameters

Returns

Version
Compatibility

Remarks

SetTextColor function 465

Prints Help me! in the top left corner of the screen in black letters on a white
background.

PointType WhereToDrawIt

WhereToDrawIt.X = 0

WhereToDrawIt.Y = 0

SetTextPoint(WhereToDrawIt)

SetTextColor(BLACK, WHITE)

DrawText("Help me!, -1)

CreateFont function, DestroyFont function, DrawText function, SelectFont function,
SetPointingCursor function, SetTextPoint function

Example

See also

466 SetTextPoint function

SetTextPoint function

Moves the text cursor to the coordinates pointed to by WhereToDrawIt.

SetTextPoint(PointType WhereToDrawIt)

This function has the following argument:

Argument Description

WhereToDrawIt Coordinates indicating the top left pixel. Point must be on the
screen.

This function returns the following:

TXERR_NO_ERROR

TXERR_INVALID_COORDINATES

FLEX OS 1.0, 2.0

The location is the pixel at the top left-hand corner of where the text will begin.

Prints Help me! in the top-left corner of the screen in black letters on a white
background.

PointType WhereToDrawIt

WhereToDrawIt.X = 0

WhereToDrawIt.Y = 0

SetTextPoint(WhereToDrawIt)

SetTextColor(BLACK, WHITE)

DrawText("Help me!", -1)

CreateFont function, DestroyFont function, DrawText function, SelectFont function,
SetDrawingCursor function, SetPointingCursor function, SetTextColor function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

SetTimeOfDay function 467

SetTimeOfDay function

Sets the time of day on the internal, real-time clock.

SetTimeOfDay(SysClockType TheTime)

This function has the following argument:

Argument Description

TheTime A SysClockType structure that holds the time (hour, minute, and second).

This function returns the following:

OK

EVTERR_TIMER_READ_FAILURE

EVTERR_TIMER_WRITE_FAILURE

EVTERR_HOUR_OUT_OF_RANGE

EVTERR_MINUTE_OUT_OF_RANGE

EVTERR_SECOND_OUT_OF_RANGE

FLEX OS 1.0, 2.0

In the IDE Simulator, this function is disabled. (The PC's internal clock would be
reset otherwise.)

Sets the time to a value entered by the user in HH:MM format.

SysClockType why1

....

begin

why1.hour = StrToInt(Mid(NewTime, 1, 2))

why1.minute = StrToInt(Mid(NewTime, 4, 2))

why1.second = 0

....

SetTimeOfDay(why1)

GetCalendar function, GetCurrentTask function, GetDateAndTime function,
GetTimeOfDay function, SetCalendar function, SetDateAndTime function,
SetDateAndTimeFormat function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

468 SetTimer function

SetTimer function

Initiates timer events on the device. Use this function to create a future event.

SetTimer (integer TimerID, integer TimeoutValue, integer TimerType)

This function has the following arguments:

Argument Description

TimerID Identifier for the timer. (Returned from CreateTimerID.)

TimeoutValue Length of time to wait before the timer fires. TimeoutValue is in 1/256
second increments (e.g., 128 = ½ second).

TimerType Values =
TIMER_WAKE_FROM_SLEEP
TIMER_WAKE_FROM_OFF
TIMER_NO_WAKE_FROM_SLEEP
TIMER_NO_FIRE_IF_LATE

TimerType was not supported in FLEX OS 1.0.

This function returns the following:

OK

TIMER_ERROR

FLEX OS 1.0, 2.0

Purpose

Syntax

Parameters

Returns

Version
Compatibility

SetTimer function 469

This function allows for the creation of alarms that are either persistent or non-
persistent. Persistent alarms are defined as alarms able to execute (or fire) when the
device is in Sleep or Off mode. Non-persistent alarms do not awaken the device from
Sleep or Off modes. (Off mode is "deeper" than sleep mode.)

The values for TimerType are defined in FLEX.INC and are described below:

• TIMER_WAKE_FROM_SLEEP (Persistent alarm for Sleep mode) If the device
is in Sleep mode, this value will cause the device to awaken and the timer to fire.
(Default) Value = 0.

• TIMER_WAKE_FROM_OFF (Persistent alarm for Off mode) If the device is in
Sleep or Off mode, this value will cause the device to awaken and the timer to fire.
Value = 1.

• TIMER_NO_WAKE_FROM_SLEEP (Non-persistent alarm) The timer fires
only if the device is on. Sleep and Off modes disable the timer. Value = 2.

A supplemental value for TimerType is TIMER_NO_FIRE_IF_LATE. This constant
lets you program an alarm that, although expired, does not fire after the device
awakens. (Otherwise, an expired alarm will fire after the device awakens.) Use this
value by OR-ing it with one of the other values for TimerType. For example,

SetTimer(TID01, 86400, (TIMER_NO_WAKE_FROM_SLEEP or TIMER_NO_FIRE_IF_LATE))

If the timer expires when the device is off or asleep, the alarm does not fire (even after
the device awakens).

If the timer is set for a timer ID by an application other than the one that reserved this
ID with CreateTimerID(), the timer event will NOT be sent to this application. Only
the application that reserved the timer ID can receive the event when the timer fires.

TimeOutValue is limited to 29 bits. The maximum value of TimeOutValue is
536,870,911.

Note that timers are only accurate to 10 ms (1/100 of a second).

Remarks

470 SetTimer function

The user has tried to perform an illegal operation. The screen will be inverted for one
second before it reverts.

Const Integer ONE_SECOND = 256 // 256 ticks per second

Integer InvertTimerID, ReturnValue

PointType TopLeft, BottomRight

RectType WhatToInvert

TopLeft.X = 0

TopLeft.Y = 0

BottomRight.X = SCREENWIDTH

BottomRight.Y = SCREENHEIGHT

WhatToInvert.ulCorner = TopLeft

WhatToInvert.brCorner = BottomRight

Event TimerEvent (integer TimerID, integer OtherData)

If (TimerID = InvertTimerID)

begin

InvertTimerID = 0 //ID is no longer valid

ReturnValue = InvertRect(WhatToInvert)

end

End Event

// User tries to perform illegal operation

ReturnValue = InvertRect(WhatToInvert)

InvertTimerID = CreateTimer()

SetTimer(InvertTimerID, ONE_SECOND, TIMER_WAKE_FROM_SLEEP)

CreateTimerID function, Timer event

Example

See also

Setup function 471

Setup function

Responsible for executing the code required to install an application.

Function Setup()

...

End function

FLEX OS 1.0, 2.0

Use this function to perform the actions required when an application is installed.

Executes two functions (SetUpDatabases and DeclareWidgets) before an application
is run.

function Setup()

SetUpDatabases()

DeclareWidgets()

end function

RunSetup function

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

472 Shl function

Shl function

Performs a bitwise shift to the left on an integer.

integer Shl(integer shlinteger, integer shlDistance)

This function has the following arguments:

Argument Description

shlInteger Integer to be shifted left

shlDistance Distance in bits to shift the integer

This function returns the integer that results from the bitwise shift.

FLEX OS 1.0, 2.0

Use this function for determining flag values, or for quick math.

The ShlDistance value must be positive and the maximum reasonable value for Shl is
+32.

Multiplies an integer by 4.

integer StartValue

StartValue = SomeNumber

StartValue = Shl(StartValue, 2)

Shr function

Purpose

Syntax

Returns

Version
Compatibility

Remarks

Example

See also

ShowObject() method 473

ShowObject() method

UIobjectClass

Changes the Visible_State of an object to TRUE and paints that object on top of the
screen.

Object.ShowObject()

FLEX OS 1.0, 2.0

If the object is already visible, the object will invoke the Bring_To_Front method.
When showing an object, if BackBuffer_State is TRUE, a snapshot of the screen will
be taken before the object is shown. This snapshot is then stored in the back buffer.
When the object is removed from the screen by using HideObject, the back buffer will
be restored.

Note Back buffers are extremely expensive in memory and should be used with caution.

Changes Visible_State of MyButton to TRUE and paints the object on top of the
screen.

MyDesktop.MyFrame.MyButton.ShowObject()

HideObject method

Applies To

Purpose

Definition

Version
Compatibility

Remarks

Example

See also

474 Shr function

Shr function

Performs a bitwise shift to the right on an integer.

integer Shr(integer shrinteger, integer ShrDistance)

This function has the following arguments:

Argument Description

shrInteger Integer to be shifted right

shrDistance Distance in bits to shift the integer

This function returns the integer that results from the bitwise shift.

FLEX OS 1.0, 2.0

Use this function for determining flag values, or for quick math.

The ShrDistance value must be positive and the maximum reasonable value for Shr is
+32.

Divides an integer by 4.

StartValue = SomeNumber

StartValue = Shr(StartValue, 2)

Shl function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

SignalStrengthEvent() 475

SignalStrengthEvent()

MMDS to Shell

Generated when the signal strength monitor has crossed some threshold.

Event SignalStrengthEvent (integer SignalFlags, integer Unused-2)

 // code to handle event

End Event

Argument Description

SignalFlags A value representing the state of the communication system

Unused-2 Unused

The SignalFlags argument is made up of the following bit fields.

Name Bits Description

Tx 1 Transmitter status (Off/On)

Rx 1 Receiver status (Off/On)

Carrier_on 1 DSP (Off/On)

Registered 1 Registered/deregistered

Disabled 1 Over-the-air disabled (True/False)

Dead 1 Password violation dead (Off/On)

Roam 1 Roaming - unused (True/False)

One_way_zone 1 One-way paging only in this zone (True/False)

Signal_strength 8 Range of 0-255

Unused 16

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

59

About event handlers, Event Classification

Generated By

Purpose

Syntax

Parameters

Settings

Version
Compatibility

Remarks

Event Code

See also

476 Size property

Size property

UIobjectClass

Defines the size of an object. Size is expressed as width, height and is measured in
pixels.

The size values actually represent the offset between the very top (left) pixel and the
very bottom (right) pixel as displayed. For example, if an object has a location of (10,
15) and a size of (3, 8), the object will actually occupy all pixels in the rectangle (10,
15), (13, 23). This means that the actual number of pixel columns is 4 (not 3) and the
number of pixel rows is 9 (not 8).

PointType Object.Size

The (x, y) values of this property must be in the range of (0, 0) to (239, 159).

Default = (0, 0).

Note In statusBarClass (a subclass of UIobjectClass), the x (width) value can’t be changed.

FLEX OS 1.0, 2.0

An object can be resized while on the screen; however, it will be hidden, resized, then
displayed again.

This property has two values associated with it - the X and Y coordinates. Use a
PointType structure to load or receive the values associated with this property.

When using this property, be sure to include MailObj.Inc.

Use Location to define the beginning point of a line or the upper-left corner of a
rectangular object.

Note In statusBarClass (a subclass of UIobjectClass), this property can’t be changed.

Applies To

Purpose

Definition

Settings

Version
Compatibility

Remarks

Size property 477

Sets MyButton1 to a size of 60 pixels wide by 20 pixels high. The upper-left corner of
the rectangle is set at (100, 5).

$$INCLUDE "MailObj.Inc"

//---

// Function : MakePoint

// Description: The common function used to create point

// structs quickly for those processes which call for a

// point as input.

// x = x value of the point

// y = y value of the point

// Returns a PointType structure

//---

function MakePoint(Integer x, Integer y) returns PointType

PointType tempPoint

tempPoint.x = x

tempPoint.y = y

return(tempPoint)

end Function

TMain.textBoxClass1.Location = MakePoint(100, 5)

TMain.MyButton1.Size = MakePoint(60, 20)

EndPoint, Location

Example

See also

478 sListBoxClass

sListBoxClass

The sListBoxClass object (or superlist) provides the ability to manage and display grids
such as a calendar, table, or other data designed in a two-dimensional fashion.

A superlist is arranged in a row/column format, where all columns are visible at all
times. Superlists do not support horizontal scrolling, but there can be more rows in the
data structure than appear on screen. For this reason, superlists support vertical
scrolling using the navigation keys.

At any time, one of the cells in a superlist is considered to be the current cell. This
cell is shown highlighted (inverted display) with a hashed outline. The navigation
keys change the current cell, effectively moving a cursor within the superlist.
Individual cells in the superlist are selected by moving this cursor over the desired cell
and pressing the Select key. You can mark multiple cells by selecting each in
succession. If you select a cell that has already been selected, the cell is deselected.

slistBoxClass has the following superclasses.

ObjectClass

uiObjectClass

textClass

selectClass

listBoxClass

controlClass

sListBoxClass

This class has the following unique properties, in addition to those it inherits from its
superclasses.

Unique properties Unique methods Unique events

DisplayOrientation

HGridLines

NumCols

NumRows

ViewRows

VGridLines

WrapMode

None None

Purpose

Class hierarchy

sListBoxClass 479

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa listBoxclassName

EndObject

Key Terms

The following terms apply to this class:

• Rows and Columns: The data in the sListBoxClass are arranged in an X-Y grid
format, with the rows running along the X-axis and the columns running along
the Y-axis of the class.

• Cartesian Coordinates: Specifying the addresses of the elements of a
sListBoxClass by (X, Y) coordinate pairs.

Grid Display

The class allows data to be displayed on screen in the row and column orientation
typically found in a calendar or spreadsheet. Attributes store the number of rows and
columns in the data structure and there is an option that lets you display horizontal
lines, vertical lines, or both, to delineate the data. An attribute also gives the number
of rows that are viewable on the screen at any given time. If there are more total rows
than viewable rows in the data, the class can scroll to reveal the additional data.

An attribute gives the index of the cell to be shown at the top-left corner of the display.
Changing this allows a different subsection of the data to be displayed on-screen.

Cell Contents

Each cell can contain a background bitmap and/or text. The bitmap can contain any
graphical element, including icons, to be placed in the cell, and is vertically centered.
Any text is then drawn over this background. The text takes its font and justification
information (vertically centered, etc.) from the font assigned to the class.

Syntax

Requirements

480 sListBoxClass

Navigation

You move within the class using the navigation keys. At any given time, the cursor
highlights one cell, called the current cell. Reverse video and a dotted outline
differentiates the current cell from the others.

The behavior that occurs when one reaches the end of a row in the class is user-
definable. In this section, a row is defined as a logical subset of the data represented in
the class. A row could be a week in a monthly calendar, for instance.

When you reach the end of a row, an attribute of the class determines whether to return
to the first position in the current row, or to the first position in the next row. The
orientation of the data determines when one reaches the end of a row. For instance, in
America, the days of the week in a calendar run from left to right. In Germany, the
days of the week run from top to bottom. Given this distinction, an American row runs
from left to right, and the described wrapping behavior applies when navigating off the
right-most side of the class. In the alternate orientation, the wrapping behavior would
take effect when moving off the bottom-most wide of the class.

Selections

You can select one or more cells at a time from the class. The selected cells are shown
in reverse video to differentiate them from non-selected cells. Cells can be selected by
pressing the Select button while positioned over the cell.

FLEX OS 2.0

The sListBoxClass is descended from the ListBox class, and therefore uses its list
management functions (such as Add_Item, Delete_Item, Insert_Item, etc.) Thus, when
identifying cells in the class, a single Item Number is used. This item number is the
one-dimensional index into the underlying ListBox data structure.

Columns have a single, uniform width.

Rows have a single, uniform height.

The default value for the height of a column is the height of the characters in the font
used for the class. There is one column by default, creating a standard listbox if no
dimensions are specified.

You cannot turn individual grid lines on and off; you can only turn on and off all
horizontal or all vertical lines as a group.

Version
Compatibility

Remarks

sListBoxClass 481

A single bitmap can be used as the background in each cell. There are no specific
functions to specify or place icons in the cells. Rather, a bitmap will have to be created
with graphics or bitmaps in place, and then the bitmap can be drawn into the
background of the cell.

Bitmap[1] property, DisplayOrientation property, HGridLines property, NumCols
property, NumRows property, SelectState property, Text property, VGridLines
property, ViewRows property, WrapMode property

See also

482 Sorts structure

Sorts structure

Represents one ordering of records within a query dataset.

Structure Sorts

 Integer Direction

 Integer FieldID

EndStruct

Property Value Description

Direction 0 = ASCENDING
1 = DESCENDING

Code indicating the direction of the
sort.

FieldID 1 - n, where n is the number of fields in the
record.

Identifier of the field to be sorted on.

FLEX OS 1.0, 2.0

This structure is a component of the QueryType structure.

QueryType_Structure, Specifying sort criteria

Purpose

Syntax

Settings

Version
Compatibility
Remarks

See also

StartPlayList function 483

StartPlayList function

Adds a playlist to the sequencer for a given number of repetitions at a set volume and
starts the sequencer.

StartPlayList(integer ListID, integer Volumelevel, integer Repeat,

integer Flags)

This function has the following arguments:

Argument Description

ListID A handle for the playlist that is to be added to the sequencer.

Volumelevel This volume is a percentage of the master volume, with values between 0
and 255.

Repeat Repeat the playlist n times.

Flags A series of flags that control the operation of the playlist.

The Repeat argument can have the following values.

Value Description

0 Plays playlist once.

1 Plays playlist once, and adds a copy of the playlist to the end of the sequencer.

2 Same as 1, but will add another playlist to the end of the sequencer after it has
finished playing the first repeat.

N Continue the pattern of Repeat by adding each repeat to the end of the sequence.

Purpose

Syntax

Parameters

Parameters

484 StartPlayList function

The Flags argument can include six possible fields. A single value from the first field
must be ORed with a single value from the second field; the order in which the values
is entered is immaterial. A value from any (or none) of the four remaining fields can
be ORed with the Field 1 and Field 2 expression.

Field Constant Value

1 NTF_PRIORITY_LOW

NTF_PRIORITY_MID

NTF_PRIORITY_HIGH

NTF_PRIORITY_MAX

0

1

2

3

2 NTF_KEY_KILL

NTF_KILL_1

NTF_KILL_2

NTF_NOT_KILLABLE

0

4

8

12

3 NTF_NO_TONE 16

4 NTF_NO_VIBE 32

5 NTF_NO_LED 64

6 NTF_NO_BACKLIGHT 128

This function returns the following:

NTFERR_INVALID_LIST_ID

NTFERR_NO_ERROR

NTFERR_BUSY

FLEX OS 1.0, 2.0

Use this function when you want to play a previously built playlist.

Note The max size of the sequencer is 32.

Warning Unless you want to set the high bit to kill the playlist, do not pass in a value greater
than 255. A value of 256 will result in a kill flag of 1, but a volume of 0.

Returns

Version
Compatibility

Remarks

StartPlayList function 485

Adds three playlists to the sequencer.

integer PlayFlags1

integer PlayFlags2

PlayFlags1 = NTF_PRIORITY_MID or NTF_KEY_KILL or NTF_NO_BACKLIGHT or

NTF_NO_LED

PlayFlags2 = NTF_PRIORITY_LOW or NTF_KEY_KILL

StartPlayList(PlayList1, 255, 2, PlayFlags1)

StartPlayList(PlayList2, 97, 0, PlayFlags2)

StartPlayList(PlayList3, 34, 1, PlayFlags2)

The result of this code is:

1. Playlist1 starts with a volume of 255, a medium priority setting, key kill
enabled, and no backlight or LED.

2. Playlist1 ends.

3. Playlist2 starts with a volume of 97, a low priority setting, and key kill
enabled.

4. Playlist2 ends.

5. Playlist3 starts with a volume of 34, a low priority setting, and key kill
enabled.

6. Playlist3 ends.

7. Playlist1 starts with a volume of 255, a medium priority setting, key kill
enabled, and no backlight or LED.

8. Playlist1 ends.

Example

486 StartPlayList function

9. Playlist3 starts with a volume of 34, a low priority setting, and key kill
enabled.

10. Playlist3 ends.

11. Playlist1 starts with a volume of 255, a medium priority setting, key kill
enabled, and no backlight or LED.

12. Playlist1 ends.

13. Sequencer is empty.

AddPlayElement function, CancelPlaylist function, CreatePlayList function,
DestroyPlayList function, LoadPlayList function, PlayBeep function, SavePlayList
function

See also

statusBarClass 487

statusBarClass

Used to implement the status bar object, which displays the status of the application.
Icons on the status bar can be selected by the user to trigger an event. Text on the bar
can also be set by the application.

statusBarClass has the following superclasses.

objectClass

uiObjectClass

textClass

statusBarClass

controlClass

This object class has the following unique properties, methods, and events in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

Horizontal_Spacing Add_Bitmap

Find_Bitmap()

Insert_Bitmap

Remove_Bitmap

None

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Purpose

Class hierarchy

Syntax

488 statusBarClass

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

• A status bar is a window-type object, with a height equal to one character in the
object’s font, and a width equal to the width of the screen.

• A status bar can be at any vertical height.

• A status bar is designed to be located at the top or bottom of the screen. You
should not position a status bar anywhere other than the top or bottom of the
screen.

• Any application can write any left-justified string to the status bar.

• Any application can add active icons on the right end of the status bar.

• The amount of left-justified text that can be displayed on the status bar is limited
by the number and size of the icons on the right end.

• A vertical bar separating status bar text from the icons can be shown or removed
by the programmer.

• Horizontal top and bottom borders can be individually enabled/disabled by the
programmer.

None

Version
Compatibility

Remarks

See also

Stop function 489

Stop function

Halts execution of a program.

Stop()

FLEX OS 1.0, 2.0

• Stop function releases RAM formerly occupied by the application.

• Releases stack space back to the system.

When using the Stop() function, global resources are freed when the application is
halted. However, there may be local resources (e.g., strings, bitmaps, databases) that
are not cleaned up. Note that the exception is for objects, since they are automatically
freed when the desktop is destroyed (because the desktop is the parent to all objects on
the desktop). If you use the Stop() function, follow the guidelines below:

• Structure your program so that you don’t have any temporary resources that get
trapped outside of the Stop() function. This can be done by making local resources
into global resources, or by moving local resources to another context or out of the
execution path of the Stop() function.

• Manually dispose of local resources. This is done by setting their value to NULL
(“ ”).

Sends a focus event to the shell and stops executing.

SendEvent(SHELL, FOCUS_EVENT, 0, 0)

Stop()

Run function

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

490 StopEvents function

StopEvents function

Stops the process events when the results of the process are received.

StopEvents()

None

None

FLEX OS 2.0

Each StopEvents() is associated only with the process events in its shared library.
Although typically used with shared libraries, this function is not exclusively for use
within shared libraries.

The following example shows how to stop process events:

$$INCLUDE "flex.inc"

$$INCLUDE "class.inc"

$$INTERFACE "sh_object.inf" is libHandle // Load the shared lib

// public interface

// Execute this function when the user presss the button

function myHandler()

DBGShow("The button has been pressed")

stopEvents() // Stop any more event processing

end function

// Create, show and process events for a button created by our

// factory. Note that the handler myHandler must be in the same

// context as the processEvents(). That is why it

// is passed as a parameter to the constructor.

function programBody()

buttonClass okButton // A variable to hold our new button

okButton = objMakeOKButton(10, 10, &myHandler) // Make an OK

// button with a location (10,10) and a handler set to myHandler

okButton.ShowObject()

setFocusObject(okButton)

processEvents()

okButton.Destroy_Object()

end function

Error! Bookmark
not
defined.PurposeSyntax

Parameters

Returns

Version
Compatibility

Remarks

Example

StopEvents function 491

// Load the library and use its public interface. Note that we can

// call external functions from programBody(), since this is within

// the scope of the loadLibrary.

function main()

libHandle = loadLibrary("sh_object.air") // Open the library

if (libHandle >= 0) Test for a successful open

begin

programBody()// Execute our program

unloadLibrary(libHandle)// Close down the lib

end

end function

function setup()

// Platform-specific activities required to initialize the program

end function

function remove()

// Platform-specific activities required to delete the program and

// all data files

end function

external statement, LoadLibrary() function, UnloadLibrary() function, Interface
statements, Shared Library Example 1 (Functional library), Ways to use a shared
library

See also

492 Str function

Str function

Converts an integer to a string.

string Str(integer integerToConvert)

This function has the following argument:

Argument Description

IntegerToConvert The integer to be converted.

Returns a string representation of the integer.

Note This function is the same as IntToStr.

FLEX OS 1.0, 2.0

Integers are 32-bit, with the first bit used for the sign.

Converts the numeric expression 25 + 4 = 29 to string format.

integer CurrValue

string BeforeNafter

CurrValue = 25

BeforeNafter = Str(CurrValue) + " + 4 = "

BeforeNafter = BeforeNafter + Str(CurrValue + 4)

// BeforeNafter = "25 + 4 = 29"

Asc function, Chr function, DateToStr function, RealToStr function, StrToDate
function, StrToInt function, StrToReal function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

StrEq function 493

StrEq function

Determines if two strings are equal.

integer StrEq(string String1,string String2)

This function has the following argument:

Argument Description

String1, String2 The two strings to be compared.

This function returns the following:

Return Description

Zero If the strings are not equal

Non-zero If the strings are equal

FLEX OS 1.0, 2.0

Typically this function is used as a condition in an if statement

Note This string comparison is case sensitive.

Allows someone to log in if the variable WhatUserEntered equals Password.

If (StrEq(WhatUserEntered, Password))

AllowLogin = TRUE

ConcatStr function, InStr function, Left function, Len function, Mid function, Right
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

494 StrGe function

StrGe function

Determines if one string is greater than or equal to another.

integer StrGe(string String1,string String2)

This function has the following arguments:

Argument Description

String1 The string that you are checking.

String2 The base string that you are comparing against.

This function returns the following:

Return Description

Zero If the first string is less than the second string.

Non-zero If the first string is greater than or equal to the second string.

FLEX OS 1.0, 2.0

This function compares ASCII values. Lowercase letters are greater than uppercase
letters.

Compares two strings in a game that involves guessing the biggest possible string that
is less than a device-generated string.

If (StrGe(WhatUserEntered, DeviceString))

Result.Text = "That was too big. That’s one strike."

else

Result.Text = "You’re safe so far. Try again."

ConcatStr function, InStr function, Left function, Len function, Mid function, Right
function, StrEq function, StrGt function, StrLe function, StrLt function, StrNe function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

StrGt function 495

StrGt function

Determines if one string is greater than another.

integer StrGt(string String1,string String2)

This function has the following arguments:

Argument Description

String1 The string that you are checking.

String2 The base string that you are comparing against.

This function returns the following:

Return Description

Zero If the first string is less than or equal to the second string.

Non-zero If the first string is greater than the second string.

FLEX OS 1.0, 2.0

This function compares ASCII values. Lowercase letters are greater than uppercase
letters.

Compares two strings in a game that involves guessing a device-generated string.

If (StrEq(WhatUserEntered, DeviceString))

Result.Text = "Congratulations! That was it."

else if (StrGt(WhatUserEntered, DeviceString))

Result.Text = "That was too big. Try again."

Else

Result.Text = "That was too small. Try again."

ConcatStr function, InStr function, Left function, Len function, Mid function, Right
function, StrEq function, StrGe function, StrLe function, StrLt function, StrNe
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

496 String statement

String statement

The String statement declares string variables.

String Identifier-1 [,Identifier-2,..]

FLEX OS 1.0, 2.0

String variables are initialized to the empty or null string (“”) upon creation.

Declares a storage location for StrValue.

String StrValue

About data types, Date statement, Integer statement, Real statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

StrLe function 497

StrLe function

Determines if one string is less than or equal to another.

integer StrLe(string String1,string String2)

This function has the following arguments:

Argument Description

String1 The string that you are checking.

String2 The base string that you are comparing against

This function returns the following:

Return Description

Zero If the first string is greater than the second string.

Non-zero If the first string is less than or equal to the second string.

FLEX OS 1.0, 2.0

This function compares by ASCII value. Lowercase letters are greater than uppercase
letters.

Compares two strings in a game that involves guessing the biggest possible string that
is not greater than a device-generated string.

If (StrLe(WhatUserEntered, DeviceString))

Result.Text = "You’re safe so far. Try again."

Else

Result.Text = "That was too big. That’s one strike."

ConcatStr function, InStr function, Left function, Len function, Mid function, Right
function, StrEq function, StrGe function, StrLt function, StrNe
functionStrNe_Function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

498 StrLt function

StrLt function

Determines if one string is less than another.

integer StrLt(string String1, string String2)

This function has the following arguments:

Argument Description

String1 The string that you are checking.

String2 The base string that you are comparing against.

This function returns the following:

Return Description

Zero If the first string is greater than or equal to the second string.

Non-zero If the first string is less than the second string.

FLEX OS 1.0, 2.0

This function compares by ASCII values. Lowercase letters are greater than uppercase
letters.

Compares two strings in a game that involves guessing a device-generated string.

If (StrEq(WhatUserEntered, DeviceString))

Result.Text = "Congratulations! That was it."

else if (StrLt(WhatUserEntered, DeviceString))

Result.Text = "That was too small. Try again."

Else

Result.Text = "That was too big. Try again."

ConcatStr function, InStr function, Left function, Len function, Mid function, Right
function, StrEq function, StrGe function, StrGt function, StrLe function, StrNe
function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

StrNe function 499

StrNe function

Determines if two strings are not equal.

integer StrNe(string String1,string String2)

This function has the following argument:

Argument Description

String1, String2 The two strings to be compared.

This function returns the following:

Return Description

Zero If the strings are equal.

Non-zero If the strings are not equal.

FLEX OS 1.0, 2.0

Typically this function is used as a condition in an If statement.

If string WhatUserEntered is not equal to string Password, then do not allow the user
to log in.

If (StrNe(WhatUserEntered, Password))

AllowLogin = FALSE

ConcatStr function, InStr function, Left function, Len function, Mid function, Right
function, StrEq function, StrGe function, StrGt function, StrLe function, StrLt function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

500 StrResource function

StrResource function

Resource files enable application programmers to separate resources (such as bitmaps,
strings, etc.) from the application source code. Resources are used in source code via
resource identifiers rather than actual resource values. This allows the actual resources
to be changed without a re-compilation of the source, as long as the resource identifiers
remain unchanged.

String StrResource(Locale, Resource, Ordinal)

Locale refers to the FIS type for the resource file.

Resource refers to the FIS ID of the resource item.

Ordinal refers to the 16-bit identifier for the specific resource data.

String – returns the string defined in the resource file.

FLEX OS 2.0

Resource files permit the sharing of resources by letting the application programmer
share common character data between applications. Reuse of data in applications
reduces the size of the resources and enhances the consistency of textual information.

When the following program is compiled, the file “11.22” is created in addition to the
standard MYRES.AIR.

// The myres.rcs file

resource_string IDS_TESTSTR1 9 "hello world"

resource_integer IDS_TESTINT1 8 11

resource_string IDS_TESTSTR2 14 "the second string"

resource_integer IDS_TESTINT2 10 29

resource_string IDS_TESTSTR3 11 "hmmmmm"

resource_integer IDS_TESTINT3 14 12

resource_integer IDS_TESTINT4 19 441

resource_real IDS_TESTREAL5 2 16.22

resource_real IDS_TESTREAL1 29 12.21

resource_date IDS_DATE1 77 "11/20/1993"

resource_date IDS_DATE2 78 "01/17/1988 10:15"

resource_binary IDS_BITMAP1 88 "c:\flexide\inbox.rob"

resource_binary IDS_BITMAP2 89 "c:\flexide\outbox.rob"

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

Resource file

StrResource function 501

// The myres.src file

$$INCLUDE "datatype.inc"

$$RESOURCE "myres.rcs,11.22"

function main()

 integer aInt

 string aStr

 real aReal

 date aDate

 pointtype aPoint

 bitmaptype aBitmap

 aInt = intResource(11, 22, IDS_TESTINT1)

 dbgShow("int = " + str(aint))

 aReal = realResource(11, 22, IDS_TESTREAL1)

 dbgShow("real = " + realtostr(aReal))

 SetDateAndTimeFormat("%m/%d/%Y")

 aDate = dateResource(11, 22, IDS_DATE1)

 dbgShow("date1 = " + dateToStr(aDate))

 setdateandtimeformat("%m/%d/%Y %H:%M:%S")

 aDate = dateResource(11, 22, IDS_DATE2)

 dbgShow("date2 = " + dateToStr(aDate))

 aPoint.x = 10

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP1)

 displaybitmap(aPoint, aBitmap)

 aPoint.x = 100

 aPoint.y = 10

 aBitmap = bitmapResource(11, 22, IDS_BITMAP2)

 displaybitmap(aPoint, aBitmap)

 Astr = strResource(11,22,IDS_TESTSTR1)

 dbgShow(“Str = “ + Astr)

end function

About resource files, BitmapResource function, DateResource function, IntResource
function, RealResource function

FLEX Script file

See also

502 StrToDate function

StrToDate function

Converts a string to a date.

date StrToDate(StringToConvert)

StringToConvert is the string to convert to a date.

Returns the date value of StringToConvert.

NOTE: If you do not have the string in the correct format, you may have an
unexpected return from this function.

FLEX OS 1.0, 2.0

The value of StringToConvert must be in the format YYYY/MM/DD HH:MM. This
format uses the 24-hr clock, so HH is in the range of 0 to 23.

Use SetDateAndTimeFormat to specify the format as "%Y/%m/%d %H:%M" prior to
invoking StrToDate.

Converts the string MyStr to the date MyDate.

string MyStr

date MyDate

SetDateAndTimeFormat (%Y/%m/%d %H:%M)

..

MyStr = “1998/06/07 12:30”// must be YYYY/MM/DD HH:MM format

MyDate = StrToDate(MyStr) // contains date value of 1998/06/07 12:30

DateToStr function, SetDateAndTimeFormat, Str function, StrToInt function,
StrToReal function, StrTranslate function, Date data type, String data type

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

StrToInt function 503

StrToInt function

Converts a string to an integer.

integer StrToInt(string StringToConvert)

StringToConvert is the string to be converted.

Returns the integer value of the string.

FLEX OS 1.0, 2.0

Use this function to interpret the integer value of a string. Integers are 32-bit, with the
first bit used for the sign. Non-numeric characters will stop the interpretation.

For example: 13 24 will convert to 13.

 12d23 will convert to 12

 d24 will convert to zero.

Note This function is equivalent to the Val() function.

Tests the string variable UserChoice for a value greater than 50.

integer Result

string UserChoice

UserChoice = TextBox.Text

Result = StrToInt(UserChoice)

if (Result > 50)

TextBox.Text = "You picked a big number."

else

TextBox.Text = "You picked a small number."

IntToStr function, Str function, StrToDate function, StrToReal function, Val function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

504 StrToReal function

StrToReal function

Converts a string to a real.

real StrToReal(StringToConvert)

StringToConvert is the string to be converted to a real.

Returns the real value of the string.

FLEX OS 1.0, 2.0

None

Converts the string MyStr to a real.

string MyStr

real rValue

MyStr = “3.142”

rvalue = StrToReal(iValue) // rValue now has the value 3.142

RealToStr function, Str function, StrToDate function, StrToInt function, Val function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

StrTranslate function 505

StrTranslate function

Replace characters in one string with characters in the same position in a second
string. StrTranslate uses position matching in both strings.

StrTranslate(string InputStr,string StringToReplace, string

StringToReplaceWith)

Argument Description

InputStr The string that needs to be changed

StringToReplace The characters within InputStr that are to be replaced

StringToReplaceWith The character that replace the matched characters in
StringToReplace

Returns the edited string.

FLEX OS 1.0, 2.0

To delete characters, make the StringToReplaceWith shorter than the StringToReplace.

Because StrTranslate replaces characters using postion matching, if the function finds
multple occurences of a StringToReplace character in the InputString, all occurrences
of the character found are replaced with the character in the same position in the
StringToReplaceWith.

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

506 StrTranslate function

1. Converts any occurrence of a to d, b to e, and c to f in InputStr, and removes any
carriage returns.

inputStr = StrTranslate(InputStr, "abc"+char(13), "def"

2. Removes all dashes from InputStr.

inputStr = StrTranslate(InputStr, “-“, “”)

3. Removes all dashes from InputStr

astring= "12345 12 34 56 1 2 3 12 23 34"

firstone = "125"

secondone = "abc"

result = StrTranslate(astring, firstone, secondone)

The result is: ab34c ab 34 c6 a b 3 ab b3 34

ConcatStr function

Examples

See also

Structure statement 507

Structure statement

The Structure statement defines the components that make up a user-defined structure.
The Structure and EndStruct keywords comprise a type definition for the structure. A
type definition must precede the declaration of the structure.

Structure StructType

 Datatype Identifier-1

 Datatype Identifier-2

 ..

EndStruct

Note Identifier-n above refers to the name of the variable, array, or previously defined
structure that comprises the structure. A structure can have as many components as you
choose.

Once defined, you can declare structures of StructType.

StructType Struct_Identifier-1

StructType Struct_Identifier-2

FLEX OS 1.0, 2.0

These structure types must be declared one per line. They cannot be placed on the
same line and separated by commas, as you can do with simple variables.

The example below creates a type definition for TimerItem.

Structure TimerItem

Date TimerDate

Integer TimerType

Integer AppID

Integer EventInt1

Integer EventInt2

String EventMsg

endStruct

The example below declares a structure based on the TimerItem type.

 TimerItem CurrentTimerItem

Declaring arrays, Declaring variables, Naming identifiers, Using structures

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

508 Style property

Style property

listBoxClass

Formats the style of listboxes in 3D or Flat style.

Desktop.listBoxClass.Style = value

Style is one of the following constants:

Constant Description

STYLE_3D Three-dimensional format

STYLE_FLAT Flat format

FLEX OS 1.0, 2.0

None

The example shows a listbox set to 3D style.

Object TMain isa deskTopClass

Object MyListBox isa listBoxClass

Endobject

EndObject

...

TMain.MyListBox.Style = STYLE_3D

HiddenData[1] property, listBoxClass, Select_Color property, Text[1] property

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

SysClockType structure 509

SysClockType structure

This structure holds the time components for setting the system clock.

Structure SysClockType

 Integer Hour

 Integer Minute

 Integer Second

EndStruct

Property Value Description

Hour 0-23 The hour in 24-hour format; 0 = midnight, 12 = noon

Minute 0-59 The minute

Second 0-59 The second

FLEX OS 1.0, 2.0

None

Changing the system date and time, GetDateAndTime function, Getting the date and
time, SetDateAndTime function

Purpose

Syntax

Settings

Version
Compatibility
Remarks

See also

510 SysKeyEvent()

SysKeyEvent()

Frameworks to current application focus

Generated when one of the system keys is pressed.

Event SysKeyEvent (integer keynumber, integer Unused-2)

 // code to handle event

End Event

Argument Description

KeyNumber One of these symbolic constants: BACKLIGHT_KEY, CONTRAST_KEY,
DONE_KEY, HOME_KEY, MENU_KEY, OFF_KEY, SYMBOL_KEY.

Unused 2 Not used

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

Unprocessed SysKeyEvents should be forwarded to the Shell application.

6

About event handlers, Event Classification

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

SystemBackup function 511

SystemBackup function

Backs up data from the device to a PC via Partner.

SystemBackup(progressBarClass Display.ObjectID())

Display.ObjectID() is the object ID of a progress bar item.

This function returns the following:

-1: in the EventMsg.Param1 if the event could not be performed

FLEX OS 1.0, 2.0

Partner is a Windows-based FLEX utility that installs on the user's PC. It handles
backups and restores of the user's information (messages, Address Book, and
applications), as well as operating system updates and related information transfer
tasks.

This function calls a backup routine in the operating system.

Function BackupDevice(MailObjectClass outgoing)

ProgressBase.Text = "Backup in progress"

ProgressBase.ShowObject()

SystemBackup(ProgressBase.ConnServBar.ObjectID())

ProgressBase.HideObject()

outgoing.contentval[1] = BaseOutGoingStr + Str(SUCCESS) + ",Backup

completed"

End Function

SystemRestore function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

512 SystemErrorEvent()

SystemErrorEvent()

FLEX to Shell

Generated to expose errors happening in the C code to the application developer and
the user.

Event SystemErrorEvent(integer TaskAndError, integer ErrorCode)

 // code to handle event

End Event

Argument Description

TaskAndError Task ID and value of error

ErrorCode Supporting information about the error being reported

The TaskAndError argument is made up of the following bit fields.

Name Bits Description

Task 8 Identifier of the task calling the system error

Unused 8 Unused

Error 16 Value of the error being reported

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

13

About event handlers, Event Classification

Generated By

Purpose

Syntax

Parameters

Settings

Version
Compatibility

Remarks

Event Code

See also

SystemEvent event 513

SystemEvent event

System or Applications

Used when a programmer does not have a corresponding event handler defined for the
event. This event will be sent to SystemEvent instead.

Event SystemEvent(Integer EventCode, Integer ProcessID, Integer Unused-1,

Integer Unused-2)

 // code to handle event

End event

EventCode = Type of program event

ProcessID = Generated by the system: it is the process id of the sender. This Id is
created at runtime and therefore should not be used to verify the identity of the sender
since the value can be different every time it is run.

Unused-1 = Unused

Unused-2 = Unused

FLEX OS 2.0

Dummy placeholders must be entered for all unused parameters.

Warning: Most events have two parameters this event has four.

This event will be used most often in conjunction with shared libraries.

For example, all events that haven’t been defined in a program will default to the
SystemEvent. There can be conditionals placed inside the SystemEvent to handle an
event based on its EventCode. If MouseEnterEvent was not defined in a program, the
Event Code 9 could be defined in a conditional statement inside SystemEvent that
would perform the same way as having defined MouseEnterEvent.

About event handlers, Event classification

Generated By

Purpose

Syntax

Parameters

Version
Compatibility

Remarks

Event Code64See also

514 SystemRestore function

SystemRestore function

Restores data to the device from information previously backed up to a PC via Partner.

SystemRestore(progressBarClass Display.ObjectID())

Display.ObjectID() is the object ID of a progress bar item.

This function returns the following:

-1: in the EventMsg.Param1 if the event could not be performed

FLEX OS 1.0, 2.0

PC Partner is a Windows-based FLEX utility that installs on the user's PC. It handles
backups and restores of the user's information (messages, Address Book, and
applications), as well as operating system updates and related information transfer
tasks.

This function calls a restore routine in the operating system.

function Restore(MailObjectClass outgoing)

ConnectionBase.ConnectionInfoLabel.Text = "Begining restore..."

ProgressBase.Text = "Restore in progress"

ProgressBase.ShowObject()

SystemRestore(ProgressBase.ConnServBar.ObjectID())

ProgressBase.HideObject()

ConnectionBase.ConnectionInfoLabel.Text = "Restore completed..."

outgoing.contentval[1] = BaseOutGoingStr + Str(SUCCESS)

end function

SystemBackup function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

TabDirection[] property 515

TabDirection[] property

controlClass

This property is used to define the action of the NavDisc arrow keys on objects.

Object.TabDirection(NavDirection) = TabIndex value

TabDirection defines actions in the four directions represented by the NavDisc
arrows..

NavDirection is an integer and is one of the following values in the table. Constants,
already defined in FLEX.INC, may be used as arguments for TabDirection. TabIndex
is a value assigned to a navigable UI object.

Nav
Direction

Description Constant

-1 Navigation is not performed; key event
produced instead.

NO_TAB

0 Default navigation - go to the next or previous
object.

DEFAULT_TAB

0 Up (North) TAB_UP

1 Down (South) TAB_DOWN

2 Right (East) TAB_RIGHT

3 Left (West) TAB_LEFT

2

1

3

0 (default)

 NavDisc values

FLEX OS 1.0, 2.0

Applies To

Purpose

Syntax

Settings

Version
Compatibility

516 TabDirection[] property

None

Suppose you want the tab order to take you to AButton if you go left from BButton, and
to CButton if you go right from BButton.

TabIndex = 2 TabIndex = 3

AButton BButton CButton

TabIndex = 1

The following code accomplishes this.

Object AButton isa buttonClass

endobject

Object BButton isa buttonClass

endobject

Object CButton isa buttonClass

endobject

AButton.TabIndex = 1

BButton.TabIndex = 2

CButton.TabIndex = 3

BButton.TabDirection[TAB_LEFT] = AButton.TabIndex

BButton.TabDirection[TAB_RIGHT] = Cbutton.TabIndex

TabIndex property, OnKey Event

Remarks

Example

See also

TabIndex property 517

TabIndex property

controlClass

Defines tab order for an object. (Tab order is the sequence in which screen objects
receive focus when the user presses the Tab key).

Object.TabIndex = Value

Value is an integer.

FLEX OS 1.0, 2.0

The focus selection starts with the object that has the lowest TabIndex value, and
proceeds to the object with the highest TabIndex value.

An object with a TabIndex value of 0 does not get the focus back, once it loses focus.
For example, suppose you have four buttons with TabIndex values of 0, 1, 2, and 3,
and you set the focus to the button with TabIndex = 0 at initialization. At run time,
when the user presses the Tab key, the button focus moves from 0 to 1 to 2 to 3, then
back to 1 to 2 to 3, back to 1 to 2 to 3, and so on. Thus, a TabIndex = 0 can be used to
dynamically keep an object out of the tab order.

Note The TabIndex values set in the FLEX Script IDE have no such effect. The tab order is
decided during design time in the IDE.

Sets the tab order for buttons 4, 5, 6, and 7 to a tab order where initially button 4 gets
the focus. After tabbing, focus moves between buttons 6, 5, and 7 (in that order) since
the TabIndex value for button 4 is 0.

// Declare four buttons globally

buttonClass TMain.buttonClass4

buttonClass Main.buttonClass5

buttonClass TMain.buttonClass6

buttonClass TMain.buttonClass7

// Instantiate the four buttons somewhere

function main()

$$INCLUDE "database.ari"

:

TMain.showObject()

:

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

518 TabIndex property

// Change the order of tabbing between button 5 and 6:

TMain.buttonClass4.TabIndex = 0

TMain.buttonClass5.TabIndex = 2

TMain.buttonClass6.TabIndex = 1

TMain.buttonClass7.TabIndex = 3

:

processEvents()

end function

controlClassSee also

Text property 519

Text property

textClass and its descendants

Defines text character data used in the display of an object.

Desktop.Object.Text = “text”

Text is any text string. Default = NULL (not set)

FLEX OS 1.0, 2.0

This property can be modified by code to change the text display dynamically for any
UI text object.

For a sListBoxClass object, this property defines the text to be placed in a cell, if any.

Sets the text of a label from "Show message one" to "Show message two."

:

TMain.MyTextLabel.Text = “Show message one”

:

// Now change the text displayed in this label object

TMain.MyTextLabel.Text = “Show message two”

:

Text_Color property, Text[] property, textClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

520 Text[] property

Text[] property

listBoxClass

Defines the text component of an item in a listBoxClass object. Must be a single line.

Desktop.Listbox.Text[index] = “text”

Index is the index value of the item from 0 to n-1, where n is the number of items in
the listbox. Text is any text string. Default = NULL.

FLEX OS 1.0, 2.0

The index for the list begins at 0. If the list box is used for database data display, keep
in mind that the database index starts from 1. Refer to Tutorial 2 for more details.

Defines the text component of a single line list box.

Desktop.MyListbox.Text[0] = “text 1”

:

:

Text property, listBoxClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

Text_Color property 521

Text_Color property

textClass

Defines the color in which the text is rendered on a particular screen object.

Desktop.Object.Text_Color = color

Object is any screen object. Color is a string indicating the desired color. Default =
BLACK.

Value Description

WHITE White

LIGHTGRAY Light gray

DARKGRAY Dark gray

BLACK Black

TRANSPARENT Clear

FLEX OS 1.0, 2.0

None

// Sets the text color on the button to light gray

Desktop.MyButton1.Text_Color = LIGHTGRAY

:

:

Text property, textClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

522 textBoxClass

textBoxClass

Used to implement the text box object, which displays editable text. The object can be a
single line (as in a field) or multiple lines.

textBoxClass has the following superclasses.

objectClass

uiObjectClass

textClass

textBoxClass

controlClass

This object class has the following unique properties, methods, and events in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

BlockStart

BlockEnd

Cursor

EditMask

InsertMode

Max_Characters

Read_Only_State

Delete_Block()

First_Line()

Insert_Block()

Last_Line()

Marked_Block()

Page_Down()

Page_Up()

Scroll() Total_Lines()

Purpose

Class hierarchy

textBoxClass 523

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

Syntax

Version
Compatibility

524 textBoxClass

• In a single-line text box, the text box scrolls horizontally within the display area.

• Characters are entered from the keyboard. A user can enter any alphanumeric or
punctuation characters.

• RETURN (ENTER) moves to the next line.

• BACKSPACE deletes characters to the left of the cursor and moves the cursor.

• Text automatically word-wraps in multi-line mode.

• A character cursor is displayed at the current text position.

The selected font for a textbox object uses its own default attributes. Changes made to
fonts apply only to that specific font. For example, if you change the line-spacing in a
textbox, the change is applied only to the current font. Therefore, if you change fonts,
any changes made to that font are lost. You have to re-apply any customization to the
new font.

None

Remarks

See also

textClass 525

textClass

Adds text properties, including text colors and justification, to its subclasses. You do
not use textClass objects in FLEX Script applications. Instead, you use the objects
belonging to the subclasses of textClass, which includes textBoxClass, labelClass,
containerClass, statusBarClass, and selectClass.

textClass has the following superclasses and subclasses.

objectClass

uiObjectClass

controlClass

textClass

containerClass

labelClass

selectClass

statusBarClass

textBoxClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclasses.

Unique properties Unique methods Unique events

Font

H_Justified

Line_Spacing

MultiLine

Text

Text_Color

V_Justified

None None

Purpose

Class hierarchy

526 textClass

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

None

None

Syntax

Version
Compatibility

Remarks

See also

Thickness property 527

Thickness property

lineClass

Defines the thickness (in pixels) of the line to be drawn.

Desktop.Line.Thickness = Value

Value is any positive integer. Default = 1.

FLEX OS 1.0, 2.0

You can change the line width by changing the value of this property.

Note This property is not currently implemented.

LineClass Desktop.Line.Thickness

:

// Draw the line 2 pixels wide:

Desktop.Line.Thickness = 2

:

:

lineClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

528 TimeRcv() method

TimeRcv() method

mailObjectClass

Returns the time of receipt of the mail.

Date Object.TimeRcv()

None

FLEX OS 1.0, 2.0

When using the TimeRcv() method, be sure to include MailObj.Inc.

Returns a Date value.

Creates a mail object named M then gets the time the message was received.

$$INCLUDE "MailObj.Inc"

Object M isa mailObjectClass // Instantiate it

EndObject

Date dVal

dVal = M.TimeRcv() // Get the received time stamp

Accept method, ContentSymbolLen method, ContentType method , EnvStatus method,
Lock method, MailObjectClass, RcvErrCnt method, RcvQuality method, ReplyAllowed
method, Timer event, TimeSent method

Applies To

Purpose

Definition

Parameters

Version
Compatibility

Remarks

Example

See also

TimerEvent() 529

TimerEvent()

Applications

This event is called when a timer expires. The SetTimer function specifies the delay
before the event occurs.

Event TimerEvent (Integer TimerID, Integer Unused-2)

 // code to handle event

End Event

TimerID the ID of the expired timer.

Unused-2 is unused.

FLEX OS 1.0, 2.0

Dummy placeholders must be entered for all unused parameters.

25

SetTimer function, CreateTimeID function

Generated By

Purpose

Syntax

Arguments

Version
Compatibility

Remarks

Event code

See also

530 TimeSent() method

TimeSent() method

mailObjectClass

Returns the time stamp when outgoing mail was sent.

Date Object.TimeSent()

None

FLEX OS 1.0, 2.0

When using the TimeSent() method, be sure to include MailObj.Inc.

Returns a vaue of Date type.

Creates a mail object named M and then gets the time the message was sent.

$$INCLUDE "MailObj.Inc"

Object M isa mailObjectClass // Instantiate it

EndObject

...

Date dVal

dVal = M.TimeSent() // Get the sent time stamp

Accept method, ContentSymbolLen method, ContentType method, EnvStatus method,
Lock method, RcvErrCnt method, RcvQuality method, ReplyAllowed method,
TimeRcv method, MailObjectClass

Applies To

Purpose

Definition

Parameters

Version
Compatibility

Remarks

Example

See also

ToLower function 531

ToLower function

Converts a given string to lowercase.

ToLower(string StringToConvert)

StringToConvert is the string that is to be changed to lowercase.

Returns the converted string.

FLEX OS 1.0, 2.0

None

Converts the string "HELLO" to the string "hello".

string upperStr, lowerStr

upperStr = “HELLO”

lowerStr = ToLower(upperStr) // lowerStr now is “hello”

ToUpper function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

532 Total_Lines() method

Total_Lines() method

textBoxClass

Returns the total number of formatted lines in a text box, taking into consideration
word-wrap. This method allows an application to determine if a down-arrow is
needed.

Integer Object.Total_Lines()

The integer return value contains the total number of lines in the textbox.

FLEX OS 1.0, 2.0

Total_Lines() is used for navigation when the user needs up- and down-arrows to
scroll within a textbox.

Integer iVal

iVal = MyDesktop.MyTextbox.total_lines()

First_Line method, Last_Line method, Page_Down method, Page_Up method, Scroll
method

Applies To

Purpose

Definition

Returns

Version
Compatibility

Remarks

Example

See also

ToUpper function 533

ToUpper function

Converts a given string into uppercase.

ToUpper(string StringToConvert)

StringToConvert is the string that is to be changed to uppercase.

Returns the converted string.

FLEX OS 1.0, 2.0

None

Converts the string "hello" into the string "HELLO".

string upperStr, lowerStr

lowerStr = “hello”

upperStr = ToUpper(lowerStr) // upperStr now is “HELLO”

ToLower function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

534 uiObjectClass

uiObjectClass

This class adds visual properties such as color, location, and size to its subclasses. This
class also adds the ShowObject() and HideObject() methods to its subclasses. You do
not use uiObjectClass objects in FLEX Script applications. Instead, you use the objects
belonging to the controlClass subclass of uiObjectClass.

uiObjectClass has the following superclass and subclass.

objectClass

uiObjectClass

controlClass

This object class has the following unique properties, methods, and events, in addition
to those it inherits from its superclass.

Unique properties Unique methods Unique events

Autoupdate_State

BackBuffer_State

Bitmap

Border_Color

Border_Thickness

Color

Location

Size

Visible_State

Bring_To_Front()

HideObject()

Paint()

Send_To_Back()

ShowObject()

OnGetFocus

OnKey OnLoseFocus

OnPointer_Enter

OnPointer_Exit

OnSelect

Purpose

Class hierarchy

uiObjectClass 535

Instantiation

To use an object of this class in your application, you must instantiate it. Instantiation
does three things:

• Creates storage for the object

• Sets the object's default properties

• Creates the object identifier

Use the following syntax to instantiate an object:

Object ObjectName Isa className

EndObject

Declaration

A global object is an object that can be referenced by any function within an
application. To create a global object, you must declare it outside of any function, i.e.,
in global space. This object must be instantiated within a function. If you use a global
object that is not instantiated, an error results.

To declare an object, use the following syntax:

className ObjectName

A local object is an object that is only known within the function where it is
instantiated. To create a local object, you simply instantiate it. No declaration is
necessary for local objects.

FLEX OS 1.0, 2.0

UIobjectClass adds the OnSelect() event to its subclasses.

None

Syntax

Version
Compatibility

Remarks

See also

536 Unary operators

Unary operators

Unary operators are operators that act on only one operand in an expression. The
unary operators supported by FLEX Script are the address-of operator (&) and the
NOT operator (NOT).

The Address-Of operator accepts the name of a function as its operand and returns an
integer. The Address-Of operator is used to assign UI object handler functions to the
OnSelect event.

The NOT operator performs a bit-wise operation on the integer operand that logically
negates its value. That is, the binary representation of the integer is changed so that
ones become zeros and zeros become ones.

When bitwise operators are used with operands that take only TRUE (1) or FALSE (0)
values, they are equivalent to, and can be used as, logical operators.

FLEX OS 1.0, 2.0

The example below assigns the address of the Foo () function to the integer variable
foo_address.

function foo()

// statements

end function

function main()

integer foo_address

foo_address = &foo

// Do something with foo

end function

Overview

Version
Compatibility

Examples

Unary operators 537

The example below computes the NOT values of 0 and 1.

// Used as bitwise NOT operator

Function XYZ ()

 integer iNum0, iNum1

 iNum0 = 0

 iNum1 = 1

 iNum0 = NOT(iNum0) // iNum0 = -1

 iNum1 = NOT(iNum1) // iNum1 = -2

End function

Multiplicative operators, Additive operators, Relational operators, Equality operators,
AND operator, OR operator, XOR operator

See also

538 UnloadLibrary function

UnloadLibrary function

Releases all system resources owned by the shared library.

UnloadLibrary (integer libHandle) returns Integer

None

Either SUCCESS or an error code:

ERROR_INVALID_LIBHANDLE

ERROR_FOREIGN_CONTEXT

FLEX OS 2.0

Each StopEvents() is associated only with the process events in its shared lib.

Note Main programs can contain public entry points, just like shared libraries. These entry
points can be used, for example, to handle events that are not accounted for in the shared
libraries. Unlike shared libraries, main program entry points are automatically loaded.
Therefore, LoadLibrary() and UnloadLibary are not required.

The following example shows the loading and unloading of a shared library within a
Main program function:

$$INCLUDE "flex.inc"

$$INCLUDE "class.inc"

$$INTERFACE "sh_simple.inf" is libHandle // Load the shared lib

// public interface

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

UnloadLibrary function 539

function main()

integer count, i

dbgShow("in main.src")

libHandle = loadLibrary("sh_simple.air") // Open the library

if (libHandle >= 0) // Test for a successful open

begin

simpSrand(100) // Seed the generator with a constant

// (test mode)

for count = 1 to 10

begin

i = simpRand() // Get a random number from the library

// and show it to the user

dbgShow("Random number " + str(count) + ": " + str(i))

end

unloadLibrary(libHandle) // Close down the lib

end

dbgShow("back in main.src") // Say goodbye

end function

function setup()

// Platform-specific activities required to initialize the program

end function

function remove()

// Platform-specific activities required to delete the program and

// all data files

end function

external statement, StopEvents() function, LoadLibrary() function, Interface
statements, Shared Library Example 1 (Functional library), Ways to use a shared
library

See also

540 UpdatedMailEvent()

UpdatedMailEvent()

MMDS

To inform the applications that a garbled message has been updated.

Read application

Event UpdatedMailEvent(Integer Param-1, Integer LTID)

// code to handle event

End event

Param-1 = word1 word2

Argument Description

word1 ID of the new clean message

word2 ID of the old garbled message

LTID = Logical task ID of the destination application for the orginal message.

FLEX OS 1.0, 2.0

None

53

NewPostedMailEvent, DuplicateMailEvent

Generated By

Purpose

Applies To

Syntax

Parameters

Version
Compatibility

Remarks

Event Code

See also

UpdateTimePermitted() method 541

UpdateTimePermitted() method

carrierObjectClass

Returns an integer code indicating under what conditions the real-time clock may be
updated.

Integer Object.UpdateTimePermitted()

FLEX OS 1.0, 2.0

A return of FALSE(0) means the system clock cannot be changed by the carrier; non-
zero indicates that change is permitted.

When using the UpdateTimePermitted() method, be sure to include MailObj.Inc.

$$INCLUDE "MailObj.Inc"

integer iVal

iVal = MyMailObject.UpdateTimePermitted()

// Reading a non-list method

CannedReply method, FormatType method, MailboxCnt method, MailboxID method,
MailboxName method, MaxLength method, MinLength method, ProfileFormat
method, ProfileUpdateFlag method, ServiceName method, carrierObjectClass

Applies To

Purpose

Definition

Version
Compatibility

Remarks

Example

See also

542 V_Justified property

V_Justified property

textClass

Defines the vertical justification of the text (Top, Center, or Bottom) for a particular
screen object.

Desktop.Object.V_Justified = Value

Object is any text object. Value is one of the following constants:

• TOPJUSTIFY

• CENTERJUSTIFY

• BOTTOMJUSTIFY

Default = CENTERJUSTIFY

FLEX OS 1.0, 2.0

This property modifies the vertical alignment of text on a screen object.

Defines the vertical justification of the text on a button as TOPJUSTIFY.

// Move the text to the top of the button

Desktop.MyButton1. V_Justified = TOPJUSTIFY

:

:

H_Justified property, textClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

Val function 543

Val function

Converts a string to an integer.

integer Val(string StringToConvert)

This function has the following argument:

Argument Description

StringToConvert The string to be converted

This function returns an integer interpretation of the string.

FLEX OS 1.0, 2.0

Use this function to interpret the integer value of a string. Non-numeric characters will
stop the interpretation. For example:

13 24 will convert to 13

12d23 will convert to 12

d24 will convert to zero

Note This function is the same as StrToInt.

Tests the string variable UserChoice for a number greater than 50.

integer Result

string UserChoice

UserChoice = TextBox.Text

Result = Val(UserChoice)

if (Result > 50)

TextBox.Text = "You picked a big number."

else

TextBox.Text = "You picked a small number."

IntToStr function, StrToInt function, StrToReal function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

544 VGridLines property

VGridLines property

sListBoxClass

Display vertical grid lines in this color.

Desktop.Listbox.VGridLines = value

Value is a color parameter. Default = BLACK.

FLEX OS 1.0, 2.0

You cannot turn individual grid lines on and off; you can only turn on and off all
horizontal or all vertical lines as a group.

This sample program shows how the superlist object might be created and manipulated
in Flex Script. It generates and displays a calendar page with the current month filled
in.

$$INCLUDE "Flex.inc"

DesktopClass TMain

sListBoxClass TMain.MySList

Const Integer SecondsPerDay = 86400

Const integer ScreenWidth = 239

Const integer ScreenHeight = 159

String DateStr

Date CurrDate

Integer DayofWeek

Integer i

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

VGridLines property 545

function main()

integer i

string testString

object TMain isa desktopClass

object MySlist isa sListBoxClass

endobject

endobject

TMain.color = White

Location.X = 0

Location.Y = 0

TMain.MySlist.Location = Location

Size.X = ScreenWidth

Size.Y = ScreenHeight - 15

TMain.MySlist.Size = Size

TMain.MySlist.HGridLines = Black

TMain.MySlist.VGridLines = Black

TMain.MySlist.ViewRows = 4

TMain.MySlist.NumRows = 6

TMain.MySlist.NumCols = 7

TMain.MySlist.Color = White

TMain.MySlist.DisplayOrientation = Horizontal

TMain.MySlist.WrapMode = Next

TMain.MySlist.Allocate_items(42)

// fill in the days of the week

TMain.MySlist.Set_Item_Values(0, "Sunday", "",0)

TMain.MySlist.Set_Item_Values(1, "Monday", "",0)

TMain.MySlist.Set_Item_Values(2, "Tuesday", "",0)

TMain.MySlist.Set_Item_Values(3, "Wednesday", "",0)

TMain.MySlist.Set_Item_Values(4, "Thursday", "",0)

TMain.MySlist.Set_Item_Values(5, "Friday", "",0)

TMain.MySlist.Set_Item_Values(6, "Saturday","",0)

// figure out which day lands on Sunday of the first week

CurrDate = GetDateAndTime()

SetDateAndTimeFormat("%Y/%m") // get only year and month

DateStr = DateToStr(CurrDate) + "/01 12:00"

CurrDate = StrToDate(DateStr)

SetDateAndTimeFormat("%w")// get the day of the week

DayOfWeek = Val(DateToStr(CurrDate))

CurrDate = CurrDate - (DayOfWeek * SecondsPerDay)

SetDateAndTimeFormat("%d") // get number of day

 // fill in the days

 for i = 0 to 34

546 VGridLines property

 begin

TMain.MySlist.Set_Item_Values(i + 7, DateToStr(CurrDate),"", 0)

 if (AppointmentOn(CurrDate)

 TMain.MyList.Set_Bitmap(i + 7, APPOINTMENT_ROB)

 CurrDate = CurrDate + SecondsPerDay

 end

SetFocusObject(TMain.MySlist)

TMain.ShowObject()

processEvents()

end function

Superlist object, Bitmap[1] property, DisplayOrientation property, HGridLines
property, NumCols property, NumRows property, SelectState property, Text property,
WrapMode property

See also

ViewRows property 547

ViewRows property

sListBoxClass

Defines the number of viewable rows in the object.

Desktop.Listbox.ViewRows = value

Value can be any positive integer. Default = 1.

Number of viewable rows in the object.

FLEX OS 1.0, 2.0

This property is used with the height of the object to determine the height of each cell.

This sample program shows how the superlist object might be created and manipulated
in FLEX Script. It generates and displays a calendar page with the current month
filled in. The ViewRows property defines four viewable rows.

$$INCLUDE "Flex.inc"

desktopClass TMain

sListBoxClass TMain.MySList

Const Integer SecondsPerDay = 86400

Const integer ScreenWidth = 239

Const integer ScreenHeight = 159

String DateStr

Date CurrDate

Integer DayofWeek

Integer i

Applies To

Purpose

Syntax

Settings

Arguments

Version
Compatibility

Remarks

Example

548 ViewRows property

function main()

Integer i

String testString

Object TMain isa desktopClass

Object MySlist isa sListBoxClass

endobject

endobject

TMain.color = White

Location.X = 0

Location.Y = 0

TMain.MySlist.Location = Location

Size.X = ScreenWidth

Size.Y = ScreenHeight - 15

TMain.MySlist.Size = Size

TMain.MySlist.HGridLines = Black

TMain.MySlist.VGridLines = Black

TMain.MySlist.ViewRows = 4

TMain.MySlist.NumRows = 6

TMain.MySlist.NumCols = 7

TMain.MySlist.Color = White

TMain.MySlist.DisplayOrientation = Horizontal

TMain.MySlist.WrapMode = Next

TMain.MySlist.Allocate_items(42)

// fill in the days of the week

TMain.MySlist.Set_Item_Values(0, "Sunday", "",0)

TMain.MySlist.Set_Item_Values(1, "Monday", "",0)

TMain.MySlist.Set_Item_Values(2, "Tuesday", "",0)

TMain.MySlist.Set_Item_Values(3, "Wednesday", "",0)

TMain.MySlist.Set_Item_Values(4, "Thursday", "",0)

TMain.MySlist.Set_Item_Values(5, "Friday", "",0)

TMain.MySlist.Set_Item_Values(6, "Saturday","",0)

// figure out which day lands on Sunday of the first

// week

CurrDate = GetDateAndTime()

SetDateAndTimeFormat("%Y/%m") // get only the year and

// month

DateStr = DateToStr(CurrDate) + "/01 12:00"

CurrDate = StrToDate(DateStr)

SetDateAndTimeFormat("%w")// get the day of the week

DayOfWeek = Val(DateToStr(CurrDate))

CurrDate = CurrDate - (DayOfWeek * SecondsPerDay)

ViewRows property 549

SetDateAndTimeFormat("%d") // get number of the day

// fill in the days

for i = 0 to 34

begin

TMain.MySlist.Set_Item_Values(i + 7, DateToStr(CurrDate),"", 0)

if (AppointmentOn(CurrDate)

TMain.MyList.Set_Bitmap(i + 7, APPOINTMENT_ROB)

CurrDate = CurrDate + SecondsPerDay

end

SetFocusObject(TMain.MySlist)

TMain.ShowObject()

processEvents()

end function

Superlist object, Bitmap[1] property, DisplayOrientation property, HGridLines
property, NumCols property, NumRows property, SelectState property, Text property,
VGridLines property, WrapMode property

See also

550 Visible_State property

Visible_State property

UIobjectClass

Defines the visible state of an object (visible or hidden).

Desktop.Object.Visible_State = Value

Object is an instance of any UIobjectClass. Value is either TRUE (1) or FALSE (0).
Default = FALSE.

FLEX OS 1.0, 2.0

Use this property to dynamically hide or show an object at run-time.

// Hide this button

Desktop.MyButton1.Visible_State = FALSE

:

:

// Show this button again

Desktop.MyButton1.Visible_State = TRUE

:

:

UIobjectClass

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

While statement 551

While statement

The While statement repeatedly executes a conditional code block until the condition is
no longer true. Evaluation always takes place before the execution of the code block.

While (expression)

[Begin]

 // Code block

[End]

FLEX OS 1.0, 2.0

Expression can be any valid relational and/or logical clause. Expression is evaluated
before each execution of the statement. If Expression is False (zero), the code block
isn’t executed. If Expression is True (non-zero), the code block is executed. While
loops can run zero to n times.

The conditional statement may never be executed if the condition fails immediately. If
your logic requires the conditional code block to be executed at least once, use the Do
statement, which evaluates its expression after the loop is executed.

This example loops through all the records in the dataset.

ItemSelected = FirstInDB(FoldList, TempFold)

While (ItemSelected = 0)

Begin

 Add_Item(0, TempFold.Name)

 HiddenData[0] = TempFold.FolderID

 ItemSelected = NextInDB(FoldList, TempFold)

End

Begin... End statement, Do...While statement, For statement

Purpose

Syntax

Version
Compatibility

Remarks

Example

See also

552 WrapMode property

WrapMode property

sListBoxClass

When moving off the end of a row, this property determines whether to move to the
first element in the same row (SAME) or the first element in the next row (NEXT).

Desktop.Listbox.WrapMode = value

Value is a wrap mode setting. Default = NEXT. NEXT moves to the first element in
the next row.

FLEX OS 1.0, 2.0

None

The WrapMode property in this example is set to the value NEXT, which means that
when moving off the end of a row, the first element in the next row is displayed.

Object TMain isa desktopClass

Object MySlist isa sListBoxClass

endobject

endobject

...

TMain.MySlist.WrapMode = Next

Superlist object, Bitmap[1] property, DisplayOrientation property, HGridLines
property, NumCols property, NumRows property, SelectState property, Text property,
VGridLines property

Applies To

Purpose

Syntax

Settings

Version
Compatibility

Remarks

Example

See also

WriteFile function 553

WriteFile function

Writes a string to a file.

integer WriteFile(integer FileHandle, string Buffer)

This function has the following arguments:

Argument Description

FileHandle The file handle returned from a previous call to OpenFile or CreateFile

Buffer String data

This function returns the following:

-1: If the file could not be opened because there are no handles available, or if the OS
was unable to write to the file.

Positive integer = Number of characters written to the file

FILE_ERROR_FILE_NOT_OPEN

FLEX OS 1.0, 2.0

Use this function when you want to commit data to device storage. A file must be open
to be written to.

Creates a file called FIS:5.13, then saves the material in WhatTheyWantedToSave (the
buffer information) to the file and closes the file.

integer FISFile

If (StrEq(Left(SaveYesOrNo, 1), "Y"))

 Begin

FISFile = CreateFile("FIS:5.13")

FISList = WriteFile(FISFile, WhatTheyWantedToSave)

FISList = CloseFile(FISFile)

 End

CloseFile function, CreateFile function, OpenFile function, ReadFile function,
RemoveFile function, RenameFile function, SeekFile function, WriteFile function,
WriteInt function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

554 WriteInt function

WriteInt function

Writes an integer to a file.

integer WriteInt(integer FileHandle, integer IntToWrite)

Argument Description

FileHandle The file handle returned from a previous call to OpenFile or CreateFile

IntToWrite The integer that is going to be written into the file

-1: If the file could not be opened because there are no handles available, or if the OS
was unable to write to the file.

Positive integer = Number of characters written to the file

FILE_ERROR_FILE_NOT_OPEN

FLEX OS 1.0, 2.0

None

Creates a file called FIS:5.13, and writes the integer 10 into the file.

integer FISFile

FISFile = CreateFile("FIS:5.13")

WriteInt(FISFile, 10)

CloseFile(FISFile)

ReadInt function, WriteFile function

Purpose

Syntax

Parameters

Returns

Version
Compatibility

Remarks

Example

See also

XOR operator 555

XOR operator

The XOR operator returns a bitwise or logical value, depending on its usage.

Bitwise XOR

The exclusive OR operator (XOR) returns the bitwise exclusive OR of two integer
operands. All bits that are ON (1) in either operand, but not in both, are ON in the
result. Bits that are the same (either ON or OFF) in both operands are OFF in the
result. XOR has left-to-right associativity.

Logical XOR

The XOR operator returns a logical (or boolean) value when used with boolean
operands. (Relational expressions are an example of boolean operands.) The logical
XOR operator returns TRUE (1) when one operand is TRUE and the other FALSE. It
returns FALSE (0) when the operands are either both TRUE or both FALSE.

FLEX OS 1.0, 2.0

// Used as logical XOR operator

integer x, y, z

x = 1

y = 2

z = 0

If ((x > y) XOR (x > z))

// x lies between y and z

else

// x does not lie between y and z

// Used as bitwise XOR operator

1011 1110

XOR 0010 1010

1001 0100

Unary operators, Multiplicative operators, Additive operators, Relational operators,
Equality operators, AND operator, OR operator

Overview

Version
Compatibility

Example

See also

556 XOR operator

Appendix A FLEX Script Class Reference

This appendix lists the properties and methods used in the classes of FLEX Script.
Each class graphic includes the class ancestry.

Note Some of the parent classes in the hierarchy are abstract classes – classes that are
defined in basic storage, but used only via their subclasses.

554 FLEX Script Class Reference

controlClass

objectClass (abstract)

uiObjectClass (abstract)

controlClass (astract)

lineClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
EndPoint
HelpText
Location
Size
TabDirection
TabIndex
Thickness
Visible_State

Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

pictureClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
HelpText
Location
Size
TabDirection
TabIndex
Thickness
Visible_State

Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

progressBarClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bar_Color
Bar_Style
Bitmap
Border_Color
Border_Thickness
Color
HelpText
Location
Max
Min
Position
Size
TabDirection
TabIndex
Visible_State

Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

FLEX Script Class Reference 555

TextClass

uiObjectClass (abstract)

controlClass (astract)

textBoxClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bitmap
BlockStart
BlockEnd
Border_Color
Border_Thickness
Color
Cursor
EditMask
Font
HelpText
InsertMode
Location
Max_Characters
Read_Only_state
Size
TabDirection[]
TabIndex
Text
Text_Color
Visible_State

Bring_To_Front()
Create_Object()
Delete_Block()
Destroy_Object()
Error()
First_Line()
HideObject()
Insert_Block()
Last_Line()
Marked_Blick()
ObjectID()
Page_Down()
Page_Up()
Paint()
Scroll()
Send_To_Back()
ShowObject()
Total_Lines()

labelClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
Font
H_Justified
HelpText
Line_Spacing
Location
MultiLine
Size
TabDirection[]
TabIndex
Text
Text_Color
V_Justified
Visible_state

Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

statusBarClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
Font
H_Justified
HelpText
Horizontal_Spacing
Line_Spacing
Location
MultiLine
Size
TabDirection[]
TabIndex
Text
Text_Color
V_Justified
Visible_State

Add_bitmap
Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
Find_Bitmap()
HideObject()
Insert_Bitmap
ObjectID()
Paint()
Remove_Bitmap()
Send_To_Back()
ShowObject()

objectClass (abstract)

textClass (abstract)

556 FLEX Script Class Reference

containerClass

uiObjectClass (abstract)

controlClass (astract)

frameClass

Properties Methods

Autoupdate_state
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
Font
H_Justified
HelpText
Line_Spacing
Location
MultiLine
Size
TabDirection[]
TabIndex
Text
Text_Color
V_Justified
Visible_state

Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

dialogClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
Font
H_Justified
HelpText
Line_Spacing
Location
MultiLine
Size
TabDirection[]
TabIndex
Text
Text_Color
V_Justified
Visible_state

Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

deskTopClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
Font
H_Justified
HelpText
Line_Spacing
Location
MultiLine
Size
TabDirection[]
TabIndex
Text
Text_Color
V_Justified
Visible_State

Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

objectClass (abstract)

textClass (abstract)

containerClass (abstract)

FLEX Script Class Reference 557

selectClass

Note SelectClass has been divided into two diagrams, due to space limitations.

uiObjectClass (abstract)

controlClass (astract)

Properties Methods

Bring_To_Front()
Clear()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

checkBoxClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
Disabled_State
Font
H_Justified
HelpText
Line_Spacing
Location
Method
MultiLine
Position
SelectTask
Size
TabDirection[]
TabIndex
Text
Text_Color
V_Justified
Visible_State

Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

objectClass (abstract)

textClass (abstract)

selectClass (abstract)

radioButtonClass

Autoupdate_State
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Button_Position
Color
Disabled_State
Font
H_Justified
HelpText
Line_Spacing
Location
Method
MultiLine
SelectTask
Size
TabDirection[]
TabIndex
Text
Text_Color
V_Justified
Visible_State

558 FLEX Script Class Reference

uiObjectClass (abstract)

controlClass (astract)

buttonClass

Properties Methods

Autoupdate_State
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Button_Style
Color
Disabled_State
Font
H_Justified
HelpText
Icon
Line_Spacing
Location
Method
MultiLine
Picture_Disabled
Picture_Down
SelectTask
Size
TabDirection[]
TabIndex
Text
Text_Color
V_Justified
Visible_State

Bring_To_Front()
Create_Object()
Destroy_Object()
Error()
HideObject()
ObjectID()
Paint()
Send_To_Back()
ShowObject()

objectClass (abstract)

textClass (abstract)

selectClass (abstract)

listBoxClass

Properties Methods

Add_Item()
Allocate_Items()
Bring_To_From()
Create_Ojbect()
Destroy_Object()
Error()
HideObject()
ObjectID()
Page_Down()
Page_Up()
Paint()
Remove_Item()
Scroll()
Set_Item_Values()
ShowObject()

Autoupdate_Date
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
Current_Item
DBRequest
Disabled_State
First_Displayed
Font
HelpText
HiddenData[]
Item_Select_State[]
Line_Spacing
Location
Method
MultiLine
MultiSelect_State
SearchMode
SelectColor
SelectTask
Size
Style
TabDirection[]

TabIndex
Text
Text_Color
Visible_State

slistBoxClass

Properties Methods

Add_Item()
Allocate_Items()
Bring_To_From()
Create_Ojbect()
Destroy_Object()
Error()
HideObject()
ObjectID()
Page_Down()
Page_Up()
Paint()
Remove_Item()
Scroll()
Set_Item_Values()
ShowObject()

Autoupdate_Date
BackBuffer_State
Bitmap
Border_Color
Border_Thickness
Color
Current_Item
DBRequest
Disabled_State
DisplayedOrientation
First_Displayed
Font
H_Justified
HGridLines
HelpText
HiddenData[]
Item_Select_State[]
Line_Spacing
Location
Method
MultiLine
MultiSelect_State

NumRows
NumCols
SearchMode
SelectColor
SelectTask
Size
Style
TabDirection[]
TabIndex
Text
Text_Color
V_Justified
VGridLines
ViewRows
Visible_State
WrapMode

FLEX Script Class Reference 559

dbCreateObjectclass

objectClass (abstract)

dbCreateClass (abstract)

Properties Methods

None Add_Field()
Create_Object()
Destroy_Object()
Error()

dataObjectClass

Properties Methods

None Create-Object()
Destroy_Object()
Error()
GetData()
Load()
PutData()
Save()

560 FLEX Script Class Reference

carrierClass and mailClass

objectClass (abstract)

carrierObjectClass

Properties Methods

None AdrListCnt()
AdrType()
Cannedreply()
Create_Object()
Destroy_Object()
Error()
FormatType()
Load()
mailboxCnt()
MailboxID()
mailboxName()
MaxLength()
MinLength()
ProfileFormat()
ProfileUpdateFlag()
ServiceName()
UpdateTimePermitted()

Properties Methods

AdrListCnt
AdrRef[]
AdrType[]
AdrVal[]
AdrValType[]
AppFrom
AppTo
AttachmentCnt
AttachmentSpec[]
CarrierID
ContentLen[]
ContentListCnt
ContentVal[]
ContentValType[]
ContentRefCode[]
DevFrom
DevTo
LocalDestAdr
MsgBaseType
MsgSubType
Priority
RequestAck
RespondCnt
RespondContent[]
RespondLen[]
mailStatus[]

Accept()
ContentSymbolLen()
ContentType()
Create_Object()
Destroy_Object()
EnvStatus()
Error()
Load()
Lock()
RcvErrCnt()
RcvQuality()
ReplyAllowed()
RetentionType()
Save()
TimeRcv()
TimeSent()
UnLock()

mailObjectClass

