Personal
PPSM-GT P,

Manager

/ ?‘\::Q\

\J)

N 1

USER GUIDE

version 1.1 sz

@ MOTOROLA

© Copyright 1993-2001. Motorola Inc. ALL RIGHTS RESERVED.

Motorola, Motorola logo and PPSM-GT are trademarks or registered trademarks of
Motorola Inc. and/or its subsidiaries in the United States and other countries.

CodeWarrior and PowerParts are trademarks and/or registered trademarks of
Metrowerks Corp. in the United States and other countries.

All other tradenames, trademarks, and registered trademarks are the property of their
respective owners.

Documentation stored on the compact disk(s) may be printed by Licensee solely for
personal use. Except for the foregoing, no part of this documentation may be reproduced
or transmitted in any form by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without
permission in writing from Motorola Inc.

ALL SOFTWARE AND DOCUMENTATION ON THE COMPACT DISK(S) ARE
SUBJECT TO THE LICENSE AGREEMENT IN THE CD BOOKLET.

For more information on PPSM-GT, please contact Motorola Semiconductors Hong
Kong Ltd by calling 852-2666-8333.

How to Contact Motorola:

Hong Kong (A/P Headquarters) | Motorola Semiconductors Hong Kong Ltd.
Silicon Harbour Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, New Territories

Hong Kong

Tel: 852 2666 8333

Fax: 852 2666 6123

World Wide Web | htt p: //ww. ppsngt. com

Sales & Technical Support | Motorola Semiconductors Hong Kong Ltd.
Room 2307-2312, 23/F

Metro Plaza Tower Il

223 Hing Fong Road, Kwai Chung

New Territories

Hong Kong

Tel: 852 2489 1111

Fax: 852 2480 5437

"'Dl italDNA

from Moetarola

About This Book 19
Audience . 19
Organization. 19

“Background” . 19
“Getting Started”. . . 20
“Developing with System Serwces 20
“Developing with Application Services” 21
“Graphics & Input Handling Services” . .21
Suggested Reading . .21
Printed Resources 21
Online Resources. 22
Conventions . . 22
Definitions, Acronyms and AbbreV|at|ons . 23
Chapter 1 Introduction 25
What Is PPSM-GT? . : . 25
Why Use a kernel like PPSM- GT’7 . 26
PPSM-GT Architecture .. 27
System Core Services . .27
Kernel Services : 28
Memory Management Serwces 28
Power Management Services 28
System Application Services . 29
Event Management Services . 29
Software Timer Handling Services . .. 29
Interrupt Service Routine (ISR) Services . .30
Device Driver Services . 30
Application Services : : .. 30
Real-Time Clock Handling SerV|ces .30
Alarm Services. . . 31
Application Download SerV|ces : .31
Audio Management Services. 31
Serial Communication Interface Serwces 31
IrDA Services . . 32
Networking Services . . . 32
Graphics & User Interface Serwces : 32
Graphic Manipulation Services. 33
PPSM-GT User Guide PPG-iii

“'Dl italDNA

from Metorola
Text Management Services. 33
Software Keyboard Services 33
Pen Input Handling Services. oo .. 33
Handwriting Recognition Input Handllng Serwces 33
Application Framework Services 34
InANutShell3
Section 1. Background 37
Chapter 2 PPSM-GT Core Fundamentals 39
Kernel Fundamentals 39
Tasks 40
Multitasking. o000 4]
Priority X |
Pre-Emptive and Post- EmptlveTaskSWltchlng Y 4
Time-Slicing Operations. 42
Event-Driven Operation. 45
System Fundamentals.45
System Applications 46
Graphiccontext, GC 46
Panning Screen 47
Input Context, IC.47
Activeareao 4
PenInputArea. 47
LCD Display Screen 48
Hardware Cursor 48
Relationship of Appllcatlon Task Pannlng Screen Graphlc
Context, Input Context and Active Area 49
Some common examples and pitfalls 51
Summary52
Chapter 3 PPSM-GT Core Programming Concepts 55
The PPSM-GT Programing Approach 55
The PPSM-GT Main Program. N ¢ 0
The Typical PPSM-GT Application Program o |
Event CheckinglLoop. 62

PPG—iv PPSM-GT User Guide

“'Dl italDNA

from Metorola

Event Messages from PPSM-GT . 63

Code Sample. 64

Summary . 66

Section 2: Getting Started 67
Chapter 4 Installing PPSM-GT 69
PPSM-GT Requirements. Co 69

Software development requirements . 69

Hardware development requirements. 70

Installing PPSM-GT . . 70

PPSM-GT Documentation . 70

Summary . 70

Chapter 5 Developing a New Application 73
SDS Singlestep Development Environment. . 73

Metrowerks IDE Development Environment . 74

Creating a new project 75

Linker Command File. 78

Saving a Project . : 81

Choosing the Target Settlng 81

Making and Running the Program . 82

Building An PPSM-GT Application . 83

Application specification . Ce e 83

Designing the “Hello World” application. . . 84

Summary . 90

Code Examples. 91

Chapter 6 PPSM-GT Configuration Mechanism 101
Font driver(font.c) o . 102

Font Driver Structure . . 102

Font Library or Font Generatlon Englne Inltlallzatlon . 103

Font Accessing . : . 104

LCD Device Driver (chdevs) . . 105

1 bit/pixel Initialization . . 105

2 bits/pixel Initialization . 105

PPSM-GT User Guide PPG-v

“'Dl italDNA

from Metorola

4 bits/pixel Initialization105

Peninputdriver106

Pen devicedriver.106

Pen calibrationdriver.107

System bootup driver (boots)108

System interrupt handling drivers108

System power control driver108

IrDAdriver 109

Chapter 7 ISR Routines Services 111
ISR Services Fundamentals. A

Configurable DragonBall-VZ modules I

Programming using the ISR services114
RequestingthelISR15

Releasing the ISR. I £

Getting the Current Interrupt Ievel 5

Checking the module interruptlevel115

Setting the Interruptlevel15

CodeExample16

Section 3: Developing with System Services 117
Chapter 8 Kernel Services 119
Kernel Services Fundamentals119

Task Manipulation120

Semaphores V745

Programming using Kernel services.l127

Task Manipulation Services127

Semaphore Services133

Special Functions.136

Summary138

Code Examples.138

Chapter 9 Memory Management Services 143
Memory Management Fundamentals143

Memory declaration145

PPG—vi PPSM-GT User Guide

“'Dl italDNA

from Metorola
Actual available memory areas.147
Defining Memory Regions.147
Programming using Memory Services.148
AllocatingMemory148
FreeingMemory149
Reallocating Memory150
CopyingMemory15
InquiringMemory151
Changing Memory Region152
Summary153
Code Examples.153
Chapter 10 Power Management Services 159
Power Management Fundamentals159
TheldleTask162
Programming using Power Management Services.164
Inquiring Power Information164
Controlling DOZE mode 74
Disabling DOZE mode when a task is running 165
Controlling 1/0 devices in DOZE and SLEEP power modes . 165
Summary o oo oL ey
CodeExample167
Chapter 11 System Application Services 171
Application Fundamentals.171
Panning Screens172
GraphicContext173
InputContext174
Task 174
Relationship of GC and Pannlng Screen and Drawmg property
175
Relationship of task, application, panning screen and graphic
context e ¢
MultlpleappllcatlonsenV|ronment e <
Entry and Exit callback functions.178
Programming using System Application SerV|ces I I A°)
Programming Task Operating Environment179

PPSM-GT User Guide PPG-vii

“'Dl italDNA

from Metorola

Programming Graphic Context. .181
Programming Input Context . .181
Programming Panning Screen . . 182
Summary . . 185
Code Example . Co . 185
Setting up the appllcatlon environment . . 185
Setting up an application . . 186
Chapter 12 System Event Management Services 189
Channels . . 189
Event ports . . 189
Event data structure . 190
Event Headers . 191
Types of events . . 195
Programming Using Event Management Serwces. . 197
Creating an Event . . 197
Setting up Erasable Event . . 198
Setting up Non-erasable Event . . 198
Setting Wake up Event . . 198
Setting up Non-wake up Event. . 198
Checking the Event Type . . 199
Sending Events . 199
Getting an event . . . 199
Receiving Event information. . 201
Deleting Event information . . . 201
Setting up and deleting the broadcastlng structure . . 202
Setting up and deleting the channel structure . 202
Getting the Broadcast Channel . . 203
Adding a Task to the Broadcast Channel . 203
Deleting a Task from the Channel. . 203
Setting up and deleting Event port . . 203
Sending Broadcast Events . . 204
Receiving Broadcast Events . . 204
Summary . . 204
Code Examples. . 204

PP G—viii

PPSM-GT User Guide

“'Dl italDNA

from Metorola

Chapter 13 Software Timer Handling Services 207
Software Timer Handling Fundamentals.208
. 209
Programming Using Software Timer Handling Services210
Creating the Software Timer.210
Initializing the Software Timer.210
Starting the Software Timer210
Stopping the Software Timer.210
Deleting the Software Timer210
Configure the existing software timer.211
Setting up the count on the software timer.211
Setting up the function on the software timer 211
Setting up the Argument on the software timer.211
Setting up the task on the software timer 212
Restarting stopped software timer or refreshing active software
timer Ce e e 212
Reading Software timer datastructure Coe . 4
Reading and checking the referenceSoftwaretlmer213
Summary213
CodeExample213

Section 4: Developing with Application Services 217

Chapter 14 Real Time Clock Handling Services 219
RTC Fundamentals Ce e o220

Programming Using RTC Handllng Serwces e e s .22
CheckingLeap Year21

Getting RTC Information22
Setting the Timeand Date.222
Validating the Timeand Date222

GMTTime.22

Summary 224

CodeExample224

PPSM-GT User Guide PPG—ix

“'Dl italDNA

from Metorola

Chapter 15 Alarm Services 227
Alarm Services Fundamentals . . 228
Event Alarm. . 228
Periodic Alarm. : : . 229
Programming Using the Alarm Serwces . .230
Creating Alarm . 230
Deleting Alarm . 232
Getting Alarm Informatlon . 234
Creating the Periodic Alarm . . 234
Summary . . 235
Code Example . . 235
Chapter 16 Application Download Services 237
Downloading Application Fundamental . . 237
Download Application Architecture . 238
Client area and System area . . 242
Trap call . . 243
Programming Using Appllcatlon Download Serwces . . 243
Converting downloaded application image . . 243
Deleting download application image. . 244
Creating task in download application . 244
Deleting task in download application . 244
Code Examples. . 244
Chapter 17 Audio Management Services 247
Audio Management Services Fundamentals . . 247
Tone service . . 247
Wave service. . 248
Melody service. . 248
PPSM Music File Format . 249
Writing up a PMF file . . 252
Programming Using Audio Management Serwces . 252
Playing Tone. : . . 252
Setting up for tone music . . 253
Playing Wave Format . . 254
Setting up the Audio Melody . 255
Playing Melody Music . . 255

PPG—x PPSM-GT User Guide

“'Dl italDNA

from Metorola

Stopping the audio playing . . 256
Pausing the audio melody playing . . 256
Inquiring about the playcounter . . . 256
Inquiring about name of melody in PMF flle . 256
Inquiring about pitch length of melody . . 257
Inquiring about number of notes in melody . .. 257
Inquiring about audio tool status . . 257
Inquiring about tone duration . . 257
Summary . . . 257
Code Examples. . 257
Creating a PMF file . . 258
Chapter 18 Serial Communication Interface Services 263
SCI Services Fundamentals . 263
SCI Ownership and Usage. . . 264
Using the SCI Services : : . 265
SCI resources hardware flow control : . 268
SCI Configurations . . 270
Initiating a Send Request . . 270
Terminating a Send Request . 272
Initiating a Receive Request . . 272
Reading Received Data . . 274
Terminating a Receive Request. 274
SCI Resources Interface Constraints. . . 275
SCI Resource Interface Interrupt Messages. . 275
Multiple SCI Usage Recommendation. . 276
Programming Using SCI Services . . 282
Requesting for SCI . . 282
Configuring the SCI : . 283
Inquiring about the SCI Conflguratlons . 284
Inquiring about the SCI CTS and RTS Status . . 285
Setting Data Transmission and Reception Time Out. . 285
Setting Data Transmission Delay . . 286
Sending Data to the SCI . . . 286
Controlling Sending of Data . . 286
Terminating a transmission . .. 287
Setting the FIFO level . . 287
PPSM-GT User Guide PPG—xi

“'Dl italDNA

from Metorola

Receiving Data from the SCI . . 288
Changing the Receive Buffer Size. . 288
Controlling Receiving of Data . . 289
Controlling SCI hardware flow control . . 289
Clearing the SCI Transmit and Receive Buffer . . 290
Clearing the SCI Receive Buffer . 290
Terminate the SCI port . . 290
Summary . . 291
Code Examples. . 291
Chapter 19 IrDA Management Services 293
IrDA Management Services Fundamentals . . 294
Physical Layer . .. 294
Interrupt Mode Layer. . . 295
Driver Mode and User Mode Layers . . 295
IrDA Parameters . . 296
IrDA Services . . 297
Programming Using IrDA I\/Ianagement Serwces : . 302
IrDA Physical Layer Services . 302
IrCOMM Layer Services. . 304
OBEX Application Layer APIs . . 310
Summary . . 313
Code Examples. . 314
Chapter 20 Networking Services 321
Networking Fundamentals. . 322
Types of Networking Services . 323
Link Setup Services. . 323
Transport/Socket Services. . . 325
Programming with Networking Services. . 334
Programming with Link Setup Services . . 335
Programming with Transport/Socket Services . . 337
Programming the Networking task . . 340
Summary . . 340
Code Examples. . 341

PPG—xii PPSM-GT User Guide

“'Dl italDNA

from Moetarola

Section 5: Graphics & Input Handling Services 345

Chapter 21 Graphic Manipulation Services 347
Graphic Manpulation Services Fundamentals348
Display Screen Format349
Display Coordinates.31
Screen Resolution31
Screen Initialization.31
DisplayingColor.32
Displaying Style35%4
Programming using Graphic Manlpulatlon Serwces.358
Drawing Setup.359
Drawing Property359
HardwareCursor361
Drawing Operators.363
Drawing Enquiry. R ¥ 2
Getting LCD DlsplayScreenInfo R Y &<
Getting Hardware Cursorinfo.374
Summary34
CodeExamples.3714
Chapter 22 Text Management Services 397
Text Management Services Fundamentals397
MixedFont39
Text Display Area39
Text Properties.39
Soft cursor. . . . P 1<
SlxteenCoIorDlspIay e e e e e oo oo.. 398
Text Templates. coe oo . 398
Programming using Text ManagementSerwces400
Creating texttemplates400
Default setting of text template.400
Deleting texttemplates401
Setting Up the Texttemplate.401
Setting Template Size402
Setting Template Origin.402
Setting Text Output FontColor.402

PPSM-GT User Guide PPG—xiii

“'Dl italDNA

from Metorola
Setting Text Output Font Style . . 402
Setting Font Type. . 403
Setting Line Spacing . 403
Text Mapping . . . 404
Removing text . Co . 405
Text character cursor position . . 405
Setting the character cursor position . . 405
Setting the character cursor using X 'Y coordlnates405
Reading the character cursor position . . 406
Printing Text message. . 407
Summary . . 408
Code Examples. . 408
Chapter 23 Software Keyboard services 413
Soft Keyboard Fundamental413
Programming using Soft Keyboard SerV|ces . . 415
Opening Soft KeyBoard . . 415
Creating the keyboard the Flex way. . 415
Opening the keyboard the Quick way . . 416
Opening the keyboard the Default way . . 416
Auto-Key-Repeat. : 417
Terminating Soft Keyboard Character Input 417
Summary . . 418
Code Examples. . 418
Chapter 24 Pen Input Handling Services 419
Pen Input Handling Fundamental . 419
Input Context . 421
Active Area . . 422
Overlapping Active Area in dlfferent IC . 423
Overlapping Active Area in Same IC . .. 424
Type of Active Area . 425
Icon Area . . 426
Input Area . . . 426
Relationship between active area, |nput context, task and
application . . 428
Input pad(for Handwrltlng recognltlon) . 428
Programming using Pen Input Handling SerV|ces. . 429

PPG—xiv

PPSM-GT User Guide

“'Dl italDNA

from Metorola
Creating Input Context . . 429
Initializing Input Context . . 430
Modifying Pen Input Parameter . . . 431
Creating Active area . . 434
Initializing active area . . 435
Adding Pen Input Area To IC . . 436
Removing Pen Input Area From IC . . 436
. 437
Modifying Active Area parameters . . 437
Changing Active Area In Area Link List. . 438
Deleting Active Area . 441
Display and General Setup . . . 441
Getting IC from Active Area . . 442
Getting Areald From Event . . 442
Getting Area Mode . . . 443
Getting Active Area Position. . 443
Getting Active Area Type . . 444
Getting Pen Info . . 445
Summary . . 448
Chapter 25 Handwriting Recognition Input Handling Services 449
Handwriting Recognition Input Fundamental . 449
The Input Pad Mechanism. : . 451
Programming using Input Pad Handllng Serwces . 452
Opening Handwriting Character Input . . 452
Accessing a general Input Pad . . 453
Setting Handwriting Input pad Sampllng Rate . 453
Setting the Pen Echo Color . 453
Terminating Handwriting Character Input . . .453
Installing HWR engine454
Reading HWR engine. . 454
Uninstalling HWR engine . . . 454
Checking HWR engine . . 454
Checking Input Pad . . . 454
Bring the input pad to the top of the IC . 454
Summary . . 455
PPSM-GT User Guide PPG—xv

“'Dl italDNA

from Metorola

Section 6: Appendixes 457
Appendix A Coding Conventions 459
The Importance of Consistency . . 459

Fonts . . . 460

Tabs and Spaces . 460

Naming Conventions . . 460

Labels . 460

Local Variables. . 461

Global Variables . . 461

Local Pointer Variables . . 461

Global Pointer Variables. . 461

Local Variables. . 462

Function and Method Names . 462

Parameters . 462

Macros . . 463

Comments . 463

The Implementation’s Identlfler Space is respected . . 464

File Layout . 464

File Headers. . 464

. 466

Appendix B Error Message Handling 467
PPSM-GT Core Error Handling. . 467

Socket Services Additional Error Handling. 476

478

Appendix C How To Make ROM 479
Assumptions: . 479

Making ROM Fundamentals . 480

Making ROM Procedures . . 480

Before making the ROM. . 480

Making the ROM. . 483

SDS single step procedure . . . 487

SDS Linker Supplications File for ROM . 487

Generating S-Record File . . . 489

Convert the S-record to B-record . . 490

PPG—xvi

PPSM-GT User Guide

““Digital DNA

from Moetarola

Summary L L e e 491

CodeExamples.o 491
............................ 508

Appendix D PPSM-GT APIs Reference Card 509

PPSM-GT User Guide PPG—xvii

““Digital DNA

from Moetarola

PP G—xviii PPSM-GT User Guide

als
"'[ﬁgimln"ﬁ About This Book

from Metorola Audience

About This Book

This user guide describes the features and APIs of Personal Portable
System Manager GT (PPSM-GT™). It explains in detail how to
develop application program using the PPSM-GT operating system
and the DragonBall™ family of products and other
Microprocessors.

Audience

This user guide is intended to assist developers with using PPSM-
GT in a wide variety of products. The document presumes basic
knowledge of the following:

= Features of the Motorola MC68VZ328 (DragonBall VZ)
= 68000 assembly language programming

= The Metrowerks CodeWarrior integrated development
environment

Organization

The PPSM-GT User Guide is organized into sections on the
architecture and programming of the PPSM_GT operating system.
Each section contains multiple chapters. Summaries of the chapters,
subdivided by section, follow.

Chapter 1, “Introduction” contains an overview of PPSM-GT,
including its design architecture and services provided.

‘Background”

Chapter 2, “PPSM-GT Core Fundamentals” provides programming
information about the operating system’s basic building blocks.

PPSM-GT User Guide PPG-19

About This Book
“Getting Started”

““Digital DNA

from Moetarola

Chapter 3, “PPSM-GT Core Programming Concepts” describes the
basic programming concepts for programming with the PPSM-GT
core. It includes a description of the PPSM-GT main program.

‘Getting Started”

Chapter 4, “Installing PPSM-GT” provides information for
installing PPSM-GT and defines the hardware and software
requirements for the PPSM-GT environment.

Chapter 5, “Developing a New Application” provides information
about configuring a new project in the PPSM-GT environment and a
CodeWarrior project for a PPSM-GT application.

Chapter 7, “ISR Routines Services” provides information about how
to handle PPSM-GT ISR routine.

‘Developing with System Services”

Chapter 8, “Kernel Services” describes the services that provide
access to the nerve center of PPSM-GT. The kernel consists of an
embedded pre-empted operating system for multitasking
applications. It is responsible for task manipulation and, together
with power and memory management, commands the proper
operation of the system.

Chapter 9, “Memory Management Services” describes the services
that control the distribution of the system memory resources.

Chapter 10, “Power Management Services” describes the services
that handle operating the system to achieve a balance between
performance and power efficiency.

Chapter 11, *“System Application Services” describes the services
that form the structure of the whole program. This structure is the
foundation and usually used in the main program.

Chapter 12, “System Event Management Services” describes the
services that contribute to the interworking of the system.

Chapter 13, , “Software Timer Handling Services” describes the
services that provide timers for handling the timing of the whole
system.

PPG-20

PPSM-GT User Guide

als
"'[ﬁgitﬂlﬂ"ﬁ About This Book

from Metarcla “Developing with Application Services”

“Developing with Application Services”

Each of the chapters in this section describes the services that are
identified in its title.

Chapter 14, “Real Time Clock Handling Services”

Chapter 15, “Alarm Services”

Chapter 17, “Audio Management Services”

Chapter 18, “Serial Communication Interface Services”

Chapter 19, “IrDA Management Services”

Chapter 20, “Networking Services”

“Graphics & Input Handling Services”

Each of the chapters in this section describes the services that are
identified in its title.

Chapter 21, “Graphic Manipulation Services”

Chapter 22, “Text Management Services”

Chapter 23, “Software Keyboard services”

Chapter 24, “Pen Input Handling Services”

Chapter 25, “Handwriting Recognition Input Handling Services”

Suggested Reading

Printed Resources
A brief sampling of titles includes the following:

CodeWarrior IDE User Guide and Debugger User Guide.

PPSM-GT User Guide PPG-21

About This Book
Online Resources

““Digital DNA

from Moetarola

Networking

TCP/IP Hlustrated Volume 1: The Protocols by W. Richard Stevens
(ISBN 0-201-63346-9)

TCP/IP Ilustrated Volume 2: The Implementation by Gary R. Wright
and W. Richard Stevens (ISBN 0-201-63354-X)

Internetworking with TCP/IP VVolume 1: Principles, Protocols, and
Architecture, Second Edition, by Douglas E. Comer (ISBN 0-13-
468505-9)

Internetworking with TCP/IP Volume 2: Design, Implementation, and
Internals, Second Edition, by Douglas E. Comer (ISBN 0-13-125527-
4)

Troubleshooting TCP/IP: Analyzing the Protocols of the Internet by Mark
A. Miller P.E. (ISBN 1-55851-268-3)

The Simple Book: An Introduction to Internet Management, Second
Edition, by Marshall T. Rose (ISBN 0-13-177254-6)

UNIX Network Programming by W. Richard Stevens (ISBN 0-13-
949876-1)

Online Resources
There are many Web sites dedicated to C++ and object-oriented
programming. Some excellent examples are:
e http://ww. codewarri oru. com CodeWarri or U
e http://ww. cerfnet.com ~npcline/c++-fag-lite/
e http://ww.research. att.com ~bs/ C++. ht ni

Conventions

This guide uses the following conventions:

= Code examples, file names, and universal resource locators
(URLSs) are set in a monospace font. For example, a variable
declaration is presented as follows: i nt nyl nt eger;

PPG-22

PPSM-GT User Guide

““Digital DNA

from Moetarola

About This Book
Definitions, Acronyms, and Abbreviations

< Menu names, menu items, and buttons are shown in bold text.

For example, “Choose File > Delete to remove the file.”

= Book names, section names, chapter names, and key words are
presented in italic text. For example, “Refer to the PPSM-GT API
Reference for more information.”

Definitions, Acronyms, and Abbreviations

See the chapters in the Background section for definitions of various
fundamental concepts and terms.

The following abbreviations are used in this document:

API
GUI
ISR
IrDA
PDA
RTOS
RTC
SCI
TCP/IP

UART

application program interface
graphical user interface

interrupt service routine

Infrared Data Association

personal digital assistant

real-time operating system

real-time clock

serial communication interface
transmission control/internet protocol

universal asynchronous receiver/transmitter

PPSM-GT User Guide

PPG-23

L
About This Book :r‘_mgitﬂlnﬂﬁ

Definitions, Acronyms, and Abbreviations frem Metarola

PPG-24 PPSM-GT User Guide

als
f"[ﬁgimln"lﬁ Introduction

from Moetorola What Is PPSM-GT?

1

Introduction

Welcome to the world of Personal Portable System Manager GT (PPSM-
GT™),

What Is PPSM-GT?

Personal Portable System Manager GT is a compact operating system for
handheld smart products and other LCD-display products. It is designed
specifically for devices that use the Motorola DragonBall™ family of
microprocessors. This operating system enables handheld electronic
products with LCD displays such as advanced pagers, advanced cellular
phones, game machines, GPS instruments, organizers, and personal digital
assistants (PDAS).

PPSM-GT is a real-time, 32-bit multitasking kernel with prioritized
interrupt scheduling. All tasks are prioritized and grouped as either real-
time tasks or time-sliced tasks. Time-sliced tasks are real-time tasks that
have the same priority level.

PPSM-GT is written in C, and the current version is designed to work on
Dragonball VZ processor.

PPSM-GT is not just a kernel; it is a system developer toolkit. It consists of
pen input, graphics, audio, RTC, alarm, text management, character input,
software keyboard, power management, system, and communications
services. Application developers can design a sophisticated user interface
and configure a DragonBall processor (or other microprocessor) with easy-
to-use APIs for LCD-based products. The PPSM-GT toolset, together with
its device drivers, provides the basic control of the LCD, the drawing
functions, the real-time clock, and the UART, among other components
and functions.

PPSM-GT User Guide PPG-25

Introduction

““Digital DNA

Why Use a kernel like PPSM-GT? from Metarcla

The PPSM-GT kernel does not access hardware devices directly. All
peripheral devices are controlled by the kernel indirectly through software
device drivers. By supplying the appropriate device drivers with each
peripheral, PPSM-GT gives system integrators greater flexibility to use
various types of hardware devices without changing the core of the
software.

Why Use a kernel like PPSM-GT?

There are many benefits associated with the use of areal-time kernel,
including the reduction of software development time and cost. Because
the kernel serves as a foundation, the rules provided by the kernel make it
easier to develop application code. This ease improves programmer
productivity. However, this benefit can be lost with a custom-designed
kernel. An application developer using such akernel would have to
produce the operating system code as well as the application code. A
commercia rea-time operating system like PPSM-GT permits the
developer to focus al efforts on the application, reducing total
development time.

Equally important are the benefits of enhanced product reliability,
maintainability, and quality. In contrast to an untested custom kernel, a
commercia operating system provides proven services and code to meet
application needs such as that found in the GT2 services. In addition, such
asystem is better documented than custom kernels are with regard to
design policies, rules, and kernel services, which improves application
code maintenance.

PPG-26

PPSM-GT User Guide

$[ﬁgitﬂlﬂ"ﬁ Introduction

from Metorola PPSM-GT Architecture

PPSM-GT Architecture

Figure 1.1 PPSM-GT Design Architecture

Graphic & Network| RTC | Audio |
User Interface

Application Services
IrDA | Alarm | soi |

Kernd | Task | SW Timer| Applicatiod

System Services
Event | Memory | Interrupt| Power |

. . TIMER Driver @ Ir DA Driver fiNetwork Drivel Font Driver
Driver Services
UART Driver ISR Driver § LCD Driver @ HWR Driver

LCD Touch
Hardware Dragon|[sE11ks

Figure 1.1 depicts the operating system’s design architecture.

System Core Services

The system core services consists of the kernel, power management,
memory management and system application services. This group acts as
the control center of PPSM-GT. It composes an embedded pre-empted
operating system for multitasking applications. The kernel is responsible

for task manipulation and, together with power and memory management,
commands the proper operation of the system. Power management handles
the status of system operation to achieve a balance between performance
and power efficiency. System application setup the operating environment
for the applications and are normally used in the main program.

PPSM-GT User Guide PPG-27

als
Introduction "'Digitalﬂﬂﬁ

Kernel Services from Moetorola

Another group of system core services contributes to the interworking of
the system. These services include event management, software timer
handling, interrupt service routine services, and device driver services.

Kernel Services

The kernel is a software component and is not considered a part of the
application, and has the function to determine what application program is
to gain control of the CPU. Kernel executive manages the system resources
and also provides an architectural framework for tasks, semaphore and
event-driven operation etc to be put together in application routines so asto
achieve desired operational behaviors of devices. Kernel executive creates
tasks that are a series of routines that can execute concurrently to
implement the application design, and allows priority levels be
defined on tasks to define the relative importance of tasks. Kernel
Executive also supports semaphore to control access of “critical
region” in shared resources and event-driven operation to allow the
kernel to respond predictably to events as they occur.

Memory Management Services

Memory management Services provide APIsto enable applications to
access local memory space. PPSM-GT manages a heap that allows callers
to dynamically allocate memory from the system. When PPSM-GT is
being used, the standard memory tools that are provided by the compiler
are disabled.

PPSM-GT also provides a set of memory allocation and inquiry toolsto
enable applications to get the run-time memory size.

Power Management Services

PPSM-GT utilizesthe power control module of DragonBall to implement a
set of power management tools to conserve system power. Applications
can control the system’s power management features directly or use PPSM-
GT’s automatic power management features.

Direct Control

A set of tools provides applications with the ability to directly control the
following in normal mode:

PPG-28 PPSM-GT User Guide

““Digital DNA

from Moetarola

Introduction
System Application Services

» Switching into any of the power-saving modes
» The duty cycle of the processor for each application

Automatic Control

A set of tools are available for the caller to set the parameters for automatic
power-management features, including the following:

» Switching automatically to a lower power-saving mode when the
system is idle

» Controlling user-defined 1/O ports during transitions of the power-
saving modes

System Application Services

System application services are usually used to setup the operating
environment for the application. APIs in this services setup the display as
well as the platform for tasks to operate. They are like the foundation in a
building project, and normally used in the start of the program.

Event Management Services

PPSM-GT provides event management services to handle events that are
generated by a user, task, or device driver. Events are buffers that are sent
from one task to another. They contain information that is sent to a target
task from another task or a device driver.

There are two groups of events in PPSM-GT: normal and broadcast events.
Each group can be further divided into the following four types:

» Erasable wake-up events

» Erasable non-wake-up events

* Non-erasable wake-up events

* Non-erasable non-wake-up events

Software Timer Handling Services

The software timer functions like an alarm, and it takes the software
reference timer as its reference. The resolution of the software timer is in
milliseconds. The range of the software timer is half that of the reference

PPSM-GT User Guide PPG-29

Introduction

““Digital DNA

Interrupt Service Routine (ISR) Services from Metarcla

timer: 0to 2,147,500 seconds, or 0 to 24.85 days. PPSM-GT providesAPIs
to control, set, and use the software timer.

Interrupt Service Routine (ISR) Services

I SR services provide application interfaces to the DragonBall interrupt
controller. The interrupt software request API isused as adevice driver
interface between the application and the hardware. It configures the
drivers that are built on the top of DragonBall’s interrupt controller.

Device Driver Services

PPSM-GT supports variant target hardware configurations and third-party
fonts. This support is provided through the modification of PPSM-GT
device drivers, including the following drivers:

» Font driver

* LCD driver

* Pen input driver

» System boot-up driver

e System interrupt handling drivers
» System power control driver

Application Services

Application services is a group of services that provided the features of the
system and the communication between the system and external devices.
The services include real-time clock handling, alarm services, pen input
handling, software keyboard services, touch screen input pad services, text
management, graphics management, application download services, serial
communication interface services, audio management, IrDA services, and
TCP/IP services.

Real-Time Clock Handling Services

PPSM-GT real-time clock handling services are provided to handle
DragonBall microprocessors’ RTC modules. The APIs enable ease of use,
including checking real-time clock information.

PPG-30

PPSM-GT User Guide

““Digital DNA

from Moetarola

Introduction
Alarm Services

Alarm Services

PPSM-GT alarm services are used for handling DragonBall
microprocessors’ RTC alarm. The APIs enable ease of use and support
multiple one-shot or periodic alarms.

Application Download Services

Application download services enable the system integrator or software
developer to provide an area of the software for downloaded applications.
Third-party software developers can write their own software and
download it into this area of the system for execution.

In PPSM-GT, a downloaded application is called an application image to
distinguish it from the system resident application.

PPSM-GT provides APIs to convert a downloaded application image into a
system application and to delete a downloaded application, freeing the
memory allocated for it.

Audio Management Services

PPSM-GT supports three types of audio: tone, wave, and melody. The
audio tools have the following properties:

» Only one wave file or tone can be played during a given moment.

* A wauve file or tone cannot be played if the PWM (pulse-width
modulation) module is being used by another task or application.

* When audio playing finishes, an event that indicates this completion is
sent to the task that called audio services.

Serial Communication Interface Services

PPSM-GT supports multiple serial communications through the serial
communication interfaces (SCIs) in both normal mode and IrDA mode.
The exact number of SCI resources that are supported is limited by
hardware (refer to the appropriate hardware manual for details). When the
common set of SCI services to send and receive data through the SCIs is
used, each resource has an identifier that distinguishes it from other
resources.

PPSM-GT User Guide PPG-31

Introduction
IrDA Services

““Digital DNA

from Moetarola

Each SCI resource also has an internal receive buffer. The default sizeis
specified in the included header file. This size can be dynamically changed
during run time.

By default, SCI resources are disabled. They should be enabled before use.

IrDA Services

The IrDA management servicesin PPSM-GT are alayered set of protocols
particularly aimed at point-to-point infrared communications and the appli-
cations needed in that environment. Two protocols are supported:

» I[rCOMM services are IrDA services that were designed to provide
serial and parallel port emulation to legacy applications. These services
enable the applications to communicate with a peer device over an
IrDA infrared link instead of the wired link.

* IrOBEX services are an implementation of the IrDA Object Exchange
specification (IrOBEX) for IrDA protocol stacks. They provide the
ability to “Put” data objects very simply and flexibly, thereby enabling
rapid application development and interaction with a broad class of
devices including PCs, PDAs, data collectors, and cameras.

Networking Services

Networking services support a set of protocols to allow cooperating
computers or devices to share resources across a network. Sockets are
endpoints of communications and a sockets API similar to the Berkley
socket protocol is provided. They provide an interface to communications
protocol for common operations. These include sending data, receiving
data, establishing connections and configuring networks.

In addition to socket, the networking services also provide protocols such
as PPP, and TCP/IP for doing specific tasks such as transferring files
between computers, remote logins and sending mail.

Graphics & User Interface Services

Graphics and User Interface services provides basic features such as
displaying of images and text, drawing of lines and shapes,
handling of input pads and software keyboards.

PPG-32

PPSM-GT User Guide

““Digital DNA

from Moetarola

Introduction
Graphic Manipulation Services

Graphic Manipulation Services

The Graphics manipulation services provided the following main
functions:

= Getting and setting of display parameters

= Drawing lines and shapes

= Displaying and manipulating of bitmap images
= Control hardware cursor

Text Management Services

Text Management supports setting up of templates to display 8-bit
and 16-bit text data representation. This allows the support of any
coded languages. The default is the support for various font types
and sizes of Asian and English characters display. The low level
font driver supports both the scalable and bitmap font technologies.

Software Keyboard Services

Software keyboard services provide a soft keyboard for applications
to receive character inputs from the user. There is a default version
and customized version for user to select.

Pen Input Handling Services

Touch screen panel inputs are another form of users’ input method. Pen
input handling services provide APIs to create “active area” and means to
handle touch screen inputs.

Handwriting Recognition Input Handling
Services

Handwriting recognition input handling services handle a special type of
pen inputs. Inputs collected by HWR services are passed to a HWR engine
for recognition and the results are handle back to the system for further
processing..

PPSM-GT User Guide PPG-33

als
Introduction "'Digitalﬂﬂﬁ

Application Framework Services frem Metarola

Application Framework Services

PPSM-GT supports application framework such as Metrowerks
PowerParts. PowerParts is an optional application software available for
users that would like to develop their application with a application
framework.

PowerParts is an object-oriented framework designed for embedded
application programs. It helps to create and customize an application’s
graphical user interface (GUI), including both behavior and appearance.

Because PowerParts is an object-oriented tool, Ul developers can inherit
and customize the Ul design’s behaviors and appearances from PPSM-
GT’s default UI's component library. This would reduce the Ul design

cycle time. Customization of components’ behavior and appearance can be
done when needed.

PowerParts also comes with an X86 component library that allows
developers to design and develop their Ul in the PC environment. This
means that developers could develop and test their Uls in the PC
environment even if the embedded hardware is not available.

PowerParts provides a skeleton for developing graphical user interfaces
and includes the following:

» Application event handling

* View hierarchy

Default controls and appearances

Graphics engine

Resource management

For more information on PowerParts, please refer to PowerParts User
Guide.

In A Nut Shell

PPSM-GT provides:

* A multitasking, real-time executive for the Motorola MC68VZ328
(DragonBall VZ) and other microprocessors.

» A full-featured, compact ROM operating system.

PPG-34 PPSM-GT User Guide

als
f“[ﬁgimln"lﬁ Introduction

from Metorola In A Nut Shell

» A priority-based, pre-emptive and post-emptive kernel for task
scheduling and time-slicing multitasking support.

» Services for handling kernel activities, task manipulation, memory and
power management, events, software timer functions, audio, RTC,
alarm, UART, and touch screen panel support.

» User application download support.

* Message and event broadcasting.

» Dynamic run-time task creation and deletion.

* IrDA communication using OBEX and IrCOMM.

» A TCP/IP stack for e-mail and World Wide Web activities.

» Graphic and User Interface services for handling LCD display and user
inputs.

PPSM-GT is a complete software product for creating embedded real-time
applications. It is a system that has a multitasking kernel and many field-
proven routines that are designed for PDA and portable device developers.
PPSM-GT will make development work easier and more efficient, helping
to increase competitiveness in the fast-moving twenty-first-century market.

PPSM-GT User Guide PPG-35

als
Introduction "'DigitalDHA

In A Nut Shell from Metorola

PPG-36 PPSM-GT User Guide

““Digital DNA

from Moetarola

Section 1

Background

This section covers concepts that are helpful for writing PPSM-GT code. It
isintended to provide a basis for understanding PPSM-GT. Detailed
information on PPSM-GT is presented in later sections of this user guide.

Before designing application with PPSM-GT, devel opers need to decide
how they like to use PPSM-GT. Like any other software tool, proper use of
the tools will result in much benefits and productivity. The strength of
PPSM-GT isthat it could either be used by itself or combine with a
application framework to develop applications. It isimportant to decide
which method to pursue as the approaches are different.

If the approach isto devel op application using application framework, then
the developer should approach their design as specified in the framework
and used PPSM-GT services as supporting the framework applications.
Developers then need to focus on the framework application manual when
designing the user interface and refer to PPSM-GT user guide when
designing the low level routines (sometime known as “engine”) for the
applications.

Another approach developers could adapt is to use only the PPSM-GT and
no other application framework to develop applicati@isapter 3,

“PPSM-GT Core Programming Concepsdvides the basic PPSM-GT
concepts that are uniquely defined, and also explained the 3 approaches to
design with PPSM-GT.

This section consists the following chapters:

* Chapter 2'PPSM-GT Core Fundamentalstintroduces fundamental,
required PPSM-GT concepts.

PPSM-GT User Guide PPG-37

““Digital DNA

from Moetarola

» Chapter 3/PPSM-GT Core Programming Conceptsihtroduces
fundamental, required PPSM-GT core programming concepts, and
describes the 3 approaches for designing with PPSM-GT.

PPG-38 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ PPSM-GT Core Fundamentals

from Metorola Kernel Fundamentals

2

PPSM-GT Core
Fundamentals

This chapter provides a fundamental overview of the PPSM-GT’s
core. It is intended for those who are unfamiliar with the PPSM-GT
kernel and its system services, which are the basic building blocks of
PPSM-GT’s core.

This chapter is divided into the following sections:

= Kernel Fundamentals—describes fundamental concepts about
kernels.

= System Fundamentals—describes fundamental concepts used in
the PPSM-GT system, such as application environments and the
system environment.

Kernel Fundamentals

A real-time kernel (sometimes known as a real-time executive) is software
that manages system resources. It also provides an architectural framework
for application software that is based upon a defined set of design policies
and operational rules. The kernel is a software component and is not
considered a part of the application. At aminimum, it contains a scheduler
(used to determine what application program isto gain control of the CPU)
and alibrary of servicesthat are invoked by the application programs. Each
service in the library operates on one or more data structures, which are
called objects, to achieve desired operational behavior. The real-time
prefix is added when the kernel is designed and implemented in such away
that it is suitable for use in applications that are time-critical.

PPSM-GT User Guide PPG-39

als
PPSM-GT Core Fundamentals f“[ﬁgitﬂlﬂ"ﬂ

Tasks

from Moetarola

Tasks are a series of routines that can execute concurrently to
implement the application design. Multitasking promotes optimal
use of the CPU while providing seemingly concurrent task
execution.

Setting priority levels allows the user to define the relative
importance of tasks. Event-driven operation allows the kernel to
respond predictably to events as they occur.

These are some of the basic concepts that are covered in this section.
The objective is for users to achieve an understanding of these terms
and concepts, which are the building blocks of kernel services. The

following are the section’s topics:

= Tasks

= Multitasking

Priority

Pre-Emptive and Post-Emptive Task Switching

Time-Slicing Operations

Event-Driven Operation

Tasks

In a real-time embedded system, the system integrator or software
developer divides the overall function of the application into
smaller entities called tasks. A task is a basic working unit of user
code that performs a defined function or set of functions in the
application design. Each task operates independently of other tasks
but can establish relationships with other tasks. These relationships
can exist in the form of data structures, input, output, or other
constructs.

A task executes when the real-time kernel determines that the
resources required by the task are available and that no other task of
higher priority is also ready to run. While running, a task controls
all system resources. However, because the system can have many
tasks, a single task cannot be allowed to control all of the system
resources all of the time. The need to service other tasks requires
multitasking.

PPG-40

PPSM-GT User Guide

““Digital DNA

from Moetarola

PPSM-GT Core Fundamentals
Multitasking

Multitasking

Multitasking promotes optimal use of the CPU and gives the
appearance that a single processor can perform multiple operations
concurrently. In reality, it is impossible for a device that executes
instructions sequentially to perform two or more operations at once.
However, if system functions are separated into different tasks (and
given the relative speed difference between the physical process
and the CPU), the system switches quickly from task to task, and the
effect of concurrency can be achieved.

In multitasking, each task executes until one of four possible things
happens:

The task completes its function and self-terminates.

The task is suspended while waiting for an event to occur.

The task self-suspends as a resource that is needed is
unavailable.

The task is interrupted by other higher-priority tasks.

Because the CPU is a valuable resource, it is used most efficiently
when it is performing productive operations and is not idle. If a task
that is in control of the CPU is no longer able to use the CPU
productively, the kernel will switch control of the CPU to a ready
task that can use it. When done at a rapid rate, this switching
between tasks gives the appearance of several tasks being executed
simultaneously.

Priority

Priority defines the relative importance of each task. A multitasking
real-time kernel maintains an orderly transfer of CPU control from
one task to another by keeping track of the resources needed by
each task, as well as its priority and state, so that execution of the
task occurs in a timely manner.

During system operation, application tasks compete for system
resources such as memory, the CPU, and peripheral devices. A task
should not monopolize a system resource if a task of higher priority
requires the same resource. To prevent this occurrence, and to
achieve execution timeliness, each task has a priority that the kernel

PPSM-GT User Guide PPG-41

als
PPSM-GT Core Fundamentals f“[ﬁgitﬂlﬂ"ﬂ

Pre-Emptive and Post-Emptive Task Switching from Metarcla

uses to determine a task’s place within the sequence of other
runnable tasks.

Tasks of low priority can have their execution pre-empted by a task
of higher priority.

Pre-Emptive and Post-Emptive Task Switching

A pre-empt occurs when a currently running task must give up its
execution rights to a higher-priority task. The running task is said to
be pre-empted by a higher-priority task. The pre-empted task is
blocked by having its registers saved in the task stack region, but
the task remains ready to run.

A post-empt occurs when the running task executes a directive to
block the task itself. (Post-empt is a coined word that implies the
converse of a pre-empt.) A post-empt could occur when a task
performs, for instance, the Event Get APl when no events are in its
gueue. The task is then blocked and a post-empt occurs. Similarly,
any self-imposed “suspend” or “wait” API such as KnlSuspend or
KnlWait() may cause a task to be post-empted.

PPSM-GT supports both pre-emptive and post-emptive task
switching to allow valuable CPU resources to be passed to higher-
priority tasks when required.

Time-Slicing Operations

A time-slicing operation is a special kind of priority task operation.
A time-slicing operation occurs when there are two or more tasks
that have the same priority level; these tasks are called time-sliced
tasks. During a time-slicing operation, each task is given a fixed
time duration, or guantum, for execution.

The quantum time interval for time slicing is set in the configuration
file and fixed at runtime.

Normal Quantum Operation

In PPSM-GT, time-sliced tasks are grouped together, and the
sequence of their execution is based on the time of creation. For
example, if task A and task B have the same priority and task A is

PPG-42

PPSM-GT User Guide

““Digital DNA

from Moetarola

PPSM-GT Core Fundamentals
Time-Slicing Operations

created before task B, then task A will execute first, followed by task
B.

Assuming tasks A and B are time-sliced tasks and task A is
currently running, if the quantum for task A has expired, task A will
be blocked, and the next time-sliced task, task B, will be started.
When the quantum is available for task A to run, task A will
continue to run from the point at which it was stopped; it will not
restart at the beginning.

Given quantum is defined as the predefined time period allocated for
the time-sliced tasks to operate. In normal operation, a time-sliced
task’s execution is restricted to be within the given quantum.
However, under certain conditions, time-sliced execution could
execute in less than or more than the time of the given quantum.
These conditions are highlighted in the next two sections.

Time-Sliced Task Operating in More Time Than Given Quantum

There are two cases in which a time-sliced task might get more
operation time than the given quantum.

Case 1:

When a time-sliced task is pre-empted by a higher-priority real-time
task, this time-sliced task will be run when all higher-priority real-
time tasks are blocked again, and it will execute with a new
guantum. The total time for the given time-sliced task will be 2Q — X
where Q is the guantum time and X is the time taken by the higher-
priority tasks.

Case 2:

If a time-sliced task yields its quantum, the next time-sliced task will
be given the remainder of the running task’s time slice in addition to
its own quantum. No time-sliced task can have more than two
continuous quantum periods. The total time for the time-sliced task
is 2Q — Y where Q is the quantum time and Y is the time yielded by
the yielding task.

Time-Sliced Task Operating in Less Time Than Given Quantum

Under the following conditions, a time-sliced task will operate in
less than the full given quantum:

PPSM-GT User Guide PPG—43

als
PPSM-GT Core Fundamentals f‘_mgitﬂln".ﬂ

Time-Slicing Operations

from Moetarola

WARNING!

= A time-sliced task is self-terminated before the given quantum.
= A time-sliced task yields it quantum.

= A time-sliced task operates in less than its guantum because
another task self-terminates.

Other conditions under which a time-sliced task will operate in less
than the full given quantum can involve multiple tasks. For
example, assume that there are three time-sliced tasks—task A, task
B, and task C—that are all ready to run. Task A is first to execute,
followed by task B and then task C.

= |f, during task A execution, the task is blocked by itself, task B
will start executing in the remainder of the task A’s quantum
only.

= When the quantum expires, task B will stop its execution, and
task C will start execution with a new slice period or quantum.

The total execution time for task B is only Y, where Y is the time
yielded by the yielding task.

Dynamic Time-Sliced Task Creation

In PPSM-GT, time-sliced task operation can be created or
terminated statically and dynamically.

Time-critical priority tasks could be changed to time-sliced tasks at
runtime.

Because PPSM-GT allows task creation and priority levels to be
changed dynamically, a task might be created at compiler time as a
non-time-sliced task, but become a time-sliced task during runtime
because another task was created dynamically with the same
priority.

Therefore, it is good programming practice to track and limit the
priority of tasks that are created dynamically in order not to create
unnecessary runtime errors, such as the conversion of time-critical
time-prioritized tasks into time-sliced tasks.

PPG-44

PPSM-GT User Guide

““Digital DNA

from Moetarola

PPSM-GT Core Fundamentals
Event-Driven Operation

Event-Driven Operation

Event-driven operation allows the kernel to respond predictably to
events as they occur. An event can be any stimulus that requires a
reaction from the kernel or a task. Examples of events include timer
interrupts, alarm conditions, and keyboard input.

Events may originate externally to the processor or internally from
within the software.

PPSM-GT provides two groups of events for task interworking:
normal and broadcast events.

Normal events are sent on a one-to-one basis, whereas broadcast
events are sent to tasks that are in the same broadcast channel. A
task therefore has to be connected to the broadcast channel in order
to receive broadcast events.

Channels are the media on which the information is being carried.
Only the tasks on the same channel can receive the event being
broadcasted. A task needs to connect to the channel to receive
events.

For broadcast events, the event pointer is relayed from one task to
the other that belongs in the same channel. It begins with the
highest priority task in the channel and relays down to other tasks
in the channel based on priority.

System Fundamentals

PPSM-GT system fundamentals are essential elements that are
responsible for setting up an operating environment for the PPSM-
GT system. A good understanding of basic concepts such as
applications, graphic contexts, input contexts, and tasks enhances
developers’ mastery of writing applications with PPSM-GT system
layer services.

The following topics are discussed in this section.

= System Applications

« Graphic context, GC

e« Panning Screen

PPSM-GT User Guide PPG-45

als
PPSM-GT Core Fundamentals f‘_mgitﬂlnuﬂ

System Applications

from Moetarola

Input Context, IC

Active area

Pen Input Area

LCD Display Screen

Hardware Cursor

Relationship of Application, Task, Panning Screen, Graphic
Context, Input Context and Active Area

Some common examples and pitfalls

System Applications

Application and function are two word that are commonly used
interchangeably especially when referring to a product. For
example, "How many applications does the PDA have ?" or "How
many functions in the PDA?" normally generates the same answer.

In PPSM-GT, it is useful not to mix the two words: application and
function together. Application defines as the characteristics of the
product whereas function defines the behaviors or operations of the
product.

Take the example of a simple PDA product, it is a PDA because it
has applications such as calculator, scheduler, alarm and real time
clock, and in order for it to behave like a PDA, it needs functions
that could preform calculating, scheduling, alarm and real time
clock activities.

In PPSM-GT, applications are like stages in a drama where all the
actions are taking place, whereas tasks are like casts who preform
all the functions in the drama.

Graphic context, GC

The graphic contexts are memory buffer that are used to store the
property such as style, color, size etc. for the task. The relationship
of GC, task and application are important for contents to appear on
the LCD display. In PPSM-GT graphic context GC is one of the
building block for displaying information.

PPG-46

PPSM-GT User Guide

““Digital DNA

from Moetarola

PPSM-GT Core Fundamentals
Panning Screen

Panning Screen

The Panning Screen is an extension to the LCD Display Screen. Its
main purpose is to allow applications to write data to an area
outside of the actual display area. Although applications can write
to this area, data will not be displayed on the screen unless this area
is being mapped to the LCD Display Screen and bound to the
application. Pen Input areas on the panning screen will receive pen
input data only when they overlap with the LCD display screen.

Input Context, IC

Input contexts are the input property for the touch screen panel.
They are also memory buffer that stored pen input time-out,
sampling rate, pen size, pen color, software keyboard, active area
list, and task that is bound to the input context. The relationship of
IC, task and application is important for system to receive any input
from input pad. In PPSM-GT input context, IC is one of the building
block for receiving information.

Active area

An active area is defined as a rectangular region of the pen input
area where an application or an action will execute if the region is
pressed. An example of this is an icon, or an action button.

Active areas are classified into two groups, icon area and input area.

Pen Input Area

This is the touch sensitive panel input area. The coordinate system
used for the touch panel is the same as that for the LCD display
screen. The reference point, (0,0) or the origin, is at the top-left
corner of the LCD display screen. As you can see from Figure 2.1,
the input coordinates outside of the LCD display screen can have a
negative value. PPSM-GT allows negative coordinates for pen
input. This allows applications to implement features such as off
screen icon and off screen writing area.

PPSM-GT User Guide PPG-47

als
PPSM-GT Core Fundamentals f"[ﬁgitﬂlﬂ"ﬂ

LCD Display Screen

from Moetarola

Figure 2.1

PPSM-GT Coordinate System

—— Touch Panel

Negative Coordinates

.\Origin (0,0)

LCD Display Panel

Positive Coordinates

If the LCD display screen physical size is exactly the same as the
touch panel, all coordinates from the pen input will always be
positive.

LCD Display Screen

The display screen is the LCD display area where applications can
display images. The LCD module can handle both 1, 2 and 4 bits per
pixel graphics, giving black and white 2 display, 4 or 16 grey levels
display respectively. Displayed data, such as graphics and text, can
only be seen within the display screen area.

Hardware Cursor

The maximum hardware cursor size is 31 pixels wide by 31 pixels
high. During task swapping, the hardware cursor status, size,
position and the offset of display origin on panning screen in

PPG-48

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ PPSM-GT Core Fundamentals

frem Metorsla Relationship of Application, Task, Panning Screen, Graphic Context, Input Context

current task will be saved and the new task’s cursor status, position,
size and the offset of display origin on panning screen will be used.

Relationship of Application, Task, Panning
Screen, Graphic Context, Input Context and
Active Area

Figure 2.2 Relationship of Application, Task, Pan Screen, GC, IC & Active

Area
[
[
[
Active Area }—HJ
Input Context

H—L KI | | l
Application

Legend Graphic
— Panning Screen sl Context
Many to One :

Panning screen, active area, graphic context, input context, task and
application are all independent components in PPSM-GT such that
each component need to be created separately. They are, however
all related together for system operation. A typical program written
with PPSM-GT will consist of many GCs, many ICs, many tasks and
several applications.

Figure 2.2 shows the relationship of application, task, panning
screen, graphic context, input context and active area. The arrows
highlight the many to one relationship. For example when the
arrow points from application to panning screen, that means that
many application could be using the same panning screen. In most
cases the reserved is not true, that is many panning screen cannot be
linked to one application all at the same time. The following sections
will highlight the main features and restrictions.

PPSM-GT User Guide PPG-49

als
PPSM-GT Core Fundamentals f“[ﬁgitﬂlﬂ"ﬂ

Relationship of Application, Task, Panning Screen, Graphic Context, Input Context from Metarala

In short beside the requirements and restrictions that application
needs panning for display and task needs IC for input, and GC for
drawing, and application needs tasks for action, there is no hard
and fast rules on the usage of applications, tasks, graphic context
and input context. PPSM-GT has provide much flexibility and open
up area of design to the user’s creativity. The key is to be exercise
control and be creative.

Application and panning screen

Panning Screen are memory buffers for display purpose. For
example, to display an image of the ship, the image of the ship is
stored in the panning screen and displayed onto the LCD screen
when the panning screen becomes active. By default each
application is bound with a default a panning screen, and when the
application is swapped in by the system, the default panning
become active. An active panning screen displayed it’s content onto
the LCD display as it is written.

The relationship between application and the panning screen is
many to one; i.e. Many applications could be pointing at the same
panning screen. The advantage of such arrangement is for memory
resource saving when there is no need to have new displays when
switching from one application to another. The disadvantage of
such arrangement is that the graphic are overwritten each time a
new graphic is drawn. If there are no provision to save the old
graphic, then it is lost.

Calling AppSwitch() API will cause the change in panning screen if
the applications have different panning screen.

Application, task, input context (IC), and active area

Input contexts are memory buffer that stored pen input time-out,
sampling rate, pen size, pen color, software keyboard if exist, active
area list, and task that is bound to the input context.

Input context are tied to task as those inputs captured by the system
will be sent to the task specified in the input context. The
relationship is many to one; i.e many IC could be having the same
task I1d and each IC can only have one task Id.

PPG-50

PPSM-GT User Guide

““Digital DNA

from Moetarola

PPSM-GT Core Fundamentals
Some common examples and pitfalls

Active area are area on the touch screen panel that takes movements
when touched. The relationship for application, task, input context,
and active area is illustrated with the following situation.

When there are inputs at the touch panel, the system alerts the
application through an event that there are active area inputs. The
application then search through it’s input context list to determine
which active area is touched. Then an event will be sent to the task
which task id is in the input context whose active area has been
touched.

Task and graphic context

In PPSM-GT tasks need graphic context for drawing. PPSM-GT
allows one or many tasks to be bounded to one or many GCs. That
is each task could have individual GC or tasks could share GC
provided each task is limited to one GC at any one time. GC
however is not necessary tied to only one task. At any one time, one
GC could only be bound and used by one task. Tasks are allowed to
share graphics context.

Also not every task will have a graphic context. It is based on a need
to have basic as not every task is required to draw. If a task do not
have to draw or do not have draw any more, it should not have a
GC.

Task and Input context

The relationship between task and IC on the other hand is different.
Each task can have many IC and, input context cannot be share
among task. That is each IC can only be bound to one task at any
one time. Tasks are however, allow to unbind those input context
that are not used and other task are allowed to bind unused IC.

In an application there are input contexts which are bound to tasks.
In this case, whatever event occurred in the active area inside the
input context, event will be generated and the system will then
determine which task this event will be sent to.

Some common examples and pitfalls

The following are some of the common examples in using
applications, graphic context and input context. It also highlights

PPSM-GT User Guide PPG-51

als
PPSM-GT Core Fundamentals f“[ﬁgitﬂlﬂ"ﬂ

Summary

from Moetarola

Summary

certain pitfalls that are commonly encountered. Please take note to
avoid repeating the same problem.

Example 1: Tasks with different graphic context but same
panning screen

Tasks may require to perform several functions as such it will have
several graphic contexts for different drawing properties like dot
width, fill pattern, etc. However, if the GC has the same panning
screen, then the drawing will be put in the same memory area
allocated for the panning screen, and if the panning screen is bound
to the current application, then the content in panning screen is
displayed on LCD. Whatever that is drawn by the tasks will be seen
on the display.

Pitfall 1: Wrong display on LCD

Graphic contexts that use the same panning screen will have
whatever drawn by the tasks be seen on LCD if the panning screen
is bound to the current application.

Example 2: Applications with same panning screen

Applications are allowed to share panning screen, therefore in some
cases one panning screen may be share by two or more applications.

Pitfall 2: Same display on application switching.

In application switching, the LCD will remain the same if the
panning screen is the same. There may be cases that the same image
remains when the program switch from one application to another.
For such case, when same panning screen is used for different
application care must be taken to clear the display and redraw new
graphics.

This chapter provides an overview of the fundamental concepts of
kernels, system layer services and framework services.

Kernel fundamental concepts include tasks, multitasking, task
switching, and event-driven operation.

PPG-52

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ PPSM-GT Core Fundamentals

from Metorola Summary

System layer fundamental concepts include applications, graphic
contexts, input contexts, active area and panning screen.

PPSM-GT User Guide PPG-53

als
PPSM-GT Core Fundamentals f‘_mgitﬂlnuﬂ

Summary from Muotarola

PPG-54 PPSM-GT User Guide

ats
"l‘[ﬁgimIDHA PPSM-GT Core Programming'COncepts
frem Motarola The PPSM-GT Programing Approach

3

PPSM-GT Core
Programming Concepts

This chapter builds on Chapter 2, PPSM-GT Core Fundamentals. It
discusses the programming concept of PPSM-GT’s core.

The following topics are discussed in this chapter:
= The PPSM-GT Programing Approach
= The Typical PPSM-GT Application Program

The PPSM-GT Programing Approach

PPSM-GT applications are generally multitasking, event-driven
programs. One or more tasks could be running at the same time. To
successfully build a PPSM-GT application, understanding on how
the system itself is structured and how to structure the application
are essential.

In some simple systems, one application may be sufficient to launch
all features of the product, whereas in other systems, a multiple-
application environment is required. There is no absolute rule on
the relationship between the number of applications and the
features of the product. PPSM-GT allows different approaches to
designing systems. For more information on system design, refer to
Chapter 11, System Application Services.

When developing applications using the PPSM-GT, the developers
must first decide on how they are going to use the PPSM-GT
services before designing and writing the main program. There are

PPSM-GT User Guide PPG-55

als
PPSM-GT Core Programming Concepts "'[ﬁgimln"lﬁ
The PPSM-GT Programing Approach from Metarala

NOTE

many approaches to design applications using the PPSM-GT, the
commonly used 3 methods are:

1. Single Platform Approach

2. Dual Platform Approach
3. Multi Platform Approach

Single Platform Approach

The single platform approach assumes that developers are using
only PPSM-GT standard services to design all the applications
including user interface. In this approach the graphics routines are
used to design the appearances of the applications and the user
interfaces are design from the standard libraries. No application
framework is used and C is developing language.

Under this environment, the main program is much simple. The
main function of the main program would to create an environment
for the tasks to execute. Normally the main program would create
all the system applications required, and a few key tasks that
control the smooth execution of the whole system.

Most of the chapters in this user guide is written assuming that the
single platform approach is adapted. In cases where dual or multi
platform are used it will be specified.

Dual Platform Approach

The dual platform approach assumes that developers are using
another application framework to develop the user interface and
use the PPSM-GT system services to develop the rest of the
application. In this approach, no or very minimium PPSM-GT
default graphic routines are used. All graphic are handled by the
framework and the framework is an application layer sitting on top
of the PPSM-GT. In such situation, Ul design are done in the
framework environment and low level routines(sometimes referred
to as engine) are design using the PPSM-GT. There could aso be
possible that Ul is developed in another language such as
embedded Java or C++ .

Interworking between the two environment becomes critual in such
design. PPSM-GT has suggested some basic requirement in the next

PPG-56

PPSM-GT User Guide

““Digital DNA

from Moetarola

PPSM-GT Core Programming Concepts
The PPSM-GT Programing Approach

NOTE

section, The Application Framework Requirements. These are
provide as guidelines and could varies with application framework.
Developers have to check the what is required by the application
framework and design according to the requirements.

The Application Framework Requirements

If an application framework is used to develop the user interface
then to support the application framework in the PPSM-GT
environment, the following may be one of the way the PPSM-GT
interwork with application framework. The following tasks are
added in the PPSM-GT main program:

e The Framework Task

e The System Event Task
e Theidle Thread

Figure 3.1 shows the steps in PPSM-GT programming for designing
the main program for a system using a application framework. In
this example, there are two basic tasks that need to be created before
the system can use the application framework. These two tasks are
one of the ways the application framework could employed to
interwork with PPSM-GT. They are not necessary if the application
does not use any application framework.

.The next 3 sections are related to designing application using
application framework in PPSM-GT environment. Skip these
sections if an application framework is not used.

The Framework Task

The Framework task is a special task that needs to be created for the
framework application. This is a system task to register the
framework to the system. The following are the functions
performed in the framework task:

1. Set up system display properties such as input and output
media.

2. Calibrate input area if required.
3. Mark the area to be the input for the touch screen panel.

PPSM-GT User Guide PPG-57

als
PPSM-GT Core Programming Concepts f“[ﬁgimln"ﬁ
The PPSM-GT Programing Approach from Metarala

4. Set up the framework X-Y display dimensions according to
the LCD screen and the pixels supported.

5. Set up the default system font.
6. Create the event dispatcher and event loop.

7. Create the display properties such as color, color palette, and
graphics port.

8. Create a location-tracking object such as a mouse object.
9. The framework has been set up for drawing graphics.
10.Resume the suspended system event task.

11.Start the Framework idle thread if required.

12.Wait Loop.

13.Clean up the Framework parameters when exiting the
Framework task.

The System Event Task

The system event task is another special system task created for the
framework to communicate with other PPSM-GT core system tasks
(and vice versa).

This system event task handles all system events that are designated
for the objects of framework. It checks for the pen input events that
the Framework application is expecting.

The idle Thread

In some application framework, a idle thread is required. The idle
thread is the framework application’s wait loop. A framework
application waits in the idle thread when there is nothing to do.
Each PPSM-GT application that uses the application framework that
requires a idle thread must have the idle thread. That is, if, in the
multiple-application environment, there are 5 system applications
that use the application framework, then there will be 5 Framework
tasks and System Event tasks running, with each framework having
it’s own idle thread.

PPG-58

PPSM-GT User Guide

$[ﬁgitﬂlﬂ"ﬁ PPSM-GT Core Programming Concepts

frem Metarola The PPSM-GT Programing Approach

Figure 3.1 Basic Steps for PPSM-GT Main Program with Application
Framework

Framework Initialization

Create Application I

Create Framewor k Task I

Create Framework Event Task

Setup the Display Environment

App Switch and Execute
Framework Task

Multi Platform Approach

The multi platform approach is the last of the 3 platform approach
and is the most complex and if developer choose to use this
platform approach, much care has to be exercide. This approach is a
combination of the 1st and 2nd approaches. That is application
framework and default PPSM-GT graphic routines are both used to
handle the application graphics.

Only advance developers who are experiences with PPSM-GT
programming are encourage to use this approach. Care must be
taken to ensure that when switching from the framework
environment to the PPSM-GT environment and vice versa, all
resouces especially those related to graphic rouines are accounted

PPSM-GT User Guide PPG-59

als
PPSM-GT Core Programming Concepts *“[Hgitjalnﬂﬁ
The PPSM-GT Main Program from Metarala

for. Misappropriate handling will result in undesirable behaviour of
the system.

The PPSM-GT Main Program

The PPSM-GT main program functions like the main in C program.
At the bare minimum level, the system needs to have a main
program. Upon power up, after performing the system initialization
routines, the system calls the main function to launch the
application. Therefore, in the main function, at least one task must
be created to launch the system application. The number of system
applications to be launched in the main program depends on the
complexity of the system.

Create Application

v

Create tasks

'

Create Graphic Context

'

Bind Tasks & GC

'

Bind App & Panning Screen

Figure 3.2 Main Program flow of a single platform approach system

The flow chart in Figure 3.2 shows the steps for the main program
flow for single platform approach. Note that instead of the

PPG-60 PPSM-GT User Guide

als
"l"[ﬁgimlnuﬁ PPSM-GT Core Programmiqg Concepts
frem Metarola The Typical PPSM-GT Application Program

framework task and the system event task, the graphic context and
panning screen are created. The rest of the process remain the same.
The number of steps varies with the number of applications and
tasks in the system. For example, if in the system there are 10
applications and 50 tasks, then AppCreate() will be used 10 times
and KnlCreateTask() will be used 50 times.

Each application and task on the system must be registered with
PPSM-GT before the application or task can make use of the PPSM-
GT tools. Using AppCreate() and KnlTaskCreate() will register the
application and task to the system. Registration ensures that the
runtime memory and stack required for each application are
allocated within PPSM-GT’s memory system.

When writing a task, the developer can treat each task as a stand-
alone procedure because PPSM-GT resources are individually
allocated. This implementation of tasks allows a number of
applications to be written independently and linked together at the
end to form a single system.

After all applications have been registered, the first application can
be started by calling the AppSwitch() API. The system will exit the
main program and start executing code in the designated
application specified by the AppSwitch() API.

The Typical PPSM-GT Application Program

This section describes the general flow for a typical system
application program in the PPSM-GT environment. Not all
applications will have the typical flow shown in Figure 3.3. In some
applications, one or two steps may be added or deleted. It all
depends on the requirements of the application.

After the main program, the system has registered all system
applications and starts to execute the application code specified in
the corresponding application. In a typical application, there will be
an event checking loop that checks for incoming events when there
are no other activities to perform. When an event occurs, the task
processes the event and might involve application swapping and so
forth. In most cases, the task waits in the event checking loop.

PPSM-GT User Guide PPG-61

ats
PPSM-GT Core Programming Concepts f“[ﬁgitﬂl.“"ﬁ

Event Checking Loop

from Moetarola

Event Checking Loop

In general, all event driven tasks in PPSM-GT should have an
infinite wait loop for when the task has completed necessary
functions and is waiting for an event. Event checking loops are
defined as system waiting points where each individual task
communicates with the kernel.

PPSM-GT provides two APIs, EvtCheck() and EvtGet(), to get new
events on the event queue. (Note that the PowerParts application
uses different commands to wait for events.) EvtCheck() tries to get
the new event from the event queue and not block the task
execution, whereas EvtGet() blocks the task execution and waits for
the new event.

In most cases, the event checking loop consists of a set of case
statements checking against the event header. (For details on event
headers, please refer to Chapter 12, System Event Management
Services.) Based on the event header, the task decides on the next
actions.

Properly set up tasks should not have local loops where program
loops are indeterminately waiting for some external action. Such
cases do not allow the kernel to schedule other tasks, and they waste
processor time. An exception might be a very small delay for
hardware settling time.

In cases when task self-termination is required, having a return
command inside the task routine will cause the current task to self-
terminate. Figure 3.3 shows the application flow.

PPG-62

PPSM-GT User Guide

$[ﬁgitﬂlﬂ"ﬁ PPSM-GT Core Programming Concepts
from Motarcla Event Messages from PPSM-GT

Figure 3.3 Typical PPSM-GT System Application Flow Chart

(App Start ’

Create Task(s) if needed
KnlCreateTask()

Do Application specific
functions

Call EvtCheck/Get()

Switch to Application
AppSwitch()

End of App

Event Messages from PPSM-GT

PPSM-GT applications should take a pro-active role—that is, an
event-driven approach. When external events occur, such as the
pressing of the input panel, the PPSM-GT system automatically
intercepts and interprets the external event. If the event requires
attention from the application, such as when an active area is
pressed or there is incoming data from the UART, PPSM-GT sends
an event message to the waiting task for processing.

PPSM-GT User Guide PPG-63

ats
PPSM-GT Core Programming Concepts f“[ﬁgitﬂl.“"ﬁ

Code Sample

from Moetarola

However, if the external event is not intended for the application—
as in the pressing of an input panel that is not defined as an active
area, or when there is a time-out for going into power-saving
mode—the event is handled by PPSM-GT internally. PPSM-GT may
send a non-wakeup event message to the tasks, or it may send
nothing to the tasks, depending on the situation. Refer to Chapter
12, System Event Management Services for more information on
system events.

Code Sample

Listing 3.1

This example gives an idea of how to create tasks, register tasks,
create an application, and register an application in the PPSM-GT
environment.

Listing 3.1 shows a main program for single platform approach
running on a PPSM-GT operating system on a Motorola
MC68VZ328 (DragonBall VZ) embedded microprocessor.

Main Program Example

/* Creates an application ABC wth a pannning
screen and two tasks; menu task and Drawtask wil|l
have a graphic context having the same panning
screen of the applications */

#i ncl ude "GCS. h"

#defi ne MenuTask O

#define Drawlask 1

#define MENU PRICRITY 6

#defi ne TASK PRICRITY 4

#def i ne DEFAULT _MODE 1

u32 gpAppl d;

u32 gpTaskl d[2] ;

u32 gpCCl d;

Ul6 gPanScnW, gPanScnHt ;

STATUS mai n(voi d)

{
const TEXT AppNane = {"A", 'B, 'C, 0};

PPG-64

PPSM-GT User Guide

““Digital DNA

from Moetarola

PPSM-GT Core Programming Concepts
Code Sample

const TEXTMenuTaskName= {"M,’E ,’N, U, 0};
const TEXTDrawTaskName= {'D ,"R ,’ A ,’ W, 0};

U32 TaskAddr[2] = { MenuTask, DrawTask};
S8Priority[2] ={ MENU_PRI ORI TY, TASK PRI ORI TY};
volatile U3 i;

vol ati |l e STATUS status = SYS K
volatile SCREEN ID screenld;

vol atile EVIPORT_ID portld,

cC ID gcl d;

/* Creating an application ABC with no
constructor, destructor, entryCall back and
exi t Cal | back*/

status = AppCreat e(&gpAppl d, AppNane, 0, 0, 0, O,
0, 3000) ;

/* creates graphic context with a panning screen
*/
GoxCr eat eGC(&gpCCl d, 160, 240);

/* Creating 2 task MENU with priority of |evel 6,
DRAWtask at priority level of 4 and default node
of 1 and stacksize of 10240 bytes*/

status = Knl Creat eTask(&gpTaskld[0],
(P_vO D) TaskAddr[0], MenuTaskNane, 1024,
Priority[0], DEFAULT_ MODE);

status = Knl Creat eTask(&gpTaskld[1],
(P_vVO D) TaskAddr[1], DrawTaskNane, 1024,
Priority[1], DEFAULT_ MODE);

/* Suspend the task MENU for now*/
status = Knl Suspend(gpTaskld[i]);

/* Set the pen ring buffer for ABC app to 2000
byt es */
PenSet Ri ngBuf f er (gpAppl d, 2000);

PPSM-GT User Guide PPG-65

ats
PPSM-GT Core Programming Concepts f“[ﬁgitﬂl.“"ﬁ
Summary from Metorola

/* Bind Gc with task MENU */
status = Knl Bi ndGC(gpTaskld[i], gpGCld);

/* Bind the same panning screen to the
application */

status = GoxGet PanScreen(gpGCl d, &screenld);
stat us = AppBi ndPanl nf o(gpAppl d, screenld);
}

/* Switch to the ABC application to enable the
graphic to appear on the LCD and resune the
suspended task MENU*/

AppSwi t ch(gpAppl d) ;
Knl Resune(gpTaskl d[0]);

/* Report any error while creatung application,
task or GC */

if (status != SYS (K)
return SYS_ERR,

return;

Summary

This chapter gives programmers information on how to start
programming in PPSM-GT. The chapter discusses application and
task registration as well as event loop checking. Figure 3.2 gives an
idea of the actual program flow in PPSM-GT.

PPG-66 PPSM-GT User Guide

““Digital DNA

from Moetarola

Section 2

Getting Started

The chapters in this section cover tasks that must be performed
before a programmer can start designing the system with PPSM-GT.
The following chapters are contained in this section:

= Chapter 4, “Installing PPSM-GT”—provides instructions for
installing PPSM-GT, and defines the hardware and software
requirements for both the development and runtime
environments.

= Chapter 5, “Developing a New Application”—provides
information with which all PPSM-GT programmers must be
familiar before writing any code using PPSM-GT, and describes
how to set up a new CodeWarrior project for a PPSM-GT
application.

= Chapter 7, “ISR Routines Services,”—provides informations on
how PPSM-GT handles interrupt software request. It is used as a
device driver interface between the application and the
hardware. It provides information on the making of drivers that
are built on the top of DragonBall's interrupt controller
configurable

PPG-67 PPSM-GT User Guide

““Digital DNA

from Moetarola

PPG-68 PPSM-GT User Guide

ats
Installing PPSM-GT f‘_mgitﬂlnﬂﬁ

PPSM-GT Requirements from Metarala

4

Installing PPSM-GT

Before starting software development with PPSM-GT, the
programmer must have the necessary hardware and software. This
chapter covers the following topics:

= PPSM-GT Requirements—system requirements for application
development and for running a completed PPSM-GT
application.

= Installing PPSM-GT—refers to resources explaining how to
install PPSM-GT and which directories and files are installed.

e PPSM-GT Documentation—refers to PPSM-GT documentation
resources.

PPSM-GT Requirements

There are two kinds of requirements to consider: software and
hardware.

Software development requirements

PPSM-GT development requires a PC running Windows 95,
Windows 98, Windows NT Workstation 4.0, or Windows 2000. The
memory and hardware requirements to develop PPSM-GT
applications are the same as those for running the CodeWarrior IDE
on a Windows PC. More RAM may be required if the IDE and an
application are run concurrently.

NOTE Refer to the CodeWarrior IDE User Guide for more information on
the requirements for running the CodeWarrior IDE.

PPG-69 PPSM-GT User Guide

ats
Installing PPSM-GT f‘_mgitﬂlnﬂﬁ

Hardware development requirements from Metarcla

Hardware development requirements

The MC68VZ328 Application Development System (ADS) is used as
the reference development platform throughout this user guide.
The A/D convertor used is a 10-bit component, giving a resolution
of 1024 in X and 1024 in Y.

For details on the hardware configuration, please refer to the
MC68VZ328 ADS User’s Manual.

Installing PPSM-GT

PPSM_GT installation procedures are described in the Release Guide.

Information about PPSM-GT contents and distribution is contained
in the “readme.txt” file in the r oot \ PPSM GT directory. The Release
Guide also contains information about the recommended hardware
for development and application examples.

The installer program automatically copies all PPSM-GT files
necessary for development to the r oot \ PPSM GT directory on the
development machine’s disk. PPSM-GT release notes for a complete
description of the PPSM-GT directory layout.

PPSM-GT Documentation

Summary

The PPSM-GT documentation is located in the PPSM

GTI\ docunent at i on folder on the PPSM-GT CD. The PPSM-GT
documentation consists of the PPSM-GT User Guide and the PPSM-
GT API Reference. Each of these documents is in . PDF format.

PPSM-GT development requires a PC running Windows 95,
Windows 98, Windows NT Workstation 4.0, or Windows 2000.

A finished PPSM-GT application requires a device that provides a
video device for output and at least one input device, such as a
mouse or pen.

PPG-70

PPSM-GT User Guide

als
f‘_mgitﬂln"ﬁ Installing PPSM-GT

from Metorola Summary

The installer program installs all files needed to build a PPSM-GT
program onto the development PC.

PPSM-GT User Guide PPG-71

ats
Installing PPSM-GT f‘_mgitﬂlnﬂﬁ

Summary from Muotarola

PPG-72 PPSM-GT User Guide

ats
Developing a New Application f‘_mgitﬂln"ﬁ

SDS Singlestep Development Environment frem Metarola

5

Developing a New
Application

PPSM-GT can use both Metrowerks CodeWarrior Integrated
Development Environment and Single Step SDS as it’s development
environment. The way to develop a new application does not
depend on the type of development tool used, but the setup of the
environment does. Both tools have different approaches to the
development environment, the SDS used the command based
method whereas the CodeWarrior IDE provides editing, linking,
debugging, and complying all in one environment. The materials
covered in this chapter provides only a overview of the
development tool environment. It is not intended to teach the usage
of the development tool. Please refer to the individual development
tool manual if more information is desired.

This chapter contains only an overview of the SDS Singlestep and
Metrowerks IDE development environment, and the PPSM-GT
application development which are as followed:

e SDS Singlestep Development Environment

Metrowerks IDE Development Environment
Building An PPSM-GT Application

e Summary
Code Examples

SDS Singlestep Development Environment

One of the focus point for the SDS singlestep development
environment is the makefile, which is a script file that consists of

PPG-73 PPSM-GT User Guide

ats
Developing a New Application f“mgitﬂln"ﬁ

Metrowerks IDE Development Environment from Metarala

command and options for the various development tools such as
complier, linker and etc. A make program is required to execute the
makefile. PPSM-GT and SDS singlestep do not provide the make
program, the developer have to get their own make program.

A sample make file is as shown in Listing 5.2 , To ensure that the
development environment is setup correctly, all paths and options
in the makefile must be defined correctly. The make program will
execute the SDS Singlestep tools based on the commands and
options in the makefile to carry out the instruction.

In the PPSM-GT, there are 3 types of makefile and they are:

= PPSM makefile -- use only if the source files of the PPSM-GT
libraries are modified.

= Device driver makefile - uses only if modification of device
drivers are made.

= Application makefile - most commonly used and for build user
application program.

All the makefiles are stored in each individual directory. The most
commonly and frequently used makefile is the application makefile.

Another focus point of the SDS Singlestep environment is the
debugger which provide the debugging environment for the
software to be tested and evaluated. Please refer for the SDS user
guide for more details on the tool.

Metrowerks IDE Development Environment

The focus point of the Metrowerks IDE is that it permits a software
developer to quickly assemble source code files, resource files,
library files, other files, and configuration settings into a "project,”
without writing a complicated build script (or "makefile™).

Source code files may be added or deleted from a project using
simple mouse and keyboard operations instead of tediously editing
a build script.

This section intends to use the configuration of a single project to
teach the developers the method to create and manage several
configurations of settings for use on various target platforms. The

PPG-74

PPSM-GT User Guide

““Digital DNA

from Moetarola

Developing a New Application
Creating a new project

platform on which the CodeWarrior runs is called the "host." From
that host, the IDE is used to develop code to "target” various
platforms.

This chapter assumes familiarity with the CodeWarrior Integrated
Development Environment (IDE). Refer to the CodeWarrior IDE
User Guide for any questions related to the IDE.

Creating a new project

A project contains one or more build targets. Each build target in a
project contains a collection of files that the IDE uses to build a
output file. Build targets within a project may share some or all of
their files. Some examples of a output file include an application,
static library, or dynamic library.

Each build target within a project has its own options that
customize how the IDE builds the output file. There are a wide
variety of options that control code optimization, browsing,
debugging, compiler warnings, and much more.

This section discusses the basic tasks involving in creating a simple
project called “testing” . It included activities such as creating a
project, opening the project, adding a file, and saving a project. For
more advance operations such as moving files in the Project
window, marking files for debugging, creating nested projects and
build targets, and dividing the Project window into groups of files,
please refer to the Metrowerk CodeWarrior IDE user guide.

Creating a new CodeWarrior project file involves setting up the
following:

= Types of Project Files

= Choosing a Project Stationery File

= Naming Your New Project
For the simple project, the following are the project setting and as
shown in Figure 5.1 as followed:

= The Project’s Type is a Project Stationery Type that consists of
pre-configured libraries, source code placeholders, and resource
file placeholders.

PPSM-GT User Guide PPG-75

ats
Developing a New Application f“mgitﬂln"ﬁ

Creating a new project from Metarcla

= The Project’s Stationary selected is PPSM-GT Stationary
= The Project’s Name is “testing”

Figure 5.1 Selecting Embedded 68K Stationery

Project |File | Object |

i Embedded 63K ColdFire Stationery Project name:
ﬁEmpt-.r Project Itegﬁng
i Makefile Tmporter Wizand _
{ = PEEM-G T Stationery Lacation:
| D Mestinghtesting Set..
BddMe Bragect:
Fioject:

| 5

Next the system will prompt the developers to choose the language
used for the development. C language is selected for the
development of the application.

In the respective directory under the Project Stationery, choose the
target ADS that is being used. Select ADS_68VZ328 as shown in
Figure 5.2, and click OK.

PPG-76 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬁ Developing a New Application

frem Motarola Creating a new project

Figure 5.2 Selecting the related device

Hew Project

select project stationery:

'E Project Stationenr

= MBBva32BADE -
0k | Comel |

The project will be generated. The appropriate runtime libraries,
linker command file (Icf), and a main source file with the "Hello
World" application are included. Runtime libraries include as
shown in Figure 5.3:

e C_4i_68000_Runtime.a for the general 68K runtime support,

e C_TRK 4i_68000_MSL.a for all the MetroTRK debug monitor
console 1/0 and Metrowerks Standard Library support, and

= fp_68000.0 for 68K floating point support

PPSM-GT User Guide PPG-77

Developing a New Application
Linker Command File

““Digital DNA

from Moetarola

Figure 5.3 Runtime Libraries

Listing 5.1

i @testing mep
I % wvepd_dbz j B 9 @ -
Files | Link Order | Tergsts |
% | Fie | Code | Data |ﬂ;.|i =
w [ads 68K _mw lof nfa e =
w [PPEMspec 1] 0« =l
¥ 2S5 somie 1] 0« =l
W LAl test 1] 0« =l
¢ [FEPPEMGT Library 1] 0« =l
W - FPSM-GT_P4_Basa 1] 0« =l
- FPSM-GT_P2_Basa e e =l
- FP3M-GT_P1_Basa T ifa =l
B we-device mep nfa e =l
4 [l device_vzpd_base.a 1] 0« =l
-~ device_vepZ_base.a nfa nfa =l
B device_vepl_basea nfa nfa =l
w (== Fwtine Libracies n 0« =l
W -l C_44_68000_Funtine a 1] 0« =l
W - C_TRE_4i_63000_MEL a 1] 0« =l
W B fp_62000.0 1] 0« |
E
13 files 1] 1] 4

The simple example “Hello World” is provided to assist developers
understand the structure of PPSM-GT program and get started with
the minmium confguration. Developers can modify the main
program file and the Icf file to suit their application. More files can
be added to the project when required.

Linker Command File

The default Icf file created is shown as below:

Default Icf file
Sanpl e Linker Command File for Metrowerks
Enbedded 68K/ Col dFire

MEMORY {
TEXT (RWK) : ORIG N = 0x00008000, LENGTH =
0x00000000

PPG-78

PPSM-GT User Guide

als
f‘_mgitﬂlnﬂﬁ Developing a New Application

from Metorola Linker Command File

DATA (RW : ORIG N = AFTER(TEXT), LENGTH =
0x00000000

}

SECTI ONS {
.mai n_application :
{
*(.text)
.= ALI GN(0x4);
*(.rodata)
} > TEXT

.mai n_application_data :

{
= ALI G\(0x4);
*(.exception)
= ALI G\(0x4);
__exception_table start__ = .;
EXCEPTI ON
__exception_table end = .;

.= ALI GN(0x4) ;
__sinit__ = .;
STATICINI'T

.= ALI GN(0x4) ;
__START_DATA = .;
*(.data)

__END DATA = .;

.= ALI GN(0x4) ;
__START_SDATA = .;
*(.sdata)

__END _SDATA = .;

.= ALI GN(0x4);
__SDA BASE = .;# A5 set to mddle of data
and bss ...

.= ALI GN(0x4) ;
__START_SBSS = . ;
*(.sbss)

PPSM-GT User Guide PPG-79

ats
Developing a New Application f“mgitﬂln"ﬁ

Linker Command File

from Moetarola

* (SCOMMON)
__END_SBSS = .

.= ALI GN(0x4) ;
__START_BSS = .;
*(. bss)

* (COVMVON)

__END BSS = .;

. = ALI G\(0x4) ;
} > DATA

___SP _END = .

__SP INIT = . + 0x00004000;# set stack to
0x4000 bytes (16KB)

_TRKSPINT = _SP INT;

_startof bss ___START_BSS;

___heap_addr __SP INIT;# heap grows in
opposite direction of stack

____heap_si ze = 0x400000; # heap size set to
0x400000 bytes (500KB)

_sizeof _bss = END BSS - _ START_BSS;
_sizeof data = _ END DATA - __ START DATA

__Sronmp = 0x0;# no ROMin this exanple

For detail specification of the Icf file format, please refer to
Metrowerks document at:

Metrowerks/CodeWarrior/Documentation/CodeWarrior/
HTML/Targeting_Embedded 68K_html/
68K072_ELFLinker.fm.htm|#489147

The above Icf file has to be modified to add several linker flag
including LCD physical and virtual size and the UART receive
buffer size in order for it to work properly with LCD display. These
settings can be added at the end of the Icf file as shown below:

PPG-80

PPSM-GT User Guide

““Digital DNA

from Moetarola

Developing a New Application
Saving a Project

Saving a Project

The CodeWarrior IDE automatically updates and saves your project
when you perform certain actions. Some of the actions that cause a
project file to get saved are as followed:

= Close the project

= Change Preferences or Target Settings for the project

e Add or delete files for the project

e Compile any file in the project

e Edit groups in the project

= Remove object code from the project

e Quit the CodeWarrior IDE
When the CodeWarrior IDE automatically saves the project, it saves
the following information:

= The names of the files added to your project and their locations

= All configuration options

= Dependency information (such as the touch state and interface
file lists)

= Browser information
= The object code of any compiled source code files

Choosing the Target Setting

This section discusses setting options for individual build targets.
These options configure the IDE to suit the needs when building the
targets in the project.

A CodeWarrior project can contain one or more build targets. A
build target contains all the information required to identify which
files belong in a particular build, the complier and linker setting for
the build, the output information, and so on.

To view the target seeting panel, in Figure 5.3 click on the “Target”
label and a list of current supported target will be shown. To view
the setting for each target, double click on the selected target and a

PPSM-GT User Guide PPG-81

ats
Developing a New Application f“mgitﬂln"ﬁ

Making and Running the Program from Metarala

new window like Figure 5.4 will be displayed. This is the target
setting window and the setting panels that appear in the Target
Settings window depend on the operating system or chip family of
the build target and the programming language used.

In the simple project the target hardware is the dragonball 68VZ328
and C is the programming language as shown in Figure 5.4

New target setting could be created to suit the needs of the
development. Refer to the Metrowerk CodeWarrior IDE user guide.

Figure 5.4 Setting the Target Debugger

imvezpd_dbg Settings
|E Target Zettings Panels |E Target Settings

= Target i
- Target Bethngs Target Name: I'v'zpd_dh_g
o Bocess Paths : :
. Build Extraz LmkzI:IEmhedded B2K Linker
- Runtime Settings PIE-].'i.‘ﬂl{.EIZII'IDnE
. File Mappings _
o Soure Trees Pu:ust—hnlwr:lﬂcunﬂ
- MCAEor Target Chatput Divectory:
= Language Settings

- CIC++ Language {Project} _ Choose |
e I+ Warnings
. MBBK Lzmmbler —
= Code Generation
w (3lobal Optimizations
- ELF Disazembler
- MCBE8e: Procesmor
= Linker

BatchE uimer PDS‘tL...LI

LefLed L]

¥ Save project entries vsing relative paths

Factory Settings Eewert Import... | Export... |

ok | camet | i |

Making and Running the Program

Select the desired target and then click on the "Make" icon as shown
in Figure 5.5.

PPG-82 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬁ Developing a New Application

frem Motarola Building An PPSM-GT Application

Figure 5.5 Making the program

{ @ testing. mep

Ilﬁ vepd_dbg j E @ =
Files | Link Order | Targets |

| Code | Data |ﬁ:|‘~ﬁ [=
nfa na e =~

After successful compilation and link, all the red check marks on the
left-most column will disappear, indication a successful update. The
program will be generated in the specified location.

With the "Connection Settings" in the project settings mentioned in
the previous section properly configured and the physical serial
connection to the ADS properly set up, press the "Run™ icon and
download the application to the ADS and debug the program.

After successfully compiling this project, the output file can be
downloaded to the actual hardware—for example, the
MC68VZ328ADS board—if it is connected to the host machine. The
connection settings might need to be changed under the Debugger/
Connection Setting option in the project setting panel.

Building An PPSM-GT Application

This section provides a step by step guidances for building an
application using PPSM-GT library with the smallest possible
PPSM-GT application “Hello World”. The application specification
is as specified in Application specification, and could be used as the
building block for more complex application.

Application specification

The application is to display a bitmap and a string on the LCD
screen as shown in the Figure 5.6 . As the icon button on the touch
screen is touched, the icon button will be inversed and the text
“Hello World” will be displayed.

PPSM-GT User Guide PPG-83

ats
Developing a New Application f“mgitﬂln"ﬁ

Designing the “Hello World” application. from Metarala

Figure 5.6

Display of the sample program as the icon is dragged/
undragged .

Click icon Click icon

Hello World

Print Print

Clear Clear

Designing the “Hello World” application.

The “Hello World” is designed and developed using the typical
flow for creating a PPSM-GT application as shown in Figure 5.7.
There are seven steps in this typical flow and the steps varies with
the complexity of the application. For example, more tasks, graphic
contexts, and input contexts might need to be created to support
more complex application. In addition, multiple applications may
also be required instead of a simple application as shown in this
example.

The code example of the “Hello World” application is attached for
reference in Source Code Of Hello World

PPG-84

PPSM-GT User Guide

““Digital DNA

from Moetarola

Developing a New Application
Designing the “Hello World” application.

Figure 5.7

Typical Flow for creating an Application with a Task an Panning
Screen

~

Create an application, AppCreate()

v

~

Create atask, KnlCreateTask()

y

~

Create a GC, AppCreateGC()

v

~

Bind GC to Task, KnlBindGC()

v

Q Bind Panning Screen, AppBindPaninfo()

v

~

Create an |C if necessary

v

~

Execute the first task, AppSwitch()

Create an application using AppCreate()

Inside the main routine which is the entry point of the application
program. User has to create their applications by using the below
API.

/* To create an application */

i f (AppCreate(&appldl, nanel, 0, 0, 0, 0, O,
3000) != SYS_XK)

{

}

return(SYS _ERR);

PPSM-GT User Guide PPG-85

ats
Developing a New Application f“mgitﬂln"ﬁ

Designing the “Hello World” application. from Metarala

Create a task using KnlCreateTask()

Then user has to create the corresponding task for the application.

/* To create a task */
i f (Knl CreateTask(&t askl dol, (P_VA D) Test, nanel,
3000, 1, SUPERVI SOR_ MODE) != SYS (K)
{

}

Create a graphic context using GpxCreateGC()

return(SYS _ERR);

User can create their Graphic Context with the a panning screen
attached.

/* To create graphic context with a panning
screen */
AppCreat eGC(&gcl d1, 160, 240);

Bind the Task to Graphic Context with KnIBindGC()

The created Graphic Context should attached to the corresponding
task where the helloworldld is the ID number of the task and
helloGCld is the ID number of the created Graphic Context.

/* To bind a graphic context I D which is created
before to the Hell owrld task.*/
i f (Knl Bi ndGC(taskld0l, gcldl) != SYS OK)

{

}
Bind App to Panning Screen with AppBindPaninfo()

return(SYS_ERR);

User can obtain the panning screen ID number by the API
GpxGetPaScreen. With the panning screen ID number, user can
attach it to the application.

/* bind the sane panni ng screen and panni ng i nfo.
to the application */

PPG-86

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬁ Developing a New Application

from Motarcla Designing the “Hello World” application.

i f (GoxGet PanScreen(gcldl, &screenl) != SYS (K)

{
return(SYS_ERR);

}
i f (AppBi ndPanl nf o(appl d1, screenl) != SYS (K)
{

}
Create IC for helloWorld task

return(SYS_ERR);

User can create their Input Contexts and active areas and make
initialization like the below codes:

/* Create IC for hellowrld task */

PenCr eat el C(&gPenl Cl d) ;

/* To init the input context */

Penlnitl C(gPenl Cld, taskldO0l, 0, PEN 32HZz, 1,
1, BLACK);

/* Set ring buffer size for pen event handling
*/

PenSet Ri ngBuf f er (appl d1, 6000);

/* To insert the input context to the front of
an i nput context

list under the application context */
AppAddIl C(appl d1, gPenl Cld);

Start the task with AppSwitch()

With all the stuffs created, user can start running the task by the API
AppSwitch. For a usual PDA application, the first task should be a
menu task.

/* Switch to the hellowrld application */
AppSwi t ch(appl d1);

Inside the first task routine

Inside the first calling task, the user should initialize the LCD screen
and make calibration to the input pen if the hardware is present.
Like most typical PPSM-GT task, there is a event wait loop at the

PPSM-GT User Guide PPG-87

ats
Developing a New Application f“mgitﬂln"ﬁ

Designing the “Hello World” application. from Metarala

end of the routine to wait for event for that task. Figure 5.8 shown
the typical task flow chart.

To enhance the understanding, the codes below is provided to
highlight the events performed by the task:

/* Clear the screen and performinput pan
cal i bration*/

GoxFi Il Screen(WHI TE) ;

PenCal i br at e(TRUE) ;

Then user can put their own codes to create those necessary
resources and make initialization.

Finally, user should add an event get loop to grasp the input event
for the corresponding event processing. For example, the events
could be EVT_PEN_ICON_DRAG, EVT_PEN_ICON_DRAG_OUT,
EVT_PEN_ICON _TOUCH, EVT_PEN_ICON_UP ... etc.

/* Event Get Loop to check the event for
processing */
/* Get interrupt */
while (1)
{
switch(Evt Get())
{
case EVT_PEN | CON_DRAG
case EVT_PEN | CON_DRAG _QUT:
case EVT_PEN I CON_TOUCH:
pEvent = EvtGet Event();
PenCet Ar eal dFr onEvent (pEvent ,
&ar eal d) ;
PenCet Ar eaPos(areald, &Src, &ySrc,
& Dest, &yDest);
GoxI nvRec(xSrc, ySrc, xDest,

yDest);
br eak;
case EVT_PEN_| CON_UP:
/* Free the nmenory occupi ed by the
event */

pEvent = EvtGet Event ();

PPG-88

PPSM-GT User Guide

als
f‘_mgitﬂlnﬂﬁ Developing a New Application

from Motarcla Designing the “Hello World” application.

PenCet Ar eal dFr onEvent (pEvent, &areal d);
PenCet AreaPos(areal d, &Src, &ySrc,
& Dest, &yDest);
Goxl nvRec(xSrc, ySrc, xDest, yDest);

if(areald == printld)
{
/* print hello world */
Typi ng(DEFAULT _FONT,
REPLACE_STYLE, BLACK, STR XSRC, STR_YSRC, 16,
(P_TEXT) hel | oWor 1 dTxt) ;
}

el se if(areald == clearld)
{
[* Clear hello */
GoxSet Col or (WHI TE) ;
GoxSet St yl e(REPLACE_STYLE) ;
GoxFi | | Rec(STR_XSRC, STR_YSRC,
STR _XDEST, STR _YDEST);

}

def aul t:
br eak;
}

PPSM-GT User Guide PPG-89

Developing a New Application :;::I:ﬁgitﬂlnuﬁ

Summary from Muotonola

Figure 5.8 Typical flow for User routine to handle pen inputs

User App)
Init local variables I

Create input context for pen input with PenCreatel C()

Init Input Context with PeninitlC()

Create active area with PenCreateArea()

Init active area with PenlnitArea()

Add active areato Input Context PenAddAreaT ol C()

—> Event Loop

Summary

This chapter explains the two development environments that the
PPSM-GT is using. It also provide basic information on developing
a simple PPSM-GT application.

PPG-90 PPSM-GT User Guide

als
f‘_mgitﬂlnﬂﬁ Developing a New Application

frem Motarola Code Examples

Code Examples

Listing 5.2 Hello world makefile

HAHBHHHHHIEH R B HHHHHEH B R R B HEHEH R B
#

Makefile for Hell oWwrl d

#

HHHHH R HH R R R R R R R R R R A

RES DI R=.

NAVE = Sanpl e

SYSDIR = c:\sds74\1i b68000\ i ncl ude
LIBDIR = c:\sds74\1i b68000
PPSMDI R = c: \ ppsngt\

c
PPSVEZLI B = c:\ppsngt\|libvz328
PPSMDEV = c:\ ppsngt\ devi ce\ vz328\ skel dev

OBJSFI LE = objs # indirect obj file nane

I NCDI R = $(PPSMDI R) \ I NCLUDE
SRCDI R = .\ SOURCE

OBJDIR = .\ 0BJ

DEFAULT =

OBJ = $(OBIDIR)\test.o

PPSMLI B = $(PPSMEZLI B) \ ppsn2. a $(PPSMDEV) \ skel dev2. a

DEF = $(DEFAULT) -1$(INCDIR) -1 .\INCLUDE
CCOPT = -f -0Og -DPI XEL_2

ASOPT = -f

CC = cc68000 $(CCOPT)

ASM = as68000 -V 68000 -1$(SYSDIR) -I1$(INCDR) -f
LINK = linker -y

#Downl oad versi on
$(NAME) . out: $(0OBJ) $(NAME). spc $(PPSM.I B)

PPSM-GT User Guide PPG-91

ats
Developing a New Application f‘_mgitﬂln"ﬁ

Code Examples frem Metarola

$(LINK) -F objs -E errs -0 $(NAME).out -f $(NAME). spc

Cfiles
$(OBIDI R)\ Sanpl e. 0: $(SRCDI R)\ Sanpl e.c $(1 NCDI R)\ ppsm h $(CC)
$(SRCDIR)\ Sanple.c -E errs $(DEF) -0 object=%$*.0

Listing 5.3 Source Code Of Hello World

/

R I S S S S S b S I S I S S S I A S S R R S I b S S S I I S S S S

********/

This is the source code of a sanple application. There are a total
of 2 files provided in the appendix test.c and test.h. The files
could al so be found in the sanple directory in the PPSM GI' CDROM
This appendi x is intended to clarify your understanding in
bui l ding an application with PPSM GI. You can use this sanple
programas a starting point for your application.

/

R I I S S S b b S I S I S R S S b S S b R R I I I S S S S S S

********/

[* test.c
*/
/

khkhkkhkkhkhkhkkhkhkhkhkhkhhkhhkhhkhhkhhkhhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhhhkhkhhhkhkhhkhkhkhhkhkhkikhkhkhk*x

kkkkkkkkikkikkkkkik%k

cC MODULE FI LE

(c) Copyright Mtorola Sem conductors Hong Kong Limted 2000-
2001
ALL RI GHTS RESERVED

khkhkkhkkhkhkhkkhkhkhkhkhkhhkhkhkhhkhhkhhkhhkhhkhkhkhhhkhkhhhk khkhkhkhkhhhkhkhhhkhkhhhkhkhhhkhkhhkkhkhx*x

kkkkhkkhkhkkhkhkikkkikhkx%x

Project Name : Portabl e Personal System Manager GT version 1.1

Project No. : PDAPSM4
Title :
Fil e Nane : test.c

PPG-92 PPSM-GT User Guide

Developing a New Application
Code Examples

““Digital DNA

from Moetarola

Last Modified: May 29, 2001

Descri ption
t he procedure

This is a very sinple sanple programto denostrate

to wite a PPSM GI' program The programw | |

di splay 2 text icons,

when user selects the Print icon, "Hello Wrld" is
di spl ayed on
LCD, when Clear iconis selected, the "Hello Wrld"
string will be
cl ear ed.
Caut i ons . NA

kkhkkkhhkkhkkhhkkhkhkhhhkhhkhhhkhhkhkhhkhhkhkrhkhhhkhhkhkhhkhhkhkrhkhhkhkhhkhhkhkkhhkhkikkhhkhkkikkikhkki*k*%x

*****************/

#i ncl ude <CS. H>

#i ncl ude "test.h"

mai n(voi d)

{

TASK | D t askl dO1
APP_|I D appl dl
cC ID gcl di;
SCREEN I D screenl;
STATUS st at us;
TEXT nanel[] = {"T, e, s, "t’, "1, 0};

/* To create an application */

i f (AppCreate(&appldl, nanel, 0, 0, 0, 0, 0, 3000) != SYS K

{

return(SYS _ERR);

}

/* To create a task */

i f (Knl CreateTask(&t askl d01
SUPERVI SOR_MODE)

(P_VvA D) Test, nanel, 3000, 1,

| = SYS_OK)

PPSM-GT User Guide

PPG-93

ats
Developing a New Application f“mgitﬂln"ﬁ

Code Examples frem Metarola

{
return(SYS_ERR);

}

/* To create graphic context with a panning screen */
AppCr eat eGC(&gcl d1, 160, 240);

/* To bind a graphic context ID which is created before to the
Hel | oWorl d task. */
i f (Knl Bi ndGC(taskld01l, gcldl) !'= SYS (K)

{
}

/* bind the same panning screen and panning info. to the
application */
i f (GoxCGet PanScreen(gcldl, &screenl) != SYS K)

return(SYS _ERR);

{
return(SYS _ERR);
}
i f (AppBi ndPanl nf o(appl d1, screenl) != SYS (K)
{
return(SYS _ERR);
}

PenSet Ri ngBuf f er (appl d1, 6000);

PenCr eat el C(&gPenl Cl d) ;

Penlnitl C(gPenl G d, taskldOl, O, PEN _32Hz, 1, 1, BLACK);
AppAddIl C(appl d1, gPenl Cld);

/* Swmtch to the hellowrld application */
AppSwi t ch(appl d1);

return,
}
void Test(void)
{
/* Active area |Id */
u32 printld, clearld;

PPG-94 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬁ Developing a New Application

frem Motarola Code Examples

/* variable for EvtGet() */

AREA |1 D ar eal d;
P_EVENT pEvent ;
S16 xSrc, ySrc, xDest, yDest;

GoxFi | | Screen(WHI TE) ;
PenCal i br at e(TRUE) ;

[* print title */
Typi ng(DEFAULT_FONT, REPLACE_STYLE, BLACK, TITLE XSRC,
TITLE_YSRC, 16, (P_TEXT)titleTxt);

/* Create a button to print Hello World */

Textl con((P_U32) &rintld, gPenlCld, | CON_XSRC, | CON_YSRC,

| CON_WF, | CON _HT,
DEFAULT_FONT, (P_TEXT) pri nt Txt) ;

/* Create a button to clear Hello World */
Text I con((P_U32) &l ear1d, gPenl Cld, | CON_XSRC,
| CON_YSRC+l CON_HT+I CON_COFFSET, | CON_WI, | CON_HT,
DEFAULT_FONT, (P_TEXT) cl ear Txt) ;

/[* Get interrupt */
while (1)
{
switch(EvtGet())
{
case EVT_PEN | CON_DRAG
case EVT_PEN_| CON_DRAG _QUT:
case EVT_PEN I CON_TOUCH:
pEvent = Evt Get Event();
PenCet Ar eal dFr onEvent (pEvent, &areal d);
PenCet AreaPos(areald, &xSrc, &Src, &xDest,
&yDest) ;
Goxl nvRec(xSrc, ySrc, xDest, yDest);
br eak;

case EVT_PEN_ | CON_UP:
/* Free the nmenory occupied by the event */
pEvent = Evt Get Event();
PenCet Ar eal dFr onEvent (pEvent, &areal d);

PPSM-GT User Guide

PPG-95

ats
Developing a New Application f“mgitﬂln"ﬁ

Code Examples frem Metarola

PenCet AreaPos(areald, &xSrc, &Src, &xDest,
&yDest) ;
GoxI nvRec(xSrc, ySrc, xDest, yDest);

if(areald == printld)
{
/* print hello world */
Typi ng(DEFAULT_FONT, REPLACE_STYLE, BLACK,
STR_XSRC, STR YSRC, 16, (P_TEXT)helloWrl dTxt);

}
el se if(areald == clearld)
{
/* Clear hello */
GoxSet Col or (WHI TE) ;
GpxSet St yl e(REPLACE_STYLE) ;
GoxFi I | Rec(STR_XSRC, STR_YSRC, STR_XDEST,
STR_YDEST) ;
}
defaul t:
br eak;
}
}
}
Ul6 Strlen(P_TEXT str)
{
Ul6 | en=0;
while (str[len])
| en++;
return |en;
}
/ *
* Prints out nessage(a row only) on the screen start at (xSrc,
ySrc)
*/

voi d Typing(U3 font, U3 style, U8 greylev, Ul6 xSrc, Ul6 ySrc, U8
bitLen, P_TEXT str)
{

PPG-96 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬁ Developing a New Application

frem Motarola Code Examples

Ule6 | en;
U32 tld;

/* <create the text tenplate */
TxtCreateTnplt(&t1d);

/* find out the length of the nmessage and print it out */

i f(bitLen == 8)

{
if (len = strlen((P_U8)str))
{
Txt SetupTnplt(tlid, font, style, greylev, xSrc, ySrc,
len, 1);
Txt Map(tld, EIGHT_BIT, (P_U8)str, len);
}
}
el se
{
if (len = Strlen(str))
{
Txt SetupTnplt(tlid, font, style, greylev, xSrc, ySrc,
len, 1);
Txt Map(tld, SIXTEEN BIT, (P_TEXT)str, len);
}
}

Txt Del eteTnpl t (t1d);

/* Create an icon with text */
STATUS Textlcon(P_U32 areald,ICIDicld,Ul6 xSrc, Ul6 ySrc, Ul6
wi dt h, U16 hei ght,Ul6 font, P_TEXT nessage)

{
Ul6 xDest , yDest;
Ul6 X, Yy, Sizex, sizey;
ul6 | en;
U32 tld;
STATUS ret,;

PPSM-GT User Guide PPG-97

Developing a New Application
Code Examples

““Digital DNA

from Moetarola

#i fdef PIXEL_4
COLOR |ight = GREYS6;
COLOR dark = GREY10;
#el i f defined(Pl XEL_2)

COLOR light = LI GHT_GREY;
COLOR dark = DARK GREY;

#el se
COLOR light = WH TE;
COLOR dark = BLACK;
#endi f

xDest
yDest

XSrc + wi dth;

ySrc + hei ght;

if ((xDest > GpxGCetDisplayWdth()) || (yDest >
GoxGet Di spl ayHei ght())) return SYS ERR;

PenCr eat eArea(areal d);

Penl ni t Area(*areald,
0, 1);

r et =PenAddAr eaTol C(i cl d,

Gox Set Col or (BLACK) ;

GoxSet St yl e(REPLACE_STYLE) ;

ySrc,

*areal d);

xDest, yDest, | CON_AREA, O,

r et =GoxDr awRec(xSrc, ySrc, xDest, yDest, 0) ;
ret =GoxDr awRec(xSr c+3, ySrc+3, xDest - 3, yDest - 3, 0) ;

GpxSet Col or (li ght);
GpxSet Col or (BLACK) ;

ret =GoxDr awLi ne(xSrc+1, ySrc+1, xSrc+2, ySrc+2, 0) ;

GpxSet Col or (dar k) ;

GoxSet St yl e(REPLACE_STYLE) ;

ret =GoxDr awLi ne(xSrc+1, yDest-1,
ret =GoxDr awLi ne(xDest -1, ySrc+1,
ret =GoxDr awLi ne(xSrc+2, yDest- 2,
ret =GoxDr awLi ne(xDest -2, ySrc+2,

Txt CreateTnpl t (&t 1d);

len = Strl en(nessage);
i f ((font==SMALL_NORMAL_FONT)

{

xDest-1, yDest-1, 0);
xDest-1, yDest-1, 0);
xDest-2, yDest-2, 0);
xDest-2, yDest-2, 0);

(font ==SMALL_| TALI C_FONT))

PPG-98 PPSM-GT User Guide

“'Dl italDNA

Developing a New Application

Code Examples

from Moetarola
Sizex = 8;
si zey = 8;
}
el se
{
sizex = 16;
sizey = 16;
}

/* Calculate the co-ordinate for fonts */
X=xSrc+((xDest-xSrc)-|en*sizex)/ 2+2;
y=ySrc+((yDest-ySrc)-sizey)/ 2+2;

Txt SetupTnpl t (t1d, font, OR_STYLE, BLACK, x,y, len, 1);
Txt Map(tld, SIXTEEN BIT, (P_TEXT)nessage, |en);

Txt Del eteTnpl t (t1d);

return SYS (X
} /* Textlcon */

/* lcon coordi nate */

#define Tl TLE_XSRC
#define TI TLE_YSRC

#define |1 CON_XSRC
#define |1 CON_YSRC
#define | CON W
#define | CON_HT
#def i ne | CON_OFFSET

#defi ne STR _XSRC
#define STR_YSRC
#def i ne STR_XDEST
#def i ne STR_YDEST

#def i ne DEFAULT_FONT

/1 TEST.H
const TEXT

35
10

45
130
70
24
10

33
60
128
69

SMVALL_NORVAL_FONT

titleTxt[]={"C,’'I",’i’,’ ¢,k

i, ’e o, 'n, 0},

const TEXT
const TEXT

print Txt [
cl ear Txt |

15{
1=

PPSM-GT User Guide

PPG-99

ats
Developing a New Application f‘_mgitﬂln"ﬁ

Code Examples frem Metarola

const TEXT hel l oWor I dTxt[]={"H , e ,’ |, 1", 0" ,’
’,’W,’O’,,r,,,l,,,d,,O};

/'l Function prototype

void Test(void);

Ul6 Strlen(P_TEXT str);

void Typing(U8 font, U8 style, U8 greylev, Ul6 xSrc, Ul6 ySrc, U8
bitLen, P_TEXT str);

STATUS Textlcon(P_U32 areald,ICIDicld,Ul6 xSrc, Ul6 ySrc, Ul6

wi dt h, U16 hei ght,Ul6 font, P_TEXT nessage);

// d obal variable
ICID gPenlCd;

PPG-100 PPSM-GT User Guide

ats
f‘_mgitﬂlnﬂﬁ PPSM-GT Configuration Mechanism

from Moetarola

PPSM-GT Configuration
Mechanism

PPSM-GT supports variant target hardware configuration and
third-party fonts through modifying its device drivers. The purpose
is to allow developers and designers to customized PPSM-GT to suit
their hardware. All the files mentioned in the following sections are
stored in the device driver directory and are provided for
customization. PPSM-GT provide the system call and developers
and designers have to provide the content of the routoines.

These routines are included to allow the developers and designers to better
customize the operation of the various devices. Thisimproves flexibility,
helping users to customize their systems.

Defaults values are often provided as a reference and developers
and designer can use them as it is or modified them to their
hardware needs. The following are the type of device driver
available:

= Font driver(font.c)
LCD Device Driver (Icddev.s)
Pen input driver

System bootup driver (boot.s)

System interrupt handling drivers

System power control driver
IrDA driver

PPSM-GT User Guide PPG-101

als
PPSM-GT Configuration Mechanism f“[ﬁgimln"ﬁ
Font driver(font.c) from Metarala

Font driver(font.c)

The font driver provides PPSM-GT developers and designers to
support multiple font libraries. PPSM-GT support a set of default
fonts as shown in Listing 6.2. Developers and designers could add
to the font selection if they are able to obtain other fonts. The
structure of the font driver consists of 2 elements: a data structure
and two functions.

Font Driver Structure

A data structure type FONTLIB is required to store information
about the font libraries being used.

The FONTLIB type is defined as follow:

Listing 6.1 Font structure

t ypedef struct
{
P_U8baseAddr ;
U16f ont Type;
U16f ont W dt h;
U16f ont Hei ght ;
Ul6bi t mapSi ze;
} FONTLI B, *P_FONTLI B;

where:
1. baseAddr is the base address of the font bitmap library

2. fontType is the font type to be used for font look-up or
generation

3. fontWidth is the width of the font bitmap of a character in
number of pixels

4. fontHeight is the height of the font bitmap of a character in
number of pixels

5. bitmapSize is the amount of memory occupied by one
character font bitmap in unit of bytes

PPG-102 PPSM-GT User Guide

afs
"l‘[hgltalnuﬁ PPSM-GT Configuration Mechanism
from Motonoda Font Library or Font Generation Engine Initialization

Assuming there is font bitmap or font generation engine available
for each font type, the default font library information data
structure could be initialized as follow:

Listing 6.2 Default PPSM Font library

FONTLI B fontLib[] =
{
{(P_UB) SMALL_ENG FONT_ADDR, SMALL_NORMAL FONT, 8, 10, 10},
{(P_UB) SMALL_ENG FONT_ADDR, SMALL_I TALIC FONT, 8, 10, 10},
{(P_UB) LARGE_ENG FONT_ADDR, LARGE NORMAL_ FONT, 16, 20, 40},
{ (P_UB) LARGE_ENG FONT_ADDR, LARGE | TALI C_FONT, 16, 20, 40},
b

The fontLib data structure above are indexed into by the
corresponding PPSM-GT font types.

Font Library or Font Generation Engine
Initialization

void Fontlnit(void) | This function initializes the font libraries
and font generation engines, if applicable.
This function will be called at PPSM
initialization time.

NOTE Font bitmaps libraries usually do not require any initialization,
whereas font generation engines do. Therefore, when applicable,
this driver function should call an initialization routine provided by
the font generation engine.

Since PPSM does not include a specific font generation engine, this
driver function is default to perform no operation.

PPSM-GT User Guide PPG-103

als
PPSM-GT Configuration Mechanism f“[ﬁgimln"ﬁ
Font Accessing from Metarala

Font Accessing

P U8 This function returns the font bitmap of a
FontGetCharAd | character based on the given font attributes
dr(P_FONTATTR | and character code.

pFont, TEXT code)
Font lookup or generation algorithms are

assumed to be provided by the font supplier.
This driver function should call the lookup
method for the corresponding font type, to
get the font bitmap of the character described
by the font attributes.

Since PPSM-GT includes 8 x 10 and 16 x 20
ASCII English fonts, the lookup method for
mapping ASCII codes to English bitmap
fonts are provided. The font types that use
this method are:

- SMALL_NORMAL_FONT
e SMALL_ITALIC_FONT
- LARGE_NORMAL_FONT
- LARGE_ITALIC_FONT

Parameters

pFont pointer to a FONTATTR structure which
describes the font

code character code for which the font lookup or
generation is performed

Return

N/A pointer to the bitmap of the character

specified by the given character code (the
bitmap is represented by unsigned 8-bit
values

PPG-104 PPSM-GT User Guide

als
f“[ﬁgit‘alﬂ"ﬁ PPSM-GT Configuration Mechanism
from Motarcla LCD Device Driver (Icddev.s)

LCD Device Driver (Icddev.s)

PPSM-GT allows developers to customize the LCD Driver
according to the developers’ preference. The file that contains the
LCD information is lcddev.s.

Three functions are needed in this driver for LCD controller
initialization to drive the LCD panel being used in the system. Only
one of the following initialization functions will be called according
to the graphics mode desired. Users must modify them for their
LCD panel.

1 bit/pixel Initialization

void _LCDDevl1(void) | This function initializes the LCD
controller for 1 bit/pixel graphics
mode. Application programmers may
add whatever statement to initialize
the LCD module.

2 bits/pixel Initialization

void _LCDDev2(void) | This function initializes the LCD
controller for 2 bits/pixel graphics
mode. Application programmers may
add whatever statement to initialize
the LCD module.

4 bits/pixel Initialization

void _LCDDev4(void) | This function initializes the LCD
controller for 4 bits/pixel graphics
mode. Application programmers may
add whatever statement to initialize
the LCD module.

Please refer to the appropriate integrated processor user’s manual
for information on the LCD controller and the registers’ definitions.

PPSM-GT User Guide PPG-105

als
PPSM-GT Configuration Mechanism f“mgitﬂln"ﬁ

Pen input driver

from Moetarola

Pen input driver

There are two part of the pen input driver.

= Pen device driver—It reads the raw coordinate data from the
touch panel through the A/D convertor and SPI. There are four
functions in this driver. They are Pen Initialization, Pen
Interrupt Enable, Pen Interrupt Disable and Pen Read Device.

= Pen calibration driver—It calibrates the touch panel and
converts the raw coordinate data to LCD coordinate data.

Users must modify the pen device driver for their A/D convertor.

Users must modify the pen calibration driver if their touch panel is
very different from the one that comes with ADS broad.

Pen device driver

The pen device driver is mainly constructed by the two files
pendev.c and pendev.h.

pendev.h
It is the header file for pendev.c.
pendev.c

The pendev.c file performs the following functions: Pen
Initialization, Pen Interrupt Enable, Pen Interrupt Disable and Pen
Read Device.

void PenDevlInit(void) This function initializes SPI
and all the ports that are used
for pen sampling.

void PenlrptEnable(void) This function enables the Pen
Interrupt, PENIRQ, for pen
down detection.

PPG-106

PPSM-GT User Guide

ats
III"'\'“I:Hgi'tfal,[]H,ﬂ: PPSM-GT Configuration I\{Iechanigm
frem Motarola Pen calibration driver

void PenlrptDisable(void) This function disables the Pen
Interrupt, PENIRQ.

STATUS PenReadDevice(P_S16 | This function reads the raw
X, P_S16y) coordinate from the touch
panel through the A/D
convertor and SPI.

Pen calibration driver

The Pen calibration driver mainly performs the following functions:
PutLogo, CrossSetup, ConvertLCD, ConvertLCDX, ConvertLCDY,
CalibratePen and SetFactors. The driver is constructed by the two
files peninit.h and peninit.c.

peninit.h

It is the header file for peninit.c.

peninit.c
void PutLogo() This function is used to display
the Motorola logo on the LCD
display.

static void CrossSetup(void) | Draw a set of crosses on the
screen for calibration purpose.

static S16 ConvertLCD(U16 Convert touch panel co-ordinate
value, U32 factor, U32 offset) | to LCD coordinates.

S16 ConvertLCDX(U16 Convert touch panel x co-
value) ordinate to LCD x coordinates.
S16 ConvertLCDY(U16 Convert touch panel y co-
value) ordinate to LCD y coordinates.
STATUS CalibratePen(U8 Calibrate the touch panel with
logoFlag) the screen. This routine prints

out two crosses, one at the top-
right corner and the other at the
bottom-left corner. The user must
press on the crosses to start the
system.

STATUS SetFactors() Set touch panel to LCD
coordinate scaling factor.

PPSM-GT User Guide PPG-107

als
PPSM-GT Configuration Mechanism f“[ﬁgimln"ﬁ
System bootup driver (boot.s) from Metarcla

System bootup driver (boot.s)

The system boot strap code is responsible for initializing the chip’s
internal devices and mapping chip-selects for ROM and RAM of the
hardware system at boot time. Different hardware memory
configurations and systems require different boot strap code. An
example boot strap code is included in the PPSM-GT device driver
library to demonstrate how to boot strap and initialize the chip-
selects for the MC68VZ328ADS system.

System interrupt handling drivers

The interrupt handler device driver allows users to install their own
interrupt handlers for certain kinds of interrupts.

Users can add additional interrupt handlers besides the default
handler provided by the system in the device driver to perform
exception handling. Since PPSM-GT does not manage or monitor
these user-defined handlers, be careful when installing them.

There are six handlers that can be used. They are Devirpt6Handler,
DevirptsHandler, Devirpt4Handler, Devirpt3Handler,
Devlirpt2Handler and DevlirptlHandler.

A single argument is passed into the interrupt handler. This
argument is the value of the interrupt status register.

System power control driver

The system power control driver contains the following functions:
PortEnterldle, PortExitldle, PortEnterDoze, PortExitDoze,
PortEnterSleep and PortExitSleep.

The functions in this driver are for controlling devices when going
into and out of Normal, Idle, Doze, and Sleep mode. Users must add
their own device-controlling routines if any of the devices are used
in a system that needs to be switched on/off when going into/out
of these modes.

PPG-108 PPSM-GT User Guide

““Digital DNA

from Moetarola

PPSM-GT Configuration Mechanism
IrDA driver

IrDA driver

Table 6.1

NOTE

To support different manufacturers’ IrDA transceivers, PPSM-GT
provides the function calls shown in Table 6.1 to enable developers
to program the IrDA transceivers according the manufacturers’
specification.

These functions are called by the Framer or IrLAP processes, and
developers have to provide the program codes for programming the
IrDA transceivers according to manufacturers’ specifications. The
functions are stored in the PPSM-GT device driver directory, and
developers have to use the same name syntax to effect the function
call.

IrDA Transceiver Functions

Function name Description

STATUS Called to initialize the specific
IrdInitTransceiver(void) | transceiver used in the system.
Called from the IRFRAMER_Init
function (which is built into the

stack).
STATUS If a given transceiver has a
IrdShutDownTransceiver | shutdown capability, this function
(void) forces it to shut down. This is
ordinarily called by the upper layer
application.

The name function and the function prototype cannot be modified by
the manufacturer.

PPSM-GT User Guide PPG-109

ats
PPSM-GT Configuration Mechanism "‘[ﬁgitﬂlﬂ"ﬁ
IrDA driver from Muotarola

PPG-110 PPSM-GT User Guide

als
"l‘["‘gitaID"A ISR Routines Services

from Moetarola

ISR Routines Services

ISR Routines Services provides the interfaces for the User
application to the DragonBall Interrupt Controller.

Interrupt Software Request is used as a device driver interface
between the application and the hardware. It makes the drivers that
are built on the top of DragonBall’s interrupt controller
configurable. Figure 7.1 shows the interface of ISR with application
and the interrupt controller. The application gain access to the
hardware through the ISR services. The application use the ISR
service to configure the device driver, and the ISR services buffered
the application form directly servicing the real time interrupt.

This chapter is presented into the following broad topics:

* ISR Services Fundamentals

* Programming using the ISR services
» Code Example

PPSM-GT User Guide PPG-111

=

ISR Routines Services [ﬁgit‘alﬂ"ﬁ
ISR Services Fundamentals from Moetorola
Figure 7.1 ISR interfacing diagram
Application

Configuring device driver
thru Interrupt Software Request

Gtting correponding interrupt
Hand & from Interrupt

Softwere Request

Interrupt Contrdler

ISR Services Fundamentals

The PPSM-GT ISR services are hardware specific routines. The
current version of the ISR services works only with Motorola
M68VZ328 microcontroller. When using the PPSM-GT ISR routines
service, the input modules required by the APIs can be found in
Table 7.2 which shows the corresponding DragonBall-VZ interrupt
flags against the modules. System integrator and software
developer may request and assign handler to these interrupts
through the IsrRequest() API, and when the interrupt services is no
longer required, IsrRelease() API is used.

For each interrupt, only one handler can be assigned. The interrupt
has to be released before being assigned to another handler.

PPG-112

PPSM-GT User Guide

““Digital DNA

from Moetarola

ISR Routines Services
Configurable DragonBall-VZ modules

Table 7.1

DragonBall Interrupt Module

Modules

ISR_Module_FLAG

Emulator interrupt
Sampling timer
SPI1

IRQ5

IRQ6

IRQ3

IRQ2

IRQ1

PWM2

UART2

INT3

INT2

INT1

INTO

PWM1
Keyboard
Timer2

Real time clock
Watch dog timer
UART1

Timerl

SPI2

ISR_EMIQ_FLAG
ISR_SAM_FLAG
ISR_SPI1_FLAG
ISR_IRQ5_FLAG
ISR_IRQ6_FLAG
ISR_IRQ3_FLAG
ISR_IRQ2_FLAG
ISR_IRQ1_FLAG
ISR_PWM2_FLAG
ISR_UART2_FLAG
ISR_INT3_FLAG
ISR_INT2_FLAG
ISR_INT1_FLAG
ISR_INTO_FLAG
ISR_PWM1_FLAG
ISR_KB_FLAG
ISR_TMR2_FLAG
ISR_RTC_FLAG
ISR WDT_FLAG
ISR_UART1_FLAG
ISR_TMR1_FLAG
ISR_SPI2_FLAG

Configurable DragonBall-VZ modules

In DragonBall-VZ, some of the ISR modules have additional
features that allow it’s interrupt levels to be configurable from level
6 to level 1. Table 7.1 shows the list of DragonBall modules whose
interrupt levels could be configured using the IsrSetlrptLv() API.

PPSM-GT User Guide

PPG-113

ISR Routines Services
Programming using the ISR services

““Digital DNA

from Moetarola

Table 7.2

IsrGetlrptLv() and IsrislrptLv() are used for getting the modules
interrupt levels and checking whether the module’s interrupt is

configurable respectively.

Table showing DragonBall-VZ configurable modules

interrupt configurable
modules

ISR_Module_FLAG

SPI1
UART?2
PWM?2
Timer2

ISR_SPI1_FLAG
ISR_UART2_FLAG
ISR_PWM2_FLAG
ISR_TMR2_FLAG

Programming using the ISR services

Programming the ISR services, begin with requesting the interrupt
service routine with IsrRequest(). For example, the following are the
recommended steps to request for a UART interrupt if you are

expecting one.

1. Plan and design your interrupt handler. That is how you are
going to handler the UART interrupt when it occurred.

2. Use IsrIsInUse() to check whether the it is in use.

3. If not in use, then use IsrRequest() to request for the interrupt
else wait until interrupt is available.

4. When using IsrRequest(), you need to provide type of
interrupt requested by the module flag provided in Table 7.1
and the pointer to interrupt handler. Example 7.1 show how
to use IsrRequest for UART interrupt.

5. When done with interrupt, use IsrRelease() to release

interrupt.

PPG-114

PPSM-GT User Guide

““Digital DNA

from Moetarola

ISR Routines Services
Requesting the ISR

Requesting the ISR

STATUS IsrRequest(U32
module, PFIRTHANDLER
pflrptHandler, U32 arg)

It is the function to request,
configure and set the handler
of an interrupt. The following
are the input parameters
described :

< module -
ISR_Module_FLAG as
shown in Table 7.1

= pflrptHandler - Point to
ISR handler routine.

= arg - argument for ISR
handler if any

Releasing the ISR

STATUS IsrRelease(U32
module)

It is the function to release an
interrupt.

Getting the Current Interrupt level

U8 IsrGetlrptLv(U32 module)

It returns the current interrupt
level of an interrupt. "0"
means interrupt level is
configurable. "OXFF" means
interrupt is not available.

Checking the module interrupt level

U8 IsrisinUse(U32 module)

It tests if a module is in use.

Setting the Interrupt level

STATUS IsrSetlrptLv(U32
module, U8 irptLevel)

It is configures the interrupt
level of a module if it is
configurable.

PPSM-GT User Guide

PPG-115

als
ISR Routines Services f‘_mgitﬂlnuﬁ

Code Example frem Metarola

Code Example

Listing 7.1 Example of requesting an interrupt

VA D Uart Handl er (U32 arg)

/* Argunment "arg" is not used, but it nust be passed in */
/* Request UART interrupt, with a given handler and "0" */
/* as argunent "4" is ignored as the requested interrupt is */
/* not configurable */

i f IsrisinUse(ISR_UART_FLAG)
| srRequest (I SR_UART_FLAG (PFI RTHANDLER) Uart Handl er, 0);

/* Request UART interrupt, without a handler "4" is ignored */
/* as the requested interrupt is not configurable */

| srRequest (1 SR_UART_FLAG NULL, 0);

Listing 7.2 Example of releasing an interrupt

/* Rel ease UART i nterrupt */

| srRel ease(| SR_UART_FLAG) ;

PPG-116 PPSM-GT User Guide

““Digital DNA

from Moetarola

Section 4

Developing with System
Services

The chapters in this section help answer the question, “How do you
use the System Services to create a system?”” System Services are
essential services. Every PPSM-GT system need to use these services
to ensure proper operation. System Services set up the backbone for
the system and ensure that the system operates properly.

In this section, each chapter has three parts.

= The first part of each chapter discusses System Services
fundamentals. It introduces the concepts that must be
understood before using the services.

= The second part of each chapter explains the APIs—the
interfaces and functions of each API. For details on each API,
please refer to the PPSM-GT API reference document.

= The last part of each chapter consists of a short summary and a
code example that shows how to use the APIs. Please note that
the example mainly shows how to use a particular APl and is
not designed to address any specific problem. The examples
should be taken as a reference and should not be copied blindly.

The following are the chapters in this section:

= Chapter 8, “Kernel Services”—introduces the PPSM-GT Kernel
Services and explains how to use them to create tasks and
semaphores as well as get system information.

= Chapter 9, “Memory Management Services”—introduces
fundamental concepts regarding the PPSM-GT memory

PPG-117 PPSM-GT User Guide

““Digital DNA

from Moetarola

structure and explains how to malloc and realloc memory and
regions.

Chapter 10, “Power Management Services”—introduces PPSM-
GT power management and how to program to the system to

use idle, doze, and sleep modes. This chapter also provides APIs
for controlling 1/0 when entering and exiting the power modes.

Chapter 11, “System Application Services”—introduces PPSM-
GT Application concepts and explains how to use applications in
your system.

Chapter 12, “System Event Management Services”—introduces
the system events and explains how to use system events for
intertask communication.

Chapter 13, “Software Timer Handling Services”—introduces
the software timer and how to program and set software timers.

PPG-118

PPSM-GT User Guide

als
fl‘mgitalnHA Kernel Services

from Metorola Kernel Services Fundamentals

8

Kernel Services

The PPSM-GT Executive Kernel is a 32-bit multitasking kernel that
encompasses many components. This chapter is devoted to the
basic task services: creating a new task, starting an existing task,
terminating the requesting task, changing the priority of a given
task, and deleting the requesting task. There is also information on
semaphore and how semaphore could be used to control the
accessing of some shared resource. A code portion in which a task is
accessing such a resource is often called a "critical region."

This chapter is organized into the following sections:
= Kernel Services Fundamentals

e Programming using Kernel services

e Summary
= Code Examples

Kernel Services Fundamentals

This section discusses broad concepts related to kernel services. The
kernel executive is like the system control center. It controls the
execution of tasks based on task readiness and priorities. For tasks
that are ready to run, tasks with higher priorities are executed first.

Figure 8.1 shows the relationship between tasks, kernel services and
the kernel Executive. Tasks have no direct access to the kernel
executive. All tasks work through kernel services to access the
routines in the kernel executive, which are responsible for task
manipulation and kernel operation. The kernel services could be
broadly classified as APIs for the following:

e Task Manipulation

PPSM-GT User Guide PPG-119

=

Kernel Services [ﬁgit‘alﬂ"ﬁ
Task Manipulation frem Metarola
= Semaphores
= Special Functions
Figure 8.1 Kernel Block Diagram
- N w EAN ol o -]

K ernel Services I

Kernel Executive I

Task Manipulation

Tasks are essentially the basic units of execution for a real-time
application. Tasks must be created and maintained by the kernel.
Understanding the function of a task and its operation is useful
when designing the applications for the system.

Tasks are essentially a series of separate component programs that
can execute concurrently. Each task is a complete program that is
capable of independent execution. Each task has a segment of code
that it executes. Each task has its own private stack and its own local
data areas. There are dedicated memory segments in which the task
can keep procedure call parameters, return addresses, temporary
data, and similar variables that are not shared with other tasks.

In theory PPSM-GT sets no restriction on the number of tasks it can
support. However, in practice the number of tasks is determined by
the amount of system memory available.

As shown in Figure 8.2, all tasks have three components: task code,
a task stack, and a task description block.

PPG-120

PPSM-GT User Guide

$[ﬁgitﬂlﬂ"ﬁ Kernel Services

frem Motarola Task Manipulation

Figure 8.2 Task structure

Task Description
Block

T

Maintain by kernel Maintain by user

Task Part Description

Task code The task code is the set of processor instructions
that will be executed when the task executes.

Task stack The task stack is a region of RAM that is reserved
for the exclusive use of a single task; by default it

is 2048 bytes.
Task The task description block, or TDB, is a RAM data
description | structure maintained by the kernel executive for
block each task created. It contains information on the

task: its identity, priority level, and current active
graphics context as well as the current state of the
task.

Type of tasks

PPSM-GT supports two types of tasks: real-time tasks and time-
sliced tasks. Real-time tasks, sometimes referred to as prioritized
tasks, are executed as long as they have resources they need. Time-
sliced tasks, sometimes referred to as background tasks, are
executed only for a limited time—"quantum"—and then another
time-sliced task may run.

Both types of tasks have priority levels that are set upon creation.
There are 16 priority levels that PPSM-GT supports. The highest
level is 15 and the lowest is level 0. The lowest level tasks are
reserved by the kernel executive. A system integrator can only
create tasks with priority levels from 15 to 1.

PPSM-GT User Guide PPG-121

=

Kernel Services [ﬁgita"]"ﬁ'
Task Manipulation frem Metarola
Figure 8.3 PPSM-GT Task organization
Level 15 Real time task
Level ...
Level 10 Time dliced task
—_‘9 Level ...
o
=.
< Level 6 Real time task
Level ...
Level 1 Task D I Task E I Task F ITimeS”CGdtaSk
Level O

Figure 8.3 shows an example of how tasks are organized in PPSM-
GT. In Figure 8.3 task C and task G form one group of time-sliced
tasks at priority level 10, and task D, task E and task F form another
group of time-sliced task at level 1. Task A and task B are real-time
tasks. Priority level 0 is reserved for system idle tasks only.

The task priority level in PPSM-GT not only determines the
execution rights of the task; it also determines the type of task. In
PPSM-GT, if two or more tasks have the same priority, they will be
classified as time-sliced tasks.

Both real-time and time-sliced tasks execute until one of four
possible things happens:

1. The task completes its function and is self suspended or
terminated.

2. The task is waiting for an event to occur.
3. The task is suspended.
4. The task is interrupted by some higher priority task.

PPG-122

PPSM-GT User Guide

““Digital DNA

from Moetarola

Kernel Services
Task Manipulation

In addition, time-sliced tasks execute until the quantum expires.

It is beneficial to note that time slices are not precisely timed and
may be suspended or interrupted by real-time activities at any point
of time. Time slices are also perturbed by sliced tasks blocking
themselves. Therefore, time slicing should only be used when
timing is unimportant.

The Idle task

The idle task is a predefined system task in PPSM-GT. It has the
lowest priority in the system; there should be no other tasks that can
have a priority lower than or equal to the priority of the idle task.

The idle task will only run when all the other tasks are not ready.
PPSM-GT uses the idle task to perform some memory clean up and
power mode maintenance.

The idle task cannot be terminated or suspended by other tasks.
Task Transaction

Figure 8.4 shows the state transaction diagram of a task. Depending
on the nature of the system design, a task could change from one
state to another until it is finally terminated. Table 8.1 shows the
definition of each state of the task.

PPSM-GT User Guide PPG-123

als
Kernel Services ""I]igitaIDHA

Task Manipulation from Muotarola

Figure 8.4 Task transaction state diagram

Aditted .
TimedicedHigh priarity tesk override
M
Bt
Barngsupadd ad Bang suspededad Bangs|
esumed eUTed
Watingadsuspad Ary satecther
thenRuming
I/Oar evart gorpeion
Comm
Wat sargohare
Table 8.1 Meaning of each state
State Description
New A task is created and not ready to run.
Ready A task is ready to run.
Running A task is running. There is always only one in
a system.
Terminate A task is terminated.
Waiting A task is waiting for some 1/0 or events.

PPG-124 PPSM-GT User Guide

als
fl‘[ﬁgitalnHA Kernel Services

frem Motarola Semaphores
State Description
Suspend A task is suspended.
Waiting and A task is suspended and also waiting for some
suspend 170 or events.

Task Status

Every task has a task state. It can be NEW, TERMINATE, READY,
WAIT, RUN, SUSPEND, WAIT_AND_SUSPEND or
WAIT_SEMAPHORE. There is always only one running task in the
system. It is the highest priority ready-to-run task.

The WAIT status indicates that a task is waiting for an event (such

as 1/0) to happen. SUSPEND status indicates that a user explicitly
suspended a task. The user must explicitly resume the operation of
this task.

Multiple level of suspension

A task can be multi-suspended up to 7 levels. This is a cumulative
action such that if a task is suspended 5 times, it has to be resumed 5
times before it is active.

Semaphores

In most applications, tasks must share sets of data, such as a table
that is read by one task and updated by another. A second example
of shared data consists of the global variables within a non-
reentrant procedure that could be called by different tasks.

A segment of code in which a task is accessing some shared
resource is often called a "critical region™ with respect to that
resource. Not every reference to shared data forms a critical region.
A region is critical only if there could be harmful interaction
because of the sharing of the resource. For data, this means that
variables are both shared and alterable.

Shared resources must be protected against potentially harmful
interactions by permitting only one task at a time to enter a critical
region. In the example of sharing a common table, while the data is
being read from the table, other tasks that update the table should

PPSM-GT User Guide PPG-125

Kernel Services
Semaphores

““Digital DNA

from Moetarola

be blocked; while a task is updating the table, other tasks that need
to read data from the table should be blocked.

Critical regions must be protected by guaranteeing one-task-at-a-
time access. PPSM-GT uses a counting semaphore design to handle
the accessing of the critical region.

Kernel services enable a task to create, delete, signal and wait on all
semaphores. This allows a task to protect the access of the critical
region when required and to open up the access of the critical region
when protection is no longer required.

The basic steps for using the semaphore are as follows:
1. Create the semaphore with KnlCreateSemaphore().

2. Set the maximum and initial number of tasks that could use
the semaphore with KnlSetSemaphore().

3. Use the semaphore with KnlWaitSemaphore().

4. Release the semaphore when done with
KnlSignalSemaphore().

5. Delete the semaphore when it is not required with
KnIDelSemaphore().

Waiting for Semaphore

There are a few options while waiting for a semaphore. There is a
choice of queue sequence and wait duration. The wait duration
varies from “wait forever” to “no waiting.” When the no waiting
option is selected, the system checks whether the semaphore is
available. If it is not, the system continues executing the next
command.

The two queue options are described as follows.

Priority queue

For this queuing option, tasks wait for a semaphore in a queue
based on their priority levels. That is, if task A has a priority of 5 and
task B has a priority of 2, when a semaphore is available, the kernel
signals task A first. Figure 8.5 show the priority queue sequence.

PPG-126

PPSM-GT User Guide

als
"n‘-[h‘gitaID"A Kernel Services

from Metarcla Programming using Kernel services

Figure 8.5 Tasks queue up to wait for SIGNAL based on priority queue

Sargiore=0
TakID p| Hgetpiaity Hoes priaity |___
TakA | | TakB |
Ly Mctepiaity | p| Lone miaity
TeaskH TakZ
Thetadshaetowat wenthessmgahareis0.
FIFO queue

For this queuing option, tasks wait for a semaphore in a queue
based on FIFO (first in first out). That is, if task A is waiting for a
semaphore earlier than task B is, when a semaphore is available, the
kernel signals task A first.

Programming using Kernel services

Task Manipulation Services

Creating a Task

Function Description
STATUS It creates a task without
KnlICreateTask(P_TASK_ID arguments from a given

pTaskld, P_VOID pFunc, const function.
TEXT pName[], U32 stackSize, S8
priority, KNL_MODE mode)

STATUS It creates a task without
KnlICreateTaskWith(P_TASK_|I | arguments from a given

D pTaskld, P_VOID pFunc, const | function and allows user to
TEXT pName[], U32 stackSize, pass an unsigned integer
U32 arg, S8 priority, parameter into the task on
KNL_MODE mode) creation.

PPSM-GT User Guide PPG-127

Kernel Services

““Digital DNA

Task Manipulation Services frem Metarola

WARNING!

Both APIs create a task from a function at a memory location "Func"
with a stack size of "stackSize" and an assigned priority of "priority."
If a zero "stackSize" is given, the default value of 2048 bytes is used.
This is the minimum required memory for a task without any local
variables and sub-routine calls.

The mode parameter should be set at the system default value of
lll.ll

KnlCreateTaskWith() has an extra parameter that allows users to
pass an unsigned integer parameter into the task on creation.

In the main () routine, only the highest priority task—priority level
15—can be created. The system does not allow any lowest priority
task (priority level 0) to be created. The lowest priority task is solely
occupied by the idle task.

In normal operation, a task cannot create another task with a higher
priority. That is, if a task has a level 4 priority, it cannot create any
task with a priority level higher than priority level 4.

KnlCreateTask() and KnlCreateTaskWith() are not suitable to be
used in interrupt handling routines.

PPSM-GT supports dynamic task creation. System integrators and
software developers are free to create real-time tasks and time-
sliced tasks. PPSM-GT does not impose any restrictions on time-
sliced tasks. The flexibility and creativity is extended to developers.

In PPSM-GT, the only difference between a real-time prioritized task
and a time-sliced task is the priority. In other words, when two or
more tasks have the same priority level, they become time-sliced
tasks. System integrators and software developers are therefore
strongly advised to practice good programming control on the
creation of task. A time critical real-time task could become a time-
sliced task if there is another task with the same priority level.

PPG-128

PPSM-GT User Guide

als
-’n‘-[h‘gitaID"A Kernel Services

from Motarcla Task Manipulation Services

Getting and Changing Task Priority

STATUS Return the target task priority.
KnlGetPriority(TASK_ID

taskld)

STATUS Change the priority of the
KnlChangePriority(TASK_ID target task based on the
taskld, U8 priority) specified task ID. If the task ID

IS zero, the system will treat it
as the current task and return
the current task priority when
KnlGetPriority() is called. If
KnlChangePriority() is called
with taskld =
KNL_CURR_TASK, then the
current task priority will be
changed.

The valid range of priority levels is 0 to 15; level 0 is the lowest
permissible level and level 15 is the highest permissible level. The
changed priority level cannot be higher than the calling task’s level.
That is, if task A has a priority level of 4 and task A wants to change
the priority level of B, the maximum level to which task B can be
changed is level 4.

Take note also of the Warning in the preceding section.

KnlChangePriority() cannot be used in interrupt handling routines.
The system will return an ERR_KNL_IN_IRPT error message if this
API is called from an interrupt routine.

Getting Task ID and Deleting task

TASK_ID KnlGetTaskld(VOID) | Get the current running task
ID.

STATUS Terminate a running task

KniDeleteTask(TASK_ID according to the taskld

taskld) provided. A task cannot use
KniDeleteTask() to terminate
itself.

PPSM-GT User Guide PPG-129

Kernel Services

““Digital DNA

Task Manipulation Services frem Metarola

WARNING!

KnlDeleteTask is not suitable to be used in interrupt handling
routines.

Developers are strongly discouraged from using the KnlDeleteTask
API to terminate a task; sources that are created by the task may
not be freed properly.

Setting Task Event Port for receiving events

EVTPORT_ID KnlGetEventPort(), when
KnlGetEventPort(TASK_ID called, returns a positive
taskld) EVTPORT_ID value if the task
has an event port.
STATUS KnlSetEvenPort() sets up the
KnlSetEventPort(TASK_ID task with the event port.
taskld, EVTPORT _ID portld)

An event port is a mechanism that enables a task to receive an event.
By default, when a task is created, the event port is enabled to
receive an event. KnlSetEventPort() allows an event port to be
enabled or disabled by choice.

Suspending a Task

STATUS When a task is created, it is
KnlSuspend(TASK_ID taskld) always in the new state. It will
change from the new state to
the ready state when it is
scheduled to run.

KnlISuspend() suspends the task specified by taskld.

KnlSuspend() is not suitable to be used in interrupt handling
routine and has no effect on the idle task.

PPG-130

PPSM-GT User Guide

als
fl‘[ﬁgitalnHA Kernel Services

from Motarcla Task Manipulation Services

Self Suspending task for time interval

STATUS KnlSuspendFor(TICK | This API allows the calling
milliseconds, SWT_ID swtld) task to be self-suspended for
the given number of
milliseconds specified by the
TICK.

The minimum time interval is
1 millisecond and the
maximum is 24 hours as
defined in the software timer.

The self-suspended task will
be reactivated automatically
once the time-out interval
elapses.

This API does not create a
software timer. The software
timer has to be created before
calling this API, and the
system will not delete the
software timer after used.
User need to ensure that the
software timer is deleted if not
used.

This API also cannot be used if
task swapping is disabled.

Resuming a Suspended Task

STATUS To resume a suspended task,
KnlResume(TASK ID taskid) KnlResume() can be used.
When called, it resumes the
task specified by taskld.

PPSM-GT User Guide PPG-131

Kernel Services
Task Manipulation Services

““Digital DNA

from Moetarola

Disabling Task Swapping

STATUS
KnIDisableSwap(VOID)

To disable task swapping. Once
activated, no task swapping is
possible regardless of the task
priorities, including swapping
to the idle task for power
management. In this situation,
the system becomes a single
task operation. Therefore
developers must observe the
following cautions when using
this instruction:

= Enable task swapping when
task swapping disabling is
no longer required to allow
the system to perform
power management.

= Ensure that the task that
activates the
KnlIDisableSwap does not
have an infinite loop that
hangs up the system. The
system will not be able to
recover in such a situation
except through a hard reset.

e The task cannot self
terminate. The system will
not allow the task to self
terminate.

= For a time-sliced task, the
task will continue to operate
outside the quantum when
it expires. The time-sliced
task will only be suspended
when task swapping is
enabled. Yielding of the
guantum is also not allowed
when task swapping is
disabled.

PPG-132 PPSM-GT User Guide

als
"n‘-[h‘gitaID"A Kernel Services

from Motarcla Semaphore Services

Enabling Task Swapping

STATUS To enable task swapping.
KnlEnableSwap(VOID) Once activated, task swapping
is enabled, and task execution
will be based on the next
highest priority task that is
ready to run.

This APl must not be called in main().

Yielding the execution quantum for Time-slicing task

STATUS KnlYield(VOID) In time-slicing task operation, a
task can yield its operation time
(quantum) when it has finished
it function. KnlYield() is a
special case of self suspension
and is applicable for time-sliced
tasks only. When called, a task
voluntarily gives up the
remaining quantum in its time
slice. Once the quantum is
yielded, it cannot be regained.

Semaphore Services

Creating Semaphore

SEMA _ID KnlCreateSemaphore()

KnlCreateSemaphore(VOID) creates a semaphore structure
and returns the semald.

PPSM-GT User Guide PPG-133

Kernel Services

““Digital DNA

Semaphore Services frem Metarola
Deleting Semaphore
STATUS KnlDelSemaphore() deletes
KnIDelSemaphore(SEMA _ID and frees up the semaphore
semald, U8 flag) structure. If the semaphore is

in use by any task (that is, if
any task is waiting for it), it
cannot be deleted or freed.
The U8 flag is currently not
implemented and should be
set to “0” when using
KnIDelSemaphore().

Setting the Semaphore

STATUS When a semaphore is created,
KnlSetSemaphore(SEMA _ID max and init are zero; that is,
semald, U16 max, U16 init, no task could use it. If any task
BOOL fifo) calls KnlwaitSemaphore()

when the max value =0, the
task will hang up waiting for a
semaphore that is not set.

The maximum and initial value of the semaphore could be set by
KnlSetSemaphore(). When called, it sets the max and init values.
The max value will determine the number of users that are allowed
to use the semaphore. The init value is the initial value of the
semaphore usage. It could be any number smaller or equal to the
max value. Normally it is 0.

The BOOL option is for setting the queue type. Choose between
FIFO or priority queue. It is a boolean input: TRUE for fifo queue
and FALSE for priority queue. When priority queue is selected, the
waiting for a semaphore is based on task priority. For FIFO queue,
the waiting for a semaphore is based on first in first out.

KnlSetSemaphore() could be used also at other times to change the
max and init values for an existing semaphore. However, it cannot
be used on a semaphore when other tasks are waiting on the
semaphore.

PPG-134

PPSM-GT User Guide

““Digital DNA

from Moetarola

Kernel Services
Semaphore Services

Signaling the Semaphore

STATUS KnlSignalSemaphore(), when
KnlSignalSemaphore(SEMA _ID | called, will increase the init
semald) semaphore value by 1 up to or

equal to the max value. Under
normal operating conditions,
tasks should call
KnlSignalSemaphore() when
they are done with the
semaphore to release the
semaphore to other tasks.

KnlSignalSemaphore() could also be used to increase the number of
tasks using the semaphore up to the max value. Increasing the init
value by 1 would increase the number of tasks able to use the
semaphore by 1.

KnlSignalSemaphore() is not suitable to be used in interrupt
handling routine

Waiting for Semaphore

STATUS When KnlWaitSemaphore() is
KnlWaitSemaphore(SEMA _ID called, it checks the
semald, TICK milliseconds) semaphore init value. If itis

larger than 0, the value is
decreased by 1. The task then
could use the semaphore.

If the init value of the semaphore is equal to 0, the calling task is
blocked if the input TICK is not "0," and its taskld is put into a
priority and first-in-first-out queue in the semaphore queue. This is
a form of self suspension mode.

The TICK input is a time interval input in milliseconds that informs
the system how long the calling is willing to wait for the semaphore.
The following are the options:

= TICK equals "0": the waiting interval is zero; there is no waiting.
Under this condition, the system will check for the semaphore. If
it is unavailable, the system will continue executing the next

PPSM-GT User Guide PPG-135

Kernel Services
Special Functions

““Digital DNA

from Moetarola

instruction without waiting for the semaphore. If it is available,
the semaphore is deducted by 1.

= TICK equals any value between 1 and the max value defined for
TICK in the software timer (by default it is 24 hours): the system
will wait for the semaphore for a number of milliseconds equal
to that value. The task will only exit the waiting loop when the
semaphore is available or the wait semaphore timer expires.

e TICK equals SEMA_WAIT_FOREVER: the system will wait
forever until the requested semaphore is available. For the
semaphore to be available, its init value must be greater than
zero.

The semaphore-wait operation is not allowed in any interrupt, since
it may block any operation that is after a semaphore-wait operation
in an interrupt. Therefore, any function that calls semaphore-wait
also cannot be called within an interrupt.

Checking for Semaphore ID

U8 KnllsSemald(SEMA_ID KnllsSemald() is for checking
semald) whether an ID is a semaphore
ID. When called, it returns the
boolean value "TRUE" or
"FALSE."

Special Functions

PPSM-GT also provides many other APIs. Some are for status
checking, and others are for setting the graphic context for a display
property. For details of the graphic context, refer to the graphic
chapter.

Getting Graphic context

GC_ID KnlGetGC(TASK_ID It returns the graphic context,
taskld) gcld, for the task. If taskld is
zero, it returns the graphic
context of the current task.

PPG-136

PPSM-GT User Guide

““Digital DNA

from Moetarola

Kernel Services
Special Functions

Binding Graphic Context to Task

STATUS KnIBindGC(TASK_ID
taskld, GC_ID gcld)

Graphic contexts, GCs, are
drawing properties for PPSM-
GT graphic services. They
need to bind to a task so that
the task can use the graphic
services to create graphic.
KnIBindGC() binds the task
with the graphic context.

If taskld is
KNL_CURR_TASK, then the
GC will be bound to the
calling task.

Getting Task Memory usage.

STATUS
KnlGetMemUsed(TASK _ID
taskld)

It returns the memory used by
the task.

Getting the OS Version

STATUS
KnlGetOSVersion(P_U32 major,
P_U32 minor)

It returns the current PPSM-
GT version.

Getting the Stack Info

STATUS
KnlGetStackInfo(TASK_ID
taskld, P_VOID *start, P_VOID
*end)

It returns whether the stack
has been overflowed. To get
the stack info for the current
running task, use
"KNL_CURR_TASK" in place
of taskld.

PPSM-GT User Guide

PPG-137

Kernel Services
Summary

““Digital DNA

from Moetarola

Summary

Getting Kernel Status

U32 KnlGetStatus(TASK_ID It returns the status of the task
taskld) (NEW, TERMINATE, READY,
WAIT, RUN, SUSPEND or
WAIT_AND_SUSPEND).

Checking whether the Kernel is currently serving an interrupt

U8 KnllIsinlrpt(VOID) It tests whether the kernel is
currently serving an interrupt.
The system will return a
Boolean "TRUE" or "FALSE."

Kernel Services provide the basic building blocks for the system.
Task manipulation services help to create a new task, start an
existing task, terminate the requesting task, change the priority of a
given task, and delete the requesting task.

Semaphore services enable semaphores to be used to control the
access of some shared resource in a "critical region” of code. As
required by the application, it could wait forever, wait for a period
or not wait for a semaphore. This functionality is provided to cater
to different needs based on the nature of the application.

Special functions are a group of APIs provided for checking the
status and the information of the kernel. Most of the information
provided is informative and useful especially during the debugging
and development of the system.

Code Examples

The following examples are provided to show the usage of the
kernel services. They are not intended to solve any problem and
should be used as a reference. They should not be used directly in
an application without modification.

PPG-138

PPSM-GT User Guide

als
fl‘[ﬁgitalnHA Kernel Services

frem Motarola Code Examples

Listing 8.1 Usage Task Manipulation in Kernel Services

/* This exanpl e shows the usage of Knl TaskCreate() and

Knl TaskCreateWth() to create 3 tasks: Task A, B, & C. It also
provi de a sinple exanple to show the usage of Knl SuspendFor() to
sel f suspend task A for 200 mlliseconds.*/

/* Vari abl e decl arati on*/
#def i neNORMAL_PRI ORI TY 6
#def i ne DEFAULT _MODE 1

TASK | DTaskAl d, TaskBI d, TaskCl d;

const TEXTTaskNaneA= {"T ,’A,’S ,’K,’ ' ,'A,0};
const TEXTTaskNameB= {'T',’A,’S ,'K,’ ', ’'B,0};
const TEXTTaskNameC= {"T',’A,’S ,'K,’ ',’C,0}:

SWE_ID swtlid,
STATUS st at us;

P_U32 TaskCode[] = {
(P_VA D) TaskA,
(P_VA D) TaskB,

(P_VvA D) TaskC

1

U32 Argunent, Priority, Taskld,

EVTPORT_I D Port Al d, PortBId;

voi d taskcreate()
{
status = Knl Creat eTask(&TaskAld, (P_VO D) TaskA, TaskNaneA,
4000, NORMAL_PRI ORI TY, DEFAULT_MODE);
Argrument = 2200;
status = Knl Creat eTaskWt h(&TaskBl d, (P_VO D) TaskB, TaskNaneB,
4000, Argunent, NORMVAL_PRI ORI TY+1, DEFAULT_MODE);

/* Creating a time slicing task */
status = Knl Creat eTask(&TaskCld, (P_VO D) TaskC, TaskNaneC,
4000, NORMAL_PRI ORI TY, DEFAULT_MODE);

return;

}
voi d TaskA ()

PPSM-GT User Guide PPG-139

als
Kernel Services f‘_mgitﬂl.D"A

Code Examples frem Metarola

{
/* Do anything for this task */

/* Exanmple of self suspending task A for 200 m | liseconds*/

/'l create a SWI
swld = SwmCreate();

/'l suspend for 200 m|liseconds
Knl SuspendFor (200, swld);

/'l performother task A activities
/1l delete the SWI when no | onger needed
Swt Del et e(sw 1d);

}

voi d TaskB ()

{
/* Do anything for this task */

}

voi d TaskC

{
/* Do anything for this task */

Listing 8.2 Usage of Semaphore Services

[* Vari abl e decl arati on*/
#def i neNORMAL_PRI ORI TY 6
#def i ne DEFAULT_MODE 1

TASK | DTaskAl d, TaskBI d;

PPG-140 PPSM-GT User Guide

als
fl‘[ﬁgitalnHA Kernel Services

frem Motarola Code Examples
const TEXTAppNameA= {"A ,’P ,'P,’ ', A, 0};
const TEXTAppNarmeB= {"A ,"P ,"P,’ ', B, 0};
STATUS st at us;
U 8 done;

P_U32 AppCode[] = {
(P_VA D) AppA,

(P_VA D) AppB

b

U32 Argunment, Priority, Taskld,

EVTPORT I D Port Al d, PortBId;

SEMA | D RedFl ag;

voi d semaphore()

{

status = Knl Creat eTask(&TaskAl d, (P_VO D) AppA, AppNameA,
4000, NORMAL_PRI ORI TY, DEFAULT_MODE);
/* Create and set the semaphore to have a max of 5 task waiting
for it, and the queue type is FIFO/
ReadFl ag = Knl Cr eat eSemaphore();
status = Knl Set Semaphor e(RedFl ag, 5, 0, TRUE);

}

vi od AppA()
{
/* wait for the semaphore until avail abl e*/
stat us = Knl Wai t Senaphor e(RedFl ag, WAI T_FOREVER) ;

[* Si gﬁal semaphor e when done*/
Knl Si gnal Semaphor e(RedFl ag) ;

/* Check whether the Id belong is a semaphore |d*/
done = Knl | sSenmal d(RedFl ag)

/* Delete the semaphore*/
Knl Del Semaphor e(RedFl ag, 0)

PPSM-GT User Guide PPG-141

als
Kernel Services "'DigitalDHA'

Code Examples frem Metarola

PPG-142 PPSM-GT User Guide

als
f‘_mgitﬂlnﬂﬂ Memory Management Services

from Motarcla Memory Management Fundamentals

9

Memory Management
Services

Most devices use two types of memory: volatile and non-volatile
memory. Volatile memory is memory that loses the stored data after
powering off—for example, SRAM and DRAM. Non-volatile
memory is memory that preserves the stored data after powering
off—for example, FLASH. Normally, volatile memory is used for
code execution and the storage of temporary information. Non-
volatile memory is used for code and permanent data storage.
PPSM-GT memory management tools handle only volatile memory,
such as SRAM and DRAM. Developers need to handle data
requiring non-volatile memory themselves.

This chapter has the following sections:
< Memory Management Fundamentals

< Programming using Memory Services

e Summary
= Code Examples

Memory Management Fundamentals

In PPSM-GT, the entire memory is declared as a malloc pool during
set up and can be divided into user-defined regions during
execution. A region is defined as a block of continuous memory,
and the minimum size of a region is 24 bytes.

The size of the malloc pool is the total physical memory available
and needs to be specified in the PPSMspc.c file. Incorrect

PPSM-GT User Guide PPG-143

als
Memory Management Services f“[ﬁgitﬂlﬂ"ﬂ

Memory Management Fundamentals frem Metarola

specification of the size of the malloc pool will result in errors in
memory management.

PPSM-GT does not limit the number of regions created so long as
the total memory of all regions added together is smaller than the
size of the malloc pool. Memory region APIs are provided for
adding, deleting, changing and resetting memory regions when
desired.

By default, a system region is created by PPSM-GT. Usually, it is the
largest memory region. The system uses the default region for
creating tasks, graphic contexts, input contexts, and so on. It will
also allocate memory from the default region when MemMalloc()
and MemcCalloc() APIs are used. The starting address and the size of
the system region is declared in a linker specification file.

If no other regions are created, PPSM-GT will perform all memory-
related activities in the system region. Exceptions are the
MemMallocFrom() and MemCallocFrom() APIs, where the region
specified in the APIs must be an existing region.

Figure 9.1 Memory mapping of the system
< Start of memory m
[Memory Region 1 ymep
XXXKKXXXKXKXXX
XXXXXXXXXXXXXXX (€= PPSM unused area
System Memory Region 2
memory
L
) 0,:0.0.0.0.0.0.0.0.0.0.0.6.0.¢ — PPSM unused area
Memory Region 3
\ < End of memory map
Figure 9.1 shows an example of how system memory could be
mapped in PPSM-GT. Note that memory regions do not have to be
continuous; there can be unused areas between them.
PPG-144 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Memory Management Services

from Motarcla Memory declaration

Memory declaration

There are two files that store the information on memory
declaration in PPSM-GT. Both of the files are device specific and
need customization. The two files are:

1. Linker dependent specification file
2. PPSM-GT specification file (PPSMspc.c)

Linker Dependent Specification File

The linker dependent specification file is normally used by the
linker to allocate the specified item to the location declared in the
file—for example, the location of the ROM and RAM. This file must
be customized to the hardware, and depending on which
development tools is used. For Metrowerks CodeWarrior user, the
file is a .Icf file and for Single step SDS user, the file is a .spc file.

In the PPSM-GT environment, the linker dependent specification
file is used to specify the starting address of the ROM and RAM
only. The size of the ROM and RAM need not be specified here.
They could be set to any value, including zero, as PPSM-GT does
not derive the size of the ROM and RAM from those values. The
PPSM-GT memory manager will control the memory allocation.
The following is an example for memory definition in the linker
dependent specification file.

MEMORY {

ROM (RX) : ORIG N = 0x00001000, LENGTH =
0x00000000

RAM (RW : ORIG N = AFTER(ROM), LENGTH =
0x00000000

}

The preceding example shows that the location of ROM is at
0x00001000. This location could be changed to any location required
by the hardware. The RAM is defined as AFTER(ROM)—that is, the
compiler will locate the RAM after the ROM is located. The length
of both ROM and RAM are defined as 0x00000000. This does not
mean that the size of ROM and RAM is zero. The value is actually
“don’t care” because PPSM-GT does not read those values. For

PPSM-GT User Guide PPG-145

als
Memory Management Services f‘_mgitﬂlnuﬂ

Memory declaration

from Moetarola

more detail, please refer to Metrowerks CodeWarrior document
entitled Targeting_Embedded 68K.

PPSM Link-time Specification File

This file specifies the boundary addresses for the system region. It
defines the location of the system region and not the actual starting
address of the system region, since the actual starting address is
based on code size, constant, and string size declaration, which can
only be determined by the compiler. The following code examples
illustrate the differences in system starting addresses based on the
code size, constant, and string declaration.

Example 1

In .lcf file

MEMORY {
ROM (RX): ORIA N = 0x00000000, LENGTH = 0x00000000
RAM (RW: ORIGIN = AFTER(ROM), LENGTH = 0x00000000

}
I'n PPSMspcC. C
gMemMap={ 0, Ox1FFFFF}

The code size plus the constant and string declaration equals
0x1526.

Therefore, the starting address of the system region is 0x1526. The

region from 00x0000 to 0x1525 is used by code size and constant and
string declaration.

Example 2

In .lcf file

MEMORY {

ROM (RX) : ORIAN
0x00000000

RAM (RW : ORIG N
0x00000000

}
I n PPSMspc. c

0x00000000, LENGTH

AFTER(ROM), LENGTH

PPG-146

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Memory Management Services

from Muotonola Actual available memory areas

gMemvap={ 0x100000, Ox1FFFFF}

The code size plus the constant and string declaration equals
0x1526.

Therefore, the starting address of the system region is 0x100000. The
code size and constant and string declaration total only 0x1526 and
do not affect the starting address of the system region, which is
declared at 0x100000.

The two examples show that proper definition of the system region
is required for proper system operation. The system region is the
largest memory region, and the system uses it as the default region
for creating tasks, graphic contexts, input context, and so on. It will
also allocate memory from the default region when MemMalloc()
and MemCalloc() APIs are used.

In Example 1, the system does not start at 0x00000, as specified, due
to the considerations for the location of the ROM and the code size
plus constant plus string declaration.

Actual available memory areas

The starting and ending addresses specified in the gMemMap are
just the physical boundaries of the regions, and may not represent
the actual physical memory available. For example, assume that the
starting address is 100000 and the ending address is 1FFFFF for
region A. This means that range A has been assigned 1 Mbyte of
memory, but how much actual memory is in region A will depend
on how much physical memory is available.

Defining Memory Regions

Beside the system memory region, the rest of the memory regions
are defined by the applications whenever required by the memory
APIs. PPSM-GT provides APIs for adding, deleting, resetting and
changing the memory regions. Table 9.1 presents five recommended
steps for defining memory in PPSM-GT.

PPSM-GT User Guide PPG-147

Memory Management Services
Programming using Memory Services

““Digital DNA

from Moetarola

Table 9.1

Basic steps for memory declaration

Step Description

Step 1 Determine how much memory is required by the

system. Example: 4M of RAM.

Step 2 Set the amount of RAM available as the system

malloc pool.

Step 3 Edit the PPSMspc.c file to specify and declare the

memory system region.

Step 4 Add additional regions in the application when

required.

Step 5 Delete regions that are no longer used.

Programming using Memory Services

Allocating Memory

P_VOID MemMalloc(U32
size)

P_VOID MemMallocFrom(
MEM_REGION_ID regionld,
U32 size, TASK_ID taskid)

P_VOID MemCalloc(U32 size)

P_VOID
MemCallocFrom(MEM_REGI
ON_ID regionld, U32 size,
TASK_ID taskid)

Allocates memory in a default
region to the calling task

Allocates memory in a
specified region to the target
task

Allocates memory in a default
region to the calling task and
initializes memory to zero.

Allocates memory for the
specified region to the target
task and initializes memory to
zero

Memory can be allocated to the application at run time. PPSM-GT
returns to the caller a pointer to a block of available memory of the
specified size. The memory returned to the caller is not initialized if
MemMalloc() and MemMallocFrom() are called. The difference
between MemMalloc() and MemMallocFrom() is that

PPG-148

PPSM-GT User Guide

““Digital DNA

from Moetarola

Memory Management Services
Freeing Memory

MemMallocFrom() allows memory to be allocated from a defined
region and to a task specified by the taskld.

MemCallocFrom() performs the same function as
MemMallocFrom() and initializes to zero when used.

No automatic boundary checking is performed on the memory
when used by the caller.

If no memory is left in the system, these routines return NULL.

The actual size of memory allocated by the system is larger than the
size requested by developers. A header is embedded in the
allocated memory block for memory management. Nevertheless, it
is transparent to users. Users can directly use the required size of a
memory block starting at the returned address if the returned value
is not NULL.

These APIs are not recommended to be used inside interrupt
handling routines.

Freeing Memory

void MemFree(P_VOID MemFree() is used to free the
pUsedMem) area pointed to by
"pUsedMem," which was
previously allocated by
MemMalloc(), MemCalloc(),
MemMallocFrom(),
MemCallocFrom() or
MemRealloc().

When an application finishes with a block of dynamically allocated
memory, the memory can be recycled by using MemFree(). It puts
the memory block back into the system heap, and the memory is
ready for allocation again. MemFree() combines the freed area with
any adjacent free areas at the same time.

The pointer passed into this routine must be a valid pointer
returned from MemMalloc(), MemCalloc(), MemMallocFrom(),
MemCallocFrom() or MemRealloc().

PPSM-GT User Guide PPG-149

als
Memory Management Services f“[ﬁgitﬂlﬂ"ﬂ

Reallocating Memory

from Moetarola

These APIs are not recommended to be used in interrupt handling
routines.

Reallocating Memory

P_VOID MemRealloc(P_VOID | PPSM-GT supports dynamic
pOld, U32 size) memory reallocation in the
event of new requirements
that make the current memory
allocation insufficient. Calling
MemRealloc() will reallocate
the area of memory pointed to
by "pOld," changing its size to
"size" bytes.

This routine reallocates the memory that is being used in the system
from one location to another. It allocates a new area, copies the
content from the old location to the new area, and frees up the old
memory, putting it back into the system heap. The purpose of this
routine is for defragmenting the system memory.

If the current memory can accommodate the increase in size of
"size" bytes, then the Old address will be maintained. Otherwise the
system will look for a new block of memory with a size of "size"
bytes for the new request.

The system returns the address of a memory area containing the
same initial bytes as the old memory area up to the smaller of the
old and new sizes. If the returned address is different from "pOld,"
the old memory area is freed.

If the request cannot be satisfied, NULL is returned, and the old
memory area remains allocated and its contents remain the same.

MenReal | oc(0, size) actslike MemMal | oc(size).

MenReal | oc(pA d, O) doesMenfree(pA d) andreturns
NULL.

PPG-150

PPSM-GT User Guide

Memory Management Services
Copying Memory

““Digital DNA

from Moetarola

Copying Memory

STATUS MemCopy(P_U8 srcPtr,
P_U8 destPtr, U32 size)

MemCopy() is for memory
copying from one region to
another. This tool can cope
with overlapping areas. It
performs memory copying in
32-bit operations whenever
possible.

Inquiring Memory

STATUS
MemGetAvailSize(MEM_REGI
ON_ID regionld, P_U32
pSizeAvail)

S32 MemGetAvailStack(void)

STATUS
MemGetOrgRegionSize(MEM _
REGION_ID regionld, P_U32
pSize)

STATUS

Mentet Lar gest Bl k(MEM_REG
ION_ID regionld, P_U32
pSi ze)

When MemGetAvailSize() is
called, PPSM-GT returns the
number of bytes of memory
on the system that can be
allocated through
MemMalloc(),
MemMallocFrom(),
MemCalloc(),
MemCallocFrom() or
MemRealloc().

When MemGetAvailStack() is
called, PPSM-GT returns the
total number of bytes of the
stack that can still be used by
the current task. A positive
returned value indicates that
the stack has not been used
up; a negative value implies
that the stack has already
overflowed.

MemGetOrgRegionSize()
returns the original number of
bytes of memory in a region
before the region’s allocation
to an application.

Return the largest block can be
allocated in aregion

PPSM-GT User Guide

PPG-151

Memory Management Services
Changing Memory Region

““Digital DNA

from Moetarola

STATUS
MemGetTaskUsed(TASK_ID
taskld, P_U32 pSizeUsed)

U32 MemGetTotalUsed(void)

Memory allocated to the
application and the whole
system can be inquired about
at run time. PPSM-GT returns
to the caller the total number
of bytes of memory allocated
to the task with the given task
identifier.

Return the total number of
bytes of memory allocated to
the whole system.

Changing Memory Region

STATUS
MemAddRegion(P_MEM_REGI
ON_ID pRegld, P_U32
startAddr, U32 endAddr)

STATUS
MemDelRegion(MEM_REGION
_ID regionld)

STATUS
MemResetRegion(MEM_REGIO
N_ID regionld)

STATUS
MemResizeRegion(MEM_REGI
ON_ID regionld, U32 endAddr)

Add a new memory region
based on specified inputs.

Delete the specified memory
region.

MemResetRegion() resets the
memory region to initial
settings and can only be used
to reset regions allocated by
MemAddRegion().

MemResizeRegion() allows
the memory region to be
resized to the new size. The
resizing will fail if the region
specified is larger than the
malloc pool. The new size can
be smaller or larger the the
currentsize. The contentin the
region is kept, allowing
developers to resize the region
after the system is booted up.
Developers are responsible for
ensuring that the trimmed-
down part is useless.

PPG-152

PPSM-GT User Guide

““Digital DNA

from Moetarola

Memory Management Services
Summary

Summary

As mentioned in the section “Defining Memory Regions,” memory
regions are defined and added dynamically in applications. Thus,
with APIs such as MemMallocFrom() and MemCallocFrom() where
a region is required, the region must be first defined and added.
MemAddRegion() adds the region based on the addresses
provided, and MemDelRegion() deletes the specified region.

The system returns only errors for the following cases:
= endAddr is zero
= endAddr is even
= endAddr is within +/-24 bytes of current ending address
= endAddr overlaps with another existing address

« For an endAddr that is smaller than the current one, endAddr is
not inside a free memory block

Memory management services in PPSM-GT reduce the work of
memory management to simple API calls. Memory can be arranged
into regions and dynamically defined and added during runtime.
Memory can also be allocated, released or reallocated dynamically
during runtime from the main malloc pool. APIs are available to
check the memory usage and status of the malloc pool.

PPSM-GT memory management services provide an effective and
easy way of accessing the system, but they do not and cannot
guarantee the effective use of the system. To ensure proper
operation and the effective use of system memory, system
integrators should observe practices of proper memory usage, such
as releasing unused memory back to the malloc pool and not
requesting too much or too little memory than is necessary.

Code Examples

Listing 9.1 shows how to allocate, free, reallocate and inquire about
memory with PPSM-GT APIs. The example is not intended to solve
any particular programming problem and should be used as a
reference. It should not be used directly in the application without
modification.

PPSM-GT User Guide PPG-153

als
Memory Management Services f“[ﬁgitﬂlﬂ"ﬂ

Code Examples frem Metarola

Listing 9.1 Examples of allocating, freeing, reallocating and inquiring
about memory

[* Vari abl e decl arati on*/

TASK_| D MenmTask

P_U8 PstorageA, PstorageB, PstorageC, PstorageD,
U32 Regi onStart Addr, Regi onEndAddr;

MEM REG ON I D regionl d;

U32 MenoryUsed, MenoryAvail, StackAvail;

P_U32 pSize

PLString tenpStrN;

STATUS st at us;

/* Creating a task call MenTask*/
status = Knl Creat eTask(&enirask,
NULL,
(const TEXT *)"MEM TASK",
1000,
S,
USER_MODE) ;
/* Allocates 256 bytes nenory in a default region */
Pst orageA = (P_U8) MemMal | oc(256);
/* Allocates nenory in a specified region to the target task */

PstorageB = (P_U8) MenmMal | ocFrom(regi onld, 512, MenTask);

/* Allocates nenory in a default region to the calling task and
initialize nenory to zero. */

Pst orageC = (P_U8) MentCal | oc(256);

/* Allocates nenory for the specified region to the target task
and initialize nmenory to zero. */

Pst orageD = (P_U8) MentCal | ocFron(regionld, 512, Menirask);

PPG-154 PPSM-GT User Guide

als
f‘_mgitﬂlnﬂﬂ Memory Management Services

frem Motarola Code Examples

/* Free the nmenory reserved of PstorageA and PstorageB*/
Mentr ee(Pst or ageA) ;
Mentr ee(Pst or ageB) ;
/* Reallocate the nmenory of Pstorage C to PstorageA from 256 to
512 bytes*/
Pst orageA = (P_U8) MenReal | oc(PstorageC, 512);
/* Copying nenory from PstorageD to PstorageB*/
status = MenCopy(PstorageD, PstorageB, 512)
/* Inquiring Menory status*/

status= Menet Avai | Si ze(regi onld, MenoryAvail);

St ackAvai | = MenGet Avai | St ack();
status = MenGet Or gRegi onSi ze(regi onld, pSize);
status = MenGet TaskUsed(MenmTask, &MenoryUsed);

MenoryUsed = U32 MenCet Tot al Used() ;

Listing 9.2 shows how to change the memory region. It shows how
to add, delete, reset and resize a memory region. The example is not
intended to solve any particular programming problem and should
be used as a reference. It should not be used directly in an
application without modification.

Listing 9.2 Examples of changing memory region

/* Vari abl e decl arati on*/

P_VMEM REG ON | D Regi onPtr;

U32 Regi onSt art Addr, Regi onEndAddr ;
MEM REG ON_I D regionld;

PLString tenpStrN;

PPSM-GT User Guide PPG-155

als
Memory Management Services f“[ﬁgitﬂlﬂ"ﬂ

Code Examples frem Metarola

STATUS st at us;

status = MemAddRegi on(Regi onPtr, Regi onStart Addr,
Regi onEndAddr) ;

if(status == SYS_CK)
{
sprintf(tenmpStrN, "Add Reg Ox% Success \n",
*Regi onPtr);
}
el se
sprintf(tenpStrN, "Add Reg failed\n");

el se i f(Del et eRegi on)

{
status = MenDel Regi on(regionld);

if(status == SYS_CK)
{
if(regionld == MEM ALL_EXT_REG ON)
sprintf(tenpStrN, "Del all ext. regions Success\n");
el se
sprintf(tempStrN, "Del Reg Ox% Success\n",
regi onl d);
}
el se
{
if(regionld == MEM ALL_EXT_REG ON)
sprintf(tempStrN, "Del all ext. regions failed\n");
el se
sprintf(tempStrN, "Del Reg Ox% failed\n", regionld);
}

el se i f (Reset Regi on)

{
status = MenReset Regi on(regionld);

if(status == SYS _(K)
{
if(regionld == MEM ALL_EXT_REG ON)
sprintf(tenmpStrN, "Reset all ext. regions
Success\n");

PPG-156 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Memory Management Services

frem Motarola Code Examples

el se
sprintf(tenmpStrN, "Reset Reg Ox% Success\n",
regi onl d);
}

el se

{
if(regionld == MEM ALL_EXT_REG ON)
sprintf(tenpStrN, "Reset all ext. regions failed\n");
el se
sprintf(tenpStrN, "Reset Reg Ox% failed\n",
regi onld);

}

el se i f(Resi zeRegi on)

{
status = MenResi zeRegi on(regi onld, Regi onEndAddr) ;

i f(status == SYS _(K)
sprintf(tenpStrN, "Resize Reg Ox% Success\n",
regi onl d);
el se
sprintf(tenpStrN, "Resize Reg Ox% fail ed\n",
regi onl d);

}

PPSM-GT User Guide PPG-157

als
Memory Management Services f‘_mgitﬂlnuﬂ

Code Examples frem Metarola

PPG-158 PPSM-GT User Guide

als
f‘_mgitﬂlnﬂﬂ Power Management Services

from Motarcla Power Management Fundamentals

10

Power Management
Services

PPSM-GT utilizes the power control module of DragonBall™
microprocessors to implement a set of power management tools to achieve
system power savings.
Power management services enable applications to:

» switch to one of the power saving modes.

» switch automatically to a lower power saving mode when the system is
idle.

 control user-defined 1/O ports in any of the power saving mode
transitions.

Applications can choose to:
» control the system’s power management features directly, or
» use PPSM-GT'’s automatic power management features.

This chapter is organized into the following sections:

* Power Management Fundamentals

* Programming using Power Management Services

e Summary
» Code Example

Power Management Fundamentals

PPSM-GT supports four types power modes: NORMAL, IDLE, DOZE
and SLEEP. For each power mode, PPSM-GT provides a set of APIs for

PPSM-GT User Guide PPG-159

Power Management Services

““Digital DNA

Power Management Fundamentals frem Motarola

Figure 10.1

controlling the activities in that power mode. In some of the modes, PPSM-
GT alows developers to customize the entry and exit conditions. In
general, PPSM-GT controls the switching from one mode to another.
Figure 10.1 shows the rel ationships between the modes. The connections
and arrows show the transition from one mode to another. For example,
there is no connection between IDLE mode and SLEEP or DOZE.
Therefore, the system cannot switch from IDLE mode to DOZE or SLEEP
mode directly when in IDLE mode.

Flow of NORMAL, IDLE, DOZE and SLEEP

o

Normal e
< —
TR
e =——-e
(=

Doze

Normal mode

Thisisthe normal operating mode. In this mode, the CPU core and al the
peripherals are active. The system will perform most of its operation under
this mode. Thisis also the most power consuming mode, and the system
normally runsin this mode only when it is required.

Idle mode

Thisis one of the power saving modes, wherein the CPU coreisturned off
while most of the peripherals are active. It is a power saving mode for the

system when the static display and the peripherals, but not the core, need to
be active.

The system goes to IDLE automatically when there is no activity. The user
cannot directly cause the system to go into IDLE mode. PPSM-GT will

PPG-160

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Power Management Services

from Motarcla Power Management Fundamentals

switch the system from NORMAL mode to IDLE mode when the lowest
priority task, the idle task, has executed.

In thismode, no tasks are active; all tasks are either suspended or
terminated. Peripherals are, however, still active to received internal or
externa stimuli. When a stimulusis received, the system will switch from
IDLE mode to NORMAL mode.

Users are able to selectively turn off some of the external devices through
I/O controls. PPSM-GT provides APIs such as PwrEnterldle() and
PwrExitldle() to let developers customize their control of the system when
the system enters and exits IDLE mode.

Doze mode

Thisis another power saving mode. Only selective modules and devices
are off, such asthe LCD and LCD controller, and the CPU core runs.

PPSM-GT allows developersto put the system in DOZE mode explicitly or
automatically after acertain "idle" period expires. The "idl€" period does
not mean no activity existsin the system; it means there is no activity for
some particular events. In DOZE mode, tasks could be still active, sending
"non-wakeup" eventsto one another; "wakeup" events are absent in DOZE
mode. For more information of events, please refer to the chapter on
events.

The"idle" period is runtime-configured by the developer. The system
software timer keeps track of this period. In both NORMAL and IDLE, the
timer isaways running. The timer isreset at the end of each wakeup event
transmission for atask. Thistimer stops when the system isin DOZE or
SLEEP.

Developers are able to selectively turn off some of the external devices
through 1/0O controls. PPSM-GT provides APIs such as PwrEnterDoze()
and PwrExitDoze() to let developers customize their control of the system
when the system enters and exits DOZE mode.

Sleep mode

This mode saves the most power: the CPU core and all the peripherals
except the real time clock module are turned off.

PPSM-GT will switch the system to SL EEP mode automatically when
there is no activity in DOZE mode. It is not directly controllable by the

PPSM-GT User Guide PPG-161

ats
Power Management Services f“[ﬁgitﬂlﬂ"ﬁ

The Idle Task

from Moetarola

user. It is based on the lowest priority task, the idle task, which runs
whenever no other task is running. It implies that there is no activity
needed to be performed by the system when theidletask is running. Hence,
the idle task stops the PLL and CPU core when it runs.

Developers are able to selectively turn off some of the external devices
through 1/0 controls. PPSM-GT provides APIs such as PwrEnterSleep()
and PwrExitSleep() to let devel opers customize their control of the system
when the system enters and exits SLEEP mode.

In SLEEP mode, only an external interrupt will wake up the system to go
into DOZE and then NORMAL mode.

Relationships between the 4 power modes

Figure 10.2 shows the rel ationships between the power modes. In the
beginning the system isin normal mode with the LCD display active.

The system will remain in this mode as long as there are wakeup events
such as pen inputs or task activities. In the absence of both, the system will
execute the idle task, which will switch the system to IDLE mode.

In IDLE theidle timer is still active. Upon the expiration of the idle timer,
the system will have NORMAL mode to handle the idle timer time-out. As
the idle timer will time out only in the absence of wake up events, the
system then goes in DOZE mode on the expiration of the idle timer.

In DOZE mode, the system will switch back to NORMAL mode if there
are wakeup events. The system will remain in DOZE mode if there are
non-wakeup events that represent the presence of task activities. In the
absence of that, the system goes into SLEEP mode, and staysin that mode
until an external interrupt occursto switch it back to DOZE and to
NORMAL mode.

The Idle Task

Theidletask isthe lowest priority task and runs only when no other tasks
are ableto run. In addition to turning off the CPU core, the task takes other
actions to ensure minimum power consumption.

PPG-162

PPSM-GT User Guide

$[ﬁgita"]"ﬁ Power Management Services

from Moetarola

Figure 10.2 Showing relationship among the power modes

Power Mode Events

No wekeup evert. Idetimer

Systemin Normel mode st toexpirein 1 minute

Sydemin IDLE node due
to no task ativity.

Sysemin Normd mode due |depeiod 1 mnute
toidetimer time-out expired
Sysemin DOZE mode due
toidetimer time-out and g Nowekeup evert
wekeup event recaved.

Sysemin S EEP mode

no task adtivity |detask executed dueto

notask activity

PPSM-GT User Guide PPG-163

““Digital DNA

from Moetarola

Power Management Services
Programming using Power Management Services

Programming using Power Management Services

Inquiring Power Information

U32 Pwr GetDeviceStatus(VOID)

POWERMODE Pwr Get-
Mode(VOID)

U32 Pwr GetSysClk(VOID)

It returns status of the device

It returns the power mode: NOR-
MAL, IDLE, DOZE or SLEEP

It returns value of the system clock

Controlling DOZE mode

Doze mode control APIs are provided to control the entry into and exit
from DOZE. Entry into DOZE mode can be automatic or direct by
command. DOZE mode can also be disabled if necessary.

STATUS
Pwr SetM ode(POWERMODE
mode)

U16 Pwr Getl dleTime(VOID)

U8 PwrlsldieEnable(VOID)
STATUS PwrRestartldlg(VOID)

STATUS Pwr SetldleTime(U16
second)

STATUS
PwrNotifyDoze(TASK _ID
taskld)

STATUS
Pwr DisnotifyDoze(TASK_ID
taskld)

Set system to NORMAL or DOZE
mode directly.

It returns value of theidle time
before going into DOZE mode.

It returns value of theidletimer is
enable.

It resets and restarts the idle timer.

It setsthe idle timer to the time
parameter in seconds.

This causes the system to send an
event to the task when the system
goes into DOZE mode. The event
message type is
EVT_POWER_GODOZE.

This causes the system not to send
an event to the task when the
system goes into DOZE mode.

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Power Management Services

frem Metarola Disabling DOZE mode when a task is running

Disabling DOZE mode when a task is running

Controlling 1/0O devices in IDLE power mode

STATUS Pwr Stopldlg(VOID) It will stop the idle timer.

U32 PwrGetldle(VOID) Returns those devices that are set
when the system is going into or
exiting IDLE mode.

VOID Pwr Setldle(U32 devices) Executes the routines provided
when the system is going into or
exiting IDLE mode.

The PwrSetldie() API, when called, executes the routines provided when
the system is going into or exiting IDLE mode. PPSM-GT providesonly a
function call structure, and the routines to execute during the function call
must be provided by the system integrator or software developer. In other
words, if you want to turn off 1/0 Port A during IDLE mode, call
PwrSetldle() in the application routines and then fill in the codes to turn of f
port A in the file pwrdev.c under the PortEnterldle() section.

PPSM-GT provides a 32-bit variable for easy access of the I/O devices.
The LSB, bit 1, has been used by the system for PWR_MC68328 PLL to
control SDRAM self-refresh mode. The rest of the 31 bits, from bit 2 to bit
32, are open for definition. At the end of this chapter, Listing 10.1
illustrates the definition of bit 2 and its use to turn off the LCD.

Controlling 1/0 devices in DOZE and SLEEP
power modes

VOID PwrGetExitDoze(VOID) It returns those devicesthat are set
when system is exiting DOZE

mode
VOID Pwr SetEnter Doze(U32 This routine will execute when
devices) system is going into DOZE mode

and set those devices that are
specified in the pwrdev.c

PPSM-GT User Guide PPG-165

ats
Power Management Services f“[ﬁgitﬂlﬂ"ﬁ

Controlling I/O devices in DOZE and SLEEP power modes frem Mctorsla
VOID Pwr SetExitDoze(U32 This routine will execute when
devices) system is exiting DOZE mode and

set those devices that are specified
in the pwrdev.c

U32 Pwr GetEnter Sleep(VOID) It returns those devices that are set
when system goes into SLEEP

mode

U32 Pwr GetExitSleep(VOID) It returns those devices that are set
when system is exiting SLEEP
mode

VOID Pwr SetEnter Sleep(U32 This routine will execute when

devices) system is going into SLEEP mode

and set those devices that are
specified in the pwrdev.c

VOID Pwr SetExitSleep(U32 This routine will execute when
devices) system is exiting SLEEP mode and
set those devices that are specified
in the pwrdev.c

The controlling 1/0 devicesin DOZE and SLEEP modes work on the same
fundamental principles asin the IDLE mode. Please read the section
“Controlling I/O devices in IDLE power modeind the examples in detalil

to understand the operating principles. The only difference is that instead
of having a single API to control entry into and exit from the power mode,
in DOZE and SLEEP modes two APIs are provided: one for entering and
the other for exiting.

As a rule of thumb, the net sum of devices that are turning off in DOZE and
SLEEP mode and devices that are turning on in DOZE and SLEEP mode
must be equal to avoid any system malfunction. For example, if 3 devices
are turned off in DOZE mode and 4 devices are turned off in SLEEP mode,
the total number of devices turned off is 7. Therefore, if 2 devices are
turned on when switching the system into DOZE from SLEEP mode, then
when the system switches into NORMAL mode, 5 more devices must be
turned on. This is, however, not a “MUST HAVE” rule imposed by the
system. If the system integrator or the software developer fully understands
the design and knows what he is doing, this rule need not be obeyed.

PPG-166

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Power Management Services

from Moetarola

Summary

Summary

Power management services provide a means to control the power modes
supported by the DragonBall microprocessors. There are two ways to set
the control of power mode switching: automatically or directly. For
automatic switching, the system will switch to the power mode after a
time-out period expires. In direct control, the system will switch the power

mode after the command has been received.

APlsare also provided for 1/O controls during power mode switching.
There are device driver routines, and the system integrators have to provide
the content for controlling the devices during power mode switching.

Code Example

Listing 10.1 Controlling LCD in DOZE mode

file Pw LCD. h
/******'_bader Fl | e I I’]C| udes *******************/

[* Devices control bit */
#define PWR_LCD 0x0002

file Pwcheck.c
[****** Routine to turn off port Ain Idle ***/

#i ncl ude Pwr LCD. h

[**** |LCD to be turned on/off when out/in DOZE npde ***/
Pwr Set Ent er Doze(PM\R_LCD) ;
Pwr Set Exi t Doze(PWR_LCD) ;

file pwdev.c

/**/

voi d Port Ent er Doze(U32 devi ces)
{

PPSM-GT User Guide

PPG-167

ats
Power Management Services f‘_mgitﬂlnuﬁ

Code Example frem Metarola

| * Check that bit PWR_LCD is selected then turn off LCD */
if (devices & PWR _LCD)

{

TurnOFfLCD() ;
}
return;

}

/**/

voi d Port Exit Doze(U32 devi ces)

{
| * Check that bit PWR_LCD is selected then turn on LCD */
if (devices & PWR _LCD)
{
TurnOnLCD();
}
return,
}

Example 1 explanation

There are, altogether, 3filesin Listing 10.1: Pw LCD. h, Pwr check. ¢, and
Pwr dev. c.

Thefile PwrLCD.h is the header file that storesthe bits' definition of the
devices. There are a total of 32 bits, and bits 2 to 32 are open for usage.

#define PWR_LCD 0x0002

This line means that bit 2 is used for LCD power control. To avoid a double
definition, do not duplicate the bit definition.

The file Pwrcheck.c is a user application program that calls
PwrSetEnterDoze()/PwrSetExitDoze() to set the devices to be controlled
when the system enters and exits DOZE mode. In the example, the device
to be controlled is LCD.

PwrSetEnterDoze(PWR_LCD);
PwrSetExitDoze(PWR_LCD);

PPG-168 PPSM-GT User Guide

als
f‘_mgitﬂlnﬂﬂ Power Management Services

frem Motarola Code Example

Thefile Pwrdev.c isadevice driver file, and the internal routines such as
PortEnterldle() are device driver routines that are called just before the
system enters DOZE mode. The system integrator or the software
developer must provide codes to gain control of the devices. In the smple
example above, the LCD isturned off.

if (devices& PWR_LCD)
{
TurnOffLCD();

}

PPSM-GT User Guide PPG-169

ats
Power Management Services f‘_mgitﬂlnuﬁ

Code Example frem Metarola

PPG-170 PPSM-GT User Guide

ats
f“[ﬁgitﬂlﬂ"ﬂ System Application Services

from Motarcla Application Fundamentals

11

System Application
Services

System application services are PPSM-GT core services and are for laying
the foundation of the whole program. Like the foundation of a building,
they are important and can never be ignored. System application services
are mainly used in the main program to set up the program environment,
such as input and display mediafor the whole program. The concept of an
application isuniquely defined in PPSM-GT and is covered in this chapter.

This chapter is organized into the following sections:
» Application Fundamentals

* Programming using System Application Services

e Summary
» Code Example

Application Fundamentals

An application sets the stage for tasks to perform actions. This analogy of
an application to the stage in a drama helps to illustrate what an application
is in PPSM-GT. It creates the task operating environment.

In a drama, the stage is where everything take place; without the stage there
is no drama. With the stage alone, there is also no drama. A drama needs
actors and actresses with different roles. Using this analogy for PPSM-GT,
the application is where things happen, and an application needs tasks to
give it meaning.

PPSM-GT User Guide PPG-171

als
System Application Services f“[ﬁgitﬂlﬂ"ﬂ

Panning Screens

from Moetarola

An application is a conceptual element and it represents the look and feel
of aparticular function. Taking a calculator application as an example. The
digits are displayed on the screen when the icong/keys representing the
digits are touched, and the result is displayed on the LCD screen when
addition or subtraction is performed. The application is like a black box
which has icons’keys inputs and LCD screen as output. The handling of
inputs and generating of output on the LCD screen are al done by software
routines know as tasks. The application is the place that enable the
activities to happen.

There are 5 magjor elements in the application architecture: Application,
Panning Screen, Input Context, Graphic Context and Task. The following
section provides an introduction to these elements and the relationship
among them.

Panning Screens

Panning screens are memory buffersthat store the display content, and they
are independent entities that need to be created when required. Panning
screens are created by AppCreatePanScreen() or AppCreateGC().
AppCreateGC() will create a panning screen that is bound to the GC,
whereas AppCreatePanScreen() creates an independent panning screen.

Normally, one application needs one panning screen if the application
needs to display any content on the LCD display. Therefore, in amultiple
application environment, each application may need to have its own
panning screen for display.

In the multiple panning screen environment, at any one time only one

panning screen can be mapped to the LCD display. This panning screenis
known as the “active panning screen” and it's contents will be display on
the LCD display. For the rest of the panning screens, its’ contents will not
appeared on the LCD display until the panning screen is mapped onto the
LCD display.

The number of panning screens supported is defined by the user and
restricted by the system memory.

PPG-172

PPSM-GT User Guide

*mgitalnuﬁ System Application Services

from Muotonola Graphic Context

Graphic Context

Figure 11.1 Graphic Context Structure

What is Graphic Context

Graphic Contexts, GCs are memory buffer that stored the drawing
property for a task.

All the PPSM-GT graphic routines will refer to the task current
graphic context to get information like dot width, fill pattern, color
and style. Having the above information, they will then draw the
image on the particular panning screen that binds to the graphic
context.

All the graphic routine would refer to the property of the draw
structure in the graphic context. If the draw pointer in the graphic
context is NULL, the graphic routine will use the default value for
its drawing.

The default value would be used upon draw structure creation, user
would change those properties by the graphic API provided.

By default the drawing properties are set to

= DEFAULT_DOTWIDTH = 1

« DEFAULT_PATTERN = 0

= DEFAULT_BACKCOLOR = WHITE
= DEFAULT_BORDER = 1

= DEFAULT_SPACE = 0

As shown in Figure 11.1 - Graphic Context Structure, it consists of
the Graphic Context Id, display color, style, mode, the pointers to

PPSM-GT User Guide PPG-173

als
System Application Services f“[ﬁgitﬂlﬂ"ﬂ

Input Context

from Moetarola

the draw property,and pointers to panning screen and the current
task Id that use the GC.

Graphic contexts are independent entities and have to be created
separately if required using GpxCreateGC().

Input Context

Input context are memory buffer that store pen input time-out,
sampling rate, pen size, pen color, active area list, and task that is
bound to the input context. Applications are tied to their corresponding
input context that defining the touch screen behavior, unique to an
application. An input context defines what is to be carried out upon a
particular pen action. For example, a pen touch on an icon may trigger a
particular response from the application.

Task

Task are software routines that does the actual work. While the input
context defines the responses to pen input activities, al "actual work" are
done by underlying tasks. For example, when a particular icon is touched,
an event will be sent to the task that servesthat icon. When lines are drawn
in an input area (within which contour of pen touch, in addition to pen up
and down actions, is recorded), the coordinates of the lines are sent to a
particular task for processing (for example, character recognition).

PPG-174

PPSM-GT User Guide

““Digital DNA

from Moetarola

System Application Services
Relationship of GC and Panning Screen and Drawing property

Relationship of GC and Panning Screen and
Drawing property

Figure 11.2 Relationship of Draw Property, Panning Screen and Graphic
Context

Graphic Context

[ﬂ
[

One to one M any to one
y AR
y 4] |
w | |
Draw Property Panning Screen

The draw property and panning screen relationship with graphic
context is as shown in Figure 11.2 shows the relationship of the GC
& Panning Screen. Draw property and graphic context has a one to
one relationship upon creation. When a GC is created, the draw
property list is also created. The draw property belongs to the GC
and will be deleted when the GC is deleted. The content of the draw
property could be modified with the following APIs:

= GpxSetColor() to change the background color
= GpxSetDotWidth() to change the dot width
= GpxSetPatternFill() to change the pattern

On the other hand, the relationship between panning screen and
graphic context is different. It is a one to many relationship, i.e at
any one time one GC can be bind to one or no panning screen, but
one panning screen is not limited to one GC. Many GCs could be
pointing to one panning screen just like many different pens are
used for drawing on the same piece of paper. The relationship is a
also a dynamic one such as at anytime the panning screen could be
change with AppSetCurrPanScreen() or AppSetPanScreen()

PPSM-GT User Guide PPG-175

System Application Services f"‘[h tﬂlﬂ"ﬂ.

Relationship of task, application, panning screen and graphic context frem Metarola

Panning screen could be created with AppCreatePanScreen() or
together with GC creation. By the default, no panning screen is
created when graphic context is created.

Therefore a graphic context will have a draw property and may or
may not have a panning screen. The effect have not having panning
screen will be discussed in the following section.

Relationship of task, application, panning
screen and graphic context

Figure 11.3 Relationship of Task, Application, Panning Screen & Graphic
Context
Application
/ \ Next IC
Panning Screen Input Context]I nput Context/—>

\J, J
Task
her graphic contexts ' A/ one taSk\l A/
Graphic Graphic
Context Context

Task and Graphic context

Graphic context,GC works with task for drawing purpose, and one
task can have only one GC at any one time, but one GC is not
limited to one task. That is many tasks are allowed to share GC. This
allows many tasks to draw on the same panning screen with same
drawing property just like many people are using the same pen to
draw on the same piece of paper. PPSM-GT keeps track of the
number of tasks using the GC.

PPG-176

PPSM-GT User Guide

““Digital DNA

from Moetarola

System Application Services
Relationship of task, application, panning screen and graphic context

This number will increased by 1 if additional task are using the GC,
and decreased by 1 when task unbind itself with the GC. Bind and
unbind are done by KnIBindGC(). To bind the GC, the GCId is
required. To unbind the GC, the value ’0’ is in place of the Gcld.

The system will not allows, any task to delete the GC if it is still in
use. Therefore if GC is no longer required by any task, it should be
unbind.

Task, Panning Screen and Graphic context

Tasks used draw property on GC to draw graphics onto the
panning screen that is bind to the GC. To draw on different panning
screen, the task could either switch the panning screen on the GC or
switch the GC totally. The difference is switching GC, changes the
draw property if the two GCs draw properties are different.

Application, input context, task, panning screen and graphic
context

Applications aretied to their corresponding input context which definesthe

touch screen behavior and is unique to an application. Panning screen

defines where the output goes. An active panning screen will have it's
contents displayed and seen on the LCD display. Figure 11.3 shows the
relationships of application and the rest of the elements in the application
architecture, and defines an application’s input/output behavior by it's
relationship with the list of input contexts and a panning screen. While a
particular input context is solely owned by an application, a panning screen
can be shared by multiple applications.

Basically, every application performs it's function in a loop of

» Taking input with the input context(s)

» Perform necessary actions with tasks serving the input context(s). This
may include write back of result to the panning screen by the tasks with
parameters defined in their corresponding graphic context.

A particular task can serve multiple number of input contexts, thus may
serve more than one application. Graphic context, in similar way, can serve
multiple number of tasks, thus may also serve more than one application

In such an environment, which application is going to respond to the inputs
from the multiple input context? Which panning screen will have it's

PPSM-GT User Guide PPG-177

als
System Application Services f“[ﬁgitﬂlﬂ"ﬂ

Multiple applications environment from Muotarola

context displayed on the LCD display. Such questions are addressed and
answered by the application known as “the current one”.

In the multitasking environment, all applications when created are active
until they are terminated. Some applications may have tasks actively going
some activities, other might be actively waiting. An application therefore
becomes “the current one” when it is intentionally switched on by the
designers using AppSwitch(). Therefore, the decision on which application
should be “the current one” at any one time lays in the hand of the
designers and not the system.

When an application is switched on by AppSwitch() command, it becomes
“the current one”. All the pen input activities is send to it's corresponding
input context to determine what action is to be carried out, and it's
corresponding panning screen is mapped to the LCD display.

Only one application will be "the current one™ at a particular time, although
tasks serving other applications may be running in the background.

Multiple applications environment

A multiple applications environment is normally used in a complex system
where a single system environment is unable to handle the system
requirements. In such a system, a developer could use multiple applications
to handle different system requirements as long as the following rules are
followed:

1. Each application must have its own panning screen, graphic context
and input context.

2. AppSwitch() is used to switch from one application to another.

Entry and Exit callback functions

Entry and Exit callback functions are routines that are executed before and
after application switching, respectively.

In application creation, users can fill in the Entry and Exit callback
functions. When an application is to be swapped in, its entry function will
be executed first. When an application is to be swapped out, its exit
function will be executed before the swap out. For example:

VOID SchedularEntryCallback() and VOID
SchedularExitCallback()

PPG-178

PPSM-GT User Guide

““Digital DNA

System Application Services

from Motarcla Programming using System Application Services

Programming using System Application Services

There are four groups of system appli
followed:

cation services and are listed as

* Programming Task Operating Environment

* Programming Graphic Context

* Programming Input Context

¢ Programming Input Context

Programming Task Ope

Creating Application

rating Environment

STATUSAppCreate(P_APP_ID
pAppld, P_TEXT pName,
P_VOID entryCallback, P_VOID
exitCallback, U16 iconWidth, U16
iconHeight, P_U8 plconlimage,
U16 ringBufferSize)

It creates the application with
specified parameters like the name
of the application, entry callback

) function, exit callback function,
and so on.

Deleting Application

STATUSAppDeete(APP_ID
appld)

It deletes the application specified
by Appld. This routine cannot be
used to delete the download
application.

Getting Application ID

STATUS
AppGetAppldFromIC(IC_ID
icld, P_APP_ID pAppld)

APP_IDAppGetCurrent()

Retrieves the application ID from
Input context ID while
AppGetCurrent() returns the
current application ID. If there is
no current application, it returns
NULL.

Get the current Application ID.

PPSM-GT User Guide

PPG-179

System Application Services
Programming Task Operating Environment

““Digital DNA

from Moetarola

Getting Icon Info

STATUS AppGetlcon(APP_ID
appld, P_U16 plconWidth, P_U16
plconHeight, P_U8 * plconlmage)

It returns the application icon with
itswidth and height in pixels.

Getting Application name

STATUS AppGetName(APP_ID
appld, P_TEXT * pName)

It returns the pointer of the
application name.

Getting Next Application on the App List

STATUS AppGetNext(APP_ID
appld, P_APP_ID pAppld)

It returns the next application
pointer. This appliesto both
download applications and general
applications.

Getting Previous Application

STATUS AppGetPrev(APP_ID
appld, P_APP_ID pAppld)

It searches the applicationsin the
general application list and returns
the previous application pointer
for the specific application.

Switching Application

STATUS AppSwitch(APP_ID
appld)

It switches the application to the
specific application and changes
the LCD display correspondingly.
If the new application has no
panning screen, no change will be
seenin LCD.

PPSM-GT User Guide

ats
f“[ﬁgitﬂlﬂ"ﬂ System Application Services

frem Metarola Programming Graphic Context

Programming Graphic Context

Creating Graphic Context

STATUS AppCreateGC() creates the
AppCreateGC(P_GC _ID pGCld, | graphic context that is requested,
U16 horz, U16 vert) and the horz and vert parameters

are for creating a binding panning
screen. If no panning screen is
required, set the two parametersto
zero.

Deleting Graphic Context

STATUS AppDeleteGC(GC_ID | AppDeleteGC() deletes the GC as
gcld) specified by the gcld.

Programming Input Context

Adding Input Context

STATUS AppAddIC(APP_ID This routine inserts an input
appld, IC_ID icld) context to the front of an input
context list of the application .

Getting first Input Context in list of App

STATUS AppGetFirstiC(APP_ID | It getsthefirst input context in
appld, P_IC_ID pIC) the input context list in the
application.

Moving Input Context to the top of App’s IC list

STATUS This routine moves the specific
AppMovel CToTop(APP_ID appld, | input context to top of the
IC_IDicld) application’s input context list

Removing Input Context from App’s IC list

STATUS AppRemovel C(IC_ID This routine removes the input
icld) context from its application’s
input context list

PPSM-GT User Guide PPG-181

System Application Services
Programming Panning Screen

““Digital DNA

from Moetarola

Swapping the App’s IC list

STATUSAppSwaplCList(APP_ID

appld, IC_ID newIC, P_IC_ID pIC)

This routine swaps the input
context list in specific application
and return the old one to calling
routine

Programming Panning Screen

Creating Panning Screen

STATUS
AppCreatePanScreen(P_SCREE
N_ID pScreenid, U16 horz, U16
vert)

AppCreatePanScreen() and
AppDeletePanScreen() are for
creating and deleting panning
screens, respectively. When
creating the panning screen, the
dimension of the panning screen
(horz and vert) must be provided.
The following horz and vert inputs
will cause an error, and the system
will not create the panning screen.
1. Zerovalue.

2. Multiplier of 4 for pixels 4
design, multiple of 8 for pixels
2 design and multiple of 16 for
pixel 1 design.

3. Vaue cannot exceed the
maximum permissible values
supported by the hardware.
Refer to section on LCD
controller in hardware manual.

Binding Panning Screen

STATUS
AppBindPaninfo(APP_ID appld,
SCREEN_1D paninfo)

Bind the panning screen to the
application specified by the
application ID.

PPG-182

PPSM-GT User Guide

ats
f“[ﬁgitﬂlﬂ"ﬂ System Application Services

frem Metarola Programming Panning Screen

Changing Panning Screen

STATUS Set the panning screen to the
AppSetPanScreen(GC _ID gcld, graphic context provided
SCREEN_ID screenld)

STATUS Set the panning scrren to the
AppSetCurrPanScreen(SCREEN_ | current graphic context
ID screenld)

Two possible effect could be achieved with changing
panning screen:

— Direct all graphics output to off-screen
— Direct all graphic output to new on-screen

Direct all graphic output to off-screen

Run-time computation intensive image generation and
display could be slow. Users may see the graphics output
appears slowly on the LCD display screen. By using
GpxSetPanScreen() allows applications to direct all
output from PPSM-GT graphics routines to an off-screen
memory area temporarily, so that no changes will appear
on the LCD display screen while the image is being built.

Once the image is generated, it can be displayed onto the
LCD screen using AppBindPaninfo(). This will give the
effect that the image is displayed instantaneously.

GpxSetPanScreen() assumes that all input parameters are
valid. If screenld is zero, no panning screen will be
attached to that graphic context.

GpxSetCurrPanScreen() works like GpxSetPanScreen()
except for the absent of Gcld as the input parameter.
Therefore GpxSetCurrPanScreen, will set the current
panning screen specified by the current screenld to the
active Gcld.

Direct all graphic output to new on-screen

When required to change the current active panning
screen to another new active panning, GpxSetPanScreen()
and AppBindPaninfo() are used together.

The effect would cause the application to switch from the
old panning screen to the new panning screen

PPSM-GT User Guide PPG-183

System Application Services
Programming Panning Screen

““Digital DNA

from Moetarola

immediately. Whatever that is drawn on the new panning
screen after the AppBindPaninfo() will appear on the

LCD screen.

Deleting Panning Screen

STATUS
AppDeletePanScreen(SCREEN _
ID screenld)

Delete the panning screen
specified by the screenld.

Deleting Panning Screen Info from App list

STATUS
AppRemovePanlnfo(APP_ID

appld)

It sets the panning screen
information in the specific
application to NULL.

Getting Panning Screen Info

STATUS
AppGetPaninfo(APP_ID appld,
SCREEN_|D * pPanlnfo)

It returns the pointer of the
panning screen information for the
specific application.

Get Panning Screen Width

U16
AppGetPanScreenWidth(void)

GpxGetPanScreenWidth()
returns to the caller the panning
screen width, in terms of pixels,
of the current application.

Get Panning Screen Height

U16
AppGetPanScreenHeight(void)

GpxGetPanScreenHeight()
returns to the caller the panning
screen height, in terms of pixels,
of the current application.

Get Current Panning Screen Id.

STATUS
AppGetCurrPanScreen(P_SCREE
N_ID pScreenid)

The routine returns the panning
screen ID from the graphic
context of the current task or
from the current application.

PPG-184

PPSM-GT User Guide

““Digital DNA

System Application Services

from Metorola Summary
Get Panning Screen Id.
STATUS The routine returns the panning
AppGetPanScreen(GC_ID gcld, screen ID from the specified
P_SCREEN _ID pScreenid) graphic context.

Summary

Applications have a unique definition in the PPSM-GT system.
Metaphorically speaking, they are like a stage on which tasks perform
actions. In the PPSM-GT environment, devel opers can use one application
or multiple applications to design the system. It all depends on the
complexity of the system and the creativity of the design.

Application defines the behavior resulted from the interaction among the
underlying elements (input context, panning screen, task and graphic
context). Therelationship of these elements with an applicationisshownin
Figure 11.3 - Relationship of Task, Application, Panning Screen &
Graphic Context

PPSM-GT application services can handle both the simple one-application
system or the complex multi-application system. In addition to multi-
application design, developers can have multiple panning screens with a
single application or multiple applications. The combinations are many,
and the key is creativity. Therefore, to unleash the power of PPSM-GT,
focus effort on the design of the system and devise a combination that
works for the system.

Code Example

Setting up the application environment

Typicaly in PPSM-GT programming, the main module is the modul e that
sets up the application environment for the rest of the system. The
following example describes the step-by-step approach of a main program
that sets up the application environment.

PPSM-GT User Guide PPG-185

System Application Services $[ﬁgitﬂlﬂ"ﬁ

Setting up an application from Motarcla

Figure 11.4 Typical Steps for Creating an Application

Bind App & Panning
Screen, AppBindPanlinfo()
Bind task & GC with
KnIBindGC ()
\ Create GC with AppCreateGC()

Create application with AppCreate()

Create Task with KnlCreateT ask()

Setting up an application

1. First create an application for the whole system. Thiswill set up the
environment for the rest of the tasks to operate in. The system will
assign a Appld to the application if AppCreate is successful.

2. Create al the main tasks in the current application, such as Ul
application tasks, network tasks, and SCI tasks. All tasks created
are suspended till the system is ready for operation.

3. Create the graphic context with a panning screen for al graphic
applications. The graphic context needs to be bound to the task, and
the panning screen needs to be bound to the application.

Listing 11.1 Example of setting up an application without application
framework

/* Variabl e Decl aration*/
#def i ne DEFAULT_MODE 1
#define NORVAL PRIORITY 6
#defnine HHGH PRIORITY 10
#define H GHEST _PRIORITY 15

P_APP_I DpAppl d;
TASK | DTaskAl d, TaskBI d, TaskCl d;

GC I D gcld;

SCREEN | D PanScr eenl d;

const TEXTTaskNameA= {"T ,’A,’S ,'K,’ ',"A,0};
const TEXTTaskNanmeB= {"T ,”’A,’S ,’K,’ ','B,0};

PPG-186 PPSM-GT User Guide

ats
f“[ﬁgitﬂlﬂ"ﬂ System Application Services

from Motarcla Setting up an application

const TEXTTaskNaneC= {"T',’A,’S ,’'K,’_',’C,0};
TEXT AppNane[] = {"A,"P,’ P, 0};
STATUS st at us;

STATUS mai n(voi d)

/* Create an application name APP with 3000 bytes ring buffer*/
status = AppCreat e(&pAppl d, AppNane, 0, 0, 0, 0, 0, 3000);

/* Create task Awith normal priority*/
status = Knl CreateTask(&TaskAld, (P_VO D) TaskNaneA,
NCRVAL_PRI ORI TY, DEFAULT_MODE, 4000) ;
Knl Suspend(TaskAl d) ;

/* Create task B with high priority*/
status = Knl Creat eTask(&TaskBld, (P_VA D) TaskNaneB,
H GH_PRI ORI TY, DEFAULT_MODE, 4000) ;
Knl Suspend(TaskBI d) ;

/* create task C with highest priority*/
status = Knl Creat eTask(&TaskCld, (P_VA D) TaskNanmeC,
HI GHEST_PRI ORI TY, DEFAULT_MODE, 4000) ;
Knl Suspend(TaskCl d) ;

/* create graphic context for application environnment with a
panni ng screen of 160 x 240*/
AppCreat eGC(&gcl d, 160, 240);

/* bind the graphic context to the task*/
Knl Bi ndGC(gpTaskl d, gcld);

/* get the panning screen from graphi c context*/
GoxGet PanScr een(gcl d, &PanScreenl d);

/* bind panning screen to the application*/
AppBi ndPanl nf o(Appl d, PanScreenl d);

/* Start executing application and activitate task A */

AppSwi t ch(Appl d) ;
Knl Resune(TaskAl d) ;

PPSM-GT User Guide PPG-187

als
System Application Services f‘_mgitﬂlnuﬂ

Setting up an application from Metarala

Listing 11.2

Use GpxSetPanScreen() to draw image

SCREEN | D newScr een;
APP_I Dt est App
GC_| D gpxcont;

/* Direct all graphic routine to nenory area
poi nt ed by
new panni ng screen to newScreen */

AppSet PanScr een(gpxcont, newScreen);
GoxSet Dot W dt h(6) ;

GoxSet Col or (BLACK) ;

GoxSet Styl e(REPLACE_STYLE) ;

GpxDr awRec(20, 80, 100, 140, 0) ;

AppBi ndPani nfo (testApp, newScreen);

PPG-188

PPSM-GT User Guide

afs
fi‘[ﬁgitaln"ﬁ System Event Management Services
from Motarcla Channels

12

System Event Management
Services

System events consist of information that is sent in PPSM-GT’s core
from one task to another. The information can be sent from a task or
a device driver. There are two groups of system events in PPSM-GT:
normal and broadcast events. Each group can be further divided
into 4 types, as follows:

<Erasable and wake up events
eErasable and non-wake up events
=Non-erasable and wake up events
<Non-erasable and non-wake up events

Channels

Channels are the media on which the information is carried. Only
tasks on the same channel can receive the event being broadcast.

Event ports

Event ports are the connection points for the task. In order to receive
an event properly, a task must create an event port and bind the
created port to itself using EvtCreatePort() and
KnlISetCurrEventPort(). One task can have only one event port.

Event ports are created and bound to a task by default when a task
IS created.

Event ports are not required for a task sending an event.

PPSM-GT User Guide PPG-189

als
System Event Management Services ""[ﬁgimlnuﬁ
Event data structure from Metarala

Event data structure

Figure 12.1 Level event data structure

led q Tled q led
eqtdta egatdda eatcda
dnuture dnudture dnudure
2Yled et ca 2Yled et cta 2Yled et cta
druture drudure drudure

All the events have a one- or two-level based structure. The first
level is a general data structure called “EVENT,” and it includes a
pointer to another “EVENT” identity, event type and source.

Listing 12.1 A first-level event

typedef struct _EVENT

{
struct _EVENT *next; /* Pointer to next event */
EVTTYPE type; /* Event type */
TASK | D sour ce; /* Source of event */
Ul6 usageCount; /* Number of task using this event
*/

} EVENT, *P_EVENT;

The second level is an extension on thefirst level. It may be defined upon
any particular type of event, and users may extend it by defining their own
second-level data structure. Thisisfor the users to send customized
messages from one task to the other.

PPG-190 PPSM-GT User Guide

als
fi‘[ﬁgitaln"ﬁ System Event Management Services
from Metorela Event Headers

Listing 12.2 Setting up a customized second-level event

t ypedef struct _SHORT_EVT

{
EVENT event ; [* 1st | evel event */
ule6 dat a; /* 2nd | evel event, 16-bit data */

} SHORT_EVT, *P_SHORT_EVT,

PPSM-GT automatically cleans up the event data structure after a user has
received it. For memory allocated and pointed to by alevel 2 event data
structure, the user needs to perform the cleanup manually.

Event Headers

Event headers are event identifiers that are attached to the event when the

system sends out an event to the task. They describe the type of event and

are sent as event types in the event data structure. The event header file
“EVT_typ.h” shows the list of system event types that PPSM-GT supports.
System integrators or software developers should check the event against
the event header to determine the action required. The file “EVT_typ.h”
may be changed in later versions of PPSM-GT.

System integrators or software developers could also send a user-defined
event from one task to another. To send a user-defined event, call
EvtAllocType() to allocate and get an available event type from the system.

Not all services require the system to send event messages to a task. For
example, graphic manipulation and text management services do not need
to send any event message to a task, so there is no event type defined.

Decoding a received event

All events with a number larger than or equal to
EVT_USR_DYNAMIC_ BASE and smaller than Ox3FFF are considered to
be user-defined event types.

PPSM-GT User Guide PPG-191

ats
System Event Management Services *“[Hgitjalnﬂﬁ
Event Headers frem Metarola

Table 12.1 System Event Header Description Table

Type Definition Description
EVT_NONE No activity
EVT_USR_DYNAMIC BASE User-defined event start
Kernel Event No system event defined
Event Management Event No system event defined
Memory Management Event No system event defined
Text Management Event No system event defined
Graphic Manipulation Event No system event defined
Software Timer Event No system event defined
Alarm Event

EVT_ALM_TYPE Type of alarm

EVT _ALM_EXPIRED Alarm expired

Sci Management Event

EVT_UART1 UART data
EVT_UART2 UART data

Audio Management Event

EVT_AUD_OFF Audio off
EVT_AUD_WAVEINUSE Audio wave in use
EVT_AUD_TONEINUSE Audio tone in use
EVT_AUD_MELODYINUSE Audio melody in use
EVT_AUD_MELODYPAUSE Audio melody pause
Power Management Event

EVT_POWER_IDLE Idle timer
EVT_POWER_GODOZE Go sleep
EVT_POWER_OUTDOZE Exit sleep

Application Event

EVT_APP_DOWN_ID Application download ID
Pen Input Event

EVT_PEN_ICON_TOUCH Icon pen touch
EVT_PEN_ICON_DRAG Icon drag in

PPG-192 PPSM-GT User Guide

““Digital DNA

from Moetarola

System Event Management Services

Event Headers

Type Definition

Description

EVT _PEN_ICON_UP
EVT_PEN_ICON_DRAG_OUT
EVT_PEN_INPUT_TOUCH
EVT_PEN_INPUT_DRAG
EVT _PEN_INPUT_UP
EVT PEN_INPUT DRAG_OUT
EVT _PEN_INPUT _DATA
EVT _PEN_KEY_TOUCH
EVT _PEN_KEY_DRAG
EVT _PEN_KEY_UP
EVT PEN_KEY DRAG_OUT
EVT PEN_KEY _DATA
EVT PEN_KEY_TIMEOUT
EVT_PEN_TIMEOUT
SKY Event
EVT_SKY_KEY
EVT SKY_BEGIN_REPEAT
EVT _SKY_REPEAT
INP Event
EVT_INP_CHAR
EVT_INP_PL CHAR
EVT_INP_ADDPAD
EVT _INP_DELPAD
EVT INP_UNINSTALL
EVT _INP_TIMEOUT
IrDA Event
EVT_IRD_FRM_RECV

EVT_IRD_FRM_SENT

Icon pen up

Icon drag out

Input area pen touch
Input area pen drag in
Input area pen up

Input area drag out
Input area pen coordinate
Key area pen touch

Key area pen drag in
Key area pen up

Key area drag out

Key area data

Key area pen up timeout
Pen up timeout

Soft keyboard
Soft keyboard Begin Repeat
Soft keyboard repeat

HWR a char

HWR a char for PL
Add input pad
Delete input pad
Uninstall engine
Timeout

IrDA framer received a
frame available for
processing

IrDA framer has send out a
packet

PPSM-GT User Guide

PPG-193

System Event Management Services

Event Headers

““Digital DNA

from Moetarola

Type Definition

Description

EVT_IRD_TIMEOUT
EVT_IRD_MEDIACHANGE
EVT_IRD_IRCOMME_WRITE

EVT_IRD_IRCOMME_READ
EVT_IRD_IRCOMME_CLOSE
EVT_IRD_IRCOMME_STATUS_C

HANGE

EVT_IRD_IRCOMME_STATUS_S
ENT

EVT_IRD_IRCOMME_WRITE_ER
R

EVT_IRD_OBCE_CONNECTED

EVT_IRD_OBCE_DISCONNECT

EVT_IRD_OBCE_DISCOVERY_FA
ILED

EVT_IRD_OBCE_COMPLETE

EVT_IRD_OBCE_ABORTED

EVT_IRD_OBCE_HEADER_RX

EVT_IRD_OBSE_RX_IND

EVT_IRD_OBSE_RX_COMPLETE

IrDA framer timeout

Ircomm: data can be
written

Ircomm: data is available to
be read

Ircomm: the close is
complete

Ircomm: the control status
changed

Ircomm: status was sent to
peer

Ircomm: write failed

Obex: Tiny TP connection
has been established for the
client

Obex: Underlying IR
connection has been
disconnected

Obex: Device discovery
failed to find an OBEX
capable device

Obex: requested OBEX
operation is complete

Obex: current OBEX client
operation has been aborted

Obex: server received a
header

Obex: server indicated
receiving a header and
object body

Obex: server completed
receiving header and object
body

PPG-194

PPSM-GT User Guide

““Digital DNA

from Moetarola

System Event Management Services
Types of events

Types of events

There are 4 types of events in PPSM-GT, and they are as follows:
eErasable and wake up events
eErasable and non-wake up events
<Non-erasable and wake up events
<Non-erasable and non-wake up events

Erasable and Non-erasable Events

Erasable events are events that the system will automatically delete when
no more tasks are using them. An event is considered not to be in use when
its “usageCount” is down to zero. The memory of this event will be
deleted.

Non-erasable events are events that the system will not
automatically delete when no more tasks are using them. The
memory of this event will not be deleted; manual deletion of the
memory is required.

The memory pointed to by a pointer in the second-level user-
defined data structure cannot be deleted automatically. It has to be
deleted by a user manually.

Wake up and non-wake up Events

A wake up event, when sent, will restart the idle timer (see Power
Management) in NORMAL mode or wake up the system in SLEEP/
DOZE SLEEPmode. To set up a wake up event, developers may call
EvtSetWakeup() after initializing and before sending an event.

A non-wake up event, when sent, will not restart the idle timer (see Power
Management) in NORMAL mode, nor will it wake up the system in

SLEEP/DOZE SLEEP mode. To set up a non-wake up event, developers
may call EvtSetUnwakeup() after initializing and before sending an event.

An event defaults to being a non-wake up event after calling
EvtInitEvent().

PPSM-GT User Guide PPG-195

als
System Event Management Services f“mgitﬂln"ﬁ

Types of events

from Moetarola

Broadcast event

Broadcast events are events that are sent to more than one task. In
order for tasks to receive the broadcast events, the tasks must be
connected to the broadcast channel. There are two classes of
broadcast events in PPSM-GT: timely and untimely.

*Timely broadcast events: Send out the event to all the tasks in the same
channel but skip those that are suspended or waiting semaphore. There
is a user-defined time limit. The event is removed from the channel
after a user-defined duration even when some of the tasks in the
channel did not receive the event.

=Untimely broadcast events: Send out the event to all the tasks in
the same channel but skip those that are suspended or waiting
semaphore. There is no time limit.

Broadcasting Channel

A channel containsalist of tasks ordered according to their priority. There
could be many broadcast channels in the system, and tasks have to
subscribe to the individual broadcast channel to receive the broadcast
events. A task can be in more than one channel at the same time.

A broadcasting event contains two parts. They are the broadcast data
structure and the event that needs to be sent. They form a broadcasting
event to be sent out.

The broadcasting event may be reused after broadcasting by checking the
“usageCount” of the received event to determine if any task is using the
event or not. The checking can be done with EvtGetUsage().

Time broadcasting

A time field is used to monitor the live time of the broadcasting
event. Once the live time has expired, a task that has received this
broadcasting event will take the event to its event queue and
remove the broadcasting event from the channel.

PPG-196

PPSM-GT User Guide

afs
"l‘mgltalnuﬁ System Event Management Serviges
from Motonoda Programming Using Event Management Services

Programming Using Event Management Services

Creating an Event

STATUS An event needs to be created
EvtlnitEvent(before it can be sent. To create an
P_EVENT pEvent, event, first allocate memory with
EVTTY PE type) MemMalloc() for the event size

and initialize the event data
structure with the EvtlnitEvent()
APIL.

EVTTYPE EvtAllocType(VOID) | It dynamically allocates afree
event type; if not, it returns

EVT_NONE.
STATUS It frees adynamically allocated
EvtFreeType(EVTTY PE) event type.
STATUS It registers and requests a
EvtRegister Type(EVTTY PE) particular event type from the
system.

EvtinitEvent() will initialize the event data structure fields to:
=“next” is a pointer to next event, to NULL.
=“type” is the type of event, to user-defined value “type.”
=*“source” is used to indicate which task sent out the event, to 0.
=“usageCount” is used to count the usage of an event, to 0.

The value of usageCount is automatically increased when atask isusing

the event and decreased when the task isno longer using it. Thisvalue shall

not be altered by a user after the sending out. A user may read thisvalueto
check if any task is gtill using the event by calling EvtGetUsage().

PPSM-GT User Guide PPG-197

System Event Management Services
Setting up Erasable Event

““Digital DNA

from Moetarola

Setting up Erasable Event

STATUS
EvtSetErasable(P_EVENT
pEvent)

To set up an erasable event, use
the EvtSetErasable() API after
initializing but before sending
an event. After initializing an
event with EvtinitEvent(), the
event defaults to being
erasable.

Setting up Non-erasable Event

STATUS
EvtSetUnerasable(P_EVENT
pEvent)

To set up Non-erasable events,
use the EvtSetUnerasable() API
before sending an event. The
event will not be deleted
automatically after being
received.

Setting Wake up Event

STATUS
EvtSetWakeup(P_EVENT
pEvent)

EvtSetWakeup() sets an event
be to automatically wake up
the system after the sending
out. After initializing an event
by EvtlInitEvent(), the event is
defaulted to be non-wake up.

Setting up Non-wake up Event

STATUS
EvtSetUnwakeup(P_EVENT
pEvent)

EvtSetUnwakeup() sets an
event not to automatically
wake up the system.

PPG-198 PPSM-GT User Guide

““Digital DNA

from Moetarola

System Event Management Services

Checking the Event Type

Checking the Event Type

STATUS
EvtlsErasable(P_EVENT
pEvent)

STATUS
EvtlsWakeup(P_EVENT
pEvent)

BOOL
EvtlsTypeAvailable(EVTTY PE)

EvtlsErasable() verifies if an
event is auto-erasable.

EvtlsWakeup() verifies if an
event is auto-waking the
system.

It tests whether an event is
available or not.

Sending Events

STATUS EvtSend(P_EVENT
pEvent, TASK_ID taskld)

STATUS
EvtSendUrgent(P_EVENT
pEvent, TASK D taskld)

It is the function to send an
event to a task.

It sends an urgent event to a
task

Getting an event

EVTTYPE EvtCheck(VOID)

EVTTY PE EvtGet(VOID)

Check for an event in the event
gueue. The system does not
wait for an event if there is no
event; it will continue
executing the next instruction.

Check for an event in the event
gueue. The system will wait for an
event if thereisno event. The
calling task is put to
TASK_STATUS WAITING.

PPSM-GT User Guide

PPG-199

als
System Event Management Services f“mgitﬂln"ﬁ

Getting an event from Muotarola
STATUS It returns when any one of the
EvtWait(EVTTYPE evtType, following two occurs:
TICK milliseconds) 1. The specified event is placed in

the head of the event queue.

2. The time-out interval elapses.
All other events are queued in the
event FIFO queue.

STATUS It returns when any one of the
EvtWaitM ultiple(following two occurs:

U16 numOfType, 1. Either one or all of the specified
EVTTYPE* pEvtType, events are placed in the head of
TICK milliseconds, event FIFO queue.

BOOL waitAll) 2. The time-out interval elapses.

All other events are queued in the
event queue.

A task gets an event from its event queue, which is based on first in
first out (FIFO). PPSM-GT provides two APIs to supply
asynchronous or synchronous control of the system.

In asynchronous mode, a task is kept running even if it cannot get
any event. A task calls EvtCheck() to check and tries to get an event
from its event queue. EvtCheck() returns event data type, if any;
otherwise it returns EVT_NONE.

In synchronous mode, the rest of the process cannot proceed if a
task cannot get any event. A task calls EvtGet() and waits until it
gets an event from its event queue. EvtGet() returns event data type,
if any.

Because EvtGet() walits for the event, it is not suitable to be used in
any interrupt routines.

In both of these modes, the first event in the queue is moved out and treated
as the current event in the task. The “usageCount” of the previous event is
decreased by one.

PPG-200

PPSM-GT User Guide

““Digital DNA

from Moetarola

System Event Management Services

Receiving Event information

Receiving Event information

P_EVENT EvtGetEvent(VOID)

EVTTYPE EvtGetType(VOID)

U16 EvtGetUsage(P_EVENT
pEvent)

TASK_ID
EvtGetChTask(CHANNEL_ID
channelld, P_U32 pTemp)

TASK_ID
EvtGetChLastTask(CHANNE
L_ID channelld)

TASK_ID
EvtGetChNumTask(CHANNE
L_ID channelld)

EvtGetEvent() returns a pointer
to the current event. Returns
NULL if no event.

EvtGetType() returns the
current event type. Returns
EVT_NONE if no event.

EvtGetUsage() returns the
number of tasks that are
currently using this event.

EvtGetChTask() returns the
first task in a channel if the
“pTemp” is NULL. If the input
value is a valid address gotten
from this API before, it returns
the next following task of the
channel.

EvtGetChLastTask() returns
the last task in the channel.

EvtGetChNumTask() returns
the number of tasks in the
channel.

Deleting Event information

VOID EVtRmCurrEvent(VOID)

EvtRmCurrEvent() removes the
current event. A user is
normally not required to call
this, unless he wants to remove
the current event from the
current task immediately. By
default, the current event will
be removed automatically
when either EvtGet() or
EvtCheck() is called.

PPSM-GT User Guide

PPG-201

System Event Management Services
Setting up and deleting the broadcasting structure

““Digital DNA

from Moetarola

STATUS
EvtDelInQueue(EVTTY PE)

STATUS EvtFlushQueue(VOID)

To delete all the events with
given event type in the queue
of the calling task

To flush all the events in the
queue of the calling task

Setting up and deleting the broadcasting

structure

BRDCST_ID
EvtCreateBroadcast(VOID)

U8 EvtIsBrdcstld(BRDCST_ID
id)
STATUS

EvtDeleteBroadcast(BRDCST _
ID id)

STATUS
EvtRmBrdcstFromCh(BRDCST
_ID brdcstld)

EvtCreateBroadcast() creates a
broadcasting data structure.
Returns the broadcastid.

EvtlsBrdcstld() verifies if a
number is a Broadcast ID.

EvtDeleteBroadcast() deletes a
broadcasting data structure.

EvtRmBrdcstFromCh()
removes a broadcast event
from a channel. No operation
occurs if it is not on any
channel.

Setting up and deleting the channel structure

CHANNEL_ID
EvtCreateChannel(VOID)

us
EvtlsChannelld(CHANNEL_I
D id)

STATUS
EvtDeleteChannel(CHANNEL
_ID id)

EvtCreateChannel() creates a
channel data structure. Returns
the channel ID.

EvtlsChannelld() verifies if a
number is a channel ID.

EvtDeleteChannel() deletes a
channel data structure.

PPG-202

PPSM-GT User Guide

““Digital DNA

from Moetarola

System Event Management Services

Getting the Broadcast Channel

Getting the Broadcast Channel

CHANNEL_ID
EvtGetBrdcstChannel(BRDCS
T_ID id)

It gets the channel ID of a
broadcasting event that is
currently on.

Adding a Task to the Broadcast Channel

STATUS
EvtAddToChannel(TASK_ID
taskld, CHANNEL _ID
channelld)

EvtAddToChannel() adds the
task to the channel. Tasks that
are already on the channel
cannot be duplicated.

Deleting a Task from the Channel

STATUS
EvtRmTaskFromCh(TASK_ID
taskld, CHANNEL_ID
channelld)

It removes a task from a
channel.

Setting up and deleting Event port

EVTPORT_ID
EvtCreatePort(VOID)

STATUS
EvtDeletePort(EVTPORT _ID
eventPort)

EvtCreatePort() creates an
event port and returns the
event port ID. Port needs to be
bound to atask before use.

EvtDeletePort() deletes the
event port. Port needsto be

removed from the task before
caling this.

Neither routine is suitable for interrupt routines.

PPSM-GT User Guide

PPG-203

System Event Management Services
Sending Broadcast Events

““Digital DNA

from Moetarola

Summary

Sending Broadcast Events

STATUS
EvtSetBrdcstEvent(BRDCST _I
D id, P_EVENT pEvent)

STATUS
EvtSendBrdcstEvent(BRDCST
_ID brdcstld, CHANNEL_ID
chld, TICK time)

EvtSetBrdcstEvent() configures
the broadcasting event.

EvtSendBrdcstEvent()
broadcasts an event on a
channel. If “time” is
EVT_FOREVER, the event will
be sent until it reaches the end
of the channel.

Receiving Broadcast Events

P EVENT
EvtGetBrdcstEvent(BRDCST I
D id)

It gets the event being sent
currently under the
broadcasting data structure.

System Event Services are intertask communications. Like
telecommunication services in the real world, the system event
services provide the means for tasks to communicate with one
another. Before any intertask communication can take place, the
communication port must first be set up.

Broadcast events are a special kind of event that allow one-to-many
task communication. In order for tasks to receive broadcasting
messages, they must first subscribe to the broadcast channels.

Code Examples

The code examples provided are for reference only. They should not

be used without modification.

PPG-204

PPSM-GT User Guide

als
fi‘[ﬁgitaln"A System Event Management Services
frem Motarola Code Examples

Listing 12.3 Setting up a Non-erasable event

t ypedef struct EVENT

{
struct EVENT *next; /* Pointer to next event */
EVTTYPE type; /* Event type */
TASK I D sour ce; /* Source of event */
Ul6 usageCount; /* Number of task using this event
*/

} EVENT, *P_EVENT;

/* Defining two type of event TYPEl and TYPE2 */

Ul6 TYPEL = EvtAll ocType();
Ul6 TYPE2 = Evt Al |l ocType();
P_EVENT pEvent 1,

/* Reserving nmenory for the event gpEventl; */
pEvent 1 = (P_EVENT) MemMal | oc(si zeof (EVENT)) ;

/* Set up the event structure and declare it as type 1 */
Evtlnit Event (pEvent1l, (EVITYPE) TYPEL);

[* Set it as non erasabl e event */
Evt Set Uner asabl e(pEvent 1) ;

Listing 12.4 Setting up a non-wake up event

t ypedef struct EVENT

{
struct EVENT *next; /* Pointer to next event */
EVTTYPE type; /* Event type */
TASK I D sour ce; /* Source of event */
Ul6 usageCount; /* Nunmber of task using this event
*/

} EVENT, *P_EVENT;

/* Defining two type of event TYPEl and TYPE2 */

Ul6 TYPEL = EvtAll ocType();
Ul6 TYPE2 = Evt Al l ocType();
P_EVENT pEvent 2;

/* Reserving nmenory for the event gpEvent2; */

PPSM-GT User Guide PPG-205

ats
System Event Management Services ""[ﬁgimlnuﬁ
Code Examples frem Metarola

pEvent 2 = (P_EVENT) MemMal | oc(si zeof (EVENT)) ;

/* Set up the event structure and declare it as type 2 */
Evtlnit Event (pEvent 2, (EVTITYPE) TYPE2);

/[* Set it as non wal k-up event */
Evt Set Unwakeup(pEvent 2) ;

Listing 12.5 Setting up a broadcast event

t ypedef struct EVENT

{
struct EVENT *next; /* Pointer to next event */
EVTTYPE type; /* Event type */
TASK | D sour ce; /* Source of event */
Ul6 usageCount; /* Number of task using this event
*/

} EVENT, *P_EVENT;
BRDCST_| D Broadcast | d;
CHANNEL_ID Channdlld;
TASK_| DTaskAl d;
const TEXTTaskNanmeA= {"T ,’A,’' S, K’
STATUS st at us;

", A, 0}

/* Creating a task to receive the software tiner event*/
status = Knl Creat eTask(&TaskAl d,
(P_VvA D) TaskA, TaskNaneA, 4000, 6, 1);

/* Create the broadcast channel */
Broadcast |l d = Evt Creat eBroadcast () ;
Channel 1 d = Evt Creat eChannel ();

/* Add task A to channel for transmtting & receiving broadcast */
status = Evt AddToChannel (TaskAl d, Channel ld);

/* Set and Send broadcast event for 10 m || seconds*/
status = Evt Set Brdcst Event (Broadcast|d, pEvent2);
status = Evt SendBr dcst Event (Broadcast1d, Channelld, 10);

PPG-206 PPSM-GT User Guide

als
"'[ﬁgimln"ﬁ Software Timer Handling Services

from Moetarola

Software Timer Handling
Services

Software Timer Handling services are a set of software routines that
operate the software timer that is based on the software reference
timer. PPSM-GT uses a 32-bit register as a software reference timer.
Every count is 1 tick, and the range of the software reference timer is
from 0 to 2* ticks.

A tick is a system-developer-defined time unit. It is a division of
time and is normally specified in milliseconds. In PPSM-GT, a tick is
defined as 1 millisecond.

The reference timer defaults as free running and counts all the time.

The software timer functions can act as an alarm, and the alarm
takes its reference from the software reference timer. The resolution
is in milliseconds, and the range is 0 to 24 hours. PPSM-GT provides
APIs to control, set and use this alarm.

This chapter is organized into the following sections:

« Software Timer Handling Fundamentals

= Programming Using Software Timer Handling Services

e Summary
= Code Example

PPSM-GT User Guide PPG-207

ats
Software Timer Handling Services f“mgitﬂln"ﬁ

Software Timer Handling Fundamentals from Metarala

Software Timer Handling Fundamentals

Software Timer Handling Services APIs provide access to the
software timer. They consist of routines to create a new software
timer and routines to reconfigure an existing timer. Once a software
timer is created, it should be reused when possible by
reconfiguration to conserve system resources.

Basic Steps for Setting Up Software Timer

Table 13.1 shows the basic steps required for setting up a new
software timer using PPSM-GT.

PPG-208 PPSM-GT User Guide

““Digital DNA

from Moetarola

Software Timer Handling Services

Table 13.1 Basic steps for new Software Timer

Steps

Description

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Before using the software timer, the user needs to
determine the number of counts required. The
resolution of the software timer is approximately 1
millisecond; therefore, a 1-second timer is 1000 counts,
1 minute is 60,000 counts, and so on. One millisecond
per tick is an approximate value. To get a more
accurate time, use SwtGetResolution, which returns
the number of counts per second, and then calculate
the exact count required.

Create a new software timer using SwtCreate(). This
software timer has not been configured. PPSM-GT
will return a software timer ID. Refer to this ID to
configure and manipulate the timer.

Configure the new software timer using
SwitlnitTimer(). The input parameters required by this
APl are SWT ID, task ID, count, reload, pointer to
event, size of event, function pointer and pointer to
argument.

After the timer has been set up, it is ready to be used.
SwitStartTimer() will start the software timer running.
The timer will count until the count specified by
“count” expires, and an event will be sent to the task
specified in the software timer data structure. If a
function is specified, then the function will be
executed with the argument provided.

The active timer can be stopped by SwtStopTimer() if
necessary.

A timer that are not used should be deleted with
SwitDelete(). A timer need not be stopped to be
deleted.

PPSM-GT User Guide PPG-209

Software Timer Handling Services
Programming Using Software Timer Handling Services

““Digital DNA

from Moetarola

Programming Using Software Timer Handling

Services

Creating the Software Timer

SWT_ID SwtCreate(VOID)

It creates an software timer that
is not configured and returns
the software timer ID.

Initializing the Software Timer

STATUS
SwitlnitTimer(SWT_ID swtld,
TASK_ID taskld, TICK count,
TICK reload, P_EVENT
pEvent, U16 size, P_VOID func,
U32 arg)

It initializes a software timer by
setting up the software timer
data structure. Set parameters
that are not required to “0.”

Starting the Software Timer

STATUS
SwitStartTimer(SWT_ID timer)

Start the configured software
timer.

Stopping the Software Timer

STATUS
SwtStopTimer(SWT_ID swtld)

Stop the active software timer
and reset the timer to 0.

Deleting the Software Timer

STATUS SwtDelete(SWT_ID
swtld)

Delete the software timer.

PPG-210

PPSM-GT User Guide

Software Timer Handling Services
Configure the existing software timer

““Digital DNA

from Moetarola

Configure the existing software timer

STATUS
SwtSetEvent(SWT_ID swtld,
P_EVENT pEvent, U16
eventSize)

It sets up the event pointer onto
the software timer structure.
The event needs to be created
first. Refer to System Event
Management Services for
details on creating an event.

Setting up the count on the software timer

STATUS
SwitSetCount(SWT_ID swtid,
TICK count)

It sets up the count onto the
software timer structure.

Setting up the function on the software timer

STATUS SwitSetFunc(SWT_ID
swtld, P_VOID func, U32 arg)

It sets up the function onto the
software timer structure. When
the software timer expires, the
function will execute with the
given argument.

Users need to provide the
function that handle the
argument. If no argument is
required for the function, the
function can ignore the
argument.

Setting up the Argument on the software timer

STATUS SwitSetArg(SWT_ID
swtld, U32 arg)

It sets up the pointer to the
argument that was used by the
function. This is an additional
option for users who need only
to set the argument for the
same function.

PPSM-GT User Guide

PPG-211

Software Timer Handling Services
Setting up the task on the software timer

““Digital DNA

from Moetarola

Setting up the task on the software timer

STATUS
SwitSetTaskld(SWT_ID swtld,
TASK_ID taskid)

It sets up the taskld onto the
software timer structure. When
the timer expires, the event will
be sent to this taskld.

Restarting stopped software timer or
refreshing active software timer

STATUS
SwitRestartTimer(SWT_ID
swtld, TICK count)

It restarts the stopped software
timer or refreshes the timer if it
is active.

Reading Software timer data structure

STATUS
SwtGetCount(SWT_ID swtld,
P_TICK pCount)

P_EVENT
SwtGetEvent(SWT_ID swtld,
P_U16 pSize)

U32 SwtGetResolution(VOID)

STATUS
SwtGetTaskld(SWT_ID switld,
P_TASK_ID pTaskld)

U8 SwitlsIinUse(SWT _ID swtld)

U8 SwtlsSwtld(SWT_ID
swtld)

It gets the count for a software
timer.

It gets the event pointer and its
size for a software timer.

It gets the number of ticks per
second.

It gets the taskld for a software
timer.

It tests if a given SWT ID is in
use or not.

It tests if a number is a SWT ID
or not.

PPSM-GT User Guide

als
f“[ﬁgimln"ﬁ Software Timer Handling Services

frem Metorola Reading and checking the reference Software timer

Reading and checking the reference Software

timer
TICK SwtReadRefTime(VOID) | It returns the reference timer
value.
TICK SwtDiffRefTime(TICK It returns the difference
beginTime, TICK endTime) between two given reference

time values. This routine takes
care of wrap-around situations.
The actual difference between
the start and end time shall not
be bigger than half a wrap.

Summary

The software handling services provide access to the software
reference timer through the APIs. Developers do not need to write
the software timers in the application; they are already written. To
use the software timers, developers just need to create, configure,
and use them. After a software timer is used, it can either be deleted
or kept for future use.

Code Example

The following example shows how to use the software timer
handling services to create 3 software timers, and, based on the key
input, the timers are restarted or stopped. The code provided is
merely for reference. It does not solve any specific problems and
cannot be used directly without being modified first.

Listing 13.1 Creating and Using Three Software Timers

/* Variable Definition*/
#def i neNORMAL_PRI ORI TY 6
#defi ne DEFAULT_MODE 1
/* Defining two type of event TYPEl, TYPE2 & TYPE3*/

#def i ne TYPE1 EVT_USER BASE + 1
#def i ne TYPE2 EVT_USER BASE + 2
#def i ne TYPE3 EVT_USER BASE + 3

TASK | DSWTaskl d;

PPSM-GT User Guide PPG-213

ats
Software Timer Handling Services f“mgitﬂln"ﬁ

Code Example frem Metarola

const TEXTSWITaskName= {"S ,"W, ' T ,’T ,"A,’S , K, 0};
const TEXTTaskNanmeB= {"T ,"A,’S ,’K,’ ','B,0};
const TEXTTaskNameC= {"T ,’A,’S ,'K,’_','C,0};
P_U32 TaskCode[] = {

(P_VvO D) SWTask,

(P_VA D) TaskB,
(P_VA D) TaskC
b
EVENT SWEvt|[3];
SW_I Dswt 1 d[3] ;
EVITYPE Sw Typel

int i;
STATUS st at us;
t ypedef struct EVENT

{
struct EVENT *next; /* Pointer to next event */
EVTTYPE type; /* Event type */
TASK | D sour ce; /* Source of event */
Ul6 usageCount; /* Nunmber of task use this event */

} EVENT, *P_EVENT,

/* Reserving nmenory for the event gpEventl; */
for (i=0; i<3; i++)
SWEvent[i] = (P_EVENT) MenmVal | oc(si zeof (EVENT)) ;

/* Set up the event structure and declare it as type 1 */
Evtlnit Event (&SWEvt[0], TYPE1l);
EvtlnitEvent (&SWIEvt[1], TYPE2);
Evtlnit Event (&SWEvt[2], TYPE3);

/* Set it as non erasable event */
for (i=0; i<3; i++)
Evt Set Uner asabl e(SWEVt[i]);

/* Creating a task to receive the software tinmer event*/
status = Knl Creat eTask(&SWTaskl d,
(P_VO D) SWITask, SWTaskNane,
4000, NORMAL_PRI ORI TY, DEFAULT_MODE);
if (status == SYS_(K)
{

PPG-214 PPSM-GT User Guide

als
f“mgitjaln"ﬁ Software Timer Handling Services

frem Motarola Code Example

Knl Suspend(SWTaskl d) ;
}

/* Creating the 3 software timer */
for (i=0; i<3; i++)

swld[i] = SwCreate();

}
/* Setting up the 3 software tinmer */

SwtinitTimer(swtld[0], SWTaskld, 10, 0, &SWEvt[O0],
si zeof (EVENT), 0, 0);

SwilnitTinmer(swld[1l], SWTaskld, 50, 0, &SWEvt[1],
si zeof (EVENT), 0, 0);

SwtinitTimer(swtld[2], SWTaskld, 20, 0, &WEvt][2],
si zeof (EVENT), 0, 0);

}

/* Exanple of restarting Timer S1 and print the nessage S1 :
Active */

{
Swt Restart Ti mer (sw1d[0], 10);

}
/* Exanpl e of stopping SWI tinmer S3*/

Swt St opTi mer (swt 1 d[2]);
Swt Del ete(swt 1d[2]);

}

[lreturn SYS CK;
}

PPSM-GT User Guide PPG-215

ats
Software Timer Handling Services f‘_mgitﬂlnﬂﬁ

Code Example frem Metarola

PPG-216 PPSM-GT User Guide

““Digital DNA

from Moetarola

Section 5

Developing with
Application Services

The chapters in this section help answer the question, “How do you
use the Application Services in the system?” When used,
Application Services provide additional features to your system.
They are not essential services; in their absence, the system can still
operate.

Each chapter has three parts.

= The first part of each chapter discusses System Services
fundamentals. It introduces the concepts that must be
understood before using the services.

= The second part of each chapter explains the APIs: the interfaces
and functions of each API. For details of each API, please refer to
the PPSM-GT API reference document.

= The third part of each chapter consists of a short summary and
code example that shows how to use the APIs. Please note that
the example mainly shows how to use a particular APl and is
not designed to address any specific problem. The examples
should not be copied and used blindly.

The chapters in this section are as follows:

e Chapter 14, “Real Time Clock Handling Services”—introduces
Real Time Clock routines that have been created in the PPSM-GT
library. It provides example of how to use the APIs for the Real
Time Clock Services.

PPG-217

PPSM-GT User Guide

““Digital DNA

from Moetarola

Chapter 15, “Alarm Services”—introduces alarm routines that
have been created in the PPSM-GT library. It provides examples
of how to use the APIs for the Alarm Services.

Chapter 17, “Audio Management Services”—introduces Audio
routines that have been created in the PPSM-GT library. It
provides examples of how to use the APIs to generate music
with Audio Services.

Chapter 18, “Serial Communication Interface Services”—
introduces the SCI services. It covers how to program and use
the SCI to transmit and receive information through the serial
port. It also provides information on how to handle multiple SCI
communications.

Chapter 19, “IrDA Management Services”—introduces the IrDA
services. It covers how to program and use the IrDA to transmit
and receive information through the IrDA link.

Chapter 20, “Networking Services”—introduces the
fundamentals of TCP/IP services. PPSM-GT supports the BSD
socket for transport layer programming, and the APIs in this
chapter has been deliberately kept similar to the standard socket
naming convention to avoid confusion when doing socket
programming.

PPG-218

PPSM-GT User Guide

als
f‘_mgitﬂlnﬂﬂ Real Time Clock Handling Services

from Moetarola

Real Time Clock Handling
Services

The PPSM-GT RTC handling services are provided to handle the
RTC modules of the DragonBall family of microprocessors. The
APIs enable ease of use, including checking real time clock
information.

This chapter is organized into the following main sections:
= RTC Fundamentals
= Programming Using RTC Handling Services

e Summary
= Code Example

PPSM-GT User Guide PPG-219

=

Real Time Clock Handling Services [ﬁgit‘alﬂ"ﬁ
RTC Fundamentals from Muotonola
Figure 14.1 RTC Services Block Diagram
2 |2 |2 | 2|22 &2
= N w 1N a1 (o)) -]
Rtc Services I
Rtc Handler
Rtc Hardware

RTC Fundamentals

Figure 14.1 shows the RTC structure. There are 3 main components:

= The RTC Hardware block is the RTC module in a DragonBall
microprocessor.

= The RTC handler block handles all RTC-related information,
including from an API block. It will filter the information before
passing the information to the Hardware RTC block. It performs
functions including the following:

— processes information from APIs

— validates the information for valid second, minute, hour,
day, month, and year

— calculates leap years
— computes the day of week
— updates RTC hardware

= The RTC Handling Services API block interfaces with the
application for RTC information. The gathered information is
handled over to the RTC handler block for processing.

PPG-220 PPSM-GT User Guide

““Digital DNA

from Moetarola

Real Time Clock Handling Services
Programming Using RTC Handling Services

Programming Using RTC Handling Services

Checking Leap Year

void RtclsLeapYear(U16 year,
P_U8 leapyear)

RtclsLeapYear() is for checking
the leap year. It checks the
input year to be checked for a
leap year, and it returns a
Boolean expression: TRUE if
the input year is a leap year and
FALSE otherwise.

Getting RTC Information

These APIs are for getting the current time, date, time and date, and
day of the week. No inputs are required except for the day of the
week, when the date is required. The outputs are current time, date,
time and date, or day of the week, depending on the API.

STATUS RtcGetTime(P_U8
hour, P_U8 minute, P_U8
second)

STATUS RtcGetDate(P_U16
year, P_U8 month, P_U8 day)

STATUS
RtcGetDateTime(P_U16 year,
P_U8 month, P_U8 day, P_US8
hour, P_U8 minute, P_U8
second)

STATUS
RtcGetDayofWeek(U16 year,
U8 month, U8 day, P_U8
dayofweek)

RtcGetTime() returns the
values of the second, minute
and hour of the current time
into the buffer provided.

RtcGetDate() returns the
values of the year, month, and
day for the current date into the
buffer provided.

RtcGetDateTime() returns the
values of the year, month, and
day for the current date and
second, minute and hour of the
current time into the buffer
provided.

RtcGetDayofWeek() returns
the day of the week based on
the input date.

PPSM-GT User Guide

PPG-221

Real Time Clock Handling Services
Setting the Time and Date

““Digital DNA

from Moetarola

Setting the Time and Date

The date and time can be set in PPSM-GT using RtcSetTime(),
RtcSetDate(), and RtcSetDateTime(). PPSM-GT will validate the
inputs. If the date or time inputs are invalid, the system will not
proceed to set the date or time and will return a SYS_ERR error

message.

The default time at power reset is at 0:00:00 hour, 1 January 2000.

STATUS RtcSetTime(U8 hour,
U8 minute, U8 second)

STATUS RtcSetDate(U16 year,
U8 month, U8 day)

STATUS RtcSetDateTime(U16
year, U8 month, U8 day, U8
hour, U8 minute, U8 second)

RtcSetTime() sets the second,
minute and hour of the real
time. It returns SYS_ERR for
invalid time inputs.

RtcSetDate() sets the year,
month, day of the RTC date. It
returns SYS_ERR for invalid
date inputs.

RtcSetDate() sets the year,
month, and day for the current
date and the second, minute
and hour of the RTC. It returns
SYS_ERR for invalid time or
invalid date inputs.

Validating the Time and Date

STATUS RtcValidTime(U8
hour, U8 minute, U8 second)

STATUS RtcValidDate(U16
year, U8 month, U8 day)

For simple verification of a
valid time.

For simple verification of a
valid date.

RtcValidTime() and RtcValidDate() are provided for simple
verification of a valid time and date, respectively. The inputs are the
time or date in question, and the outputs are the system status.

For a valid time or date, the system status is SYS_OK.

For an invalid time or date, the system will return the error message

SYS_ERR.

PPG-222

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Real Time Clock Handling Services
from Metorola GMT Time

GMT Time

To faciliate the concept of world time calculation, APIs are added to
include the concept of time zone into PPSM-GT. This concept is
especially useful in email applications where each outgoing email is
stamped with the local time sent plus the GMT offset.

For example, for an email sent on Friday, April 20, 2001, from Hong
Kong (GMT+08:00) at a local time of 14:25:07, the following header
will be sent along: "Date: Fri, 20 Apr 2001 14:25:07 +0800". This
stamping allows the recepient email application to display the sent
time in its side’s local time.

Using the same example, if the recepient is in Tokyo (GMT+09:00),
his email application will interpret the sent time as Friday, April 20,
2001, 15:25:07.

STATUS Returns the pointers for GMT offset,

RtcGetGMTOff | The GMT offset string is of format "sHH00"

set(P_S8 where s is the sign (+ or -) and HH the number

Gmtoffset) hour offset from GMT (1to 13ifsis+;1to 12 if
s is -; 0 regardless of s)

STATUS Set the GMT offset

RtcSetGMTOff | The GMT offset string is of format "sHH00"

set(S8 where s is the sign (+ or -) and HH the number

Gmtoffset) hour offset from GMT (1to 13 ifsis+;1to 12 if

s is -; 0 regardless of s).

By defaulted tthe offset is "+0800"

STATUS RtcGetGMTime() returns the value of the
RtcGetGMTim | year, month, and day for the current date and
e(P_U16 year, second, minute and hour of the current time in
P_U8 month, the GMT format including the offset into the
P_U8day, P_U8 | buffer provided.

hour, P_US8

minute, P_U8

second)

PPSM-GT User Guide PPG-223

ats
Real Time Clock Handling Services f“[ﬁgitﬂlﬂ"ﬂ

Summary from Muotarola

Summary

The RTC Handling Services provide APIs for checking, getting,
validating and setting real time clock information. The RTC module
runs most of the time, even when the device is in sleep mode, and it
supports time, date and day features. The RTC module also
supports the alarm function in PPSM-GT.

Code Example

This example shows how the RTC services are used in an RTC
application.

Listing 14.1 RTC Services in an RTC Application

STATUS RTCTaskApp()

{
Ul6 year;
us dat e[6] ;
char TimeString[12];
char Dat eString[18] ;
year = nDate. Get Year ();
date[0] = ‘29’;
date[1] = ‘12’;
date[3] = ‘12’;
date[4] = ‘30’;
date[5] = ‘10’;
Rt cSet Dat eTi e (year, date[0], date[1], date[3], date[4],
date[5]);
while(1)

{
Rt cCGet Dat e(&year, &date[0], &date[1]);

Rt cCet Ti me(&date[3], &date[4], &date[5]);
sprintf(DateString, "%d / %d / %d",year,date[0],date[1]);
sprintf(TimeString, "%d : %d : %d",date[3],date[4],date[5]);
if(DatePane)
{

DatePane -> SetString(DateString);

TimePane -> SetString(TimeString);

}
PLSleep(500);

PPG-224 PPSM-GT User Guide

““Digital DNA

from Moetarola

Real Time Clock Handling Services
Code Example

}
return SYS K

}

PPSM-GT User Guide

PPG-225

ats
Real Time Clock Handling Services f“[ﬁgitﬂlﬂ"ﬂ

Code Example frem Metarola

PPG-226 PPSM-GT User Guide

als
"l‘["‘gitalnHA Alarm Services

from Moetarola

Alarm Services

PPSM-GT Alarm services are used for handling the RTC alarm of
DragonBall microprocessors. The APIs enable ease of use and
support multiple one-shot or periodic alarms. There are 4 main
blocks in Alarm services (see Figure 15.1).

= The Hardware alarm block is the RTC alarm register in the RTC
module of a DragonBall microprocessor.

= The Alarm data structure block is the memory buffer that stores
all the alarm setting information. PPSM-GT will perform
automatic housekeeping for alarm usage.

= The Alarm Handler block is the processing center for alarm
activity. The functions include:

— Creation and deletion of alarms
— Monitoring of alarm status
— Housekeeping of alarm resources

= The API block interfaces with the application for RTC
information. The gathered information is handled by the Alarm
handler block.

This chapter is organized into the following main sections:
= Alarm Services Fundamentals

e Programming Using the Alarm Services

e Summary
= Code Example

PPSM-GT User Guide PPG-227

Alarm Services
Alarm Services Fundamentals

=

Digital DNA

from Moetarola

Figure 15.1 Alarm Services Block Diagram
= N w EE RN ol >
Alarm Sarvices
AlamHandler Alarm Data Structure

Alarm Hardware

Alarm Services Fundamentals

PPSM-GT supports a variety of alarm ranging from event alarm that
has specific day and time to periodic alarms that expired
periodically. In general, there are 2 main types of alarm that differ in
functions and usage. They are event and periodic alarms:

Event Alarm

Event alarms are alarms that are created by AlmCreate() and they
are created with date, time, or date and time related. When creating
an event alarm there is also a choice to have it as a one shot or
repeated alarm type. That is an alarm could be set to expire every
year at the same day and time, or every hour at the same time etc.
The type selections are shown in Table 15.1.

Event alarms when creating can be deleted by using any one of the
alarm deleted APIs such as AlmDelete(), AImDel After(),
AlmDelBefore(), and AlImDelAll(). In addition, when an event alarm
type is set as one shot alarm type, it will be deleted by the system

PPG-228

PPSM-GT User Guide

““Digital DNA

from Moetarola

Alarm Services
Periodic Alarm

Table 15.1

Table 15.2

upon expired. No further alarm deleted APIs is required to delete

the alarm in this situation.

Event Alarm Type

Input Parameter

Alarm Type

Alarm removed

ALM_ONESHOT

ALM_EVERYDAY

ALM_DAYOFWEEK

ALM_DAYOFMONTH

ALM_ANNIVERSARY

One-shot alarm

Periodic daily
alarm

Periodic specific
day of week
Periodic specific
day in a month

Periodic
anniversary day

On expiring or any
alarm delete API

Any alarm delete
API

Any alarm delete
API

Any alarm delete
API

Any alarm delete
API

Periodic Alarm

Periodic alarms are alarms that expired when a certain period is up.
The periodic could be every hour, minute, second or day. These sort
of alarms are day and time specific as when set it expired every day
or hour depending on what sort of periodic alarm is set. To set a
periodic alarm, the AlmSetPeriodld() is used, and the inputs are as

in Table 15.2

Type of Sequential Alarms

Sequential Alarm Type

Description

RTC_PERI_HOUR
RTC_PERI_MINUTE
RTC_PERI_SECOND
RTC_PERI_MIDNIGHT

For every hour

For every minute

For every second

For every day at midnight

As mentioned if the periodic alarm is set as hourly, then the alarm
will expired at the top of every hour and so for regardless of the day

and time.

PPSM-GT User Guide

PPG-229

Alarm Services

Programming Using the Alarm Services

““Digital DNA

from Moetarola

Table 15.3

Programming Using the Alarm

The system also support multiple periodic alarms such that there
could be one for every hour, minute and day etc.

To delete a sequential alarm, the AlmSetPeriodld() is again used
and the input are as shown in Table 15.3

Deleting of Sequential Alarms

Sequential Alarm Type

Description

RTC_PERI_NO_HOUR
RTC_PERI_NO_MINUTE
RTC_PERI_NO_SECOND
RTC_PERI_NO_MIDNIGHT

RTC_PERI_NONE

To delete every hour alarm
To delete every minute alarm
To delete every second alarm

To delete every day at
midnight alarm

To delete all sequential alarms

Creating Alarm

Services

STATUS AlmCreate(P_U32
alarmld, U16 year, U8 month,
U8 day, U8 hour, U8 minute,
U8 type)

For creating event alarm only.
When a new alarm is created,
the system will insert the new
alarm into its appropriate
location in the alarm list.

To have a one shot alarm or
periodic type of alarm, the type
input is as shown in Table 15.1

For example, assume there are two alarms in the alarm list:

1. Set at 8:00 a.m. on 1/3/2000
2. Set at 10:00 a.m. on 1/3/2000.

If a new alarm is set at 9:00 a.m. on 1/3/2000, the new alarm will
replace the second alarm, which then becomes the third alarm on

the list.

PPG-230

PPSM-GT User Guide

als
fl‘[ﬁgitalnHA Alarm Services

from Muotonola Creating Alarm

If there is no alarm previously set, then the new alarm is the first
alarm in the link list.

PPSM-GT also validates the input for date and time. Regardless of
whether the setting is for a yearly, monthly, daily or hourly alarm,
all input fields must be valid. Otherwise an error message
ERR_ALM_CREATE for invalid data is returned.

If the alarm has been set, the system will return an alarm Id. This Id
is required to delete the alarm.

PPSM-GT User Guide PPG-231

Alarm Services
Deleting Alarm

““Digital DNA

from Moetarola

Deleting Alarm

void AlmDelete(ALARM_ID
alarmld, TASK_ID taskld)

void AlmDelBefore(U16 year,
U8 month, U8 day, U8 hour, U8
minute, TASK_ID taskid)

AlmDelete() deletes one alarm
at a time based on the alarm ID
and task ID provided.

If taskld is not “0,” the system
will check the taskld against
the alarmid.

If the taskld or the alarmid is
invalid, the system will return
the error message
ERR_ALM_INVALID_DEL.

To delete the alarm regardless
of the taskld, set the taskld field
to “0.” When the taskld is 0, the
system will just delete the
alarm with the alarmid.

Note:

This API is used to delete event
alarm only, to delete periodic
alarm, please refer to
AlmSetPeriodld().

AlmDelAfter() deletes alarms
that are set before the specified
time and the specified task. If
taskld is 0, then all alarms that
are set before the specified time
will be deleted.

Note:

This APl is used to delete event
alarm only, to delete periodic
alarm, please refer to
AlmSetPeriodld().

PPG-232

PPSM-GT User Guide

““Digital DNA

from Moetarola

Alarm Services
Deleting Alarm

void AlmDelAfter(U16 year,
U8 month, U8 day, U8 hour, U8
minute, TASK_ID taskid)

AlmDelBefore() deletes alarms
that are set after the specified
time and the specified task. If

taskld is O, then all alarms that
are set after the specified time
will be deleted.

Note:

This APl is used to delete event
alarm only, to delete periodic
alarm, please refer to
AlmSetPeriodld().

AlmDeleteAll() deletes all
alarms that are set by the
specified task. If taskld is O,
then all alarms will be deleted.
Note:

This API is used to delete event
alarm only, to delete periodic
alarm, please refer to
AlmSetPeriodld().

void AlmDeleteAll(TASK_ID
taskld)

All the alarm-delete APIs have an input field for task ID. This is the
task ID of the task that sets the alarms, and it is required to delete
the alarm created by that task. For general deletion, the taskld field
is “0.” That is, to delete all alarms set before April 1, 2001, at 8:00
p.m., call AlmDelBefore(2001,4,1,8,0,0). Notice that the tasklid input
field is “0.”

If taskld is not “0,” the system will validate the taskld, and if the
task ID is invalid, the system will return the
ERR_ALM_INVALID_DEL error message.

PPSM-GT will automatically delete expired one-shot alarms and
non-periodic alarms. Periodic alarms—such as at every second, at
every minute, hourly, daily, weekly, monthly and yearly—have to
be deleted manually.

PPSM-GT User Guide PPG-233

Alarm Services

Getting Alarm Information

““Digital DNA

from Moetarola

Getting Alarm Information

Information on the alarm setting information can be obtained with
the AlImGetCurrent(), AlImGetld(), AlImGetldByTime(), and

AlmGetNext() APlIs.

STATUS
AlmGetCurrent(ALARM _ID
alarmld, P_U32 taskid, P_U16
year, P_U8 month, P_U8 day,
P_U8 hour, P_U8 minute, P_US8
type)

ALARM_ID AlmGetld(void)

STATUS
AlmGetldByTime(P_U32
alarmld, U16 year, U8 month,
U8 day, U8 hour, U8 minute)

STATUS
AlmGetNext(ALARM_ID
alarmld, P_U32 taskld, P_U16
year, P_U8 month, P_U8 day,
P_U8 hour, P_U8 minute, P_U8

type)

AlmGetCurrent() returns the
information of the specified
alarm element.

AlmGetld() returns the most
recent expired alarm ID.

AlmGetldByTime() returns the
first alarm that matches the
specified time.

AlmGetNext() returns the next
alarm’s information of the
specified alarm element.

Creating the Periodic Alarm

STATUS
AlmSetPeriodld(P_U32
alarmld, U8 period)

Set the periodic alarms for
every second, minute, hour and
day. To delete all periodic
alarms set period to none.

e RTC_PERI_NONE

- RTC_PERI_HOUR
RTC_PERI_MINUTE
RTC_PERI_SECOND
RTC_PERI_MIDNIGHT
RTC_PERI_NO_HOUR
RTC_PERI_NO_MINUTE
RTC_PERI_NO_SECOND

« RTC_PERI_NO_MIDNIGHT
Refer to Periodic Alarm for
more details.

PPG-234

PPSM-GT User Guide

als
fl‘[ﬁgitalnHA Alarm Services

from Metorola Summary

Summary

The Alarm services support four type of APIs for creating, deleting,
getting, and setting alarm information.

There are 2 main types of alarm that differ in functions and usage.
They are event and periodic alarms.

Event alarm could be set as one-shot alarms are alarms that only
expire once, or repeated alarms that expire at a fixed periodic
interval. Daily, monthly, and yearly alarms are examples of periodic
alarms.

Periodic alarms are alarms that once set will expire at fixed period
regardless of day and time. For example when a periodic hourly
alarm is set, it will expire at the top of every hour regardless of the
time of the day and day of the month.

Code Example

Listing 15.1 Sample Alarm Services APIs

/* Variable definition*/

U322 Al arm d;
U322 t askAl d, taskBI d;

void Alarm ()

{

/* Creating a one shot alarmfor 7/14/2000 at 23: 00 hour*/
Al nCreat e(&Al arm d, 2000, 7, 14, 23, 0, ALM ONESHOT);

/* Deleting a alarmthat just expired*/

Al nmDel ete(Al arnGet 1 d(), 0);

/* Deleting alarns that was created by task A that are set after
4/ 1/ 2004 */

PPSM-GT User Guide PPG-235

als
Alarm Services "'Digitalﬂﬂﬁ

Code Example frem Metarola

Al nDel After (2004/4/1,0,0,taskAld);
/* Deleting all alarnms that was created by task B */
Al nDel et eAl | (2004/ 4/ 1, 0, 0, t askBI d) ;
/* Creating a yearly alarmfor 2/14/2003 at 08:00 hour */
Al nCreate(&Al arm d, 2003, 2, 14, 8, 0, ALM ANN VERSARY);

/* Creating a hourly periodic alarnt/
Al nSet Peri odl d(&Al arm d, ALM PERI _HOUR) ;

/* Deleting the hourly periodic alarnt/
Al nSet Peri odl d(&Al arm d, ALM PERI _NO HOUR);

PPG-236 PPSM-GT User Guide

als
f‘_mgitﬂlnﬂﬁ Application Download Services

from Motarcla Downloading Application Fundamental

16

Application Download
Services

Application download services enable the system integrator or software
developer to provide an area of the system that allows third-party software
developersto write their own software and download it into the system for
execution.

In PPSM-GT, the downloaded application is referred to as the application
image to differentiate between the system resident application and the
downloaded application. Therefore when reading this chapter it is
important to remember that when referring to an application image, it is not
any graphic image, but the downloaded application.

PPSM-GT provides APIs such as AppConvertimage(), which allows the
downloaded application image to be converted into the download
application in the system, and AppDeletelmage(), which deletes the
download application and frees the memory allocated for the application.

Developers have to design and allocate the amount of memory needed for
download application usage.

This chapter is organized in the following topics:
» “Downloading Application Fundamental,”

* Programming Using Application Download Services

Downloading Application Fundamental

Applications are the basis that support the functions and features of a
product in the PPSM-GT environment. With the additional of downloaded

PPSM-GT User Guide PPG-237

Application Download Services

Download Application Architecture

““Digital DNA

from Moetarola

application, there are now two avenues to support the functions and
features of a product. System integrators and device developer could
provide functions and features through resident applications or allow third
parties developer to develop applications through application images.

Both resident applications and download applications are constructed with
the system application services and operate similarly in the PPSM-GT
environment except those as highlighted in Table 16.1

Differences between Resident and Download Application

Resident Application

Download Application

Built by manufacturer and
installed in the system of
the product and normally
stored in ROM or Flash

DEF_APP_TYPE
1t015

Built by third party vendor
and are downloaded during
runtime. Could be stored in
Flash or RAM

DNL_APP_TYPE
8 only

Download Application Architecture

Download Application Architecture

Table 16.1
Description
Type
Priority
Figure 16.1
User App/
NmlApp

Launcher

Resident Application

AppLauncher

Figure 16.1 shows the system architecture to support a download
application. The current PPSM-GT services provide all necessary building
blocks to support both resident and download applications. The system
application servicesis used to create the application environment and the
kernel and the rest of the services supports the rest of the functions.

In the effort to demonstrate the support of download application, the
following is method is provided for reference. Thisisjust one of the many

PPG-238

PPSM-GT User Guide

““Digital DNA

from Moetarola

Application Download Services
Download Application Architecture

ways available to build a system that handles both resident and download
application. Designers are free to follow the same design methodology or
used their own design.

The suggested method consist of the following elements:

» Application Launcher

+ Application to be downloaded

* PC program to download the application

+ Mechanical to receive download application.

» Mechanical to install the download application to the system

* Mechanism to run the download application.

* Mechanism to remove the download application from the system

Application Launcher

In most application a main menu task is designed to control the execution
of all the applications in the system. The activation of an application could
either be by the system or through external stimulation unique to the
system design. This concept is especially important in the download
application environment to control the execution of the download
application. An application launcher is a form of main menu task that
supports the execution of the resident applications and the download
application. It normally will consist of the following functions and the
structure is shown in Table 16.2:

* Initialization

» Task swapping

» Display of the launcher screen

» Handling of inputs, and

» Handling of application images
The first four functions are covered in detail in other chapters and will not
be covered in this chapter. For more information please refer to

» Chapter 11System Application Servicder on application
initialization and task swapping,

» Chapter 21Graphic Manipulation Servicder display of launcher
screen, and

» Chapter 24Pen Input Handling Servicdsr handling of inputs.

PPSM-GT User Guide PPG-239

Application Download Services
Download Application Architecture

““Digital DNA

from Moetarola

Table 16.2

Apllication Launcher Structure

Application Description

Launcher function

SysApp A normal application structure, alauncher
"class' is"Inherited" from SysApp

swap to task The PPSM-GT Task will be swap to

swap to app The PPSM-GT App will be switch to

DoEnterApp member function to do someinit job before
swap to a SysApp from launcher app

DoExitApp member function to do some clean job before

swap to launcher app from SysApp

member function to init the areawill be used by
nmlApp

DolnitClientArea

DoDrawMainMeun

Main screen IC id
BackToMainICid
BackToMain AA id

member function to draw the main screen of
launcher

TheIC id of the main screen
The IC id of the ?ack to main?button
The AA id of the ?ack to main?button

pNmIAppList alink list of SysApp register to the launcher
nmlAppNum total number of SysApp register to the launcher
state indicate the state of launcher

The following will cover the topic on handling application images.
Application to be downloaded

The application to be download or application images must follow the
predefined structure in order that the image can operate properly in PPSM-
GT environment. Table 16.3 describes the application image structure as
predefined by PPSM-GT.

PPSM-GT system will check and understand the download application
imge before deciding how to handleit. It the predefined structureis not
adhere to, PPSM-GT will ignore the download image.

PPG-240

PPSM-GT User Guide

““Digital DNA

from Moetarola

Application Download Services
Download Application Architecture

Table 16.3

Application Image Structure

Package name : Application name

Package type : PKG_DNL_APP_TYPE

PackageHeader.s version : Distinguish from different release
Writer of this DnlApp : Name of the writer

Product ID : Assigned by writer

Version number of this product

Initialized data address
Initialized data size
Un-initialized data size

Entry point of the DnlApp
Task stack size

Number of bit per pixel using
Large application icon width
Large application icon height
Large application icon bitmap
Entry callback function

Exit callback function

There will be amain task for the application that can create other tasks.
This main task has afixed priority level that is designed by the integrator.
In the image, the main task’s stack size will be specified. The main task of
the application will be created and activated automatically when
AppConvertimage() is called. The integrator will call AppSwitch() to
switch to this downloaded application.

PC program to download the application
The download process is initiated by a PC download program.
PPSM-GT utility program provide BBUG program.

The BBUG project iswritten by VC++ 6.0, WinNT. It is not related to
bootstrap, only the CSerial classis used to control the COM port of PC.

Please refer to the application note for “How to create down load
application”.

PPSM-GT User Guide PPG-241

afs
Application Download Services f“[ﬁgitﬂln"ﬂ

Client area and System area from Metarala

Mechanical to receive download application.

A Launcher tasksis a special task created to receive the download
application. It is created in the application launcher to handle the launching
of aapplication image. A launcher task behaves like a communication task
that, when executed, waits for the input of the download application.
Developers can choose to accept the download application through UART,
IrDA or another communication method. Developers have to design the
appropriate driver for the download application. A launcher task will be
needed to:

» download the application image into RAM

» optionally burn the application image to flash

 call AppConvertimage() to create the task and application

* send an event to the menu task to register the new application

Mechanical to install the download application to the system

The download application or known as application image in the PPSM-GT
environment is installed to the system by calling AppConvertimage(). This
function will allocate memory for the RAM and data and then create the
main task. Inside the main task, it should create other tasks as required and
create the graphic context for the application. .

Mechanism to run the download application.

The AppConvertimage() API interprets the downloaded image and creates
the application and the first task in the download application. It will not
switch the application. The system integrator can use AppSwitch() to start
the application.

Mechanism to remove the download application from the
system

The AppDeletelmage() API will remove the application image from the
system. The memory area for the image will be freed by the task creating it
but not by this API.

Client area and System area

There is no restriction on the client and system areas in the PPSM-GT
environment, however, system integrators and device developers should
consider introducing some form of restrictions when supporting

PPG-242

PPSM-GT User Guide

als
f“mgitﬂlnﬂﬂ Application Download Services

frem Motarola Trap call

application images on their devices. Restriction such as alloting only
certain portion of the memory that could only be used by third parties
application developers and also introducing partition of the LCD can be
used by application images. Such practices would go along way to ensure
that the device performance would not be compromised by improper
execution of 3rd party application images.

Trap call

There are 8 level of TRAP call availablein dragonball processor and
TRAP lisreserved and used by the PPSM-GT system. The rest of the
TRAP call are open and available to system integrators and device designer
to use to support application images that need to call some addition
function for initialization and get the system information.

Programming Using Application Download
Services

Converting downloaded application image

STATUS This function will alocate
AppConvertlmage(U32 memory for the RAM and dataand
imagePtr, P_APP_ID pAppld, then create the main task. Inside
P_TASK_ID pTasklid) the main task, it should create

other tasks as required and create
the graphic context for the
application. The system integrator
can use AppSwitch() to start this
application.

The API interprets the downl oaded
image and creates the application
and the first task in the download
application. It will not switch the
application until the user calls
AppSwitch(). However, the
created tasks in the download
application will start immediately.

PPSM-GT User Guide PPG-243

Application Download Services
Deleting download application image

““Digital DNA

from Moetarola

Deleting download application image

STATUS
AppDeletel mage(APP_ID

pAppld)

It deletesthe download application
and all tasks created for this
application.

The memory areafor the image
will be freed by the task creating it
but not by this API.

Creating task in download application

STATUS
AppCreateTask(P_TASK_ID
pTaskld, APP_ID appld, P_VOID
pFunc, U32 stackSize)

It creates atask for the
downloaded application. However,
the main task in the download
application cannot be created
using this API.

Deleting task in download application

STATUS
AppDeleteTask(APP_ID appld,
TASK_ID taskld)

It deletes the task created in the
download application.

Code Examples

Listing 16.1 Header file of DnlApp

_PKG_TYPE EQU $1 ;
_PKG_PDT_I D EQU $00000001 ;
_PKG PDT_VER EQU $01000001 ;
assi gned by Software house
_PKG_DNL_APP_STACK EQU $A000 ;

Pr oduct

_PKG DNL_APP_| CO W EQU $30; App.
_PKG DNL_APP_| CO H EQU $30

SECTI ON . header

Thi s package is Downl oad application
| D assi gned by Software house
Ver si on nunber of the product

Task stack size

_PKG DNL_APP_BPP EQU $2 ;1 or 2 or 4bpp
i con width and height:

48x48

PPG-244 PPSM-GT User Guide

als
f“mgitﬂlnﬂﬂ Application Download Services

frem Motarola Code Examples

START

_pPackageNane DC. L _gpPackageNane ;0 Package nane

_PackageType DC. W _PKG TYPE ;1 Package type

_Thi sHeader Version DC.W_PKG HDR VER 1 1 0 ;1 PackageHeader.s
version

_pPkgManuf act urer Name DC. L _gpPkgManuf acturer Nanme; 2 Witer of
this Dnl App

_PkgProductld DC.L _PKG PDT_ID ;3 Product |ID assigned by witer
_PkgProduct Version DC. L _PKG PDT_VER ;4 Version nunber of this
pr oduct

_pAppDat aStart DC. L _DATASTART ;5 Initialized data address
_AppDat aSi ze DC.L _DATASIZE ;6 Initialized data size
_AppRanti ze DC.L _RAMSIZE ;7 Un-initialized data size
_pAppTaskStart DC. L _gPpsngtApp ;8 Entry point of the Dnl App
_AppTaskStackSi ze DC. L _PKG DNL_APP_STACK ;9 Task stack size
_AppBi t Depth DC. W _PKG DNL_APP_BPP ; OXA Nunber of bit per pixel
usi ng

_ApplconWdth DC. B _PKG DNL_APP_| CO W; OxA Large application icon
wi dt h

_Appl conHei ght DC. B _PKG DNL_APP_|I CO H ; OXA Large application

i con hei ght

_pAppl conl mage DC. L _gpAppl conl mage ; OxB Large application icon
bi t map

_pAppEntryCal | back DC. L _gAppEntryCal | back ; OxC Entry cal |l back
function

_pAppExi t Cal | back DC. L _gAppExitcCall back ; 0xD Exit call back
function

source file of application:
/* The application task */

voi d gPpsngt App(voi d)
{

P_EVENT pEvent;

while (1)

{

PPSM-GT User Guide PPG-245

afs
Application Download Services f‘_mgitﬂlnuﬂ

Code Examples frem Metarola

PPG-246 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Audio Management Services

from Motarcla Audio Management Services Fundamentals

17

Audio Management
Services

PPSM-GT supports three types of audio: tone, wave and melody
playing. The audio tools have the following properties.

= Only one wave file or tone can be played during a given
moment.

= A wave file or tone cannot be played if the PWM (Pulse-Width
Modulator) module is in use by another task or application.

= An event will be sent to the task that called Audio Services to
indicate that the audio playing has finished.

This chapter is organized into the following main sections:
= Audio Management Services Fundamentals

e Programming Using Audio Management Services

e Summary
e Code Examples

Audio Management Services Fundamentals

Tone service

The AudPlayTone() API plays a sound with a specified frequency
(tone) for a specified length of time. Apart from these
characteristics, the pointers to the tone frequency file and the file
size are needed. Examples of use are to generate a dial tone or a
laser-like sound for game playing.

PPSM-GT User Guide PPG-247

ats
Audio Management Services f“[ﬁgitﬂlﬂ"ﬁ

Wave service

from Moetarola

Wave service

The AudPlayWave() API plays back an audio wave file in PCM
(Pulse Code Modulation) format that can be generated by many
audio programs. The general usage of this service is to play back a
piece of audio, such as a segment of speech, that is recorded by a
computer or any audio device.

Two basic characteristics, sampling rate and sample bit resolution,
characterize this kind of audio service. A common example of such
service is an audio CD (compact disc), which provides 44.1 kHz, 16-
bit, stereo audio quality. In contrast, the API service only provides
mono service and 8-bit resolution. Apart from these characteristics,
a pointer to the wave data file and file size is needed.

Melody service

The AudPlayMelody() API plays back melody notes like piano
playing. Each note has a specific pitch, and each pitch has a
particular frequency associated with it. Including sharps and flats,
there are 12 actual notes in an octave.

The most common octave has a base frequency of 220 Hz. The next
higher octave has a base frequency of 440 Hz, and so on.

Figure 17.1 shows an example of melody notes.

PPG-248

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Audio Management Services

from Moetorola PPSM Music File Format

Figure 17.1 Example of melody notes
TimeSgnaure Mesare Notes

Fingering:
mg;mgﬂé 321 ya{lzﬁ/
.] EE——

2 e —— i —
| fain] | al | I | o
S et
Beats: 1 9 9 4 {19234 [1234 |12 34
i T [['w) [n)
.fn:: [['w) [n) =

1 1 1

5 5 5

PPSM Music File Format

The audio service allows users to play a melody by using the PPSM-
GT Music File Format (PMF). The PMF file is simple and easily used
on the system.

The header identifies all the important parameters, and the melody
data is stored in a simple dump. Table 17.1 shows the format of the
PFM header.

If the same note is going to be played twice in succession, a pause
signal will be inserted between the notes automatically. The
duration of the pause signal is programmable and fixed during
compilation.

PPSM-GT User Guide PPG-249

Audio Management Services
PPSM Music File Format

““Digital DNA

from Moetarola

Table 17.1 PMF Header Description
Bytes Type Description
1 Version It is data to indicate the version
number number of the PMF file.
1 The tempo of | The rate at which a measure is
the melody played. There are three types of
tempo. They are ALLEGRO,
MODERATO and LARGHETTO.
01 = ALLEGRO means playing 4
guarter notes per second.
02 = MODERATO means playing 2
quarter notes per second.
03 = LARGHETTO means playing 1
guarter note per second.
2 Total number | The total number of the “measure” to
of notes in the | form the PMF file.
file
n Name of the It is a string, which is used to record
melody, the name of the PMF file.
terminated by
a “0x0000”
character
P_NOTE | Note A pointer to the note data structure.

PPG-250

PPSM-GT User Guide

Audio Management Services
PPSM Music File Format

““Digital DNA

from Moetarola

Table 17.2 PPSM-GT Note Description

Table 17.3

Notes

NOTE_SILENCE

NOTE_C3
NOTE_C3_SHARP
NOTE_D3 FLAT
NOTE_D3
NOTE_D3_SHARP
NOTE_E3 FLAT
NOTE_E3
NOTE_F3
NOTE_F3_SHARP
NOTE_G3 FLAT
NOTE_G3
NOTE_G3_SHARP
NOTE_A3 FLAT
NOTE_A3
NOTE_A3 SHARP
NOTE B3 FLAT
NOTE_B3
NOTE_C4
NOTE_C4_SHARP
NOTE_D4_FLAT
NOTE_D4
NOTE_D4 SHARP
NOTE_E4 FLAT
NOTE_E4
NOTE_F4
NOTE_F4_SHARP

NOTE_G4 FLAT
NOTE_G4
NOTE_G4 SHARP
NOTE_A4 FLAT
NOTE_A4
NOTE_A4 SHARP
NOTE_B4 FLAT
NOTE_B4
NOTE_C5
NOTE_C5_SHARP
NOTE_D5 FLAT
NOTE_D5
NOTE_D5_SHARP
NOTE_E5 _FLAT
NOTE_E5
NOTE_F5
NOTE_F5 SHARP
NOTE_G5 FLAT
NOTE_G5
NOTE_G5_SHARP
NOTE_A5 FLAT
NOTE_A5
NOTE_A5 SHARP
NOTE_B5 _FLAT
NOTE_B5
NOTE_C6
NOTE_C6_SHARP
NOTE_D6_FLAT
NOTE_D6

NOTE_D6_SHARP
NOTE_E6_FLAT
NOTE_E6
NOTE_F6
NOTE_F6_SHARP
NOTE_G6_FLAT
NOTE_G6
NOTE_G6_SHARP
NOTE_A6 FLAT
NOTE_A6
NOTE_A6_SHARP
NOTE_B6_FLAT
NOTE_B6
NOTE_C7
NOTE_C7_SHARP
NOTE_D7_FLAT
NOTE_D7
NOTE_D7_SHARP
NOTE_E7_FLAT
NOTE_E7
NOTE_F7
NOTE_F7_SHARP
NOTE_G7 _FLAT
NOTE_G7
NOTE_G7_SHARP
NOTE_A7 FLAT
NOTE_A7
NOTE_A7_SHARP
NOTE_B7 FLAT
NOTE_B7

PPSM-GT Pitch Description

Note Type PPSM-GT’s notation of PITCH
LENGTH

Whole Note NOTE_WHOLE

Half Note NOTE_HALF

Quarter Note

NOTE_QUARTER

PPSM-GT User Guide

PPG-251

ats
Audio Management Services f"[ﬁgitﬂln"ﬁ

Writing up a PMF file from Metarala

Note Type PPSM-GT’s notation of PITCH
LENGTH

Eighth Note NOTE_EIGHTH

Sixteenth Note NOTE_SIXTEENTH

Thirtieth Note NOTE_THIRTIETH (1/32 *
NOTE_WHOLE)

Sixtieth Note NOTE_SIXTIETH (1/64 *
NOTE_WHOLE)

Writing up a PMF file

The write up of the PMF file is divided into the following steps:
1. Create the PMF header information as in Table 17.1.

2. Code the music source using the PPSM-GT notation, as
shown in Table 17.2 and Table 17.3.

3. Include the file as a *.h file.

Programming Using Audio Management Services

Playing Tone

STATUS AudPlayTone(P_U16 | PPSM-GT supports tone
toneData, U32 toneSize, U16 playing through the PWM
toneDuration, U8 autoRepeat) | module. Tone playing can play
See Table 17.4 for description a melody with a user-specified
fixed duration and changeable
frequencies throughout that
duration. For better frequency
resolution, the tone frequency
is limited to between 31 Hz and
4048 Hz.

PPG-252 PPSM-GT User Guide

““Digital DNA

from Moetarola

Audio Management Services
Setting up for tone music

Table 17.4 Tone Input Description

Input Field Description

toneData The pointer to the tone

sequence, with frequencies
between 31 Hz and 4048 Hz.

toneSize Total number of tone
frequencies to be played.

toneDuration The duration of each tone
frequency.

For DragonBall EZ:
TONE_DUR_512Hz
TONE_DUR_256Hz
TONE_DUR_128Hz
TONE_DUR_64Hz
TONE_DUR_32Hz
TONE_DUR_16Hz
TONE_DUR_8Hz
TONE_DUR_4Hz

For original DragonBall:
0 to 1000 (length of duration in
number of milliseconds)

autoRepeat To indicate if auto-repeat is

needed or not.
0 - no auto-repeat
1 - auto-repeat

Setting up for tone music

STATUS AudSetTone(void) It sets the PWM register to the

specified frequency from
4.048 kHz to 31.625 Hz and

starts to play tone data one by
one. This API can be used for
playing the same tone after it
has been stopped.

PPSM-GT User Guide

PPG-253

Audio Management Services

Playing Wave Format

““Digital DNA

from Moetarola

NOTE

To stop the tone playing, a user can call AudioStopTone(). To check
if the Audio Tools are currently being used, a user can call

AudiolnUse().

It is impossible to play a tone whose value of frequency is less than
the value of duration, since the duration of this frequency is longer

than the allowed duration.

Playing Wave Format

PPSM-GT audio services can play back a PCM (Pulse Code
Modulation) audio wave file that can be generated by many audio
programs. Two PPSM-GT audio tools can play waves:
AdvAudioPlayWave() and AudioPlayWave().

STATUS AudPlayWave(P_U8
waveData, U32 waveSize, U8
samplingRate) See Table 17.5
for description

To play wave music.

STATUS
AudAdvPlayWave(P_U8
waveData, U32 waveSize, U8
prescaler, U8 repeat, U8 clksel)

AdvAudPlayWave() is
provided for users with solid
knowledge of PWM who want
to have advanced configuration
control over the PWM module.

PPG-254

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Audio Management Services

from Motarcla Setting up the Audio Melody

Table 17.5 Wave Input Description

Wave Inputs Description

waveData The pointer to the PCM audio
wave signal

wavesSize Total number of data bytes

occupied by the audio signal

samplingRate The requested sampling rate:
SAMPLING_32KHZ
SAMPLING_16KHZ
SAMPLING_11KHZ
SAMPLING_8KHZ
SAMPLING_4KHZ

prescaler (see DragonBall EZ | Bits 14-8 of the PWM control

user’s manual) register; value from 0 to 127
repeat (see DragonBall EZ Bits 2 and 3 of the PWM control
user’s manual) register; value from 0 to 3

clksel (see DragonBall EZ Bits 0 and 1 of the PWM control
user’s manual) register; value from 0 to 3

The sampling rate can be calculated with the input parameters
identified in Table 17.5:
SamplingRate = ((16.58MHz)/ (prescalar + 1)/ (clksel)/ (repeat)/ 256

For more detailed information, please refer to the DragonBall EZ
and DragonBall VZ user’s manuals. (The PWM control register on
the DragonBall EZ is the PWM 1 control register on the DragonBall
VZ.)

Setting up the Audio Melody

STATUS Itis a function to set up the
AudSetMelody(P_PMF pmf) audio melody.

Playing Melody Music

STATUS Start melody playing according
AudPlayMelody(void) to pre-defined setting

PPSM-GT User Guide PPG-255

Audio Management Services
Stopping the audio playing

““Digital DNA

from Moetarola

Stopping the audio playing

An audio stops after it has finished or when the user has called
AudStopTone(), AudStopWave(), or AudStopMelody() to stop the
playing. After audio playing stops, an interrupt is sent to the task
that called audio services to indicate that the audio playing is

finished.

STATUS AudStopTone(void)
STATUS AudStopWave(void)
STATUS

It stops playing the tone data.
It stops playing the wave data.
It stops playing the melody

data.

AudStopMelody(void)

Pausing the audio melody playing

STATUS
AudPauseMelody(void)

Pausing melody playing is
allowed in PPSM-GT. When the
AudPauseMelody() APl is
used, the system stops the
playing of the melody notes
and remembers where it
stopped. It will resume playing
when AudPlayMelody() is
used.

AudPauseMelody(), when
called, pauses the melody data
that is playing.

Inquiring about the playcounter

STATUS AudGetCount(P_U16
playcounter)

To return the playcounter for
indicating the number of notes
played

Inquiring about name of melody in PMF file

STATUS AudGetName(P_U16 | To return the PMF name

pmfname)

PPG-256 PPSM-GT User Guide

““Digital DNA

Audio Management Services

from Motarcla Inquiring about pitch length of melody
Inquiring about pitch length of melody
U16 AudGetNotelLength(void) | To return the pitch length
Inquiring about number of notes in melody
STATUS To return the number of notes
AudGetNumofNote(P_U16
sumofnote)
Inquiring about audio tool status
U8 AudGetStatus(void) It returns the audio tool status
to the application.
Inquiring about tone duration
U16 AudGetToneDur(void) To return the tone duration
Summary

PPSM-GT audio management services can be used to generate tone,
wave and melody music. The audio management services are set;
forget APIs that set the tone, wave and melody musical notes, and
the system will generate the music.

The melody music services use a PMF format to play the music. It
has a header and data section. The description of the PMF header
appears in Table 17.1.

Code Examples

The following examples illustrate the creation of the PMF file and
how to use the audio management services to generate tone, wave
and melody music. These examples are provided for reference and,
if modified, could be used in an actual application.

PPSM-GT User Guide PPG-257

ats
Audio Management Services f“[ﬁgitﬂlﬂ"ﬁ

Creating a PMF file from Muotarola

Creating a PMF file

Consider the following musical score, the theme from “My Girl.”

= bl |
=l
by
-
-l

The PMF header information is as follows:

« (01 01; 01 means version number 0.1 and ALLEGRO means
playing 4 quarter notes per second.

= 00 21; 00 21 means that there are 33 notes in the song in total.

e 47 4952 4C; 47,49,52 and 4C mean the ASCII characters “GIRL,”
which is the name of the song.

= (00 00; 00 00 signifies the terminator of the header information.

Listing 17.1 The PMF file example

const Ul6 pnf2[] = {
0x0101, 0x0021, 0x4749, 0x524C,

0x0000,
NOTE_C3, NOTE_HALF,
NOTE_C3, NOTE_QUARTER,
NOTE_C3, NOTE_QUARTER,
NOTE_C3, NOTE_HALF,
NOTE_C3, NOTE_HALF,
NOTE_D3, NOTE_HALF,
NOTE_E3, NOTE_HALF,
NOTE_D3, NOTE_HALF,
NOTE_SI LENCE, NOTE_HALF,
NOTE_C3, NOTE_HALF,
NOTE_C3, NOTE_HALF,
NOTE_C4, NOTE_HALF,
NOTE_SI LENCE, NOTE_HALF,
NOTE_B3, NOTE_HALF,
NOTE_A3, NOTE_HALF,
NOTE_G3, NOTE_HALF,
NOTE_A3, NOTE_HALF,
NOTE_A3, NOTE_QUARTER,

PPG-258 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Audio Management Services

from Metorela Creating a PMF file

NOTE_AS3, NOTE_QUARTER,
NOTE_G3, NOTE_HALF,
NOTE_F3, NOTE_HALF,
NOTE_G3, NOTE_HALF,
NOTE_AS3, NOTE_HALF,
NOTE_C3, NOTE_HALF,
NOTE_SI LENCE, NOTE_HALF,
NOTE_D3, NOTE_HALF,
NOTE_ES, NOTE_HALF,
NOTE_D3, NOTE_HALF,
NOTE_D3, NOTE_QUARTER,
NOTE_C3, NOTE_QUARTER,
NOTE_AS3, NOTE_HALF,
NOTE_ES, NOTE_HALF,
NOTE_G3, NOTE_HALF,

b

Listing 17.2 PPSM-GT tone playing

/* 100Hz, 1000Hz, 500Hz and 600Hz */
ULl6t oneData[] = {100, 1000, 500, 600};

/* Play a nelody with 4 different tone frequencies, each with
250 ns duration */

AudPl ayTone((P_Ul16)toneData, 4, TONE DUR 4HZ, 1);

Listing 17.3 PPSM-GT wave playing

[* Some PWM wave data */
Ul6waveData[] = {...};

/* Play a nelody with 1000 data bytes at 16 kHz sanpli ng/
reconstruction rate */

Audi oPl ayWave((P_U8)waveDat a, 1000, SAMPLI NG 16KHZ);

Listing 17.4 PPSM-GT wave playing

[* Some PWM wave data */
UlwaveData[] = {...};

PPSM-GT User Guide PPG-259

ats
Audio Management Services f“[ﬁgitﬂlﬂ"ﬁ

Creating a PMF file from Muotarola

/* Play a nelody with 1000 data bytes at 16 kHz sanpli ng/
reconstruction rate */
/* 16 kHz = 16.58 M/ (2 x 1 x 2 x 256) */

AudAdvPl ayWave((P_U8) waveData, 1000, 0, 2, 0);

Listing 17.5 Stopping an audio play

/* Some PVWM wave data */
Ul6waveData[] = {...};

/* Play a nelody with 1000 data bytes at 16 kHz sanpli ng/
reconstruction rate */
Audi oPl ayWave((P_U8)waveDat a, 1000, SAMPLI NG 16KHZ);

if (areald == Stoplcon)

/* dick icon to stop the wave playing */
rv = Audi oSt opWave();

br eak;

}

NOTE Listing 17.6 provides pseudo-code for using the Audio Management
Services for playing a melody.

Listing 17.6 Playing Melody music

const Ul6 pnfl[] = {
0x0101, 0x003C, 0x656d, 0x6500, 0x0000,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_D5, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_B4, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,

PPG-260 PPSM-GT User Guide

““Digital DNA

from Moetarola

Audio Management Services
Creating a PMF file

NOTE_SI LENCE, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,
NOTE_G5_SHARP, NOTE_QUARTER,
NOTE_G5_SHARP, NOTE_QUARTER,
NOTE_A5, NOTE_QUARTER,
NOTE_B5, NOTE_QUARTER,
NOTE_A5, NOTE_QUARTER,
NOTE_A5, NOTE_QUARTER,
NOTE_A5, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_D5, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_F5_SHARP, NOTE_QUARTER,
NOTE_D5, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_B4, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,
NOTE_SI LENCE, NOTE_QUARTER,
NOTE_E5, NOTE_QUARTER,
NOTE_G4_SHARP, NOTE_QUARTER,
NOTE_G5_SHARP, NOTE_QUARTER,
NOTE_A5, NOTE_QUARTER,
NOTE_B5, NOTE_QUARTER,
NOTE_A5, NOTE_QUARTER,
NOTE_A5, NOTE_QUARTER,
NOTE_A5, NOTE_QUARTER,

PPSM-GT User Guide

PPG-261

ats
Audio Management Services f‘_mgitﬂlnuﬁ

Creating a PMF file from Muotarola

NOTE_E5, NOTE_QUARTER
NOTE_SI LENCE, NOTE_QUARTER
NOTE_F5_SHARP, NOTE_QUARTER
NOTE_SI LENCE, NOTE_QUARTER
NOTE_F5_SHARP, NOTE_QUARTER
NOTE_SI LENCE, NOTE_QUARTER
NOTE_F5_SHARP, NOTE_QUARTER
NOTE_E5, NOTE_QUARTER
NOTE_E5, NOTE_QUARTER

b
/* Setting up the the nelody */
AudSet Mel ody(pnf 1) ;

/* Pl ayi ng t he nel ody */
AudPl ayMel ody() ;

/* Pause the nel ody if pause action detected */

AudPauseMel ody() ;

/* Pl aying the nmel ody again if play action detected */

AudPl ayMel ody() ;

/* St opping the nmelody if stop action detected */

AudSt opMel ody() :

PPG-262 PPSM-GT User Guide

als
fi‘[hg“al[]"ﬁ Serial Communication Interface Services
from Metorola SCI Services Fundamentals

18

Serial Communication
Interface Services

PPSM-GT supports multiple serial communications through the
serial communication interfaces (SCIs) in both normal mode and
IrDA mode. The exact number of SCI resources supported is
hardware limited. (Refer to the appropriate hardware manual for
details.) Each resource has an identifier that distinguishes it from
others when the common set of SCI services is used to send and
receive data through the SClis.

Each SCI resource also has an internal receive buffer. The default
size is specified in the include header file. This size can be
dynamically changed during run time with SciSetRxBufSize().

By default, SCI resources are disabled and should be enabled before
use.

This chapter is organized into the following main sections:
= SCI Services Fundamentals

e Programming Using SCI Services

e Summary
e Code Examples

SCI Services Fundamentals

The SCI services provide easy-to-use APIs for tasks to enable,
configure, and send and receive data serially with or without
hardware flow control.

PPSM-GT User Guide PPG-263

ats
Serial Communication Interface Services f“[ﬁgimln"ﬁ
SCI Ownership and Usage from Metarcla

The SCI resources in the PPSM-GT environment are divided into
hardware resources and software resources. The hardware
resources refer to the physical SCI modules, which consist of the
communication UART port available on the hardware platform. The
software resources consist of the system memory used for storing
the baud rate, parity and other SCI-related information.

SCI Ownership and Usage

The task that creates the SCI port owns the SCI port. It is the target
task of that port; that is, the system will send all SCl-related events
to this task. In normal usage, the task that creates the SCI port binds
and uses it. When it is done using the SCI port, the task unbinds the
SCI port and releases it for other tasks to use. Using the SCI port in
this way is a good practice because such SCI usage is
straightforward. It is based on the following principle: one task for
one SCI port at any one time.

In a multitasking environment, there may be cases when multiple
tasks have to use the same SCI port to send information. For such
cases, the following points must be considered:

1. The task that creates the SCI port is the target task of that
port; all SCI related event will send to this task. In other
words, if there are 3 tasks—tasks A, B and C—and task A
creates and binds the SCI port, then task A is the target task.
If task B or C wants to use the SCI port, the system will send
the system events to task A even if those events are for task B
or C. Therefore, when using the SCI port in this situation,
please keep track of the tasks that are using the SCI ports and
redirect the system events to the appropriate tasks.

2. All other tasks can call SCI APIs to control that SCI port as
long as the tasks know the SCI portld. It is the programmer’s
responsibility to exercise proper control of the way the tasks
use the SCI ports. Improper control will lead to data
corruption due to different tasks sending different
information on the same SCI port.

3. All tasks can unbind and close the SCI port if the SCI portld
is available. It is again the programmer’s responsibility to
ensure that no other task is using the SCI port before a task
unbinds and closes the SCI port.

PPG-264

PPSM-GT User Guide

=

[ﬁgita"]"ﬁ Serial Communication Interface Services

from Metarcla Using the SCI Services

Using the SCI Services

There are two ways to use the SCI services:
1. The three steps method

2. The five steps method

The three steps method

The three steps method is for applications that just want to send and
receive information through the SCI resources for a short period of
time. There is no need for saving the SCI configuration for future
usage.

Figure 18.1 The Three Steps Method

Configure
the SCI
port

Close the
SCI port

Open the
SCI port

Figure 18.1 and Table 18.1 shows the three steps method. It is
straightforward and easy to use. To start using the SCI resources,
remember the 3 simple steps.

PPSM-GT User Guide PPG-265

Serial Communication Interface Services

Using the SCI Services

““Digital DNA

from Moetarola

Table 18.1

Three Steps Method Description

Step

Description

Step 1: Open the SCI port with
SciOpen()

Step 2: Configure the SCI port
with SciConfig().

Step 3: Close the SCI port with
SciClose()

The system will check
whether any SCI hardware
resource is available, and
return with the SCI resource
or an error message if no SCI
resources is available.

The SCI resource that is
reserved is not configured.
SciConfig() will set the baud
rate, parity settings, stop bit
settings, character length
settings, and data
transmission time-out
settings.

When done using the SCI
resource, SciClose() will close
and release the SCI resource.

The five steps method

The five steps method is an expanded version of the three steps
method. It breaks down the three steps into five steps to allow
applications that want to send and receive information through the
SCI resources and need to re-use the same SCI configuration later.

PPG-266

PPSM-GT User Guide

$[ﬁgit‘alﬂ"ﬁ Serial Communication Interface Services

from Metarcla Using the SCI Services

Figure 18.2 The Five Steps Method

Configure

Bind

Create the

the SCI the SCI
SCI port port port

Unbind Send &
Close the the SCI Receive
SCI port port D ata

Figure 18.2 shows the five steps method. The five steps method
requires the creation of the software ports and the configuration of
the hardware ports to occur separately. The software port could be
created at any time, but the configuration of the hardware port is
under system control. The system is flexible on the usage of the SCI
hardware resources, since two or more tasks are able to access the
same hardware resource at any one time provided the SCI port is
not busy.

The SciBindPort() API will check the availability of the SCI
resources. Once the hardware port is available, PPSM-GT binds the
software port to hardware port, and the task is able to send and
receive information through the SCI resources.

When the task has finished SCI operation, there is a choice to release
only the hardware resources or both the hardware and software
resources. It is good practice to release the SCI port whenever the
task has finished using it. PPSM-GT does not force the release of an
unused hardware SCI port. Therefore, if any of the tasks hold on to
the SCI hardware port without releasing it, the SCI port is bound to
the task until the task is terminated.

To release only the SCI hardware port, use SciunbindPort(). To
release both hardware and software ports, use SciClose(). It is not
necessary to release the software SCI port every time if the SCI
setting is used frequently. It saves the time of reconfiguring the SCI
again.

PPSM-GT User Guide PPG-267

als
Serial Communication Interface Services ""'[hgrtal[]"ﬁ
SCI resources hardware flow control from Moetorola

SCl resources hardware flow control

In PPSM-GT, data communication between the system and other
communication devices using the SCI supports RTS, CTS hardware
flow control. While hardware flow control is enabled, RTS is
asserted automatically when calling SciSend() and SciReceive(). In
a null modem configuration, when the PPSM-GT system is the
sender, the receiver needs to acknowledge that it is ready to receive
by asserting its RTS pin.

Figure 18.3 shows the data transmission with hardware flow
control.

PPG-268 PPSM-GT User Guide

als
'T"'[hg'talﬂﬂﬁ Serial Communication Interface Services
from Metorola SCI resources hardware flow control

Figure 18.3 SCI Communication Architecture—Data Transmit with RTS,
CTS flow control

APPLICATION PPSM-GT H/w

Access Permission Request
(if not already)
-

Check
Access
Permission

Request

Access -

Granted|/ Denied

Transmit Request & Data
-

Check
Transmit
Permission

Request

Transmit /g

Granted|/ Denied

Assert RTS
and

Initiate TX
time-out

Pull Low RTS pin
|

Wait for end Data $ent

of
transmission

Send Data To
Hardware &
Acknowledge

-

Complete / Error

Negate RTS
and

Clear TX
time-out

Pull High RTS pin
|

Release Access Request

p/ Release

Access &
Acknowledge

Release
Access -

Acknawledge

When the PPSM-GT system is the receiver, it acknowledges the
sender side by asserting the RTS pin. Thus, if the RTS pins of both
the PPSM-GT system and the other communication device are
asserted, the data transfer can be full-duplex.

PPSM-GT User Guide PPG-269

als
Serial Communication Interface Services f“[ﬁgitﬂl[]"ﬁ

SCI Configurations

from Moetarola

Three APIs are available for RTS, CTS hardware flow control. They
are SciFlowCtrl(), SciRcvCtrl() and SciSendCtrl(). Hardware flow
control can be enabled or disabled by calling SciFlowCtrl(). By
calling SciRcvCtrl() and SciSendCtrl(), PPSM-GT can pause or
continue data reception and data transmission, respectively.

The API SciSendAbort() is used for aborting the transmission. Also,
this API can return the current position of the software send buffer
and the number of bytes that have been transmitted by the PPSM-
GT system with appropriate input flag.

SCI Configurations

PPSM-GT allows applications to configure the SCI to operate at
various baud rates, parity settings, stop bit settings, character length
settings, and data transmission time-out settings.

There is no default SCI configuration after creating a software SCI
port. Please ensure that the SCI is configured properly by calling
SciConfig() before initiating any data communication.

Baud rate supported

PPSM-GT can support a baud rate from 600 bps to 115,200 bps.
Please note that the baud rate supported is also hardware limited,
and some hardware is not able to run at the top speed.

Initiating a Send Request

Figure 18.4 shows the data transmission using the SCI
communication architecture.

PPG-270

PPSM-GT User Guide

““Digital DNA

from Moetarola

Serial Communication Interface Services
Initiating a Send Request

Figure 18.4

Data Transmit

SCI Communication Architecture—Data Transmit

APPLICATION PPSM-GT HW
Access Permission Request
(if not already)
Request > AC heck
Access CCESS
- Permission
Granted / Denied
Transmit Request & Data Data Sent
p/Send Data To .

Request

Transmit Hardware &

- Acknowledge
Complete / Error

Release Access Request
-

Release
Access &
Acknowledge

Release
Access

-

Acknowledge

Applications can send data out to the SCI by calling SciSend() to
initiate send requests. A send request will be accepted if both of the
following are true:

= the task has permission to access the SCI
= there is no other ongoing send request

Actual data sending does not happen within the scope of SciSend().
If SciSend() returns success for the request, PPSM-GT will handle
the SCI interrupts and start sending data in the background. The
application will be able to handle other interrupts (for example, pen
interrupts) in the foreground.

The calling task cannot modify the content of the data buffer during
the entire course of the send request.

PPSM-GT User Guide PPG-271

als
Serial Communication Interface Services ""'[hgrtal[]"ﬁ
Terminating a Send Request from Metarcla

If RTS, CTS hardware flow control is enabled, PPSM-GT only
transmits data through SCI when the CTS pin is asserted by the
receiver.

Terminating a Send Request

A send request will be terminated under the following
circumstances:

= After PPSM-GT finishes sending all data, it will post an event
with the message data SCI_DATA_SENT to the calling task. This
marks the completion of the send request.

= |f a timed-out error condition occurs during the course of
sending data, PPSM-GT will post the event with the message
data SCI_ERROR and the corresponding error code. This marks
a failed send request, and the calling task should determine the
recovery actions. The current transmission is aborted after the
time out happened.

= A task aborts the ongoing send request by calling
SciSendAbort().

The calling task should release the SCI access permission by calling
SciUnbindPort() or SciClose() as soon as it is not needed anymore.

Initiating a Receive Request

Figure 18.5 shows data reception in the SCI communication
architecture.

PPG-272

PPSM-GT User Guide

““Digital DNA

from Moetarola

Serial Communication Interface Services

Initiating a Receive Request

Figure 18.5

SCI Communication Architecture—Data Receive

APPLICATION

Data Receive

Access
(if not already)

Permission Request

Request
Access

PPSM-GT

Check
Access

-

Granted / Denied

Receive Request

Request
Receive

-

Permission

Check
Receive

Granted / Denied

Data Read / Error

Permission

Read Reguest

Read Data
& Determine

End of Data

|
ta Receive Request

Data Requested

Read .
Data From
Hardware |/ #4——F—
Data / Error

ase Access Request

Release
Access

ort Read Data Request

Release

Acknowledge

Tasks can receive data from the SCI by calling SciReceive() to
initiate receive requests. A receive request will be accepted if both of
the following are true:

= the application has permission to access the SCI

= there is no other ongoing receive request

PPSM-GT User Guide

PPG-273

als
Serial Communication Interface Services f“[ﬁgitﬂl[]"ﬁ

Reading Received Data

from Moetarola

Actual data reception does not happen within the scope of
SciReceive(). If SciReceive() returns success for the request, PPSM-
GT will handle the SCI interrupts and start waiting for data in the
background. The application will be able to handle other interrupts
(for example, pen interrupts) in the foreground.

Reading Received Data

When PPSM-GT has received data from the SCI, it will post an event
with the message data SCI_DATA_RECEIVED to the calling task.
The calling task should then call SciReadData() as soon as possible
to read the received data from PPSM-GT.

As PPSM-GT is receiving data from the SCI, the following error
conditions may arise:

= aframe error generated by the SCI hardware
= a parity error generated by the SCI hardware

= an overrun error when PPSM-GT or the calling application is
falling behind in reading the received data

In any of these error conditions, PPSM-GT will post the event with
the message data SCI_ERROR and the corresponding error code.
These error-related interrupt messages only serve as a notification
to the calling application; they do not stop PPSM-GT from
continuing the receive request. The calling application should
determine the appropriate recovery actions.

If RTS, CTS is enabled, the RTS pin is negated when PPSM-GT is
running SciReadData() and asserted after data reading is complete.

Terminating a Receive Request

A receive request will be terminated under the following
circumstances:

= |f atimed-out error condition occurs during the course of
receiving data, PPSM-GT will post an event with the message
data SCI_ERROR and the corresponding error code. This marks
a failed receive request, and the calling task should determine
the recovery actions. The current data reception is aborted after
the time out happened.

PPG-274

PPSM-GT User Guide

als
fi‘[hg“al[]"ﬁ Serial Communication Interface Services
from Metorola SCI Resources Interface Constraints

= A task aborts the ongoing receive request by calling SciReceive()
with the abort flag.

The calling application should release the SCI access permission as
soon as it is not needed anymore.

SCI Resources Interface Constraints
SCl port

There is a one-to-one relationship between the software and
hardware ports. Only one software SCI port can be bound to one
hardware UART port at any one time.

Receive buffer overflow

Application and task swapping is allowed during SCI data
transmission and reception. Therefore, in the multitasking
environment, it is advisable for the SCI communication task to have
a high priority to avoid a receive buffer overflow problem.

SCI Resource Interface Interrupt Messages

After an application is granted permission to use the SCI, it can
initiate a data transmission request. As the data transmission
progresses, it will receive the events with the corresponding
message data under the circumstances shown in Table 18.2.

When an error condition has occurred, the interrupt message data,
SCI_ERROR, appended with an error code will be returned to the
calling application. The error codes are shown in Table 18.2.

PPSM-GT User Guide PPG-275

ats
Serial Communication Interface Services "“[hgrtalﬂ"ﬁ
Multiple SCI Usage Recommendation frem Metarola

Table 18.2 SCI_ERROR Messages Description

SCI Message Description

SCI_ RX_TMOUT_ERR | For data transmission time-out
condition once the transmission has

started.

SCI_FRAME_ERR For frame error condition during data
receive.

SCI_PARITY_ERR For parity error condition during data
receive.

SCI_OVERRUN_ERR For overrun error condition during
data receive.

SCI_NODATA ERR For prematurely requesting PPSM-GT
for data before data has been received.

SCI_DATA_RECEIVED | Data has been received from the SCI.
The interrupt message data will be
returned to the calling application.

SCI_DATA_SENT Data send request has been completed.
The interrupt message data will be
returned to the calling application.

Multiple SCI Usage Recommendation

When two or more tasks are required to use the SCI resources, the
following recommendations must be observed:

1. Each SCI software port is owned by only one task.

2. Each SCI hardware port can be bound by only one software
port at any one time.

3. Tasks should unbind the software port from the hardware
port when communication is complete.

4. Tasks should check for hardware port availability before
calling an SCI API to TX or RX.

5. All hardware and software SCI ports must be released to the
SCI pool when they not required anymore.

The following series of figures presents a pictorial overview of how
the kernel handles two SCI communications. Figure 18.6 through

PPG-276 PPSM-GT User Guide

:'!:[hg“jaIDHA Serial Communication Interface Services

from Metarcla Multiple SCI Usage Recommendation

Figure 18.10 pertain to transmission, and Figure 18.11 through
Figure 18.16 pertain to receive.

Figure 18.6 Task 1 and 2 request the H/W port but only task 1 is successful

2 task want to SEND (1/5)

Task 1 Task 2
Kernel
Create YW Create SW
port 1 port 2

Return BUSY error

S/W port 1 S/W port 2

Cannot bind to H/W port
because of BUSY

Bind to H/W port

UART 1or2

Figure 18.7 When the H/W port is not available, task 2 polls for the H/W port

2 task want to SEND (2/5)

Task 1 Return SEND ok | Task 2
fter all data sent

Put a SEND

request

S/W port 1 & SIW port 2
Send data thru’ /"‘ Poll for
H/W port H/W port

PPSM-GT User Guide PPG-277

T
Serial Communication Interface Services a‘[ﬁgitﬂlﬂ"ﬁ

Multiple SCI Usage Recommendation frem Motarola

Figure 18.8 When task 1 has finished transmission, the H/W port is
released and task 2 is bound to the H/W port

2 task want to SEND (3/5)

Task 1 Task 2
S/W port 1 i i S/W port 2
Unbind to H/W port Can bind to H/W port now

Figure 18.9 Task 2 sending through the H/W port

2 task want to SEND (4/5)

Task 1 Return SEND ok Task 2

after all dat?ﬂ/
Keep the W port
for next usag @

S/W port 1

S/W port 2

Send data thru’
H/W port

PPG-278 PPSM-GT User Guide

=

[ﬁgitﬂlﬂ"ﬁ Serial Communication Interface Services
from Metarcla Multiple SCI Usage Recommendation
Figure 18.10 Task 2 also releases the H/W port when transmission is
complete
2 task want to SEND (5/5)
Task 1 Task 2
Keep the W port Keep the YW port
for next usag @ for next usage
S/W port 1 S/W port 2

g

Unbind to H/W port

_

Figure 18.11 Both task 1 and 2 want to receive data from the SCI, but the
H/W port has been bound to task 1

2 task want to RECEIVE (1/6)

Task 1 Task 2
Kernel
Create SW Create SW
port 1 port 2
SIW port 1 Return BUSY error SIW port 2
Bind to H/W port Cannot bind to H/W port
because of BUSY

UART 1lor 2

PPSM-GT User Guide PPG-279

Serial Communication Interface Services ﬁmg|taIDHA

Multiple SCI Usage Recommendation frem Motarola

Figure 18.12 Task 1 gets to receive while task 2 waits for the H/W port

2 task want to RECEIVE (2/6)

Task 1 Return DATARCV | T
hen data come

O

S/W port 1 - S/W port 2
Put data to S'W po | /"‘ Poll for
ring buffer T H/W port

ﬁ Data

Figure 18.13 Task 1 calls SciReadData to read data from buffer

2 task want to RECEIVE (3/6)

Task 1 Return DATARCV | Task 2
hen data come

Call SciReadbData to
read data from buffer @

S/W port 1 S/W port 2
Put data to SW po /"‘ Poll for
ring buffer T H/W port

PPG-280 PPSM-GT User Guide

$[ﬁgitﬂl“"ﬁ Serial Communication Interface Services

from Metarcla Multiple SCI Usage Recommendation

Figure 18.14 Task 1 releases the H/W port when reception is complete

2 task want to RECEIVE (4/6)

Task 1

Keep the YW port
for next usag @

S/W port 1 (5 S'W port 2

A

Receive complete, <= Can bind to H/W port now

unbind to H/W port -

No data

Figure 18.15 Task 2 gets to bind with the H/W port to receive data

2 task want to RECEIVE (5/6)

Task 1 Return DATA RCV.
when data come

Task 2

Keep the W port Call SciReadData to

for next usag read data from buffer

S/W port 1 S/W port 2
Put data to YW port
ring buffer

PPSM-GT User Guide PPG-281

ats
Serial Communication Interface Services ""[hgrtal[]"ﬁ
Programming Using SCI Services frem Metarola

Figure 18.16 Task 2 also releases the H/W port when reception is complete

2 task want to RECEIVE (6/6)

Tas 1
Keep the YW port Keep the YW port
for next usag for next usage
S/W port 1 S/W port 2

g

Receive complete,

@ unbind to H/W port

Programming Using SCI Services

Requesting for SCI

STATUS Based on the availability, the

SciCreate(P_SCI_PORT_ID system will respond.

pPortld) SciCreate() will create a
software SCI port.

STATUS If an SCI resource is available,

SciBindPort(SCI_PORT _ID SciBindPort() will register the

portld, U8 uartPort) software SCI port to the

hardware UART port and the
calling task. If no SCI resource
is available, an error message of
ERR_SCI_PORT_BUSY is

returned.
STATUS SciOpen(SciOpen() will create and
SCI_PORT_ID portid) register the software SCI port at

the same time. It performs the
functions of SciCreate() and
SciBindPort().

PPG-282 PPSM-GT User Guide

ats
f“[ﬁgimln"ﬁ Serial Communication Interfa(?e Services
from Motarcla Configuring the SCI

Configuring the SCI

STATUS Tasks can use SciConfig() to
SciConfig(SCI_PORT_ID reconfigure the SCI to the
portld, U8 mode, U8 baudRate, | required settings. Any ongoing
U8 parity, U8 stopBits, U8 data transmission request will
charLen) be aborted and the data

transmission time out reset to
the default. The actual baud
rate will be the closest
approximation to the specified
baud rate.

Table 18.3 shows the list of configurations and settings supported
along with the corresponding selection flag to be used with
SciConfig(). (Refer to the appropriate hardware manual for details.)

PPSM-GT User Guide PPG-283

Serial Communication Interface Services
Inquiring about the SCI Configurations

““Digital DNA

from Moetarola

Table 18.3 SCI Configuration Table

Configuration

Supported Settings

Operating Mode

Baud Rate

Parity

Number of Stop Bits

Character Length

Normal NRZ mode
IrDA mode

600 bps
1200 bps
2400 bps
4800 bps
9600 bps
14400 bps
19200 bps
28800 bps
38400 bps
57600 bps
115200 bps

No parity
Odd parity
Even parity

1 stop bit
2 stop bit

7-bit character
8-bit character

Inquiring about the SCI Configurations

STATUS
SciGetConfig(SCI_PORT_ID
portld, P_U8 pMode, P_U32
pBaudRate, P_U8 pParity,
P_U8 pStopBits, P_U8
pCharLen)

SciGetConfig() provides the
interface for applications to
inquire about the current
configuration settings of the
SCI. It returns the selection flag
for the corresponding
configuration setting as shown
in Table 18.3, except for baud
rate. The actual baud rate in
bps is returned instead.

PPG-284 PPSM-GT User Guide

““Digital DNA

from Moetarola

Serial Communication Interface Services
Inquiring about the SCI CTS and RTS Status

Inquiring about the SCI CTS and RTS Status

STATUS
SciCtsStatus(SCI_PORT_ID
portid)

STATUS
SciRtsStatus(SCI_PORT_ID
portid)

Returns the CTS status with
regard to the API called. Note
that the status may not be up to
date due to time delays
between function calls.

Returns the RTS status with
regard to the API called. Note
that the status may not be up to
date due to time delays
between function calls.

Setting Data Transmission and Reception Time

Out

void
SciSetTimeout(P_SCI_TMOUT
pTmout, TICK timeout,
EVTTYPE portld)

The data transmission time out
is defined to be the time
interval between two hardware
SCI interrupts. This time out is
set to safeguard the application
from deadlocking itself when
the data stream terminates
unexpectedly.

If RTS, CTS is enabled, after calling SciSend() to initiate
transmission, an application will receive a time-out error if CTS is
not asserted within the time-out period. If CTS is asserted, an
application will receive a time-out error if the time interval between
two hardware SCI interrupts is larger than the time-out period.

The range of time-out values supported is 0 to 60,000.

= 0 means disabling the time-out function.

= 1t0 60,000 means allowing the time interval between two
hardware SCI interrupts to be 1 millisecond to 1 minute.

PPSM-GT User Guide

PPG-285

ats
Serial Communication Interface Services "“[hgrtalﬂ"ﬁ
Setting Data Transmission Delay from Metarcla

Setting Data Transmission Delay

STATUS In order to communicate with
SciSetDelay(SCI_PORT_ID an application in PC, such as
portld, U8 type, U16 delay) HyperTerminal and Telex,

transmitting data in a burst of
pulses periodically would
greatly increase the accuracy of
transmission. This function
allows a user to set a delay, in
units of 1 ms, between each
transmission of all data in
transmit FIFO (between two
hardware interrupts).

The range of delay values supported is 1 to 60,000.

e SCI_TXDELAY_CLEAR means clear the delay during
transmission.

= 110 60,000 means allowing the delay interval between two
hardware SCI interrupts to be 1 millisecond to 1 minute.

Sending Data to the SCI

STATUS SciSend will send data that is
SciSend(SCI_PORT_ID portld, | stored in the pSendData buffer
U8 sendFlag, P_U8 pSendData, | through an SCI port when

U32 datalen) called. After the data
transmission is complete, the
system will inform the calling
task through an event.

Controlling Sending of Data

STATUS Tasks can pause data

SciSendCtrl(SCI_PORT _ID transmission of the SCI when

portld, U8 controlType) hardware flow control is
enabled.

SciSendCtrl(portld, SCI_RCTS_PAUSE) will cause a data
transmission to be stopped.

PPG-286 PPSM-GT User Guide

ats
fi‘[hg“al[]"ﬁ Serial Communication Interface Services
from Motarcla Terminating a transmission

The error code ERR_SCI_NO_CTRL is returned if hardware flow
control is not enabled.

Tasks can resume a data transmission by calling SciSendCtrl(portid,
SCI_RCTS_CONT).

This API should be used instead of SciSendAbort() to pause data
transmission.

Terminating a transmission

STATUS This routine aborts the current
SciSendAbort(SCI_PORT_ID SCI transmission. An abort is
portld, U8 abortFlag, P_U8 not a pause. The aborted
*ppSendData, P_U32 transmission cannot be
pSendSize) continued via SciSendCtrl(). To
resend, call SciSend() again.

Setting the FIFO level

STATUS This routine is used to set the
SciSetFifoLevel(SCI_PORT_ID | UART FIFO level mark.
portld, U8 fifoFlag, U8
fifolevel)

PPSM-GT User Guide PPG-287

Serial Communication Interface Services
Receiving Data from the SCI

““Digital DNA

from Moetarola

Receiving Data from the SCI

STATUS
SciReceive(SCI_PORT_ID
portld, U8 receiveFlag)

STATUS
SciReadData(SCI_PORT_ID
portld, P_U8 pData, U16
bufSize, P_U16 pSizeRead)

SciReceive() will enable data
reception from the SCI port.
PPSM-GT will receive the data
from the SCI port and transfer
it into the receive buffer of the
SCI port. When there is data in
the receive buffer, the system
will inform the calling task by
an event. The system does not
send out the event
continuously. When data is
received, the system will
inform the task once. When the
task completes a SciReadData()
operation but there is still un-
read data inside the receive
buffer, the system will send out
another event to notify the task.
This process continues until all
data in the receive buffer is
read out to the calling task.

The calling task should use
SciReadData() to transfer the
data from the receive buffer to
the local buffer as soon as
possible to avoid receive buffer
overflow.

Changing the Receive Buffer Size

STATUS SciSetRxBufSize(
SCI_PORT_ID portld, U16
newsz)

This routine allows tasks to
change the receive buffer size
to a user-defined size. The
default size is 256 bytes.

PPG-288

PPSM-GT User Guide

ats
fi‘[hg“al[]"ﬁ Serial Communication Interface Services
frem Metarola Controlling Receiving of Data

Controlling Receiving of Data

STATUS After RTS, CTS hardware flow
SciRcvCtrl(SCI_PORT_ID control is enabled, PPSM-GT
portld, U8 controlType) automatically pauses data

reception once the internal SCI
buffer (not FIFO) is full. Data
reception is resumed after data
is read out by SciReadData() in
the application. If the interval
of CTS remaining negated is
longer than the time-out
period, a time-out error will
occur.

Tasks can pause data reception of the SCI when hardware flow
control is enabled. SciRcvCtrl(portld, SCI_RCTS_PAUSE) allows
data reception to be paused at SCI port 1.

The error code ERR_SCI_NO_CTRL is returned if hardware flow
control is not enabled.

Tasks can resume data reception by calling SciRcvCtrl(portid,
SCI_RCTS_CONT).

Controlling SCI hardware flow control

STATUS Set the hardware flow control.
SciFlowCtrl(SCI_PORT_ID
portld, U8 controlType)

= Enabling RTS, CTS hardware flow control:

Using this API, a task could enable RTS, CTS hardware flow
control by setting the controlType to SCI_RCTS_ENABLE.

If hardware flow control is not enabled when calling RTS,
CTS flow control APIs, the error code ERR_SCI_RCTS_IDLE
is returned to the application.

RTS is asserted after RTS, CTS flow control is enabled.

PPSM-GT User Guide PPG-289

Serial Communication Interface Services
Clearing the SCI Transmit and Receive Buffer

““Digital DNA

from Moetarola

NOTE

= Disabling RTS, CTS hardware flow control:

Disable RTS, CTS hardware flow control by setting the
controlType to SCI_RCTS_DISABLE.

The system negates the RTS pin immediately after hardware
flow control is disabled. Any further changes in RTS or CTS

pins are ignored by the system.

RTS is negated after RTS, CTS flow control is disabled.

Clearing the SCI Transmit and Receive Buffer

STATUS
SciFlushFifo(SCI_PORT_ID
portld, U8 fifoFlag)

This routine will flush the
hardware transmit or receive
FIFO buffer depending on the
input for fifoFlag. The flag is set
for RX for receive buffer and
TX for transmit buffer. All data
on the TX or RX FIFO buffer
will be destroyed.

The buffer referred to here is the hardware RX FIFO buffer or
hardware TX FIFO buffer, not the software receive buffer or
software transmit buffer of the SCI port.

Clearing the SCI Receive Buffer

STATUS
SciFlushRxFifo(SCI_PORT_ID
portid)

This routine will flush the RX
FIFO buffer, and all data on the
RX FIFO buffer will be
destroyed.

Terminate the SCI port

STATUS
SciUnbindPort(SCI_PORT_ID
portid)

Unbind SCI hardware port
from the task

STATUS
SciClose(SCI_PORT_ID portld)

Close the SCI port

PPG-290

PPSM-GT User Guide

als
f“[ﬁgimln"lﬁ Serial Communication Interface Services
from Metorola Summary

These routines will cause the system to unbind the software port
from the hardware port. The SCI port is then free to be used by
other tasks. The difference between SciUnbindPort() and SciClose()
is that SciUnbindPort() will leave the software SCI port with the
same configuration that can be used later, while SciClose() will
delete the software port and free all memory allocated to it.

Tasks should not hold onto the hardware port if they do not need it.

Summary

The PPSM-GT SCI services provide two methods for accessing the
SCI resources: the Three Steps and Five Steps Methods.

The Three Steps Method enables applications to access the SCI
resources through straightforward and easy-to-use APIs. This
method is suitable for an application that does not need to save the
SCI configuration for future use.

The Five Steps Method is an expanded version of the Three Steps
Method. It breaks down the three steps to five steps to allow an
application to save the SCI configuration and hold onto the SCI
ports for future usage.

Code Examples

Listing 18.1 Programming SCI services using the three steps method

/* Variable Definition*/

SCl_PORT_| Dport | d;

/* Initiating a Send request*/

Sci Open(&portld, UART 2);

Sci Config(portld, SCI_SERI AL _MODE, SCI 38400 BPS, NO PARITY,
ONE_STOP_BIT, EIGHT_BIT_CHAR);

Sci Send(portld, SCI _SEND REQUEST, &SendMsg, gSendDat alen);

PPSM-GT User Guide PPG-291

als
Serial Communication Interface Services ""[ﬁgital[]"ﬁ
Code Examples frem Metarola

/* Termnating a transm ssion*/
/* Abort send. Store the pointer of send buffer and no. of bytes
have been..*/
/* .. sent in gpSendbuf and gSendbyte respectively */
Sci SendAbort (portld, SCI _SEND ABORT, &gpSendbuf, &gSendbyte);

Sci Cl ose(portld);

Listing 18.2 Programming SCI services using the five steps method

/* Variable Definition*/

SCl_PORT | Dport | d;

/* Initiating a Send request*/
Sci Creat e(&portld);

status = Sci Bi ndPort (portld, UART 2);

Sci Config(portld, SCI_SERI AL_MODE, SCl 38400 _BPS, NO PARITY,
ONE_STOP_BIT, EIGHT_BIT_CHAR);
Sci Send(portld, SCI _SEND REQUEST, &SendMsg, gSendDatalen);

/* Abort send. Store the pointer of send buffer and no. of bytes
have been..*/
/* .. sent in gpSendbuf and gSendbyte respectively */
Sci SendAbort (portld, SCI _SEND ABORT, &gpSendbuf, &gSendbyte);
status = Sci Unbi ndPort (portld);

PPG-292 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ IrDA Management Services

from Moetarola

IrDA Management Services

As infrared data communications, based on standards from the Infrared
Data Association (IrDA), become widely available on embedded devices,
there is a growing need for embedded systemsto support IrDA services as
astandard feature.

The IrDA management servicesin PPSM-GT are alayered set of protocols
particularly aimed at point-to-point infrared communications and the appli-
cations needed in that environment.

This chapter is organized into the following main sections:
= IrDA Management Services Fundamentals

= Programming Using IrDA Management Services

e Summary
= Code Examples

PPSM-GT User Guide PPG-293

ats
IrDA Management Services ""[hg“alﬂ"ﬁ
IrDA Management Services Fundamentals frem Metarola

IrDA Management Services Fundamentals

Figure 19.1 IrDA Management Services Architecture

User Mode
User
| Applifation
| OBEX B |
= N
Driver Mode | TCOMM
_ Upper Layer API/
. Tiny TP
IAS | IrLMP PPSM
IrLAP (0S)
Framer APl | OSAPI
7 N
Interrupt Mode / \
Framer Timer
X
Physical Layer \4
Controller/UART
Infrared Transceiver

Figure 19.1 shows the IrDA management services architecture,
which can be divided into the following layers:

= Physical Layer

= Interrupt Mode Layer

= Driver Mode and User Mode Layers

Physical Layer

The physical layer includes the optical transceiver. This layer deals
with shaping and other characteristics of infrared signals, including

PPG-294 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ IrDA Management Services

from Motarcla Interrupt Mode Layer

the encoding of data bits, and some framing data such as begin of
frame and end of frame flags (BOFs and EOFs) and cyclic
redundancy checks (CRCs). This layer must be at least partially
implemented in hardware, and in some cases it is handled entirely
by hardware.

Some level of customization may be required in the two functions
IrdInitTransceiver() and IrdShutDownTransceiver() when
supporting different IrDA transceivers. Information—such as how
to shut it down, power it up, and set various power modes—needs
to be provided. The function names must be named exactly as
specified in Chapter 6, Table 6.1.

Interrupt Mode Layer

The interrupt mode layer is responsible for handling UART
interrupts and building up a received frame as well as for handling
the transmission of an IrDA frame down to the hardware.

It also acts to isolate the remainder of the stack from the ever-
changing hardware layer. Its primary responsibility is to accept
incoming frames from the hardware and present them to the driver
mode layer.

Driver Mode and User Mode Layers

The driver mode and user mode layers form the core of the IrDA
management services. IrLAP, IrLMP, IAS, TinyTP, and IrCOMM
protocols are grouped under driver mode layer, whereas IrOBEX is
under the user mode layer protocol. A brief description of each
protocol is in Table 19.1.

PPSM-GT User Guide PPG-295

IrDA Management Services

IrDA Parameters

““Digital DNA

from Moetarola

Table 19.1

IrDA Protocols

IrDA Protocol

Description

IrLAP

IrLMP

IAS

TinyTP

IrOBEX

IrCOMM

Link Access Protocol. Establishes the basic
reliable connection.

Link Management Protocol. Multiplexes
services and applications on the LAP
connection.

Information Access Service. Provides a
“yellow pages” of services on a device.

Tiny Transport Protocol. Adds per-channel
flow control to keep things moving smoothly.
This is a very important function.

The Object Exchange protocol. Easy transfer of
files and other data objects.

Serial and Parallel Port emulation, enabling
existing applications that use serial and
parallel communications to use IR without
change.

IrDA Parameters

During the initiation of a connection, only those parameters shown
in Table 19.2 can be used in setting up the connection. These
parameters represent the range of IrDA 1.1 negotiable parameters in

PPSM-GT.

PPG-296

PPSM-GT User Guide

““Digital DNA

from Moetarola

IrDA Management Services
IrDA Services

Table 19.2 IrDA initialization parameters

Parameter Allowed Values

Baud Rate 9600 bps, 19200 bps, 38400 bps, 57600
bps and 115200 bps

Data Size 64, 128, 256, 512, 1024, and 2048 bytes

Window Size
Additional BOFs
Maximum Turnaround
Time
Disconnect/Threshold
Time

1
0,1,2,3,5,12, 24, and 48
500, 250, 100, and 50 ms

40 seconds

IrDA Services

There are two IrDA services provided by PPSM-GT:

e [rCOMM Services
« |[rOBEX services

IrCOMM Services

IrCOMM services are IrDA services that were designed to provide
serial emulation to legacy applications. These services enable the
applications to communicate with a peer device over an IrDA
infrared link instead of the wired link.

Typically, an IrCOMM implementation consists of two parts:

= The IrCOMM protocol, which is independent of any
communications API, handles the location of, connection to, and
communications with other IrCOMM devices. It only takes care
of the way that information is exchanged over the infrared link.

= Some sort of port emulation entity that provides a way for the
native communication API of the target operating system to use

the IrCOMM protocol.

PPSM-GT User Guide

PPG-297

ats
IrDA Management Services f“[ﬁgitﬂln"ﬂ

IrDA Services

from Moetarola

Port Emulation

There are four service types defined in the IrCOMM specification
for port emulation. They are:

1. 9-Wire (serial emulation only): uses control channel for status
of standard RS-232 non-data circuits. Uses TinyTP.

2. 3-Wire (parallel and serial emulation): Minimal use of control
channel. Uses TinyTP.

3. 3-Wire Raw (parallel and serial emulation): Send data only;
no non-data circuit information and hence no control
channel. Run directly on IrLMP.

4. Centronics (parallel emulation only): Uses control channel
for status of Centronics non-data circuits. Uses TinyTP.

The 9-Wire, 3-Wire and Centronics are known as “cooked” service
types in the IrDA IrCOMM specification. The term “cooked” refers
to the fact that the service runs on TinyTP and provides a
mechanism for sending setup and status information over a
“control” channel.

The 3-Wire raw service is “raw” because it provides no control
channel and runs directly on top of IrLMP.

PPSM-GT IrDA services supports only the emulation of the 9-Wire
service because the IrCOMM 9-Wire also provides all of the
functionality of the IrCOMM 3-Wire service and the IrCOMM 3-
Wire Raw. The Centronics services are not supported.

IrCOMM 9-Wire

IrCOMM 9-wire is the most common among the four services. It
provides the ability to send and receive the status of the non-data
circuits of the RS-232 interface (DTR, RTS, CTS, DSR, RIl, and CD).
These circuits are normally used by the Data Terminal Equipment
(DTE) to control the Data Circuit-Terminating Equipment (DCE). A
DTE is usually a computer, and a DCE is usually a modem.

This implementation of the 9-Wire service can be compiled as a DCE
or DTE. As a DTE, communication with both a DCE and another
DTE is possible. Null modem emulation is used to translate DTE
circuits to DCE circuits. As a DCE, only communication with a DTE

PPG-298

PPSM-GT User Guide

““Digital DNA

from Moetarola

IrDA Management Services
IrDA Services

is possible. Any DCE line settings that are received are ignored. In
addition, status information on the non-data circuits is provided.

IrOBEX services

The IrOBEX services are an implementation of the IrDA Object
Exchange specification (IrOBEX) for IrDA protocol stacks. They
provide the ability to Put data objects very simply and flexibly,
thereby enabling rapid application development and interaction
with a broad class of devices including PCs, PDAs, data collectors,
and cameras.

IrOBEX makes it extremely simple for one or more applications
within a device to send or receive data objects. The data objects can
be files, images, records, or any unit of data that makes sense to the
applications involved. Applications can avoid the usual complex
programming tasks associated with IR—performing discovery,
making connections and managing transactions. Instead they make
a simple call to send (as if dropping the object in the mail), and they
are notified when a complete incoming object is ready to process (as
if it had arrived in the mail).

IrOBEX runs on top of the IrDA protocol stack. The rest of this
chapter gives a brief introduction to the IrOBEX service.

Execution Flow

The IrOBEX service is designed to be both event driven and user
interface driven, and it will process each until completion. Events
are generated by the IrOBEX protocol for a variety of reasons, such
as when connections are established, when IrOBEX commands are
received or when API requests are complete. These events are
usually originated by some event coming from the IrDA protocol
stack.

The User Interface initiates IrOBEX Client requests through the
IrOBEX Layer API. The IrOBEX Layer is not re-entrant, which
means that when it is processing an event, it cannot be called to
process another event or deal with a call from the application. There
are some exceptions where it is permissible to call down into the
protocol while in the context of an application callback. These
situations are identified in the function references.

PPSM-GT User Guide PPG-299

ats
IrDA Management Services f“[ﬁgitﬂln"ﬂ

IrDA Services

from Moetarola

The flow of execution is different for the Client and Server
Applications because of the initiating event. Server applications are
usually idle, waiting for a connection to be established or a request
received from a client. The client is initiated by an IrOBEX Layer
API call, which is usually originated by a user interface request.

The following list identifies the likely flow of execution for a client
operation.

1. The user requests that an object be Sent (Put) via the
application’s User Interface.

2. The application calls the IrOBEX Layer API, requesting a
connection to a peer device. The protocol (specifically the
Stack Interface Layer) performs device discovery and I1AS
lookups and establishes a TinyTP Connection to a peer
device. Once this process is complete, the IrOBEX Layer
notifies the application via the application’s event handler
(callback function) with the status of the request (pass/fail).

3. The application then often requests that the IrOBEX Layer
API create an IrOBEX protocol connection to the peer IrOBEX
application. When the connection request is complete, the
application’s event handler is again notified with the result of
its request.

4. The application can then begin exchanging objects by calling
the IrOBEX Layer API to request that an IrOBEX Operation
be performed (Put). The IrOBEX operation will take place.

5. Throughout the exchange, the Object Store is instructed to
either retrieve or store the Object data being transferred by
the Command Interpreter. Each time a sent IrPacket is
returned by the IrDA stack, the Stack Interface Layer queries
the Command Interpreter via the Packet Parser to see if it has
more data to send (which it reads from the Object Store). This
behavior continues until there is no more data to send (the
object is completely transferred).

Once the object exchange is complete, the application’s event
handler is notified with the result of the exchange.

The application can then call the IrOBEX Layer API to exchange
more objects. Or, if it is complete, it can instruct IrOBEX to
disconnect from the peer device.

PPG-300

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ IrDA Management Services

from Metorola IrDA Services

The likely flow of operation for a Server is as follows:

1. An incoming TinyTP connection to the Server is accepted by
the Stack Interface from the IrDA stack. The Stack Interface
Layer then notifies the application of the incoming
connection via the application’s event callback.

2. IrOBEX packets begin to arrive at the Stack Interface Layer
and are passed to the Packet Parser. It validates them and
passes important information on to the Command
Interpreter. The Command Interpreter then indicates the
operation to the application via its event callback. The
application can then either accept or reject the operation by
calling the IrOBEX Layer API. The application can also call
the IrOBEX Layer API to retrieve information, such as header
contents, to help it determine if the operation should be
accepted or rejected.

3. Once accepted the Command Interpreter calls the Object
Store write and read functions to exchange the object’s data
as it arrives or is needed for transmit. It then calls the Packet
Parser, which passes protocol data to the Stack Interface layer
for inclusion in packets, which are sent via the IrDA stack to
the peer device. The server application is not responsible for
managing the exchange of object data. Once it has accepted
the IrOBEX request, the protocol takes over the exchange
until it is complete.

4. Object exchanges that take multiple TinyTP packets to
perform use the same method as described previously for the
Client. When a sent IrPacket is returned by the IrDA stack,
the Stack Interface Layer calls through the Packet Parser to
the Command Interpreter to retrieve more data. It, in turn,
calls the Object Store to read the data. This behavior
continues until the object is completely transferred.

5. Once complete, the Command Interpreter notifies the
application's event handler with the status of the exchange.
At this time the server usually returns to an idle state,
waiting for more IrOBEX requests or for the client to
disconnect.

PPSM-GT User Guide PPG-301

ats
IrDA Management Services f‘_mgitﬂln".ﬂ

Programming Using IrDA Management Services from Metarala

Programming Using IrDA Management Services

There are also four sets of services available when programming
using IrDA management services. They are:

« |rDA Physical Layer Services
e [rCOMM Layer Services
= OBEX Application Layer APIs

IrDA Physical Layer Services

IrDA physical layer services are mainly used when initializing the
system. The APIs are provided to configure and initialize the IrDA
hardware. Table 19.3 shows the physical layer services.

PPG-302 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ IrDA Management Services

from Motarcla IrDA Physical Layer Services

Table 19.3 Physical Layer APIs

Physical Layer API Description
STATUS IrdSetDevicelnfo(P_U8 | Set the XID info string used
info, U8 len) during discovery to the given

string and length. The XID
info string contains hints and
the nickname of the device.
The size cannot exceed
IR_MAX_DEVICE_INFO
bytes. Customized by the
manufacturer, depending on
the product name. Usually
executed during initialization.

STATUS IrdInit(U8 port) Starts up the PPSM-GT
IrDA_Process task, initializes
the appropriate IrDA
variables, and initializes the
framer functions. The port
variable would be used to
indicate whether to set up the
ISR for UART1 or UART2.
This function would
ordinarily be set up by the
manufacturer during
initialization, or when the user
enables IR mode from the user
interface. Returns a value
indicative of the result of the
action.

PPSM-GT User Guide PPG-303

IrDA Management Services

IrCOMM Layer Services

““Digital DNA

from Moetarola

Physical Layer API

Description

STATUS IrdDelnit(void)

STATUS
IrdSetMaxTurnAroundTime(U8
MaxTat)

This disables the
IrDA_Process task and
releases variables. This
function would also
deactivate and release the
UART _sr.

Called to set the maximum
turnaround time during
setup. This is used during the
negotiation phase. This
function should only be called
after the IRDA Process/global
variables are initialized.

IrCOMM Layer Services

The IrCOMM Layer APIs provide a simple Open, Read, Write, and
Close API for sending and receiving data. Typically, the application
interface to IrCOMM would be through PPSM-GT system API calls,
such as IrcOpen() and IrcRead(). The IrCOMM service also provides
APIs to send and receive the status of the non-data circuits of the
RS-232 interface (DTR, RTS, CTS, DSR, RI, and CD). Table 19.4

shows the IrCOMM APIs.

PPG-304

PPSM-GT User Guide

““Digital DNA

from Moetarola

IrDA Management Services
IrCOMM Layer Services

Table 19.4 IrCOMM APIs

IrCOMM API

Description

void IrcSetFormat(U32 format)

Set the format bit-field. This
bit-field contains IrCOMM
control parameters such as
baud rate, parity, character
size, and state information on
the leads. These are all
encoded into a 32-bit bit-field.
Format information is sent
immediately if data issued by
IRCOMM_Write() is pending.
If IRCOMM_Write() is called
immediately after setting the
format, then the format
information is sent with the
data. If data is pending when
IRCOMM_SetFormat() is
called, then the format
information will be sent after
all data has been sent. When
format information is sent, the
application will be notified
with the
IRCOMME_STATUS_SENT
event. If a field in the format
bit-field is changed multiple
times before a
IRCOMME_STATUS_SENT
event, only the last change
will be sent.

PPSM-GT User Guide

PPG-305

IrDA Management Services

IrCOMM Layer Services

““Digital DNA

from Moetarola

void IrcGetFormat(P_U32
format)

void
IrcGetStatusEventCause(P_U1
6 eventCause)

BOOL IrclsDeviceBusy(void)

Get the format bit-field. This bit-
field contains IrCOMM control
parameters such as baud rate,
parity, character size, and state
information on the leads.

Returns into the eventCause
variable the reason that an
IRCOMME_STATUS CHANGE
event was received by the notify
function. Whenever this event is
received by the notify function,
the cause of the event should be
checked by a call to this
function.

Returns TRUE if the other
device is busy. In the case of a
printer, if the busy condition
lasts for more than 20 seconds, it
may be out of paper.

Opening the Port

STATUS IrcOpen(TASK_ID
AppCallback)

Open the IrCOMM driver.

The IrCOMM driver is opened by calling the function IrcOpen().
This function takes one parameter, which is a TASK_ID of the

application.

Events are sent by the IrCOMM driver to notify the application of

certain events such as:
« when data is available,

when the driver is closed,

when the driver is ready to write more data,

when status information has been received, and
when status information has been sent.

IrcOpen() initializes the IrCOMM driver and then attempts to
discover a device. If there is a device supporting an IrCOMM

PPG-306

PPSM-GT User Guide

““Digital DNA

from Moetarola

IrDA Management Services
IrCOMM Layer Services

service, then an attempt is made to connect to the highest level
service.

When the connection is completed, the user application is notified
with an EVT_IRD_IRCOMME_WRITE event. At that time, the
driver is ready to accept data.

Only one discovery is attempted when IrcOpen() is called. If no
device is discovered (no EVT_IRD_IRCOMME_WRITE event was
received), then it is possible to retry the discovery by calling
IrcWrite(). When the connection is down, IrcWrite() will return
ERR_IRC_STATUS FAILED, but it will also attempt to re-establish
the connection. When the connection is finally made, the notify
function will receive an EVT_IRD_IRCOMME_WRITE event.

Writing Data
STATUS IrcWrite(P_US8 buff, Write a buffer of data to the
U16 len) IrCOMM driver. A buffer can

be any size. If the buffer size is
greater than the maximum
transmit size, then the
IrCOMM driver will break the
data up and send the data out
in units equal to the maximum
transmit size until the entire
buffer has been sent. The data
is not actually sent when the
function is called, but is
managed by the IrCOMM
driver and will be sent at the
appropriate time. If a
connection does not exist, then
the IrCOMM driver will
establish one.

Data is written to IrCOMM using the IrcWrite() function. This
function accepts two parameters. The first is a pointer to the block of
data that is to be written, and the second is the size of the data. The
block of data is allocated by the application and can be of any size.

The IrCOMM driver will break the data up into packets of the size
negotiated by IrLAP and send them until the entire buffer has been

PPSM-GT User Guide PPG-307

ats
IrDA Management Services f“[ﬁgitﬂln"ﬂ

IrCOMM Layer Services

from Moetarola

sent. If IrcWrite() returns ERR_IRC_STATUS_PENDING, then the
buffer cannot be used until the IrCOMM driver has completed
sending.

When the buffer is sent, the driver will notify the application with
an EVT_IRD_IRCOMME_WRITE event. At that time, the buffer is
free and the driver can accept more data. If IrcWrite() returns
ERR_IRC_STATUS SUCCESS, then the buffer is free to be used
immediately. If IrcWrite() returns ERR_IRC_STATUS_FAILED,
then driver could not accept the data because it was not in the
correct state.

Reading Data

U16 IrcRead(P_U8 buff, U16 len) | Read data from the IrCOMM
driver into a buffer. The actual
amount of data read is
returned. If no data exists,
then 0 is returned. If the buffer
is not big enough to receive all
the available data, the amount
of data actually read is
returned and subsequent calls
to IRCOMM_Read() will
retrieve more data. When the
data has all been read, then 0
will be returned on
subsequent calls.

Data is read from IrCOMM using the IrcRead() function.

When the application is notified of an EVT_IRD_IRCOMME_READ
event, data is available to be read. IrcRead() requires two
parameters. The first is a buffer into which data will be copied, and
the second is the size of the buffer.

When IrcRead() is called, the driver copies the available data into
the buffer provided by the application. IrcRead() will return the
amount of data that was actually copied. If the buffer is not big
enough to receive the data held by the driver, then the actual
amount copied will be returned and the application can call
IrcRead() again to retrieve more data.

PPG-308

PPSM-GT User Guide

““Digital DNA

from Moetarola

IrDA Management Services
IrCOMM Layer Services

Closing the Port

STATUS IrcClose(void) Close the IrCOMM driver. If
an IrDA connection exists, it
will be disconnected. If write
data is pending, it will be lost.
A close is not necessarily
complete when this function
returns. The application may
need to wait for the notify
function to be called with the
IRCOMME_CLOSE event.

When the application is finished sending or receiving data and/or
status information, then IrcClose() can be called. This function will
disconnect IrLAP, and any pending data (data not sent by the driver
or read by the application) will be lost. Thus, the application must
make sure that no pending data exists before calling IrcClose().

The way to check for pending data is to keep track of IrcWrite() calls
and the corresponding calls to the notify function with the
EVT_IRD_IRCOMME_WRITE event.

For each call to IrcWrite(), there is a corresponding event sent to
notify the application. When all IrcWrite() calls have been
confirmed with notification events, then it is known that all data has
been sent (no pending data).

Please note that the IrCOMM driver sends an initial event to the
user application with the EVT_IRD_IRCOMME_WRITE event when
a connection first comes up. This initial call to the notify function is
not the result of an IrcWrite() call.

When IrcClose() returns, the IrLAP link is not necessarily
disconnected. If IrcClose() returns ERR_IRC_STATUS_PENDING,
then IrLAP is not disconnected; the application should wait for
IrCOMM to notify the user application with the
EVT_IRD_IRCOMME_CLOSE event, signaling that the close is
complete (IrLAP is disconnected).

PPSM-GT User Guide PPG-309

ats
IrDA Management Services f“[ﬁgitﬂln"ﬂ

OBEX Application Layer APIs from Muotarola

OBEX Application Layer APIs

The OBEX APIs, shown in Table 19.5, are defined to operate either
in Client or Server mode. To simplify the use of IrOBEX, Client
mode is configured to do a “Put” operation only, and Server mode
is configured to respond to a “Put” request by a peer IrOBEX client.
This mode of operation is fixed and cannot be changed by the user.
The Client mode of IrOBEX handles all Put requests started by the
user, while the Server handles all Put requests initiated by the peer
device in the background.

When ObxInit() is called, both the IrOBEX Client and Server
services are started and ready to send and/or receive “Put”
requests.

The IrOBEX service entity has a concept of Inbox and Outbox. When
a “Put” operation is initiated successfully by a peer IrOBEX device,
the IrOBEX Server will store the Content of the “Put” operation in
the Inbox and notify the user. The size of the Inbox is subjected to a
maximum of 2 Kbyte of data. Anything more than that is rejected
automatically. The notification to users is event driven; the Server
will send the event EVT_IRD_OBSE_RX_COMPLETE.

With this, there is a series of APIs that the user can use to check the
length of the IrOBEX data and retrieve it into the user’s own buffer
storage.

To start a “Put” operation, the user must first fill the Outbox with
user data through the APIs provided. After that, ObxPut() is called
to start the operation.

Starting and Stopping IrOBEX Services

Before starting the IrOBEX services, IrDA transport would have to
be started by calling IrdInit(). IrOBEX Client and Server Services are
then started by a simple call to ObxInit() with the user’s TASK_ID as
a parameter. Callbacks to the user occur through a series of events
such as the other IrDA management services sent by the IrOBEX
client and server.

Conversely, stopping the IrOBEX services is accomplished with a
call to ObxDeinit().

PPG-310

PPSM-GT User Guide

““Digital DNA

from Moetarola

IrDA Management Services
OBEX Application Layer APIs

Initiating a “PUT” operation

When a user intends to use the IrOBEX services to send an Object
(for example, a Vcard file) to an IrOBEX-capable device, the
following steps are taken:

< |nitiate an IrDA TinyTP connection if it is not already started.
Initiate an IrOBEX connection to the peer's IrOBEX Server.

Build the header to the required format in Unicode.

Save the pending data into the Outbox.

Start the “Put” operation.

Disconnect from peer’s IrOBEX Server.

Disconnect IrDA TinyTP if necessary .
Receiving an Object and retrieving object from Inbox

After IrOBEX services have been initialized, the IrOBEX server is
ready to receive any Object up to a size of 2 Kbyte. A “Put”
operation would have to be requested by the peer IrOBEX. The
IrOBEX Server will store the Content of the “Put” operation in the
Inbox and notify the user. The Server will send the event
EVT_IRD_OBSE_RX_COMPLETE to the user task. Inside the user's
task, the routine must wait on the event been generated.

To retrieve the Object from the Inbox, users can use the APIs
provided Table 19.5 to copy the content into the user buffer.

PPSM-GT User Guide PPG-311

IrDA Management Services
OBEX Application Layer APIs

““Digital DNA

from Moetarola

Table 19.5

OBEX APIs

OBEX API

Description

STATUS ObxInit (TASK_ID
AppCallback)

STATUS ObxDeinit(void)

STATUS ObxSavelnbox (P_U8
buff, U16 len)

STATUS ObxGetInboxLen (void
)

STATUS ObxSaveName (P_U8
buff, U8 len)

U8 ObxGetNameLen (void)
STATUS ObxPutOutbox (P_U8

buff, U16 len)
void ObxAbort()

STATUS ObxConnect(void)

STATUS ObxConReq(void)

Initialize the OBEX Client and
Server.

De-initialize the OBEX Client/
Server.

Save Inbox contents into a buff
provided by the user with the
specified length, len.

Get the length of the Inbox
body.

Save Name from the Inbox to
the given object store item.

Get the length of the Inbox
Name.

Put data into the Outbox to be
sent.

Abort the current client
operation. No check is made
to see if an actual operation is
in progress. This function will
cause an IrOBEX Abort packet
to be sent to the Server if an
operation is in progress.

Perform the IrOBEX connect
operation. ObxConReq() must
be executed first to establish a
Tiny TP connection.

Start a TinyTP connection to
an IrOBEX device. Attempt to
set up a TinyTP connection to
an IrOBEX Server. Completion
of this request is reported by a
call to the application’s client
callback function with the
appropriate event.

PPG-312

PPSM-GT User Guide

““Digital DNA

from Moetarola

IrDA Management Services
Summary

Summary

OBEX API

Description

STATUS
ObxClientDisconnect(void)

STATUS ObxDiscReq(BOOL
Force)

STATUS ObxPut(void)

ObxAbortReason
ObxGetAbortReason(void)

BOOL ObxHeaderBuildUnicode

(ObxHeaderType Type, U8*
Value, U16 Len)

BOOL ObxHeaderBuild4Byte
(ObxHeaderType Type, U32
Value)

Disconnect the client IrOBEX
connection.

Disconnect the client’s Tiny TP
connection. If a server
connection exists, then this
function will not disconnect
IrLAP unless Force is equal to
TRUE.

Issues an IrOBEX PUT over
Connected transports and
sends Contents in Outbox
over.

Obex Session has aborted; get
the Reason Code for abortion.
This call is only valid during
calls to the client application
callback with the event
OBCE_ABORTED.

The function builds client-
specific versions of the generic
IrOBEX header.

The function creates a 4-byte
style header for transmission
with the client’s request. Four-
byte headers have the seventh
and eighth bits in their type
set to one.

The IrDA management services support IrCOMM and IrOBEX
implementation for the application. rCOMM services provide serial
and parallel port emulation to the applications. Through IrCOMM
services, the applications can communicate with the outside world
over an IrDA infrared link instead of the wired link.

The IrOBEX services provide the ability to Put data objects very
simply and flexibly, thereby enabling rapid application

PPSM-GT User Guide

PPG-313

ats
IrDA Management Services f“[ﬁgitﬂln"ﬂ

Code Examples frem Metarola

development and interaction with a broad class of devices including
PCs, PDAs, data collectors, and cameras.

IrOBEX services make it extremely simple for one or more
applications within a device to send or receive data objects. The data
objects could be files, images, records, or any unit of data that makes
sense to the applications involved. Applications can avoid the usual
complex programming tasks associated with IR—performing
discovery, making connections and managing transactions. Instead
they make a simple call to send (as if dropping the object in the
mail), and they are notified when a complete incoming object is
ready to process (as if it had arrived in the mail).

Code Examples

Listing 19.1 Opening IrCOMM port with IRCOMM_Open()

appState == APP_STATE INT;
/* Application is initializing */

if (lrcOpen(glrcTaskld) == ERR | RCM STATUS FAI LED)

printf("Fatal Error: Unable to bind to the stack\n");
return FALSE;

}

event = EvtGet();

switch (appState)

{
case APP_STATE INIT:

if (event == EVT_I RD_| RCOWE_WRI TE)
{

/* The driver is now open and user could add custom code here*/

appState == APP_STATE | DLE;
}

br eak;

PPG-314 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ IrDA Management Services

frem Motarola Code Examples

Listing 19.2 Writing Data with IRCOMM_Write()

U8 writeBuff[MAX WRI TE_BUFF_SI ZE] ;
Ul6 writelLen;

if (lrcWite(witeBuff, witelLen) !'= ERR | RC_STATUS FAI LED)

{

/* The wite was successful */

printf("Bytes witten is %d0ld.\n", witelLen);
} else {

/* The wite failed */

printf("Could not wite data.\n");

Listing 19.3 Reading Data with IRCOMM_read()

U8 readBuf f [MAX_READ BUFF_SI ZE] ;
Ule6 | en;

/* Handl e any incom ng data */

if (event == EVT_I RD_| RCOWE_READ) {
while (len = IrcRead(readBuff, MAX READ BUFF_SI ZE))
{
/* Data has been read, print it out on the screen */
readBuff[len] = O;
printf("%", readBuff);

}
}

Listing 19.4 Closing the rCOMM port with IRCOMM_Close()
if (1 RCOM C ose() == | RCOW STATUS_SUCCESS) ({

/[* IrCOMWM is closed */

PPSM-GT User Guide

PPG-315

ats
IrDA Management Services f‘_mgitﬂln".ﬂ

Code Examples frem Metarola

printf("lrCOW cl osed. "\ n);
} else {
/* 1rCOW cl ose is pending, nust be handled in callback. */
appState = APP_STATE_CLOSI NG
printf("IrCOMM closingO"\n):

}

/*In cases where IRCOMM_Close() returns IRCOMM_STATUS_PENDING */
/* the notify function should handle the IRCOMME_CLOSE event. */
[* The application's notify function */

if (appState == APP_STATE_CLOSING)
{
[* Application is closing */
if (event == EVT_IRD_IRCOMME_CLOSE)
{
/* The driver is now closed */
appState == APP_STATE_CLOSED;

}
}

Listing 19.5 Starting IrObex Services with Obx_Init()

[* Task Id for User process */
TASK_ID gObxTaskld;
STATUS status;

status = ObxInit(gObxTaskld);
if (status = ERR_OBX_STATUS_SUCCESS)

{
printf("APP_Init Error'\n");

}

else
{

printf("IrObex started successful\n®);

/* Add the device info and hints */
IrdSetDevicelnfo((U8*)devicelnfo, (U8)devicelnfoLen);

}

PPG-316 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ IrDA Management Services

frem Motarola Code Examples

Listing 19.6 Initiating TinyTP connection and IrObex connection to peer
IrObex server

STATUS st at us;

status = GbxConReq();
if (status == ERR _OBX STATUS MEDI A BUSY)
{

printf(" Media Busy, try later.\n");

el se if (status == ERR_OBX STATUS SUCCESS)

{
clientState = CLI ENT_OBEX_ CONNECT,;

printf("Al ready connected at TTP\n");
}

if (clientState == CLI ENT_OBEX_CONNECT)
{

/* Send the OBEX Connect request. */
status = GbxConnect ();

if (status != ERR_OBX_STATUS_PENDI NG

{

start.\n");

printf("Cient: OBEX Connect request failed to

clientState = CLI ENT_DI SCONNECT;

/* Do Di sconnect routine*/

}
}

Listing 19.7 Disconnecting from TinyTP connection and IrObex connection

if (clientState == CLI ENT_OBEX_ DI SCONNECT)
i f (QbxDi sconnect() == ERR_OBX_STATUS PENDI NG

/ *Cbex di sconnect pending wait for event*/
return;
}

PPSM-GT User Guide PPG-317

ats
IrDA Management Services f‘_mgitﬂln".ﬂ

Code Examples frem Metarola

if (clientState == CLI ENT_DI SCONNECT)

{

i f (ObxDi scReq(FALSE) == ERR_OBX_STATUS_FAI LED)
printf ("D sconnect request failed\n");

}

Listing 19.8 Starting a “Put” Operation

/* Unicode is 16-bit while Nane is 8-bit char; make sure there is
enough buffer to use but not nore than OBS_MAX NAME LEN */

us ucNanme[(128+1) *2] ;
us namelLen;

STATUS st at us;

nanmeLen = sizeof (vcard_nane) * 2;
/* Now convert vcard nanme into UNI CODE and store into ucNane */
ReadNanmeUni code((char *)ucNane, nanelLen);

/* Create Nanme for the bject in the Header*/
bxHeader Bui | dUni code(OBXH_NAME, (U8 *)ucNane, nanelLen);

/* Create Length header (only when connected) */
bxHeader Bui | d4Byt e(OBXH_LENGTH, si zeof (MyVCard));

/* Store into Qutbox before calling GoxPut()*/
status = CbxPut Qut box(&WVCard, sizeof(MyVCard));
if (status == ERR _OBX STATUS_FAI LED)
{

printf("Size too big for Qutbox\n");

clientState = CLI ENT_OBEX DI SCONNECT;

DoDi sconnect () ;

}

printf("Cient: Starting Put operation.\n");

/* Call Put function. Put will send object stored in Qutbox over*/

PPG-318 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ IrDA Management Services

frem Motarola Code Examples

status = GoxPut();

if (status != ERR OBX_STATUS_ PENDI NO)

{
if (status == ERR _OBX_STATUS MEDI A BUSY)
{
printf("Cient: Put function failed, Media Busy!\n");
}
el se
{
printf("Cient: Put function failed, reason %l.\n",
st at us) ;
}
}
else if (status != ERR OBX STATUS_ SUCCESS)
(
printf("Put Successful");
)

PPSM-GT User Guide PPG-319

ats
IrDA Management Services f‘_mgitﬂlnuﬂ

Code Examples frem Metarola

PPG-320 PPSM-GT User Guide

'3

“Digital DNA

from Moetarola

Networking Services

20

Networking Services

Figure 20.1

Networking or TCP/IP services support a set of protocols to allow

cooperating computers or devices to share resources across a network.
Protocols such as IP, TCP, and UDP provide “low-level” functions needed
by applications that need to preform ftp, telnet, and e-mail functions.

Figure 20.1 shows the protocols from link/physical layer to application
layer. To perform any networking activities in the PPSM-GT environment,
developers need to be familiar with networking and used the APIs provided
for handling the transport layers and application layers. Accessing the
network and physical layers are restricted to network configuration, and the
rest of the programming is handled by the system networking services.

Networking Protocol Structure

{ SNMP ﬂ Telnet H FTP HAppIicaIion

[i o

Transport
layer

~ PPP I; Link layer
B UART | Hardware
layer

PPSM-GT User Guide PPG-321

ats
Networking Services f“mgitﬂlnuﬁ

Networking Fundamentals

from Moetarola

This chapter is organized into the following main sections:
» Networking Fundamentals

* Types of Networking Services

* Programming with Networking Services

e Summary
* Code Examples

Networking Fundamentals

The networking services allow diverse systems to communicate with each
other. Typically, the communication is between the target embedded
system and a server. The target application interfaces with the outside
world, performing some form of data collection through easy-to-use APIs
such as readsocket(). When necessary, the target application opens a
connection to the server and transmits the data using socket() and
writesocket(). The networking services take on the responsibility of
providing a reliable connection and reliable data transport when using

TCP/IP.

Table 20.1 shows the networking protocols that are supported in PPSM-
GT. Only brief descriptions of the protocols are provided; a detailed
description of each protocol is beyond the scope of this document.

Table 20.1 Networking Protocols Supported

Protocol Description

TCP Transmission Control Protocol: Transport layer

correction.

for resolving transmission errors.

UDP User Datagram Protocol: Simple
connectionless transport layer.

allows broadcast.

with connections, flow control and error
Provides a reliable character stream, as

opposed to IP. Able to recover lost segments,
and uses acknowledgment with retransmission

Best effort delivery, includes checksum and

PPG-322 PPSM-GT User Guide

““Digital DNA

from Moetarola

Networking Services
Types of Networking Services

Protocol Description

IP Internet Protocol: The network layer.
Unreliable, datagrams may be lost, duplicated
or delivered out of order.

Provides a universal data header, independent
of a network technology.

ICMP Internet Control Message Protocol: part of IP
for practical purposes.
Ping uses an ICMP “echo request” and “echo

reply.”

Types of Networking Services

There are two main groups of networking services provided with PPSM -

GT. These services are designed to reduce developers loading on the
networking details and focus on the link configuration and usage. These
two groups of services complement one another such that both need each
other to create meaningful networking activities. The order in using the two
services are important and will be discussed in later section.

The two group of services are
» Link Setup Services

* Transport/Socket Services

Link Setup Services

Link setup services are services that handle network connections. The
protocol involved is the Point to Point Protocol, or PPP. The PPP is used to
establish a link to a single remote host. This is commonly used in data
acquisition, internet connectivity and other arenas. The link setup services
setup the foundation for the networking activities that is in order for any
networking activities to take place the link setup services need to be called
first.

Link setup services is organized into:

» “Link Configuration”

» “Server Configuration”

PPSM-GT User Guide PPG-323

ats
Networking Services 'r"mgitﬂl.n"ﬁ

Link Setup Services from Metarcla

Link Configuration

This version of PPSM-GT networking services does not support
direct link establishment and support only Hayes-compatible
modems.

There are two ways to establish alink: direct and through modem dialup.
Thisversion of PPSM-GT does not support direct link establishment. The
modem dialup script provided is for Hayes-compatible modems only and
used to establish a point-to-point connection with another host. When using
amodem to establish the connection, the modem dialup script take cares of
link establishment and responds to queries from aterminal session before
the PPP handshake can begin.

There are several dialing parameters on the modem script that are user
specified and need to be provided by the user. The parameters, which
appear in the following list, are modified through the APIs provided. The
following shows the modem setup APIs, and details of the APIs can be
found in "Programming with Link Setup Services.”

* NetConfigPPP() - It configures the user ID and password required for
a PPP connection. Usually these are the same as those used in
NetConfiglISPAccount for a dial-up connection.

* NetConfigModem() for setting the communication baud_rate with the
modem, the host name and the comm port. Configures the low level
driver before the stack is started.

NOTE There is programming sequence that need to be observed
especially when initialing the networking stack. Please refer to
Programming with Link Setup Services for details.

Server Configuration

In server configuration, there are APIs for configuring the DNS, ISP and
local host server. By default PPSM-GT networking services set the servers
to its’ default values. If the user did not set any preferred server using the
NetConfigDNS() API, the system will use the default values.

The following are the APIs for server setup:

PPG-324 PPSM-GT User Guide

““Digital DNA

from Moetarola

Networking Services
Transport/Socket Services

NOTE

* NetConfigDNS() - It configures both the primary and secondary DNS
server's IPs. There are two default DNS server and this API will change
the specified server's IP address to new IP Address.

* NetConfigGateway() - It sets the ISP server's (gateway) IP. A value of
0.0.0.0 indicates an IP address will be obtained form the ISP; 0.0.0.0 is
the default value.

* NetConfigLocalHostIP() - It sets the local host's IP. A value of 0.0.0.0
indicates an IP address will be negotiated with the ISP; 0.0.0.0 is the
default value

* NetConfigiISPAccount() - It configures the ISP account's dial-up
number, the user ID, and the password.

* NetConfigMachineName() - It sets the name of the local host. The
default value is "none".

Transport/Socket Services

The transport or socket services handle the transportation of information
from one end of the network connection to the other end. They concern the
quality and not the content of the information.

The transport services provide a generic interface to communications
protocols through communication end points known as sockets. PPSM-GT
sockets are based on Berkeley Software Distribution (BSD) sockets from
the University of California at Berkeley. They provide a generic interface
to network level communications protocols for common operations
involved in network computing. These include sending data, receiving
data, and establishing connections.

To minimize confusion in socket programming, the PPSM-GT socket APIs
used the same naming convention as that of the BSD socket APIs as much
as possible.

Not the full set of socket is supported. PPSM-GT socket services
consist only a subset of the unix socket API. The naming of the API
is kept similar to that of the BSD socket API to minimize user
confusion.

The protocol supported in this layer is TCP, UDP and IP and offers the
following functions:

* Provide access to communications networks such as the Internet.

PPSM-GT User Guide PPG-325

ats
Networking Services f“mgitﬂlnuﬁ

Transport/Socket Services frem Metarola

» Enable communication between unrelated processes residing locally on
a single host computer and residing remotely on multiple host
machines.

» Sockets provide a sufficiently general interface to allow network-based
applications to be constructed independently of the underlying
communication facilities. They also support the construction of
distributed programs built on top of communication primitives.

» The socket APIs are the application program interface for Transmission
Control Protocol/Internet Protocol (TCP/IP).

The Berkeley sockets model conceptualizes network communications as
taking place between two endpoints, or sockets. Analogies have been
drawn that compare plugging an application into a network to plugging a
handset into the telephone system, or an appliance into a electrical system.
Most sockets programs — under Unix or Windows — utilize a client/

server approach to communications.

Before looking at the concept of the client and server model, let look at the
limitation of PPSM-GT sockets as compare to the unix socket.

PPSM-GT sockets versus UNIX standard sockets

The PPSM-GT sockets are only approximate the many UNIX functions
interacting with sockets, and only a subset of the socket APIs are
supported. The socket implementation is limited to networking only.
Unlike UNIX's version where files and even other things can be mixed
together using the same set of functions, the PPSM-GT socket APIs read,
write, select, close and fcntl functions are limited to socket operations only.
Therefore to differential these functions with the generic UNIX function
names (e.g. fcntl(), select(), read(), write(), close()), the word “socket” is
appended after the function names. For example read() becomes
readsocket() etc.

The following are the PPSM-GT sockets limitations as compared to UNIX
sockets:

1. The UNIX sockets are really an intertask communication system,
not a networking interface. They can be used to map to the various
UNIX file systems, and they can mix files and sockets and even
other things in one operation.

2. The use of the functioriientl(), select(), read(), write(), andclose()
for networking purposes will easily cause conflicts. PPSM-GT

PPG-326

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Networking Services

from Motarcla Transport/Socket Services

networking services change these names by adsatickgt” to
them.

3. The UNIX sockets have an interface to the UNIX signals, which
again have an interface to just about any UNIX function.

4. Some BSD socket features are implicitly not re-entrant. These
include the functiomgethostbyname() and all uses af#rrno. This is,
of course, more a multitasking question than a networking question.

The Client/Server Model

.Rather than trying to start two network applications simultaneously, one
application is theoretically always available (the server) and another
requests services as needed (the client).

The server creates a socket, "names" it so that it can be identified and found
by a client, and then listens for service requests. A client application

creates a socket, finds a server socket by name or address, and then "plugs
in" to initiate a conversation. Once a conversation is initiated, data can be
sent in either direction. The client can send data to and receive data from
the server, and the server can send data to and receive data from the client.

The specifics of the conversation are unique to each set of client and server
applications. Both applications must know what messages and data to
expect from the other, and both must follow some mutual rules about when
to send and when to expect to receive data. In order to successfully
communicate, both the client and the server must speak the same
language—they must both use the same protocols (like HTTP, POP, FTP,
etc.).

Bear in mind that the concept of a socket is purely an abstraction used in
the PPSM-GT Networking API. It's not necessary that client and server
applications both be written with PPSM-GT Networking APIs in order to
communicate. A program written with the networking API can
communicate with many different types of systems, as long as they use the
same protocols. For example, a Web Browser written with PPSM-GT can
retrieve files from a Web Server written for a different operating system in
a different language with a different network interface. As long as both
programs "speak" the same transport protocol (like TCP/IP) and the same
application protocol (like HTTP) then they can communicate.

PPSM-GT User Guide PPG-327

ats
Networking Services f‘_mgitﬂlnuﬁ

Transport/Socket Services frem Metarola

Socket programming model

Sockets are based on the client/server model. The behavior and the
programming differ between them. Figure 20.2 and Figure 20.3 provide a
programming referencesfor the server and the client under both connection
and connectionless system. The following sections provide the
programming stages to enable socket networking, and it would be
beneficial to reference the figures during the description of the following
stages.

* Creating Sockets

« Naming a socket

* Accepting and Making Socket Connections

» Transferring Data

+ Shutting Down Socket Operations

* Translating Network Addresses

Creating Sockets

A socket is created with the socket() API. This API creates a socket of a
specified domain, type, and protocol. Sockets have different qualities
depending on these specifications.

* A communication domain indicates the protocol families to be used
with the created socket.

* The socket type defines its communication properties, such as
reliability, ordering, and the prevention of duplicating messages.

» Some protocol families have multiple protocols that support one type
of service. To supply a protocol in the creation of a socket, the
programmer must understand the protocol family well enough to know
the type of service each protocol supplies.

In PPSM-GT, when creating a socket, the following are the options when
creating a socket:

e Domain: PF_INET for TCP/IP

e Type: TCP/IP, UDP/IP or raw (Sé@electing socket typg”

» Protocol: Only TCP/IP and related are available; always enter O (zero)
to have protocol auto-assigned based on type and domain

This function returns a socket handle or -1 if there is an error.

PPG-328

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Networking Services

from Motarcla Transport/Socket Services

Selecting socket type

Two basic kind of connections are available:
+ Stream socket or TCP
» Datagram socket or UDP

The primary differences are:
1. TCP performs error correction and flow control, and UDP does not.

Developers can read TCP like a local disk file. When reading TCP,
developers should check for errors, and as errors occur quitting
reading is recommended. Reading UDP is different; there is no
error correction. Error checking with UDP would be difficult,

which must be taken in account when writing an application using
UDP. It is best to leave UDP for pre-written applications, such as
TFTP and BOOTP.

2. UDP is a packet protocol, and TCP is a byte-stream protocol.

With TCP, the number of bytes read could not be predicted with
certainty, and the given amount of data needs to return.

TCP is designed as a byte-stream protocol. This byte-stream nature
explains why higher level protocols are needed on top of TCP.
Higher level protocols such as FTP, SMTP (e-mail), and HTTP
(Web) always have a data size in a known place in the header,
thereby telling the application how much data to read.

So, when using TCP without any higher level protocol, developers
need to know how much data to expect and design it in the
application. A header could be included on top of the data that tells
the remote host how much data will be sent.

With TCP, the application may write 10 times with 100 bytes of
data each time. TCP takes that data and streams it. So, the remote
application may get one TCP segment with 1000 bytes, two
segments with 500 bytes each, or some other distribution.

Naming a socket

Naming a socket normally applicable only for server application and it
optional. It serves as a friendly identification of the socket for the client
application during selection. An application can bind a name to a socket
using bind(). The socket names used by most applications are readable
strings. However, the name for a socket that is used within a
communication domain is usually a low-level address. The form and
meaning of socket addresses are dependent on the communication domain

PPSM-GT User Guide PPG-329

ats
Networking Services f“mgitﬂlnuﬁ

Transport/Socket Services frem Metarola

in which the socket is created. The socket name is specified by a sockaddr
structure.

Accepting and Making Socket Connections

Once a socket is made, depending on whether the application is a a server
or client, they behave differently. To facilitate discussion the following sec-
tion is organized into the client behavior and server behavior:

Client Behavior

In the client application after the socket is created, it need to connect to a
server. The server isidentified by an address/port pair. So the client appli-
cation need to fill asockaddr_in structure with the right info and call con-
nect(), which returnsa-1 if an error occurs. For a better understanding,
please refer to the code example in Example 20.3.

A port number is a 16-bit unsigned number (except port O is not used).
Certain commonly used ports on machines are given symbolic names.A
port can be any number between 1000 and 64000. The TCP/IP socket port
that the server listensto for the receiving and sending of requests. Port 80is
typically used by HTTP servers and browsers.

Server Behavior

The server behaves quite differently after the socket is created. For the
server, it needs to be bound to aport. Thisisdone using the bind() function.
It takes the same parameters as connect(); the family, port, and address.
The family is the same, and the port is the same, the addressiis
INADDR_ANY. And it will set up aport with the given number and it will
be bound to the socket.

Then the listen queue is established with listen(). Thefirst parameter isthe
socket handle and the second is the size of the listen queue.

It will accept a socket connection by accept() when it received a connection
required from a client. The accept() call is used by a server application
to perform a passive open for a socket. The socket will remain in the
LISTEN state until a client establishes a connection with the port
offered by the server. The return value from this function is an
identifier for a newly created socket over which communication
with the remote client can occur. The original socket remains in the
LISTEN state, and can be used in a subsequent call to accept() to
provide additional connections. The following illustrate the steps
taken during a connection requests at the server:

PPG-330

PPSM-GT User Guide

$[ﬁgitﬂl“"ﬁ Networking Services

from Motarcla Transport/Socket Services

* When binding to (0,0), it will assigned a predefined port no (say 9999)
and bind it (same as binding (0, 9999), instead of randomly assigned a
port no.

* Do alisten(0,0) --> This shall put socket(0,9999) in the LISTENING
State. Then do an accept().

* When a SYN segment comes, it will get a listening socket from port
9999 instead of the normal get_sock().

» From there, it will create its own socket filled with the source and
destination IP & port no, and insert it into its proper place based on its
port no.

Type of Networking Connection

The client will make a socket connection request through connect(). Stream
sockets (TCP/IP sockets) need to be connected before use, whereas other
types of sockets, such as datagram sockets (UDP/IP sockets), need not
establish connections before use.

There are two types of connections available when making a socket
connection. Figure 20.2 shows the socket APIs involved in a stream/
connection-oriented system, and Figure 20.3 shows the socket APIs
involved in a peer/connectionless-oriented system.

Figure 20.2 APIs Used in a Connection-Oriented System

socket()
bind()
listen()

accepit), . ~ —==—————= connect()

readsocket() i ——

socket()

it

writesocket()

|
|

writesocket() e eadsocket()

|
|

readsocket() —e—— (losesocket()

|

closesocket()

PPSM-GT User Guide PPG-331

Networking Services

““Digital DNA

Transport/Socket Services frem Motarola

Figure 20.3

APIs Used in a Connectionless System

socket() socket()
bind()
recfrom() —e—— sendto()

P B E

Sendto() o recvf rom()

|

closesocket()

Transferring Data

Socketsinclude avariety of callsfor sending and receiving data.
readsocket() and writesocket() can be used on sockets that arein a
connected state, asin Figure 20.2. recv() and recvfrom() permit callersto
specify or receive the address of the peer socket, asin Figure 20.3. These
calls are useful for connectionless sockets, in which the peer sockets can
vary on each message transmitted or received. The sendmsg() and
recvmsg() APIs support the full interface to the IPC facilities. Besides
offering scatter-gather operations, these calls allow an address to be
specified or received and support flag options.

writesocket() takes as arguments the socket identifier, a pointer to a buffer
containing the data and the size of the data.

readsocket() also takes socket identifier that indicates a socket, and like
writesocket() require aconnected socket since no destination is specified in
the parameters of the system call.

For connectionless connection, to send datagrams, one must be allowed to
specify the destination. The call sendto() takes a destination address as an
argument and is therefore used for sending datagrams. The call recvfrom()
is often used to read datagrams, since this call returns the address of the
sender, if it isavailable, along with the data.

Finally, there are a pair of callsthat allow the sending and receiving of
messages from multiple buffers, when the address of the recipient must be

PPG-332

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Networking Services

from Motarcla Transport/Socket Services

specified. These are sendmsg() and recvmsg() . These calls are actually
quite general and have other uses, including, in the UNIX domain, the
transmission of afile descriptor from one process to another.

Shutting Down Socket Operations

Once sockets are no longer in use, they can be closed or shut down using
the shutdown() or closesocket() API.

Translating Network Addresses

Application programs need to locate and construct network addresses when
conducting the interprocess communication. The socket facilitiesinclude
subroutines to:

* Map addresses to host names and back

* Map network names to numbers and back

» Extract network, host, service, and protocol names
» Convert between varying length byte quantities

* Resolve domain names

PPSM-GT User Guide PPG-333

Networking Services :E:[ﬁgitﬂ"]"ﬁ

Programming with Networking Services from Muotonola

Programming with Networking Services

Figure 20.4 Programming model

Application

TCP/IP

Link Layer

Device

>

Thelogical relationships between the protocols are illustrated in the
programming model shown in Figure 20.4. Programming with the
networking services follows the same logical relationship except that most
of the programming is already done. To use the networking services, the
work is simplified to configuring the network and using the networking
services like ablack box. These operations can be as simple as opening the
connection, writing or reading information and closing the connection, in
Some cases.

Programming the networking servicesis divided into the following
categories:

* Programming with Link Setup Services

* Programming with Transport/Socket Services

* Programming the Networking task

PPG-334 PPSM-GT User Guide

““Digital DNA

from Moetarola

Networking Services
Programming with Link Setup Services

NOTE

Programming with Link Setup Services

As mentioned in Link Setup Services, there are two group of link setup
APIs: the link configuration and server configuration APIs. The link
configuration APIs as shown in Table 20.2 are used for setting up the
network configuration and network initialization. To initialize the network,
first set up the network configuration with the APIs such as
NetConfigPPP() and NetConfigModem(). Then initialize the networking
stack to that configuration with NetInit(). The sequence of programming is
important and must be observed.

As shown in the code example, “Networking API calling sequence.the
networking parameters need to be set up first using NetConfigPPP() to
configure the IP address of the server address and NetConfigModem() to
configure the modem parameters before caling Netlnit to save the
configuration onto the networking stack.

All NetConfigXXX APIs need to be called before Netlnit() to be
effective. These are for items whose values are read (and often
only read) during the initialization process.

Once, the Netlnit() is called, calling the NetConfigModem(), or
other NetConfigXXX() will not change the networking configuration
until the network is terminated and start up again.

Normally the network needs to be configured once for the same network
connection. For different network connections, where new IP address is
required the PPSM-GT networking stack has to be reconfigured to new
configurations and this included shutting down the network with
NetDeinit() and setup the configuration using NetConfigPPP(), then called
Netlnit() to initialize the networking stack.

PPSM-GT User Guide PPG-335

Networking Services
Programming with Link Setup Services

““Digital DNA

from Moetarola

Table 20.2

Link Configuration APIs

VOID NetConfigDNS(P_S8
ipAddress, U8 which)

VOID

NetConfigl SPAccount(P_S8
UserlD, P_S8 Passoword, P_U8
PhoneNum)

VOID
NetConfigGateway(P_S3
ipAddress)

VOID
NetConfigL ocalHostI P(P_S8
ipAddress)

VOID
NetConfigM achineName(P_S
8 Name)

VOID NetConfigM odem(P_S8
comPort, NET_DRIVER
comDriver, P_S8 baudRate)

VOID NetConfigPPP(P_S8
UserlD, P_S8 Password)

STATUS
NetDNSResolve(P_S8
Fullname, IP_ADDR* iidp)

It setsthe DNS server'sIP. Thereare
two default DNS server and this API
will change the server’s | P address to
ipAddress specified by the parameter
which.

It configures the | SP account’s dial-
up number, the user 1D, and the
password

It setsthe ISP server’s (gateway) IP.
A value of 0.0.0.0 indicates an IP
address will be obtained form the
ISP; 0.0.0.0 isthe default value

It setsthe local host’s IP. A value of
0.0.0.0indicates an | P address will be
negotiated with the ISP; 0.0.0.0 isthe
default value

It sets the name of the local host, and
the name cannot be longer than or
equal to 9 characters. The default
valueis"none".

Configure the modem port which is
the low level driver before the stack
is started.

It configures the user ID and
password required for a PPP
connection. Usually these are the
same as those used in
NetConfigISPAccount for a dial-
up connection.

Resolves adomain nameto an IP
address or vice versa

PPG-336

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Networking Services

from Motarcla Programming with Transport/Socket Services

STATUS Netlnit(void) Performs general initialization, such
asinitialization of tables and buffers.
It must be the first network function
called and cannot be called again
unless the function NetDeinit() has
been called first.

VOID NetDeinit(void) It shuts down any open port and
terminates the related driver task(s)

Programming with Transport/Socket Services

Programming with socket services follows the same networking
programming model described in Figure 20.4. To be able to do any socket
programming, thelink layer hasfirst needed to be configured and set up. In
the other word, before any programming of the socket service can take
place, the programming of link layer has to be done first.

Many of the BSD socket routines use a pointer to structure sockaddr, which
specifies network address information. The sockaddr structure is a generic
structure that can be used with a number of different communications
protocols.

PPSM-GT sockets only use the Internet Protocol (IP) and therefore only
reguire the use of the Internet structure sockaddr_in. Values are assigned to
sockaddr_in and passed into the socket routine via the sockaddr parameter.
This requires a typecast to sockaddr *. The discussion of the connect()
function provides an example. Here are the structure definitions:

struct sockaddr { /* generic socket address */
unsigned short sa family; /* addressfamily */
char sa_data[14]; [* up to 14 bytes of address */
b
In practice, thisis used amost as a void pointer. The true Internet address
structureis:
struct in_addr { [* Internet address */
unsigned long S _addr;
H
struct sockaddr_in { /* Internet socket address */

short sin_family;

PPSM-GT User Guide PPG-337

Networking Services
Programming with Transport/Socket Services

““Digital DNA

from Moetarola

Table 20.3

unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

PPSM-GT Socket APIs
The PPSM-GT Sockets provides the function calls identified in Table 20.3.

Socket APIs

Socket API Description

accept Accepts the next incoming connection on a passive
(listening) socket. Returnswith a new socket. In
other words, this acts as a "socket fork™ function.
For streaming sockets only (i.e. TCP)

bind Binds a name to a socket.

closesocket Closes a connection on a socket. Flushes streams,
callslow-level close, releases buffers

connect Initiates a connection on a socket. Used to specify
the remote endpoint address of for sockets

socket Creates a socket and returns a socket |D number
(descriptor) for that socket SOCK_STREAM:
TCP/IP SOCK_DGRAM: UDP/IP
Others: none (i.e. SOCK_RAW is NOT supported)

fentlsocket Controls socket flags. Allows a socket to be set to

gethostbyaddr_r
gethostbyname _r

getpeername

use non-blocking semantics, and also allows the
current setting to be retrieved

Returns host information when an |P addressis
supplied

Returns the | P address that corresponds to a host
name.

Returns the address of the peer connected to socket
sinside the peer data structure. Useful for
connections obtained using accept() to find out the
remote address

PPG-338

PPSM-GT User Guide

““Digital DNA

from Moetarola

Networking Services
Programming with Transport/Socket Services

Socket API Description

getsockname Returns the local address and protocol port number
of the specified socket sinside data structure name.
On return, namelLen contains the actual size of the
name returned in bytes.

getsockopt gets options on sockets.

htonl Converts an unsigned long interger (U32) from the
local byte order to the network byte order

htons Converts an unsigned long interger (U16) from the
local byte order to the network byte order

listen Puts socket sinto LISTEN mode, which passively
walits for connection requests

inet_addr Converts an |P address in dotted decimal form to
the internal binary form that sockets functions
expect

inet_ntoa Converts an | P address to dotted decimal form from
the internal binary form that sockets functions
expect

ioctlsocket sets control parameters for a socket.

ntohl Converts an unsigned long integer (U32) from the
network byte order to the local byte order

ntohs Converts an unsigned long integer (U16) from the
network byte order to the local byte order

readsocket receives a message from a socket ID.

recv receives a message.

recvirom Get a message from the queued messages on the
connection. Store the sender’s address in the from
structure.

recvmsg establishes a connection and receives a message.
Receives and stores a message according to
information inside msg

selectsocket Waits for activity on a set of sockets. The function

returns when any of the specified conditions occur
or when the time out period expires

PPSM-GT User Guide

PPG-339

Networking Services
Programming the Networking task

““Digital DNA

from Moetarola

Summary

Socket API Description

send sends a message on an established connection.
Transmits buf to a remote host connected to the
local sockets.

sendmsg sends a message that can be split between buffers.

sendto Sends a message to a remote host specified by the
argument 'to’

setsockopt sets options on sockets (described with getsockopt).

shutdown Terminates transmission, reception, or both on a
socket

writesocket Transmits buffer to a remote host connected to the

local sockets

Programming the Networking task

The networking task is the task that normally create to run the networking
functions. The following are guidelines for creating he networking task.

1. The networking task should have a priority higher than that of the
Sci_task to avoid the KnlCreateTask error.

2. If the application framework is used, the framework task should
have a priority that is lower than that of the Sci_task to avoid the
modem connection problem.

The PPSM-GT networking services provide APIs to program networking
activities at the link, transport and application layers. Network
configurations such as | P address, connection speed and other
configurations are performed through the APIs.

The PPSM-GT sockets kept the same naming convention as that of the
BSD socket APIsto avoid un necessary confusion for networking socket
programmer. The socket services behave just like the BSD socket API to
enable programmer to provide a generic interface to network level
communications protocols for common operations involved in network

PPG-340

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Networking Services

frem Motarola Code Examples

computing. These include sending data, receiving data, establishing
connections, and configuring network protocols.

Code Examples

Listing 20.1 Examples for initialize all network interface

/* initialize all network interfaces */
mai n()
{
/* Setup the low | evel driver/port, which nust be set before the
"Netlnit()".*/
Net Conf i gMbden{ UART_2, PPSMsSCI, "115200");

/* 1f the PPP required, setup the PPP user ID, and password */

NetConfigPPP("username”, “password”);
if (Netlnit() < 0)
[* process error */

/* shut down all network connections */

NetDeinit();
}

Listing 20.2 Networking API calling sequence

/**/

[* Setup the low level driver/port, which must be set before the
"Netlnit()".*/

PPSM-GT User Guide PPG-341

ats
Networking Services f‘_mgitﬂlnuﬁ

Code Examples frem Metarola

Net Conf i gMbdem(UART 2, PPSMSCl, "115200");

/! Please make sure hardware flow control is turned on
// in netsci.c

/* Use the profile created */
Net Conf i gMachi neName(" machi neABC") ;

Net Confi gl SPAccount (profil eArray[profil el ndex]->user Nane,
profil eArray[profil el ndex]->password,
profil eArray[profil el ndex]->phoneNunber);

/* 1f the PPP required, setup the PPP user ID, password & the
destination | P address */

Net Confi gPPP(profil eArray[profil el ndex]->PPPUser Nane,
profil eArray[profil el ndex] - >PPPPasswor d) ;

}

/* Starts stack, driver */
Netlnit();

Listing 20.3 NTCP File transfer example pseudo-code

| * Exanpl e assunes PPSM GT initialization was done el sewhere */

/* dient */

int cs; /| * Socket descriptor for client socket */
char buff[MAXDAT]; /* Data buffer */

struct sockaddr _in sock; /* Socket address structure */
struct hostent hostent; /* Host structure */

cs = socket (AF_I NET, SOCK _STREAM 0);
if (cs <0) /* process error */

PPG-342 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Networking Services

frem Motarola Code Examples

Memval | oc(si zeof (sock));
sock.sin _famly = AF_I| NET;

/* Starting with host nane, get server |P address */
get host bynanme_r (SERVER, &hostent, sbuff, sizeof(sbuff),

&stat) ;

if (stat < 0) /* process error */
MenCopy((char *) &sock.sin_addr, (char *)

hostent. h_addr _list[0], 4);

*/

*/

any

/* Set the renote port and connect to server */
sock.sin_port = htons(11001);

stat = connect(cs, (struct sockaddr *)&sock, sizeof(sock));
if (stat < 0) /* process error */

for (5 5) {
len = fread(ifile, buff, sizeof(buff));
if (len <= 0)
br eak;

stat = send(cs, buff, sizeof (buff), 0);
if (stat < 0) /* process error */

}

stat = cl osesocket(cs);

if (stat < 0) /* process error */

/* Server */

int ss; /| * Socket descriptor for server connected socket
int Is; /| * Socket descriptor for server |istening socket

char buf f [MAXDAT] ; /* Data buffer */
struct sockaddr _in sock; /| * Socket address structure */

I s = socket (AF_I NET, SOCK STREAM 0);
if (Is <0) /* process error */

/* Bind server socket to port 11001; accept connection from
renote host */
Memval | oc(si zeof (sock));

PPSM-GT User Guide PPG-343

ats
Networking Services f“mgitﬂlnuﬁ

Code Examples frem Metarola

sock.sin_famly = AF_I| NET;

sock. sin_addr.s_addr = htonl (1 NADDR_ANY) ;

sock.sin_port = htons(11001);

stat = bind(ls, (struct sockaddr *)&sock, sizeof(sock));
if (stat < 0) /* process error */

/* Listen with backlog of 10; provides for 9 queued requests
*/

stat = listen(ls, 10);

if (stat < 0) /* process error */

/* Accept client connection to new connected socket ss */
ss = accept(ls, (struct sockaddr *) &sock, &clilen);
if (ss <0) /* process error */

for (5 5) {

len = recv(ss, buff, sizeof(buff), 0);
if (len <0) /* process error */

if (len == 0) break;

stat = fwite(ofile, buff, len);

if (stat < 0) /* process error */

}

/~k
** (Cl ose both connected socket and |istening socket. A server
| oop

** woul d | eave the |istening socket open and cl ose only the
connect ed

** socket.
*/
st at cl osesocket (ss);

st at cl osesocket (I s);

PPG-344 PPSM-GT User Guide

““Digital DNA

from Moetarola

Section 6

Graphics & Input Handling
Services

This section describes several PPSM-GT features developer can use
the PPSM-GT standard services as mentioned in this section to
develop the user interface. The PPSM-GT standard graphics and
input services provides basic features such as displaying of images
and text, drawing of lines and shapes, handling of input pads and
software keyboards. The chapters comprising this section are
described below:

Chapter 21, “Graphic Manipulation Services”—explains how
PPSM-GT handles graphics and how to program with the
graphics API.

Chapter 22, “Text Management Services”—explains how PPSM-
GT handles text and how to program using the text services.

Chapter 23, “Software Keyboard services”—explains the
software keyboard supported by PPSM-GT and how to use it.

Chapter 24, “Pen Input Handling Services”—explains how
PPSM-GT handle the pen input and how to program it.

Chapter 25, “Handwriting Recognition Input Handling
Services”—explains how PPSM-GT handle the 3rd party hand
writing recognition engine.

PPG-345 PPSM-GT User Guide

““Digital DNA

from Moetarola

PPG-346 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

from Moetarola

Graphic Manipulation
Services

PPSM-GT supports LCD modules with capabilities such as multiple
grey levels, hardware cursor, and software configurable display

size.
The Graphics services can be grouped under the following main
functions:
= Getting and setting of display parameters
— set grey levels and style

— set dot width in pixels for drawing dot, line, rectangle,
circle, ellipse, arc and vector

— get information about the LCD display screen.
= Drawing lines and shapes
— drawing dot, line, rectangle, circle, ellipse, arc and vector
— draw vector by connecting consecutive points in a list
= Displaying and manipulating of bitmap images
— swap bitmap images
— control and restore bitmap images

= Control hardware cursor
— hardware cursor in inverse and/or blinking mode

This chapter is organized into the following main sections:
= Graphic Manpulation Services Fundamentals
= Programming using Graphic Manipulation Services

PPSM-GT User Guide PPG-347

Graphic Manipulation Services $[ﬁgitﬂlﬂ"ﬁ

Graphic Manpulation Services Fundamentals frem Motarola

e Summary
e Code Examples

Graphic Manpulation Services Fundamentals

Figure 21.1 Graphic Environment

Graphic Context Graphic Routines
el SHRRSIv=A- (2 apliL ROULITIES

In PPSM-GT graphics environment is made up of the graphic
context and graphic routines. Figure 21.1 - Graphic Environment
illustrates the relationship between the graphic context and graphic
tools. In the graphic environment, graphic context works together
with graphic routines to generate graphics. Graphic contexts are
created by application services APl AppCreateGC() and used to
store the drawing properties. Graphic routines on the other hand
are used by tasks to do drawing and display based on the drawing
properties.

In the other words, to display any graphics using PPSM-GT graphic
manipulation services, the graphic context provides the drawing

PPG-348 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

frem Metarola Display Screen Format

properties and the location to stored the graphic; panning screen
etc, and graphic routines do the drawing.

The concept of Graphic Context, GC is important for implementing
PPSM-GT graphic routine. Details of GC are covered in the Chapter
11, “System Application Services.”.

Display Screen Format

Figure 21.2 Generic Screen Format

l— Touch Panel

Negative Coordinates

.\ Origin (0,0)

LCD Display Panel

Positive Coordinates

Figure 21.2 shows the general screen architecture for the PPSM-GT
system. There are three major areas:

= LCD Display Screen

PPSM-GT User Guide PPG-349

afs
Graphic Manipulation Services f“[ﬁgitﬂln"ﬂ

Display Screen Format

from Moetarola

= Touch Screen Panel
= Panning Display Screen

LCD Display Screen

The Display Screen is the region of the LCD display where
applications can display output data. Its size will depend on
manufacturer, e.g. 320 pixels wide by 200 pixels high or 320 pixels
wide by 240 pixels high, etc.

The LCD module is capable of 1 bit per pixel, 2 bits per pixel output,
or 4 bits per pixel, giving 2,4 or 16 grey levels respectively.

The reference coordinate point for the LCD Display Screen is at the
top left corner, the Display Origin. This has the values of (0, 0)
initially. Coordinates associated with the LCD Screen are referred to
as the display coordinates.

Touch Screen Panel

The touch screen panel is a input device for pen and touch screen
inputs. It get it’s input coordinates from the LCD display, and need
to be calibrated with the LCD display before used.

The touch panel can be larger than the LCD Display Screen.
However, the PPSM-GT tools will only return LCD display screen
coordinate. When a pen is touching outside the LCD display region,
the display coordinate returned may be negative or even greater
than the display screen size.

Panning Display Screen

The Panning Screen is an extension to the LCD Display Screen. Its
main purpose is to allow applications to write data to an area
outside of the actual display area. Although tasks can write to this
area, data will not be displayed on the screen unless this area is
being mapped to the LCD Display Screen through the panning
screen display setting.

Pen Input areas on the panning screen will receive pen input data
only when they overlap with the touch panel.

PPG-350

PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services
Display Coordinates.

NOTE

Panning Screen has a similar coordinate system as the LCD Display
Screen with different origin.

Panning screens are independent entities and are created when
setting up the graphic environment. Refer to Chapter 11, Graphic
Manipulation Services for more information on Panning screen.

Display Coordinates.

The display coordinates in PPSM-GT take reference may the
panning screen. That is when displaying any graphic using the
graphic services, the top left corner of the panning screen is (0, 0) is
taking as the reference. The top left corner of the LCD display screen
is therefore an offset from the panning screen origin if it is not at the
panning screen origin.

All co-ordinates given to the graphics routines are referred to the
panning screen origin. There is no negative co-ordinate for panning
screen.

Screen Resolution

LCD display screen resolution is the number of pixels that are
available on the hardware. This is normally a fixed figure for each
LCD hardware panel. The touch panel resolution must be equal to
or greater than the LCD resolution or the pen cannot point at every
pixel of the LCD display.

Screen Initialization

The PPSM-GT returns the LCD coordinates when the touch screen
panel is touch, it is therefore important that the LCD screen and the
touch screen panel are calibrated to ensure that the correct
coordinates are obtained when using the input panel. A screen
initialization procedure is required when PPSM-GT is first
activated, and can be implemented with PenCalibrate().
PenCalibrate() is a APl in Pen Input Handling Services. Refer to
Chapter 24, for more detail on PenCalibrate() API.

PPSM-GT User Guide PPG-351

afs
Graphic Manipulation Services f“[ﬁgitﬂln"ﬂ

Displaying Color

from Moetarola

Figure 21.3

Displaying Color

PPSM-GT supports 3 types of color display; 1 bit, 2 bits, and 4 bits
per pixel graphics. Each type operate on it’s own pixel library and
cannot be mixed. The bitmap formation for each type are different
and using the wrong bitmap representation will result in mirror
image problem etc. Figure , shows the mirror effects of displaying a
1 bit-per-pixels graphic on a 2 bits per pixel setting.

Effects of display error with wrong pixels
0, Q)

LCD Display Screen

Two similar images will be seen horizontally
1 bit-per-pixel Graphics

The graphics routines will handle drawing of BLACK and WHITE
pixels on the panning screen.

The byte and bit within byte ordering are both in big-endian format.
For example:

| HEH B |

1 0 0 0 1 0 1 0 1 0

B siacko WHITE (0)

The above image will be represented by 1000101010001000 in binary
and 0x8A88 in hexadecimal.

PPG-352

PPSM-GT User Guide

als
f'_mgitﬂlnﬂﬂ Graphic Manipulation Services

frem Motarola Displaying Color

2 bits-per-pixel Graphics

The graphics routine will handle drawing of 4 grey levels: WHITE,
LIGHT GREY, DARK GREY and BLACK.

The byte and bit within byte ordering are both in big-endian format.
For example:

N N N l

11 01 00 OO0 10 00 11 00 11 OO 01 OO

. BLACK (11) . DARK GREY (10)

LIGHT GREY (01) WHITE (00)

The above image will be represented by
11010000100011001100010010000000 in binary and 0xD08CC480 in
hexadecimal.

4 bits-per-pixel Graphics

The graphics routine will handle drawing of 16 grey levels: where
Grey0 = white and Grey15 =BLACK.

The byte and bit within byte ordering are both in big-endian format.
For example:

1111 0101 0000 0000 1100 0000 1111 0000 1111 0000 0101

l BLACK (1111) . GREY 12 (1100)

j GREY5 (0101) WHITE (0000)

PPSM-GT User Guide PPG-353

afs
Graphic Manipulation Services f“[ﬁgitﬂln"ﬂ

Displaying Style

from Moetarola

Displaying Style

Display style is another properity that could controls the
appearance of the output graphics. In PPSM-GT, there are a total of
5 output style that could use to control the graphic outlook. The
style mechanism performs a logical operation with the bacground
image to achieve the display effects. Table 21.1 shows the 5 style
supported and their operation.

Table 21.2 to Table 21.6 provided the logic table based on a 2 bit per
pixel graphic representation. It shows the grey level result of a pixel
after a drawing operator is applied.

X is the existing grey level on the screen. Y is the grey level to be put
on screen and R is the final grey level on screen after
implementation.

PPG-354

PPSM-GT User Guide

““Digital DNA

Graphic Manipulation Services

from Motarcla Displaying Style
Table 21.1 Display Style and it's Description
Display Style Description
AND_STYLE Perform AND logical operation with back
ground image
OR_STYLE Perform OR logical operation with back
ground image
EXOR_STYLE Perform EXOR logical operation with back
ground image
REPLACE_STYLE | Replace the exiting image with the new
image
INVERT_STYLE Perform INVERT logical operation with
back ground image
Table 21.2 AND_STYLE R = X AND Y after AND_STYLE OPERATION

2 Y R
00 00 00
01 00 00
10 00 00
11 00 00
00 01 00
01 01 01
10 01 00
11 01 01
00 10 00
01 10 00
10 10 10
11 10 10
00 11 00
01 11 01
10 11 10
11 11 11

PPSM-GT User Guide

PPG-355

Graphic Manipulation Services

““Digital DNA

Displaying Style from Metarcla
Table 21.3 OR_STYLER=XORY after OR_STYLE OPERATION
X Y R
00 00 00
01 00 01
10 00 10
11 00 11
00 01 01
01 01 01
10 01 11
11 01 11
00 10 10
01 10 11
10 10 10
11 10 11
00 11 11
01 11 11
10 11 11
11 11 11
Table 21.4 EXOR_STYLE R=X EXORY after EXOR_STYLE OPERATION

X Y R
00 00 00
01 00 01
10 00 10
11 00 11
00 01 01
01 01 00
10 01 11
11 01 10
00 10 10
01 10 11
10 10 00
11 10 01
00 11 11
01 11 10
10 11 01
11 11 00

PPG-356

PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services
Displaying Style

Table 21.5

Table 21.6

REPLACE_STYLE R=Y after REPLACE_STYLE OPERATION

X Y R
00 00 00
01 00 00
10 00 00
11 00 00
00 01 01
01 01 01
10 01 01
11 01 01
00 10 10
01 10 10
10 10 10
11 10 10
00 11 11
01 11 11
10 11 11
11 11 11

INVERT_STYLE R = NOT X after INVERT_STYLE OPERATION

X R
00 11
01 10
10 01
11 00

PPSM-GT User Guide

PPG-357

Graphic Manipulation Services $[ﬁgitﬂlﬂ"ﬁ

Programming using Graphic Manipulation Services from Muotonola

Programming using Graphic Manipulation
Services

Figure 21.4 Graphic manipulation services Block Dragram

usel

Graphic Manipulation Services

Drawing Drawing Drawing
Setup Operators Enquiry

The graphic manipulation services can be divided into 4 main
groups as highlighted in Graphic manipulation services Block
Dragram. Tasks interface with the graphic manipulation services
through the APIs. The 4 groups of APIs are as followed :

e Drawing Setup

e Drawing Property

e Drawing Operators

e Drawing Enquiry

PPG-358 PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services

Drawing Setup

Drawing Setup

Clearing or Filling a Screen

STATUS GpxFillScreen(COLOR
color)

GpxFillScreen() can be used to
change the screen color to any
of the 16 grey colors in pixels 4
design, 4 colors for 2 pixels
design and 2 colors for 1 pixels
design.

Setting LCD Refresh Rate

VOID
GpxSetLCDRefreshRate(U8
refreshRateSet)

GpxSetRefreshRate() sets the
LCD refresh rate in Hz

Setting Brightness

VOID GpxSetBrightness(U8
brightness)

It set the brightness for the
LCD screen.

Setting Contrast

STATUS
GpxSetContrast(DENSITY
levell, DENSITY level2)

It sets the contrast of the LCD

Drawing Property

Setting Color

STATUS GpxSetColor(COLOR
color)

It sets the display color
according to the grey scale
specified.

Setting Style

STATUS GpxSetStyle(STYLE
style)

It sets the style of the graphic
context in current task as
mentioned in Table 21.1

PPSM-GT User Guide

PPG-359

Graphic Manipulation Services
Drawing Property

““Digital DNA

from Moetarola

Setting Dot Width

STATUS GpxSetDotWidth(U8
width)

After this routine is called, the
new dot width will take effect
in all subsequent
GpxDrawDot(),
GpxDrawHorz(),
GpxDrawVert(),
GpxDrawRec(),
GpxDrawLlIne(),
GpxDrawCircle(),
GpxDraweEllipse(),
GpxDrawArc(), and
GpxDrawVector().

If the dot width is larger than
1, a thick dot, thick line, thick
circle, thick ellipse, thick arc
and thick vector lines can be
drawn

.Setting Pattern Fill

STATUS GpxSetPatternFill(U8
mode, COLOR backColor, U8
borderMode, U8 fillSpace)

This routine allows
application programmers to
decide on the fill pattern
settings. These settings
include the pattern mode, the
spacing between the pattern
lines, the background grey
level, and the existence of a
border. Once
GpxSetPatternFill() is called,
the settings will be applied to
all subsequent GpxDrawRec(),
GpxDrawCircle(),
GpxDraweEllipse(), and
GpxDrawArc().

The pattern will be drawn with the specified grey level in the
parameter of GpxDrawRec(), GpxDrawCircle(), GpxDrawEllipse(),

and GpxDrawArc().

PPG-360 PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services
Hardware Cursor

The argument fillSpace lets application developers define the size of
the gap between the pattern lines. The size of the gap equals to
2see number of pixels.

There are 8 fill patterns available (mode 0 will turn off the pattern

3
[e o ®
’j I I e o © o
A ® o °
6 7

5

The pattern fill mode 0 will turn off the pattern fill feature.

Hardware Cursor

The following are the steps for setting up the hardware cursor:
= Step 1: STATUS GpxInitCursor(SCREEN_ID screenid)

When call, the API will create the cursor (in transparent
mode)

= Step 2: STATUS GpxSetCursorSize(SCREEN_ID screenld, U8
cursorWidth, U8 cursorHeight)

When call, the API will set the size of the cursor. This
routine will set the hardware cursor width and height.
The valid range for both width and height is from 1
through 31.

e Step 3: STATUS GpxSetCursorPos(SCREEN_ID screenld, U16
xPos, U16 yPos)

When call, the API will set the top left corner of the cursor

= Step 4: STATUS GpxSetCursorStatus(SCREEN_ID screenld, U8
status)

When call, the API will turn on the cursor or change its
mode to one of the following mode

— LCD_CURSOR_OFF - Transparent, cursor is disabled

PPSM-GT User Guide PPG-361

afs
Graphic Manipulation Services f“[ﬁgitﬂln"ﬂ

Hardware Cursor

from Moetarola

— LCD_CURSOR_ON - Full (black) cursor
— LCD_CURSOR_REVERSED - Reversed video
— LCD_CURSOR_ON_WHITE - Full (white) cursor.

When there is no hardware cursor in current task, the creation of
hardware cursor requires to set the cursor characteristic and follows
by following the 4 steps above.

When hardware cursor is created and it needs to be turned off, the
application should call GpxSetCursorStatus(screenld,
LCD_CURSOR_OFF). If the application needs to turn on the cursor
once again with the same cursor characteristic. Then calling
CursorSetStatus(screenld, LCD_CURSOR_ON) is enough.

When hardware cursor is to be suspended, the application should
call GpxCursorSetStatus(screenld, LCD_CURSOR_OFF).

A application can change the hardware cursor to new position. It
can inquire the hardware cursor status from the system. When the
hardware cursor is ON, the calling of functions to change the size or
position of the hardware cursor will have immediate effect.

GpxSet Cur sor St at us(panSc, LCD CURSOR _ON);

The above will create a cursor at (150, 158) with 15 pixels wide by 15
pixels high, and will turn the cursor on.

Set Hardware Cursor Blinking Frequency

STATUS This routine will set the
GpxSetCursorBlink(SCREEN | | hardware cursor blinking
D screenld, U8 frequency) frequency to “frequency”

number of blinks per 10
seconds. The cursor will only
be seen if the cursor is set on
by calling
GpxSetCursorStatus().

PPG-362

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

from Muotonola Drawing Operators

Deleting Hardware Cursor

STATUS This routine will turn off the
GpxDeleteCursor(SCREEN_ID hardware cursor permanently
screenld) and delete the cursor data

structure. In order to turn on
the hardware cursor again, the
application has to follow the 4
steps to setup the
characteristics of the cursor
mentioned in Hardware

Cursor.
Drawing Operators
Drawing a Dot
STATUS GpxDrawDot(U16 This routine will draw a dot at
xPos, U16 yPos) the specified position (xPos,
yPos).

If dot width is 1, a pixel will be
drawn. Depending on the dot
width set by
GpxSetDotWidth(), if dot
width is 2, a square dot of
length 2 will be drawn with
top left pixel position as the
dot co-ordinate, (xPos, yPos).
When the dot width is greater
than 2, a circular disc with
radius to be truncated integer
value of (dot width - 1)/2 will
be drawn. The center of the
disc will be the dot co-
ordinate, (xPos, yPos).

All units specified are in pixels
with reference to the panning
screen origin.

PPSM-GT User Guide PPG-363

afs
Graphic Manipulation Services f“[ﬁgitﬂln"ﬂ

Drawing Operators from Muotarola

(0,0)

(50, 50)//' + (52, 52) Panning Screen

&~

LCD

Figure 21.5 Screen output

Drawing a Line

STATUS GpxDrawLine(U16 This routine will draw a line
xSrc, U16 ySrc, U16 xDest, U16 from (xSrc, ySrc) to (xDest,
yDest, U16 dotLine) yDest).

All units specified are in pixels
with reference to the panning
screen origin.

If the dot width is greater than 1, the specified line will have
integer truncated of (dot width - 1)/2 lines above it, and (dot
width)/2 lines below it. The length of each of these lines will
be extended by (dotwidth - 1)/2 pixels to the left of the
source, and by (dotwidth/2) pixels to the right of the end
point.

If the width of the line is 1, a square dot will be drawn.

PPG-364 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

from Muotonola Drawing Operators

Drawing a Rectangle

STATUS This routine draws a rectangle with top left
GpxDrawRec(U16 | corner at (xSrc, ySrc) and bottom corner at
xSrc, U16 ySrc, U16 | (xDest, yDest).

xDest, U16 yDest, If the dot width is greater than 1, integer
U16 dotLine) truncated (dot width - 1)/2 lines are drawn
inside the rectangle and (dot width)/2
lines drawn outside the rectangle.

If both fill pattern mode and border mode
are set, those area inside the rectangle
which is not covered by the border will be
filled.

If fill pattern mode is set and border mode
is off, the area inside and on the rectangle
border will be filled.

All units specified are in pixels with
reference to the panning screen origin.

Drawing a Circle

STATUS This routine will draw a circle centering at
GpxDrawCircle(Ul | (xCenter, yCenter) with the specified

6 xCenter, U16 radius.

yCenter, U16 If the dot width is greater than 1, integer
radius) truncated (dot width - 1)/2 lines are drawn

inside the circle and (dot width)/2 lines
drawn outside the circle.

If both fill pattern mode and border mode
are set, those area inside the circle which is
not covered by border will be filled.

If fill pattern mode is set and border mode
is off, the area inside and on the circle
border will be filled.

All units specified are in pixels with
reference to the panning screen origin.

PPSM-GT User Guide PPG-365

Graphic Manipulation Services
Drawing Operators

““Digital DNA

from Moetarola

Drawing an Ellipse

STATUS
GpxDrawEllipse(U
16 xCenter, U16
yCenter, U16
xLength, U16
yLength)

This routine will draw a ellipse centering
at (xCenter, yCenter) with the specified
size.

If the dot width is greater than 1, integer
truncated (dot width - 1)/2 lines are drawn
inside the ellipse and (dot width)/2 lines
drawn outside the ellipse.

If both fill pattern mode and border mode
are set, those area inside ellipse which is
not covered by the border will be filled.

If fill pattern mode is set and border mode
is off, the area inside and on the ellipse
border will be filled.

All units specified are in pixels with
reference to the panning screen origin.

Drawing a Vector

STATUS
GpxDrawVector(U
16 numberOfPoints,
P_POINT pPoints,
U8 mode)

It connects all points in the vector
according to the sequence.

All units specified are in pixels with
reference to the panning screen origin.

Drawing an Arc

STATUS
GpxDrawArc(U16
x1, U16 y1, U16 x2,
Ul6 y2)

This routine will draw an arc connecting
(x1, y1) and (x2, y2).

GpxDrawArc() will draw a quarter of an
ellipse centering at (x2, y1). If
GpxDrawArc(x1, y1, x2, y2) is called, the
following arcs will be drawn according to
the values of (x1, y1) and (x2, y2).

All units specified are in pixels with
reference to the panning screen origin.

PPG-366 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

from Muotonola Drawing Operators

Figure 21.6 Cases of GpxDrawArc
(x1,y1)

(x1<x2) and (yl<y2)

(x2,¥2)

(x2,y2)

(x1<x2) and (y1>y2)

N

(x1,y1)

(x1,y1)

(x1>x2) and (y1<y2)

\.

(x2,¥2)

(x2,y2)
(x1>x2) and (y1>y2)

J

(x1,y1)

If the dot width is greater than 1, integer truncated (dot width - 1)/2
lines are drawn inside the arc and (dot width)/2 lines drawn
outside the arc.

PPSM-GT User Guide PPG-367

afs
Graphic Manipulation Services f"[ﬁgitﬂln"ﬂ

Drawing Operators from Muotarola

If both fill pattern mode and border mode are set, those area inside
arc which is not covered by the border of the arc will be filled.

If fill pattern is set and border is off, those area inside and on the arc
border will be filled.

Putting a Rectangular Area on Panning Screen

STATUS GpxPutRec(P_U8 This routine puts an image
pBitmap, U16 xSrc, U16 ySrc, from memory to panning
U16 xDest, U16 yDest) screen.

Special cases of PutRec()

The following are the few special cases of PutRec().

LCD Display screen crosses the right boundary of the panning
screen

(©,0)

® m -

»_

Panning Screen

Figure 21.7 Right Boundary Effect

The following will be seen on LCD display screen:
LCD Display Screen

Figure 21.8 Result of Right Boundary

PPG-368 PPSM-GT User Guide

[T
f'_mgitﬂlnﬂﬂ Graphic Manipulation Services
from Metarcla Dra ators

When LCD Display screen crosses the bottom boundary of the

panning screen
0, 0

‘ Panning Screen

LCD

Figure 21.9 Bottom Boundary Effect

The following will be seen:
LCD Display Screen

Figure 21.10 Result of Bottom Boundary

The pattern of the noise part of the display depends on the content
of the memory that follows the panning screen. If the memory
following the panning screen is all 0, the noise will appear as a
blank image. If the memory following the panning memory is
invalid, a bus address error will be generated.

Save a Rectangular Area from Panning Screen

STATUS GpxSaveRec(P_U8 This routine saves an image
pBitmap, U16 xSrc, U16 ySrc, from the panning screen to
U16 xDest, U16 yDest) memory.

PPSM-GT User Guide PPG-369

afs
Graphic Manipulation Services f"[ﬁgitﬂln"ﬂ

Drawing Operators from Muotarola

Exchange a Rectangular area with memory

STATUS GpxExchangeRec(P_U8 | This routine exchanges images
pBitmap, U16 xSrc, U16 ySrc, between the panning screen
U16 xDest, U16 yDest) and memory.

Fill a Rectangular Area

STATUS GpxFillRec(U16 xSrc, This routine fills an
U16 ySrc, U16 xDest, U16 yDest) | rectangular area with the
specified grey level.

Inverse a Rectangular Area

STATUS GpxInvRec(U16 xSrc, This routine will inverse the
U16 ySrc, U16 xDest, U16 yDest) | grey level of the rectangular
area with top left corner at
(xSrc, ySrc) and bottom right
corner at (xDest, yDest).

Display Other Region of Panning Screen or Display Move

STATUS This function is to set the
GpxChangeDisplay(U16 xPos, relative coordinate of top left
U16 yPos) corner of LCD in panning

screen. It sets the display
region on LCD from panning
screen. Whenever this
function is called, the new
area in panning screen will be
refreshed on LCD. The effect
is like shift the LCD screen
relative to the xPos and yPos

specified.
Setting Display Origin
STATUS Set the LCD display to new
GpxSetDisplayOrigin(SCREEN | location as specified by XPos
_ID screenld, U16 xPos, U16 & yPos

yPos)

PPG-370 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

from Muotonola Drawing Operators

The purpose of GpxSet DisplayOrgin() is to provide a mean for
designer to change the LCD display from one area of the panning
screen to another. This is a two step approach to display other
region of the same panning screen or other panning screen. These
two routines together will achieve the same effect as
GpxChangeDisplay().

The advantages of using a step approach instead of a single step
approach is that:

it allow the control of the display change. In the two step approach,
display change could be control at application switch.

Choice of panning screen based on the screenid.

GpxSetDisplayOrigin() sets the top left corner coordinate (xPos,
yPos) of the display origin in reference to the specified panning
screen

GpxSetDisplayOrigin() move the LCD display origin to (X, y) so
that different regions of the panning screen and will be displayed
instantaneously when the Appswitch() or AppBindPaniInfo() is
called.

Note that display will not show the panning screen area until
Appswitch() or AppBindPaninfo() is call.

The two routines must be used together to have effect on the
display.

Putting Char on Image

STATUS GpxPutChar(P_U8 This routine will put the
pChar, U16 xPos, U16 yPos, U16 | character bitmap onto the
font, U16 width, U16 height) image. It does not save the

background image. To
preserve the background,
GpxSaveRec() has to be used.

PPSM-GT User Guide PPG-371

Graphic Manipulation Services

““Digital DNA

Drawing Enquiry from Muotarola

Drawing Enquiry

Getting LCD Brightness Setting
U8 GpxGetBrightness(VOID) This routine returns an 8 bit

values from PWM Contrast
Control Register.

Getting LCD Contrast Setting
STATUS This routine returns the LCD
GpxGetContrast(P_DENSITY contrast setting.
pLevell, P_DENSITY pLevel2)

Getting Current Drawing Property Setting
STATUS Get the current color setting.
GpxGetColor(P_COLOR
pColor)
STATUS GpxGetStyle(P_STYLE | Get the current style
pStyle)
STATUS Get the dot width
GpxGetDotWidth(P_U8
pWidth)
STATUS Get the pattern fill.
GpxGetPatternFill(P_U8
pMode, P_COLOR pBackColor,
P_U8 pBorderMode, P_U8
pFillSpace)

PPG-372 PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services

Getting LCD Display Screen Info

Getting LCD Display Screen Info

Get LCD Display Screen Width

U16 GpxGetDisplayWidth(void)

GpxGetDisplayWidth()
returns to the caller the
physical width, in terms of
pixels, of the LCD display
panel being used.

When writing an application,
this routine should be used
instead of using specific
numbers for the width of the
LCD display screen as it will
make the code more flexible to
run on different LCD panels.

Get LCD Display Screen Height

Ul16
GpxGetDisplayHeight(void)

GpxGetDisplayHeight()
returns to the caller the
physical height, in terms of
pixels, of the LCD display
panel being used.

When writing an application,
this routine should be used
instead of using specific
numbers for the height of the
LCD display as it will make
the code more flexible to run
on different LCD panels

Getting the LCD display Origin

STATUS
GpxGetDisplayOrigin(SCREEN
_ID screenid, P_U16 pXPos,
P_U16 pYPos)

The routine returns the top left
corner coordinate (*pXPos,
*pYPos) of the display origin
of the specified panning
screen.

PPSM-GT User Guide

PPG-373

afs
Graphic Manipulation Services f"[ﬁgitﬂln"ﬂ

Getting Hardware Cursor Info frem Metarola

Getting the LCD Refresh Rate

us This routine returns the LCD
GpxGetLCDRefreshRate(void) | refresh rate in Hz.

Getting Hardware Cursor Info

Getting Hardware Cursor Position

STATUS This routine returns the top
GpxGetCursorPos(SCREEN_ID | left coordinate (*pXPos,
screenld, P_U16 pXPos, P_U16 *pYPos) of the hardware
pYPos) cursor of the specified
panning screen

Getting Hardware Cursor Status

STATUS This routine will return the
GpxGetCursorStatus(SCREEN_ | current hardware cursor
ID screenld, P_US8 pStatus) status. The status will be one

of the following states:
LCD_CURSOR_OFF,
LCD_CURSOR_ON
LCD_CURSOR_REVERSED,
or
LCD_CURSOR_ON_WHITE.

Summary

The graphic services of PPSM-GT provide a mean for developer to
draw simple graphics and display bitmaps. Developer could use the
graphics services to support the user interface design.

Code Examples

Listing 21.1 Fill the whole screen with BLACK

STATUS ret;

PPG-374 PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services
Code Examples

Listing 21.2

/[* fill the whole panning screen with black */
ret = QoxFill Screen(BLACK);

Initialize screen through PenCalibrate()

Listing 21.3

mai n()

{
/* Initialize PPSMGI with pen calibration */
PenCal i br at e(TRUE) ;

Fill the whole screen with BLACK

Listing 21.4

STATUS ret;

/* fill the whole panning screen with black */
ret = GoxFill Screen(BLACK);

Setting the LCD refresh rate at 50 Hz

Listing 21.5

GoxSet LCDRef r eshRat e(50) ;

Set dot width

Drawingl - Draw a LINE and then an ELLIPSE with *
pattern filled on Screenl.

Bot h have a dot width = 6, but no border on the *
ellipse is drawn as the bordernode in
SetPatternFill is set to O.

¥ F ¥ X *

GoxSet Dot Wdt h(1);
GoxSet PatternFill (2, WHITE, 0, 3);

PPSM-GT User Guide PPG-375

afs
Graphic Manipulation Services f‘_mgitﬂln".ﬂ

Code Examples

from Moetarola

Listing 21.6 When there is no hardware cursor in current task
SCREEN I D panSc;
/* create the hardware cursor data structure
*/
Gox|I ni t Cur sor (&anSc) ;
/* set hardware cursor width to 15 and height to 15
pi xel s */
GoxSet Cur sor Si ze(panSc, 15, 15);
/* set hardware cursor position at (150, 150) */
GoxSet Cur sor Pos(panSc, 150, 158);
/* turn on the hardware cursor in full density
node */
GpxSet Cur sor St at us(panSc, LCD CURSOR _ON);
The above will create a cursor at (150, 158) with 15 pixels wide by 15
pixels high, and will turn the cursor on.

Listing 21.7 When the hardware cursor needs to be changed to other
position
/* set hardware cursor position to (15, 150) */
GpxSet Cur sor Pos(panSc, 15, 150);
This will change cursor to new position at (15, 150)

Listing 21.8 When hardware cursor is turned off after creation and it needs

to be on with reverse video mode

Ul x, v,

/* turn on hardware cursor in reverse video node
*/
GpxSet Cur sor St at us(panSc, LCD CURSOR _REVERSED) ;

PPG-376

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

frem Motarola Code Examples

Listing 21.9 Draw a black dot

STATUS ret;

/* draw a dot at (52, 52) */

Gox Set Col or (BLACK) ;

GoxSet Dot Wdt h(1);

GpxSet Styl e(REPLACE_STYLE) ;
ret = GoxDrawbDot (52, 52);

(©,0)

(50, 50)//' + (52, 52) Panning Screen

~

LCD

Figure 21.11 Screen output

The calling of GpxDrawDot(52, 52) will draw a black pixel at
(52, 52) in panning screen. As the LCD display screen origin
is at (50, 50), the point drawn on screen is at (2, 2) in display
co-ordinate. Hence, the expected outcome will have a dot
which is very close to the display origin.

Listing 21.10 Draw a dot with dot width 2

STATUS ret;

[* set dot width to 2 */
GoxSet Dot W dt h(2) ;

/* draw a dot at (52, 52) */
ret = GoxDrawbDot (52, 52);

PPSM-GT User Guide PPG-377

afs
Graphic Manipulation Services f“[ﬁgitﬂln"ﬂ

Code Examples

from Moetarola

Listing 21.11

When the dot width equals 2, a square dot with length of 2 will be
drawn.

(52, 52)

Figure 21.12 Screen output

Draw a dot with dot width 3

Listing 21.12

STATUS ret;

[* set dot width to 3 */
GoxSet Dot W dt h(3) ;

/* draw a dot at (52, 52 */
ret = GoxDrawbDot (52, 52);

When the dot width is 3, a circular disc with radius of (3-1)/2
(which is 1) will be drawn.

(52, 52)\!

Figure 21.13 Screen output

Draw a dot with dot width 4

STATUS ret;

/* set dot width to 4 */
Set Dot W dt h(4) ;

/* draw a dot at (52, 52) */
ret = GoxDrawbDot (52, 52);

PPG-378

PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services
Code Examples

Figure 21.14

Listing 21.13

When the dot width is 4, a circular disc with radius of (4-1)/2
(which is 1) will be drawn.

Screen output

(52, 52)\!

Draw a horizontal black line

STATUS ret;
GoxSet Col or (BLACK) ;
GoxSet Dot Wdt h(1);
GoxSet St yl e(REPLACE_STYLE) ;
/* draw a bl ack horizontal line from(30, 60) wth
wi dt h 550 */
ret = GoxDrawLi ne(30, 60, 579, 60,0);

In the example, the dot width is 1. The calling of GpxDrawLine(30,
60, 579, 60, 0) will draw a black horizontal line from (30, 60) to (580,
60) on panning screen. Only the portion of (50, 60) to (580, 60) will
be seen on LCD display.

PPSM-GT User Guide PPG-379

afs
Graphic Manipulation Services f‘_mgitﬂln".ﬂ

Code Examples frem Metarola

Figure 21.15 Screen output for drawing a black line

(0,0)

50, 50 Panning Screen
(50, 505 560y (369, 60) (580, 60) P g

LCD

Listing 21.14 Draw athick horizontal line

STATUS ret;

/* set dot width to 4 */
ret = SetDotWdth(4);

if (ret !'=SYS (K)
return ret;

/* draw a bl ack horizontal line from (60, 60) with
width 2 */
ret = GoxDrawLi ne(60, 60, 61, 60,0);

if (ret != SYS OK)

return ret;

PPG-380 PPSM-GT User Guide

fl‘[h tﬂlﬂ"ﬂ, Graphic Manipulation Services

frem Motarola Code Examples

In the above example, a thick horizontal line will be drawn as
follow:

+4+4++
* 4+ e

++++4

Figure 21.16 Screen output

(60, 60)

Listing 21.15 Draw a vertical black line

STATUS ret;

/* draw a bl ack vertical line from (60, 60) with
hei ght 360 */
ret = GoxDrawLi ne(60, 60, 60, 420, 0);

(0, 0)
(50, 50)//' (60, 60) Panning Screen
LCD /
(60, 289)
(60, 420)

Figure 21.17 Screen output

In this example, the dot width is 1. The calling of GpxDrawLine(60,
60, 60,420) will draw a black line from (60, 60) to (60, 420) on
panning screen. However, only the portion of the line on LCD
display screen will be seen which is (60, 60) to (60, 289). Since the
parameter for dotted line is 2, the line is drawn in the form of 2

PPSM-GT User Guide PPG-381

afs
Graphic Manipulation Services f"[ﬁgitﬂln"ﬂ

Code Examples frem Metarola

BLACK pixels and then 2 WHITE pixels and then 2 BLACK pixels,
and so on.

Listing 21.16 Draw athick vertical line

STATUS ret;

/[* set dot width to 4 */
ret = SetDotWdth(4);

if (ret !=SYS OK)
return ret;

/* draw a bl ack thick horizontal |line from (10,
10) with height 2 */
ret = GoxDrawLi ne(10, 10, 10,12,0);

if (ret '= SYS X
return ret;

In the above example, a thick vertical line will be drawn as follow:

+44
44

(10, 10)

Figure 21.18 Screen output

Listing 21.17 Draw a black line

STATUS ret;

PPG-382 PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services
Code Examples

Listing 21.18

/* draw a black line from (60, 240) to (630, 470)
*/
ret = GoxDrawLi ne(60, 240, 630, 470, 0);

(0, 0)
(50, 50)//' Panning Screen
LCD ryd
(60, 240)
(630] 470)

Figure 21.19 Screen output

In this example, the dot width is 1. The calling of GpxDrawLine(60,
240, 630, 470, 0) will draw a black line from (60, 240) to (630, 470) on
panning screen. However, only the portion of the line on LCD
display screen will be seen.

Draw a thick line

STATUS ret;

/[* set dot width to 4 */
ret = SetDotWdth(4);

if (ret !'=SYS (K
return ret;

/* draw a black thick line from (10, 10) to (11,
11) */
ret = GoxDrawLi ne(10, 10, 11, 11, 0);

if (ret '= SYS XK
return ret;

PPSM-GT User Guide PPG-383

afs
Graphic Manipulation Services f"mgitﬂln"ﬂ

Code Examples frem Metarola

In the above example, a thick horizontal line will be drawn as
follow:

444
L + + ++ N
+++ o8

(11, 11)
Figure 21.20 Screen output

ZZ

Listing 21.19 Draw arectangle with black outline

STATUS ret;

/* draw a black rectangle with top left corner at
(310, 250) and bottomright corner at (500, 400)
*/

Gox Set Col or (BLACK) ;

GoxSet Dot Wdt h(1);

GpxSet Styl e(REPLACE_STYLE) ;
ret = GoxDrawRec(310, 250, 500, 400, 0);

(©,0)

(50, 50)//' Panning Screen
(369, 250) .~

LCD @f//
(310, 25

(310, 288)

(500, 400)

Figure 21.21 Screen output

PPG-384 PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services
Code Examples

Listing 21.20

In this example, the dot width is 1. The calling of GpxDrawRec(310,
250, 500, 400, 0) will draw a rectangle with top left corner at (310,
250) and bottom right corner at (500, 400) on panning screen.
However, only a horizontal line from (310, 250) to (369, 250) and a
vertical line from (310, 250) to (310, 289) will be seen on the LCD
display screen.

Draw a rectangle with black outline in dot width 3 and fill
pattern mode 1

STATUS ret;

/* set dot width to 3 */
ret = Set Dot Wdth(3);

if (ret '=SYS OK) return ret;

/* set pattern fill node to 1 which is solid fill
*

r{et = SetPatternFill (1, WH TE, TRUE, 1);

if (ret '=SYS OK) return ret;

/* fill a rectangle fromtop left corner at (310,

250) to (500, 400) */
ret = GoxDrawRec(310, 250, 500, 400, 0);

(©,0)

Panning Screen
(369, 250) /

LCD of//
(310, 25

(310, 288)

(50, 50

(500, 400)

Figure 21.22 Screen output

PPSM-GT User Guide PPG-385

afs
Graphic Manipulation Services f‘_mgitﬂln".ﬂ

Code Examples

from Moetarola

In this example, the dot width is 3 and fill Pattern mode is 1. The
calling of GpxDrawRec(310, 250, 500, 400, 0) will fill a rectangle
with top left corner at (309, 249) and bottom right corner at (501,
401) on panning screen. However, only a smaller rectangular area
from (309, 249) to (369, 289) will be seen on the LCD display screen.

Listing 21.21 Draw a circle with black outline
STATUS ret;
/* draw a bl ack outlined circle with center at
(560, 290) and radius 150 */
Gox Set Col or (BLACK) ;
GoxSet Dot Wdt h(1);
GoxSet St yl e(REPLACE_STYLE) ;
ret = GoxDrawCircl e(560, 290, 150);
(0,0)
(50, 50)//' Panning Screen
LCD /
Figure 21.23 Screen output
In this example, the dot width is 1. The calling of GpxDrawCircle(
560, 290, 150) will draw a circle centering at (560, 290) with radius
150. As the circle is drawn outside the LCD display screen, nothing
will be seen on the LCD.
Listing 21.22 Draw an ellipse with black outline

STATUS ret;

PPG-386

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services
frem Motarola Code Examples

/* draw an ellipse with center at (560, 290),
hori zontal |ength 150 and vertical length 100 */
GoxSet Col or (BLACK) ;

GoxSet Dot Wdt h(1) ;
GpxSet St yl e(REPLACE_STYLE) ;

ret = GoxDrawkl | i pse(560, 290, 150, 100);

(0,0)

’ Panning Screen

&~

(50,50) "
LCD

Figure 21.24 Screen output for Example

In this example, the dot width is 1. The calling of GpxDrawEllipse(
560, 290, 150, 100) will draw an ellipse centering at (560, 290) with
the longest distance on y axis from center to border is 100 pixels and
the longest distance on x axis from center to border is 150 pixels.

PPSM-GT User Guide PPG-387

afs
Graphic Manipulation Services f‘_mgitﬂln".ﬂ

Code Examples frem Metarola

(x1,y1)

(x1<x2) and (yl<y2)

(x2,¥2)

(x2,y2)

(x1<x2) and (y1>y2)

N

(x1,y1)

(x1,y1)

(x1>x2) and (y1<y2)

\

(x2,¥2)

(x2,y2)
(x1>x2) and (y1>y2)

J

(x1,y1)
Figure 21.25 Cases of GpxDrawArc
If the dot width is greater than 1, integer truncated (dot width - 1)/2

lines are drawn inside the arc and (dot width)/2 lines drawn
outside the arc.

PPG-388 PPSM-GT User Guide

““Digital DNA

from Moetarola

Graphic Manipulation Services
Code Examples

Listing 21.23

If both fill pattern mode and border mode are set, those area inside
arc which is not covered by the border of the arc will be filled.

If fill pattern is set and border is off, those area inside and on the arc
border will be filled.

Draw a black arc with OR style

STATUS ret;

/* draw an arc from (240, 150) to (100, 100) */
GoxSet Col or (BLACK) ;
GoxSet Dot Wdt h(1);
GoxSet Styl e(OR_STYLE) ;

ret = GoxDrawArc(240, 150, 100, 100);

(0, 0)
(50, 505~ | (100, 100) Panning Screen
e -
(240, [150)

Figure 21.26 Screen output

In this example, the dot width is 1. The calling of GpxDrawArc(100,
100, 50, 50) will draw an arc from (100, 100) to (240, 150) on panning
screen. The arc is actually a quarter of an ellipse centering at (100,
150) with the longest distance of 141 pixels in x axis and the longest
distance of 51 pixels in y axis. The center is determined by the x axis
value of the second point and the y axis value of the first point
which is 100 and 150 respectively.

PPSM-GT User Guide PPG-389

afs
Graphic Manipulation Services f"[ﬁgitﬂln"ﬂ

Code Examples frem Metarola

Listing 21.24 Draw a black arc with EXOR style

/* draw an arc from (100, 100) to (240, 150) */
GoxSet Col or (BLACK) ;
GoxSet Dot Wdt h(1);
GoxSet St yl e(EXOR_STYLE) ;

ret = GoxDrawArc(100, 100, 240, 150);

(0,0)

Panning Screen

&~

R mmig (100. 100)

Figure 21.27 Screen output
In this example, the dot width is 1. As the LCD display screen is all

BLACK and the calling of GpxDrawArc() is in exclusive OR style,
the arc turns out to be WHITE on a black background.

Listing 21.25 Put a bitmap on screen with REPLACE_STYLE

/* put an image on panning screen with top left corner at (0,
0), width 640 and height 480 */

GpxSetStyle(REPLACE_STYLE);

ret = GpxPutRec(&bitmap, 0, 0, 639, 479);

PPG-390 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

frem Motarola Code Examples
(0, 0)
e
I
(50, 50 AWl F Panning Screen
o
LCD C) A5
[. ==
I —
L v &
E"E:u:u il gl ET = 5N
Thiumw Famwso
=T 47 M=

Figure 21.28 Screen output

The calling of GpxPutRec(&bitmap, 0, 0, 639, 479) copies the image
from the memory area pointed to by bitmap onto the panning screen.

Listing 21.26 Save a bitmap

/* save the portion of inmage on panning screen
fromtop left corner at (50, 50, 369, 169), wi dth
320 and hei ght 120 */

ret = GoxSaveRec(&bitmap, 50, 50, 369, 169);

(0,0)

(50, 50) /J’ o

.
[- Panning Screen

J o

HE

LA

|
wg Ml

me:
T Mt T SIS
=

—LELUME FREEwL
FmAsT A WL

Figure 16-1 Saving Image 320 x 120

The calling of GpxSaveRec(&bitmap, 50, 50, 369, 169) will save the
top half of LCD display image into memory area pointed to by
bitmap.

PPSM-GT User Guide PPG-391

afs
Graphic Manipulation Services f“[ﬁgitﬂln"ﬂ

Code Examples

from Moetarola

Listing 21.27

Exchanging a bitmap

Listing 21.28

/* exchange the inage on panning screen with top
| eft corner at (50, 50), width 320 and hei ght 120
to the image in nenory pointed by newmap */

P_U8 pt r newmap;

ret = GoxExchangeRec(ptrnewmap, 50, 50, 369, 169);

This example swaps the image pointed to by ptrnewmap with the
image in the rectangular region from top left corner at (50, 50) to
bottom right corner at (369, 169). After this call, ptrnewmap now
point to the original image of the rectangular region (50, 50) to (369,
169), while the new image that was pointed by ptrnewmap is now
displayed on the rectangular region (50, 50) to (369, 169) on the
panning screen.

Fill a rectangular region with BLACK and OR style

STATUS ret;

/* fill a rectangular area with top |l eft corner at
(300, 240), width 261 and hei ght 161 */

Gox Set Col or (BLACK) ;

GoxSet Styl e(OR_STYLE) ;

ret = GoxFill Rec(300, 240, 560, 400);

(©,0)

(50, 50)7 Panning Screen

LCD ~

(300, 240)

(560, 400)

Figure 21.29 Filling arectangular region

PPG-392

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

frem Motarola Code Examples

This example fills the rectangular region from top left corner at (300,
240) on panning screen with width 261 pixels and height 161 pixels.

Listing 21.29 Inverse a rectangular region

STATUS ret;

/* inverse a rectangul ar area with top | eft corner
at (50, 50, 300, 240) */

ret = GoxlnvRec(50, 50, 300, 240);

(©,0)

Panning Screen

&~

(50, 50

Figure 21.30 Inverting a Rectangle (50,

In this example, the LCD display screen is as shown in Figure 21.5 -
Screen output before the inversion. After inverting the rectangular

region with top left corner at (50, 50, 300, 240) is inverted as shown

above.

Listing 21.30 Display other region of panning screen using
GpxChangeDisplay()

Ul6 x=50, y=50;

/* change the hardware register to display the
rectangul ar on panning screen with top | eft corner
at (50, 50) */

GoxChangeDi spl ay(x, Y);

PPSM-GT User Guide PPG-393

Graphic Manipulation Services

Code Examples

“'Dl italDNA

from Moetarola

Listing 21.31 Display other region of panning screen
Ul6 x=50, y=50;
SCREEN | D newPanl d;
/* set the LCD di splay screen origin to be (50, 50)
on panni ng screen */
GoxSet Di spl ayOri gi n(newPanl d, x, y);
/* change the hardware register to display the
rectangul ar on panning screen with top | eft corner
at (50, 50) */
AppBi ndPanl nf o(appl d, newPanl d) ;
The LCD Display screen will now display the rectangular region of
the panning screen with top left corner at (50, 50).

Listing 21.32 Display the word "rabbit" on the rabbit graphic.

TEXT Rabbi tword[6];

us Goxst orage[1062] ;
/* For pixel 4, ((140-39)*(180-159))*4/

8 */

U32 rabbit;

/* Display the word "RABBI T" on the rabbit

*/

i mage

GoxFi | | Screen(WHI TE)

GoxSet St yl e(REPLACE_STYLE) ;
GoxPut Rec(&r abbi t, 0, 0, 159, 239);
GoxSaveRec(Goxst orage, 38, 158, 140, 180) ;

Rabbltmord[O]—’R,
Rabbi tword[1] =" A" ;
Rabbi tword[2] =" B’ ;
Rabbi tword[3] =" B ;

Rabbi tword[4] =" 1" ;
Rabbi tword[5] =" T ;
for (i=0; i<6;

{

I ++)

PPG-394

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Graphic Manipulation Services

frem Motarola Code Examples

GoxPut Char (Font Get Char Addr (LARGE_NORMAL_FONT,
Rabbi tword[i]), 40+(i*16), 160, LARGE NORMAL_FONT,
16, 20);

}

Listing 21.33 Get LCD display screen width and height

STATUS DrawTextl con(P_U32 areald, Ul6 xSrc,
Ul6 ySrc, Ul6 wi dth, Ul6 hei ght,
Ul6é font, P_TEXT nessage)
{

Ul6 xDest, yDest;

/* Check to see if the coordinates are fall within
the LCD screen */
if ((xSrc <0) || (xDest >=
GoxCet Di splayWdth()) || (ySrc < 0) ||
(yDest >= pxGet Di spl ayHei ght()))
return SYS error;

Listing 21.34 When the hardware cursor status is needed

U8 st at us;

/* get the hardware cursor status */
GpxGet Cur sor St at us(panSc, &st at us);

PPSM-GT User Guide PPG-395

afs
Graphic Manipulation Services f‘_mgitﬂlnuﬂ

Code Examples frem Metarola

PPG-396 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Text Management Services

from Motarcla Text Management Services Fundamentals

22

Text Management Services

Applications must map the text with its properties described in a
text template to an area on the display screen, called the text display
area, before any text can be seen. This chapter describes the set of
text tools provided by PPSM-GT to manage the display of text on
the panning display screen.

PPSM-GT supports 8-bit and 16-bit text data representation which
allows the support of any coded languages. The default is the
support for various font types and sizes of Asian and English
characters display. The low level font driver supports both the
scalable and bitmap font technologies. PPSM-GT provides a set of
default English fonts with size 8 x 10 and 16 x 20. If other fonts are
needed, please contact the ISV.

This chapter is organized into the following main sections:

« Text Management Services Fundamentals

e Programming using Text Management Services

e Summary
e Code Examples

Text Management Services Fundamentals

PPSM-GT text module can handle 8-bit text string, 16-bit text string
and 8-bit/16-bit mixed text string. A 8-bit text string means that 8
bits are used to represent a single characters. User should input the
character bit length carefully when calling text module API to print
text on screen.

PPSM-GT User Guide PPG-397

ats
Text Management Services f“mgitﬂlnuﬁ

Mixed Font

from Moetarola

Mixed Font

Text can be displayed with both ASCII and Asian codes together in
the same message. PPSM-GT allows text template that carry both
font type.

Text Display Area

Text can be displayed anywhere within the panning screen. Text is
displayed starting at a specified location in a row by column format
one character at a time as shown in Figure 22.1.

Text Properties

Text properties describes the layout and appearance of the text to be
displayed on the panning display screen. These text properties
include the position and size of the text display area, the size,
output style and color of the characters and the position of the text
soft cursor within the text template.

Soft cursor

It refers to the position of the next character will be printed on
screen. It is different from hard cursor because soft cursor do not
display on screen.

Sixteen Color Display

Text can be displayed in sixteen different colors. Different sections
of the message could also be display with different colors.

Text Templates

A text template refers to a collection of text properties that describes
the text to be displayed. These text properties include font type, font
size, grey level, output style, coordinates and size of the text
display, and the position of the display soft cursor. These text
templates are independent of the text itself and provide the
flexibility for applications to change the appearance of text in a
collective and efficient manner. Applications can create and delete
the text templates at their discretion on an as needed basis. The soft

PPG-398

PPSM-GT User Guide

““Digital DNA

from Moetarola

Text Management Services
Text Templates

cursor in text is an invisible position indicator showing where the
text should be mapped.

Panning Display Screen Width

A Text Display Area on the Panning Display Screen

Figure 22.1
-
T y-coord
S " coord m O 1
2 Ola |b
[
[}
o
a 2
k)
o
o m ROWS
o
c
c
c
]
a
i m-1

n COLUMNS

In Figure 22.1, the text display area is located at location (X, y) and it
is m rows by n columns in size. This text display area can be moved
around as the application wishes.

PPSM-GT User Guide

PPG-399

ats
Text Management Services f"[ﬁgitﬂl.n"ﬁ

Programming using Text Management Services from Metarala

Programming using Text Management Services

Creating text templates

STATUS A text template needs to be
TxtCreateTmplt(P_TMPLT _ID created before any text can be
pTemplateld) displayed. A unique text

template identifier is returned
from the system for each text
template created. This text
template identifier is used for
future references to the
created text template.

Default setting of text template

These are the setting once a text template is created by
TxtCreateTmplt().

Table 22.1 Text Properties Default Values

Text Properties Default Value
(x,y)-coordinate of the origin (top left (0,0)
corner) of the text display area
Width of text display areain number of 0
characters
Height of text display areain number of 0
characters
Character cursor position relative to ori- 0
gin of text display area
Font type SMALL_NORMAL_FONT
Font width 8
Font height 10
Text color BLACK
Text output style REPLACE_STYLE

PPG-400 PPSM-GT User Guide

““Digital DNA

from Moetarola

Text Management Services
Deleting text templates

Deleting text templates

STATUS
TxtDeleteTmplt(TMPLT_ID
templateld)

When a text template is not
needed anymore, applications
should delete it to free up
space that is being used to
store the text properties. The
text template identifier given
to TxtDeleteTmplt() is used to
specify which text template to
be deleted.

Setting Up the Text template

STATUS
TxtSetupTmplt(TMPLT _ID
templateld, FONT_TYPE
fontType, STYLE outputStyle,
COLOR fontColor, U16 xPos,
U16 yPos, U16 width, U16
height)

The text template is a
rectangular layout that reside
within the boundary of the
panning screen. The layout is
anchored by the xy-coordinate
specified by xPos & yPos of
the upper left corner, and the
width and height of the area in
number of characters.

The size of the text display
area in number of pixels will
vary according to the size of
the selected font type. A 16-bit
per character text template
have twice the area size as
compared to a 8-bit character
text template given the same
values of width and height.

The output style is one of the 5
style: (REPLACE_STYLE,
AND_STYLE, OR_STYLE,
EXOR_STYLE, and
INVERSE_STYLE).

PPSM-GT User Guide

PPG-401

Text Management Services
Setting Template Size

““Digital DNA

from Moetarola

Setting Template Size

STATUS
TxtSetTmpltSize(TMPLT_ID
templateld, U16 width, U16
height)

Set the size of a text template.

Setting Template Origin

STATUS
TxtSetTmpltOrigin(TMPLT_ID
templateld, U16 xSrc, U16 ySrc)

Put a text template to a
specific location on panning
screen.

Setting Text Output Font Color

STATUS
TxtSetFontColor(TMPLT _ID
templateld, COLOR fontColor)

The text color can be set to any
of the color that the system
support. The new color takes
effect on subsequent text
mapping on that text
template.

Setting Text Output Font Style

STATUS
TxtSetFontStyle(TMPLT_ID
templateld, STYLE fontStyle)

The output style defines an
operation between the text
bitmap and the existing image
at the same display location.
Five output styles are
supported. The text bitmap
can replace, OR with, AND
with, exclusive OR with, or be
inverted to the existing image
as shown in Table 22.2

Table 22.2 Supported Output Styles
Output Styles Operation
REPLACE_STYLE Replace
OR STYLE Or with
AND STYLE And with

PPG-402 PPSM-GT User Guide

““Digital DNA

from Moetarola

Text Management Services
Setting Font Type

Table 22.3

NOTE

Output Styles

Operation

EXOR_STYLE
INVERSE_STYLE

Exclusive-Or with
Invert and replace

Setting Font Type

STATUS
TxtSetFontType(TMPLT_ID
templateld, FONT_TYPE
fontType)

Four default font types are
shipped with PPSM-GT. They
are listed in the below table.
Small Normal and Small Italic
are 8 x 10 pixels English fonts
as shown in Table 22.3

Supported Font Typesand Sizes

Output Styles

Operation

SMIALL_NORMAL_FONT
SMALL_ITALIC_FONT
LARGE_NORMAL_FONT
LARGE_ITALIC_FONT

8 x 10 English Normal
8 x 10 English Italic
16 x 20 English Normal
16 x 20 English Italic

Asian fonts are supplied by third parties, but can be integrated with

PPSM-GT’s device driver.

Setting Line Spacing

STATUS
TxtSetLineWt(TMPLT_ID
templateld, U16 lineWt)

Set the line width in a text
template. It must be larger
than the height of the
characters to be printed.

PPSM-GT User Guide

PPG-403

Text Management Services
Text Mapping

““Digital DNA

from Moetarola

Text Mapping

STATUS TxtMap(TMPLT_ID
templateld, U8 bitLen, P_TEXT
buffer, U16 size)

Mapping functions are
provided for applications to
display text on the panning
display screen area. The
display of text are tied to a text
template, extra characters are
truncated.

The given text is displayed
starting at the current
character cursor position of
the text display area and with
text properties of the text
template.

There is no word-wrap
function. Text is treated as
individual characters, i.e.
characters of a word that
extends beyond a row will
appear on the next row of the
text display area. Text
displaying stops when the
character cursor position is at
the end of the text display
area, when all characters
supplied by the application
are mapped, or when numChar
characters are mapped. After
displaying characters on
panning screen, character
cursor position will be
advanced to the next available
position, or (the end of the
template + 1) if the last
character displayed is at the
end of the template. Any out
standing characters are going
to be ignored without
returning any error.

PPG-404 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Text Management Services

frem Metarola Removing text

Removing text

STATUS TxtUnmap(TMPLT_ID The unmapping of text means
templateld) clearing the entire text display
area in the text template.

Text character cursor position

The character cursor position determines where to print the
character when next character is mapped to the text template.
This position is relative to the origin of the text display area
specified in the given text template. The range of valid cursor
positions is zero through one less than the size of the text
display area in number of characters.

In Figure 22.1, the range of valid cursor positions is zero
through (m * n - 1), and the current cursor position is 3 after
“abc” is displayed

Setting the character cursor position

STATUS Setting the character cursor
TxtSetCurPos(TMPLT _ID position of the text display
templateld, U16 cursor) area of the specified text

template to the given value.
Subsequent displaying of text
start at this new character
cursor position.

Setting the character cursor using XY
coordinates

STATUS Setting the character cursor X
TxtSetCurXY(TMPLT_ID Y coordinates of the text
templateld, U16 xPos, U16 yPos) | display area of the specified
text template to the given
value. Subsequent displaying
of text start at this new cursor
coordinates.

PPSM-GT User Guide PPG-405

ats
Text Management Services f“mgitﬂlnuﬁ

Reading the character cursor position from Metarcla

Reading the character cursor position

STATUS Applications can inquire the
TxtReadCurPos(TMPLT_ID current character cursor
templateld, P_U16 cursor) position of a text template.

The returned character cursor
position is where text will be
displayed next.

PPG-406 PPSM-GT User Guide

““Digital DNA

from Moetarola

Text Management Services
Printing Text message

Printing Text message

STATUS
TxtPrintf(TMPLT _I
D templateld, P_U8
pFormatsStr,
P_VOID argList)

Display the input string according to the
format specified in the format string
pFormatStr. The format string consist of
one or several format unit. Each format
unit can consist of the following format
elements: pre-padding flag, width,
precision and type.

%[Flags][Width][.Precision][Type]
— Flags: -, #, 0 or Blank space

— Width: Minimum characters
must be used to print value

— Precision: Minimum no. of
decimal places to be printed

- Type:d,u,c,C,e E f 5, S, X, X

— d: Signed decimal

— u: Unsigned decimal

— ¢ :Character in 8-bit format

— C: Character in 16-bit format

— e: Exponential Floating-pointer
integer

— E: Exponential Floating-pointer
integer

— f: Floating-pointer integer

— s: String in 8-bit format

— S: String is in 16-bit format

— X: Hexadecimal integer

— X: Hexadecimal integer

— Escape characters

-\n: new line

- \t: 4 spaces TAB
-\": double quote
-\": single quote
-\\: backslash

PPSM-GT User Guide

PPG—-407

ats
Text Management Services f‘_mgitﬂlnuﬁ

Summary from Muotarola

Summary

Text management services provide a tools and template for
handling displaying of text using the PPSM-GT. Text display with
PPSM-GT works on a template basis such that a text template is first
create before it could be used for displaying the text. This template
could then be reused when displaying other texts. The advantage of
such a format is that texts are stored in the raw format and
appearances changes with the template used.

Code Examples

Listing 22.1 Create a text template

TWPLT ID tld; /* textld for the text tenplate */

if(TxtCreateTnplt (& 1d) !'= SYS OK)
return SYS_ERR,

Listing 22.2 Delete a text template

/* Delete the text when it’s no | onger needed */
i f(TxtDeleteTnplt(tld) !'= SYS K)
return SYS_ERR,

Listing 22.3 Setting text properties

TWMPLT_ID tld;/* text tenplate id */
/* text to be displayed */
TEXTmoto[] = {"M, "0, 't’, "0, 'r’, "0, '"I", "a, 0};
/* this is toinitialize every ASCI|I character in
2-byte format with high byte being zero */

/* create a text tenplate */

PPG-408 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Text Management Services

frem Motarola Code Examples

Text Create(&tld);

/* subsequent text displayed with text tenplate tid will be small
normal font, OR output style, white in color, located at (10, 20),
| ength of noto characters wi de(64 pixels) and 1 character high(10
pi xel s), starting at text cursor position zero. */

Txt Set Font Type(tld, SMALL_ NORMAL_FONT);

Txt Set Font Styl e(tld, OR _STYLE);

Txt Set Font Col or (t1d, VH TE);

TxtSet TmpltOrigin(tlid, 10, 20);

Txt Set Tnpl t Si ze(tl1d, 64, 10);

Txt Set Cur Pos(tld, 0);

/* Map the 16-bit text string to the text tenplate */
Txt Map(tld, SIXTEEN BIT, (P_TEXT)noto, 8):

/* del ete unused text tenplate */
TxtDel eteTnplt(tld);

Listing 22.4 Display text on text display area

/*
* Prints out nessage(a row only) on the screen start at (xSrc,
ySrc)
*/
voi d Typing(U3 font, U3 style, U8 greylev, Ul6 xSrc, Ul6 ySrc, U8
bitLen, TEXT str[])
{
Ul6 | en;
TMPLT_ID tld;

/* <create the text tenplate */
TxtCreateTnplt(&t1d);

/* find out the length of the nessage and print it out */

i f(bitLen == 8)

PPSM-GT User Guide PPG-409

ats
Text Management Services f‘_mgitﬂlnuﬁ

Code Examples frem Metarola

{
if (len = strlen((P_U8)str))
{
Txt SetupTnplt(tlid, font, style, greylev, xSrc, ySrc,
len, 1);
Txt Map(tld, EIGHT_BIT, (P_U8)str, len, 0);
}
}
el se
{
if (len = Strlen(str))
{
Txt SetupTnplt(tlid, font, style, greylev, xSrc, ySrc,
len, 1);
Txt Map(tld, SIXTEEN BIT, (P_TEXT)str, len, 0);
}
}

Listing 22.5 Set character cursor position

TMPLT ID tld;

/* Clear the text on the display and reset cursor */
Txt Unmap(tld);
Txt Set Cur Pos(tld, 0);

Listing 22.6 Set and read the character cursor position

TWPLT ID tld;/* text tenplate id */

TEXTnoto[] = {'M, "0, 't’, "o, 'r’, 0, "I, "a, 0};/* text
to be displayed */

Ul6l en;/* # chars to be displayed */

Ul6cur Pos;/* cursor position */

/* create a text tenplate */

PPG-410 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Text Management Services

frem Motarola Code Examples

Txt CreateTnpl t (& 1d);

/* calculate # chars to be displayed */
len = Strlen(noto);

/* set up text properties. */
Txt SetupTnplt (tld, SNF, REPLACE STYLE, BLACK 0, 200,19,1);

/* set current character cursor position to beginning of 2nd row
in the text tenplate */
Txt Set Cursor(tld, len);

[* display “Motorola” using the modified text properties */
TxtMap(tld, (P_TEXT)moto, len);

[* read current character cursor position (should be at beginning
of 3rd row in this case) */
TxtReadCurPos(tld, &curPos);

Listing 22.7 Example for TxtPrintf()

char str[]="hello";
Ul6i=123;
float f = 4.567;
TxtPrintf(tld, "abc %s, %d, %4.2f", str, i, f);

[* The output is:
abc Hello, 123, 4.57*/

PPSM-GT User Guide PPG-411

ats
Text Management Services f‘_mgitﬂl.DHA

Code Examples frem Metarola

PPG-412 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Software Keyboard services

from Motarcla Soft Keyboard Fundamental

23

Software Keyboard
services

PPSM supports two types of input methods for applications to
receive character input from the user. The chapter provides
information on one of the method, the soft keyboard services. The
soft keyboard supported by PPSM-GT provides both a default
version and customized version.

This chapter is organised into the following sections:
= Soft Keyboard Fundamental

e Programming using Soft Keyboard Services

Soft Keyboard Fundamental

The soft keyboard function like any standard keyboard except the
keyboard is generated through software routine. Data entries are
made through the key presses and each key pressed will generate
an event message to the target task. The target task is the task that
owns the keyboard and all key presses will be communicated to that
task.

A default QWERTY soft keyboard with key size of 15x15 pixels can
be opened at any position within the panning screen. There are
three soft keyboard layouts: one for upper case letters(refer to Figure
23.1), one for lower case letters (refer to Figure 23.2), and one for
numbers and symbols (refer to Figure 23.3).

PPSM-GT User Guide PPG-413

ats
Software Keyboard services f"mgitﬂln"ﬂ

Soft Keyboard Fundamental frem Metarola

The 3 layouts are offered together in the default soft keyboard. The
up and down arrows keys are for switching between the upper and
lower case letters layouts, and the symbol “!@$” switch in the
numbers and symbols layout.

Figure 23.1 Upper Case Soft Keyboard Layout

QW E|IRT|¥U|I|OP
AlS|D|F|GIH|I|K| L|€
IIG\“BHM:(J
rath > .
Figure 23.2 Lower Case Soft Keyboard Layout
glw|e|r|(t|yiolil|o|p
als|d|f | glhlj|lkl|€
Plz|x|c|v|h{n|m|,
as i
Figure 23.3 Symbolic Soft Keyboard Layout
112131456 7[B]9]0
V] Fe (0]~ (&) *+| ()
T+ -[=]]
\Ifﬂ. S LLATES] I O I

As an alternative, an user may define its own keyboard with
required number of column and row of keys and size of each key in
number of pixels. User can define the return code of each key and
the bitmap of the soft keyboard.

PPG-414 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Software Keyboard services

from Motarcla Programming using Soft Keyboard Services

Programming using Soft Keyboard Services

Opening Soft KeyBoard

PPSM GT provides 3 ways to open a soft, or pseudo, keyboard: the
Flex way, the Quick way and the Default way.

= The Flex way involve doing each step of setting up a soft
keyboard separately. The keyboard is created using APIs such as
SkyCreate(), SkySetOrigin(), SkySetKeySize(), SkySetKeyMap(
), SkyBind () and SkyOpen(). This method of creation offers
flexibility.

= The Quick way do all the functions with one API; SkyOpenKB().
This method offers a quick way to open up a keyboard with
flexibility of customising the keyboard.

= The default way, is the quickest way of open a default keyboard
as shown in Figure 23.1 using the SkyOpenDefKB () API.

For all the 3 ways, when the soft keyboard is opened, PPSM GT will
save the display area covered by the soft keyboard and monitors the
input keys automatically. The soft keyboard is now ready for user’s
input.

When the user presses a key on the soft keyboard, the pre-defined
ASCII code for that key is returned to the calling application by way
of event when the application calls EvtCheck() or EvtGet(). One
EVT_SKY_KEY interrupt message is generated for each key pressed
by the user. The ASCII code returned is of type TEXT, i.e. 2-byte
format with zero extended in high byte.

Creating the keyboard the Flex way

STATUS SkyCreate(P_SKY_ID Create softkey. Allocate
pSkyld) memory for softkey structure.
The softkey is not displayed
on screen after created, user
should configure the softkey
properly by the following

APls.
STATUS SkySetOrigin(SKY_ID | Set the top-left hand corner of
skyld, U16 xPos, U16 yPos) the softkey.

PPSM-GT User Guide PPG-415

Software Keyboard services
Opening the keyboard the Quick way

““Digital DNA

from Moetarola

STATUS SkySetKeySize(
SKY_ID skyld, U16 keyWt, U16
keyHt)

STATUS SkySetKeyMap(
SKY_ID skyld, P_U16 keyMap,

P_U8 keyBmp, U16 bmpWt, U16

bmpHTt)

STATUS SkyBind(SKY_ID
skyld, APP_ID appld)

STATUS SkyOpen(SKY_ID
skyld)

Set the width and height of
each key on the softkey in
number of pixels.

Set the keycode mapping and
the bitmap of a softkey. The
keyMap is a string of
keycode, for example,
"QWERTYUIOP...". The
keyBmp is a pointer to the
bitmap of the softkey. bmpWt
and bmpHTt is the width and
height of the softkey.

Bind the softkey to an
application. The softkey
bitmap is put on the panning
screen of that application.
Open a softkey. Store

background area then put the
softkey bitmap on that area.

Opening the keyboard the Quick way

STATUS
SkyOpenKB(P_SKY_ID pSkyld,
U16 xPos, U16 yPos, U16
keyWidth, U16 keyHeight, U16
numcCol, U16 numRow, P_U16
keyMap, P_U8 bitmap)

Open a self-defined softkey
with the given configuration.

Opening the keyboard the Default way

STATUS
SkyOpenDefKB(P_SKY_ID
pSkyld, U16 xPos, U16 yPos)

Open a default softkey at the
given position.

PPG-416

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Software Keyboard services

from Metorola Auto-Key-Repeat

Auto-Key-Repeat

STATUS = Set the auto repeat
SkySetAutoRepeat(SKY_ID duration of softkey.

skyld, U16 beginTime, U16 - Continually pressing a key
repeatTime) would result in auto-key-

repeat. The time between
the first and second
returned key can be set by
the SkySetAutoRepeat()
API. Two parameters are
set using this API;

« BeginTime : Time between
PEN touch and first repeat

« RepeatTime : duration
between each repeat

= By default, the auto key
repeat is enabled. The
beginTime is 800
milliseconds and the
repeatTime is 300
milliseconds.

Terminating Soft Keyboard Character Input

One API SkyClose() is used to close a softkey which is opened by
either SkyOpen(), SkyOpenKB(), or SkyOpenDefKB().

PPSM GT will restore the display area that was covered by the soft
keyboard automatically when the softkey is closed.

STATUS SkyClose(SKY_ID = Close a softkey as specified
skyld) by the skyld.

= Clear softkey bitmap and
put back the background
area bitmap..

PPSM-GT User Guide PPG-417

ats
Software Keyboard services f“[ﬁgitﬂln"ﬂ

Summary from Muotarola

Summary

PPSM-GT provides a default soft keybroad with three soft keyboard
layouts: one for upper case letters(refer to Figure 23.1), one for lower
case letters (refer to Figure 23.2), and one for numbers and symbols
(refer to Figure 23.3). To use the default layouts or build customized
versions of the keyboards, there are 3 ways provided; the Flex,
Quick, and Default ways.

Code Examples

Listing 23.1 Open default soft keyboard for input

SKY_| Dkeyl d;

/* open default soft keyboard for input */
if (SkyOpenDef KB(&keyl d, KEYBD X, KEYBDY)
= SYS K)
return (SYS_ERROR);

Listing 23.2 Open self defined soft keyboard for input

/* 7, 8 9, 4, 5, 6, 1, 2, 3, *, 0, # */
static const Ul6 keyMap[] = {55, 56, 57 ,52, 53,
54, 49, 50, 51, 42, 48, 35};

/* open user specified soft keyboard for input
i ke bel ow */
/* with 10x10 key size and 3 col. x 4 rows. */
/* 789 */
/* 456 */
/[* 123 */
[* * 0 # */
i f (SkyOpenKB(&NUMKBI D, KEYBD X, KEYBD Y, 10, 10,
3, 4, (P_U16)keyMap, bitMap) !'= SYS K)
return (SYS_ERROR);

PPG-418 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Pen Input Handling Services

from Motarcla Pen Input Handling Fundamental

24

Pen Input Handling
Services

The Pen input handling services are for handling inputs from the
touch screen panel. This chapter covers information on the type of
input area supported by PPSM-GT and only the way to handle
them. Handwriting recognition input pad is a special type of input
areas and is not covered in this chapter but in the Handwriting
recognition chapter.

This chapter is organised into the following:
= Pen Input Handling Fundamental

= Programming using Pen Input Handling Services
e Summary

Pen Input Handling Fundamental

To understand the pen input handling service, it is important to be
be familiar with some of the basic terms used in pen input handling.
Table 24.1 shows the basic terminology used in pen input handling
services.

PPSM-GT User Guide PPG-419

Pen Input Handling Services
Pen Input Handling Fundamental

““Digital DNA

from Moetarola

Table 24.1 Pen Handling Terminology

Term

Description

Active area

Touch panel
coordinate

Display coordinate

Icon area

Input area

Continuous input

Stroke input

Area on the touch screen panel that takes
movements when touched.

The X, y coordinate values directly come
from touch panel controller.

The x, y coordinate values respects to
display screen in number of pixels.

Active area that takes only pen up, pen
down, pen drag in and out inputs only.
Any pen movement within this area will
not result in any responses. No echoing
will be implemented. Each action like pen
up, pen down, pen drag in and pen drag
out will have separate event to be sent to
the target task

Input area are active area that takes all the
pen movements within the area. PPSM-
GT supports input area with continuous
input, stroke input and confined input

Continuous stream of x, y coordinates
between a pair of pen-down and pen-up.

Input area where each sampling point
will be sent to the target task with an
individual event. Each action like pen up,
pen down, pen drag in and pen drag out
will have separate event to be sent to the
target task

Input area where each stroke of sampling
points will be sent at once to the target
task at pen up or pen drag out within an
event. Each action like pen up, pen down,
pen drag in and pen drag out will have
separate event to be sent to the target task

PPG-420 PPSM-GT User Guide

““Digital DNA

from Moetarola

Pen Input Handling Services
Input Context

Figure 24.1

Term Description

Confined input It’s similar to the stroke input except that
the stroke of sampling time will be sent at
once to the target task in pen up only.
Whenever the pen drags out of the input
area, it will be treated as writing on the
boundary. So the pen outside the input
area will be treated as still within the area
as Figure 24.1

Echo mode Echo mode is only available in input area.
If it’s TRUE, whenever pen is touching
that area, points will be drawn on LCD. If
it's FALSE, nothing will be drawn on
LCD even pen is touching the panel.

Confined input active area

The pen draws the line in left diagram and the points returned will
be a line starting from A towards B along the boundary. Each action
like pen up and pen down will have separate event to be sent to the
target task. Pen drag in and pen drag out will have no event sent to
the target task

Input Context

Input contexts are memory buffer that store pen input time-out,
sampling rate, pen size, pen color, active area list, and task that is
bound to the input context.

PPSM-GT User Guide PPG-421

als
Pen Input Handling Services f"[ﬁgitﬂl.n"ﬁ

Active Area from Metorola
The input context data structure shown in Table 24.2 illustrate that
input context setup the template for the pen input data.

Table 24.2 Input Context Data Structure

Descriptions

Input Context Identifier

Application identifier where this input context is bound to
Task identifier where event will be sent

Pen input time-out start counting in pen up

Pen sampling rate in number of samples per second

Pen echoing size in number of pixels

Pen echoing color

Active area list

= Pen Input Time-out controls the time-out period between pen up
and the next pen down. This parameter is used by PPSM GT to
determine whether, the input has been completed especially for
hand writing recognition, where the input completed event
needs to be sent to the hand writing recognition engine for
recognition.

= Sampling rate determines the number of samples required per
second.

Active Area

Active area provides an easy method for applications to receive pen
input samples from the touch panel without the need to monitor the
hardware constantly. PPSM GT uses interrupt to perform pen
sampling, maximizing processor’s utilization.

An active area is defined as a rectangular region of the touch panel
where an event will be sent out by the system to the target task. The
target task is bound to the input context before adding the input
context to the application’s input context list. An example of an
active area is an icon, an action button, scratch pad or drawing area.

Active areas are only "active" when the input context containing the
active area is bound to the current application. To deactivate active

PPG—422

PPSM-GT User Guide

““Digital DNA

from Moetarola

Pen Input Handling Services
Overlapping Active Area in different IC

Figure 24.2

areas, they need to be removed from the input context or the whole
input context containing the active area is removed from the input
context list in the current application.

Overlapping Active Area in different IC

Overlapping active area in different IC

Application IC list

Active Area /J Input Context B > Task B
AreaA » Input Context A [—~——] Tak A
Input Context C
AreaB \A Task C
Input Context D \
. Task D

When active areas from different ICs are overlapping, then which
task will receive the event informing the touch of active area will
depend on the touched area position in input context and the
position of the input context in the input context list of the current
application. Figure 24.2 provides the illustration. Each active area
belong to the different IC that are stored in the application’s IC’s list
as shown.

« [farea A is touched, then task A will receive the event as the area
is not overlapped.

= |f area B is touched, as it is an overlapped area, then task B will
receive the event as it’s position on the IC’s list is higher than
task A. Therefore, the position in the IC’s list determines the
priority of the task to receive the event when an overlapped
active area is touched.

= When AppMovelCToTop() is called, it moves the specified IC to
the top of the IC list hence making the specified IC the highest
priority of the list.

PPSM-GT User Guide PPG-423

als
Pen Input Handling Services f‘_mgitﬂlnuﬁ

Overlapping Active Area in Same IC from Muotarola

Figure 24.3

Overlapping Active Area in Same IC

Overlapping active area in same IC

Active area list

Active Area Active Area X Id

Active AreaY Id

Active Area U Id

Active AreaK Id

When active areas in the same IC are overlapping, then which active
area Id will be sent to the task will depend on the position of the
active area id. in the active area list of the input context. Figure 24.3
provides the illustration. Each active area has a different id. that is
stored in the active area list as shown.

e |[fareaY is touched, then active area Y’s id. will be sent as the

area is not overlapped.

If area X is touched, as it is an overlapped area, then active area
X’s id will be sent instead of Y as it’s position on the active area
list is higher than task Y. Therefore, the position in the active
area list determines the priority of theactive area Id to be sent
when an overlapped active area is touched.

PenBringAreaBack(), PenBringAreaBackward(),
PenBringAreaForward(), PenBringAreaFront(),
PenMoveAreaToTop() are APIs provided for manipulating the
active areas position in the active area link list. Therefore, they
could be used to priortize the active area under active area
overlapping situation.

Whenever an active area is added to the input context, it will be
put in the top position in the active area list inside the input
context.

PPG-424

PPSM-GT User Guide

als
-i-mgitﬂlnﬂﬂ Pen Input Handling Services

frem Metarola Type of Active Area

Type of Active Area

Figure 24.4 IDifferent type of Pen Input

ICON_TOUCH and ICON_PEN_UP and
INPUT_TOUCH INPUT_PEN_UP

ICON_DRAG_UP and INPUT_DRAG_UP

There are two types of active areas, icon area and input area. Input
area types have three different modes of operation.

Type Mode

ICON_AREA N/A Icon area has only one mode

PPSM-GT User Guide PPG-425

als
Pen Input Handling Services f"[ﬁgitﬂl.n"ﬁ

Icon Area

from Moetarola

Type Mode
INPUT_AREA | STROKE_MODE Stroke input mode
CONTINUOUS _MODE | Pen position sampling
mode
CONFINED_MODE Strokes confined within
the area
Icon Area

Icon area is for the purpose of selection only. When an icon area is
pressed, either from a pen-down or drag in from another area on the
touch panel, PPSM-GT will send an event to the target task that is
on the input context containing the active area identifier.

Upon release, either by pen-up or drag out of the area into another
part of the touch panel, another event will be sent to the target task
to notify of the action.

This type of area is designed for buttons and selection icons.

Input Area

Input area is an area where writing or drawing is performed. Once
defined, PPSM will monitor the area with the given pen input
characteristics such as sampling rate, pen echoing and pen position
sampling. Pen echoing is programmable. Three modes of operation
are available for this type of area, STROKE, CONFINED or
CONTINUOUS.

Stroke Mode

Drawing on STROKE type of input area will produce a list of the x
and y coordinate integers to the target task at the end of the drawing
input sequence, usually with a pen-up or drag out. This list consists
of all points of that single stroke from the pen-input device. When
the pen leaves the active area, or pen-up is detected, then the stroke
data ends and an event will be sent to the target task.

PPG-426

PPSM-GT User Guide

““Digital DNA

from Moetarola

Pen Input Handling Services
Input Area

Confined Mode

CONFINED mode is very much like STROKE mode excepts that
when the pen input moves out of the defined active area, the
coordinates for those points outside the region are truncated to the
value defined by the boundary of the active area. This means a
stroke will not be broken until pen-up is detected. SO no pen drag
out nor pen drag will be sent to the target task. The pen will always
be within the active area once it’s touched or dragged in. On event
will be sent to the target task with the whole stroke data upon pen

up.
Continuous Mode

Drawing on CONTINUOUS type of input area will continuously
produce individual x and y coordinates to the target task as the pen
moves across the pen input panel. With this type of input, event is
generated for each individual point. Developers using this type of
area must ensure the events are acknowledged as their number can
be very significant.

PPSM-GT User Guide PPG-427

als
Pen Input Handling Services f"[ﬁgitﬂl.n"ﬁ

Relationship between active area, input context, task and application from Metorola

Relationship between active area, input
context, task and application

Figure 24.5 Relationship active area, IC, and tasks

Input Context

[
L [
m ' 4/ Active Area

Task

L egend

>

Many to One

Figure 24.5 illustrates the relationship of active area, input context
and tasks. One input context could have many active areas but the
active area can only belong to one input context.

One task can also have many input contexts such that different type
of input input areas could be found in the same task. However, each
input context could only be bound to one task at any one time. This
relationship could be changed with PenBindTaskTolC() API that
binds the specified task to the input context.

Input pad(for Handwriting recognition)

It is a task with specified priority. It will get the points when the pen
is touching the input pad area. Then the data will be sent to the
handwriting recognition engine from third party vendor. When the
pen is up or the pen is moved to other active area or other input
pad, the handwriting recognition engine will start to recognize the
word. The candidates generated in the handwriting recognition task
will be sent to the task creating this input pad.

PPG-428 PPSM-GT User Guide

““Digital DNA

Pen Input Handling Services

from Motarcla Programming using Pen Input Handling Services

Programming using Pen Input Handling Services

The APIs in the pen input handling services are structured into 3
main areas: Input context manipulation, Active area control and

Display and general setup.

Creating Input Context

STATUS PenCreatelC(P_IC_ID
pIC)

Input contexts controls the
input properties for the
system. They work with
application and have to be
created in order for the system
to receive input.
PenCreatelC() creates and
allocates memory for input
context, and return
ERR_MEM_NO for invalid
memory pointer or no
memory available or SYS_OK
for successful operation

PPSM-GT User Guide

PPG—-429

Pen Input Handling Services

Initializing Input Context

““Digital DNA

from Moetarola

Initializing Input Context

STATUS PenlInitIC(IC_ID icld,
TASK_ID taskld, TICK
peninputTimeout, PEN_RATE
samplingRate, U8 iconScan, U8
penSize, COLOR pencColor)

The Pen Init() will initiate and
set up the pen input handling
data structure. The following

are the options:

— Input Context Id is
the IC for the input
context

— Task id. for the task
that will receive the
message for any
action happens
inside the active
area.

< Pen input time-out
« Pen sampling rate

— PEN_4HZ

— PEN_8HZ

— PEN_16HZ

- PEN_32HZ

— PEN_64HZ

- PEN_128HZ

— PEN_256HZ

— PEN_512HZ.
= Pen echo size in pixel
= Pen echo color
= Return

- ERR_MEM_NO for
invalid memory
pointer/no memory
available or

— SYS_OK for
successful operation

PPG-430

PPSM-GT User Guide

““Digital DNA

from Moetarola

Pen Input Handling Services
Modifying Pen Input Parameter

Modifying Pen Input Parameter

PenBindTaskTolC(), PenSetinputTimeout(), PenSetPenColor(),
Pen SetPenSize(), PenSetEchoMode(), and PenSetSamplingRate()
are APIs provided to increase the flexibility of modifying the input
context without deleting and recreating the IC. PenBindTaskTolC()
offers further flexibility for task to use and reuse IC when necessary.
However, the rule of one IC to one task at any one time have to be

observed.

STATUS
PenBindTaskTolC(TASK_ID
taskld, IC_ID icld)

STATUS

PenSetlnputTimeout(IC_IDicld,

TICK time)

PenBindTaskTolC() adds the
task id. into the input context
so those event for this input
context will be sent to the
specific task, and

Return

— ERR_APP_TASK_ID
for invalid task id,

- ERR_APP_IC_ID
for invalid input
context id, and

— SYS_OK for
successful operation

PenSetInputTimeout() sets
the pen input time-out for the
specific input context, and
Return

- ERR_APP_IC_ID
for invalid input
context id, or

— SYS_OK for
successful operation

PPSM-GT User Guide

PPG—431

Pen Input Handling Services
Modifying Pen Input Parameter

““Digital DNA

from Moetarola

STATUS PenSetPenColor(IC_ID
icld, COLOR penColor)

STATUS
PenSetEchoMode(AREA _ID
areald, U8 echoMode)

PenSetPenColor() sets the pen
echo color for the specific
input context, and

Return

- ERR_APP_IC_ID
for invalid input
context Id or

- SYS_OK for
successful
operation.

PenSetEchoMode() sets the
pen echo mode of the active
area.

Return

- ERR_PEN_AREA ID
for invalid active
area id, or

— SYS_OK for
successful operation

PPG-432 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Pen Input Handling Services

frem Metarola Modifying Pen Input Parameter

STATUS PenSetPenSize(IC_ID Pen SetPenSize() sets the pen
icld, U8 penSize) echo size in pixel for the
specific input context, and
Return

- ERR_APP_IC_ID
for invalid input
context Id or

— SYS_OK for
successful
operation.

STATUS PenSetSamplingRate() sets
PenSetSamplingRate(IC_ID the pen sampling rate for the
icld, PEN_RATE rate) specific input context to:

— PEN_4HZ

— PEN_8HZ

— PEN_16HZ
— PEN_32HZ
— PEN_64HZ
— PEN_128HZ
— PEN_256HZ

— PEN_512HZ.
Return

- ERR_APP_IC ID
for invalid input
context Id or

— SYS_OK for
successful
operation.

PPSM-GT User Guide PPG-433

Pen Input Handling Services
Creating Active area

““Digital DNA

from Moetarola

Creating Active area

STATUS
PenCreateArea(P_AREA_ID
pAreald)

Active areas are area on the
touch panel that are setup to
receive input. They work with
input context and are
specified the type of input to
be received.

PenCreateArea() allocates the
memory for active area and
return the active area id. The
error message ERR_MEM_NO
Is returned for invalid
memory pointer or no
memory available or SYS_ OK
for successful operation.
Active area will not be active
after creation unless it’s added
to the input context which is
inside the input context list in
current application.

PPG-434 PPSM-GT User Guide

““Digital DNA

from Moetarola

Pen Input Handling Services
Initializing active area

Initializing active area

STATUS PenlnitArea(AREA_ID

areald, S16 xSrc, S16 ySrc, S16
xDest, S16 yDest, U8 type, U8
mode, U8 panPosFlag, U8
echoMode)

PenlnitArea() will set up the
created active area ready to be
used as followed:

e areald : Active area to
initialize

= XxSrc: Top left x coordinate

= ySrc: Top left y coordinate

xDest : Bottom right x
coordinate

e yDest : Bottom right y
coordinate

- type :ICON_AREA,
INPUT_AREA or
KEY_AREA

e mode :
CONTINUOUS MODE,
STROKE_MODE or
CONFINED_MODE

= panPosFlag : TRUE(use
panning screen coordinate
for the active area),
FALSE(use LCD display
coordinate for the active
area).

= echoMode : TRUE echo
input else no echo

e Return

- ERR_PEN_AREA ID
for invalid active
area id.or

— SYS_OK for
successful
operation.

It’'s recommended not to use panning screen coordinate in confined
area as the returned pen coordinate will always be LCD display

coordinate.

PPSM-GT User Guide

PPG-435

als
Pen Input Handling Services f“[ﬁgitﬂlﬂ"ﬁ

Adding Pen Input Area To IC from Metarala

Adding Pen Input Area To IC

STATUS PenAddAreaTolC() adds an
PenAddAreaTolC(IC_ID icld, active area to an input context,
AREA _ID areald) and return ERR_APP_IC_ID

for invalid input context id.
ERR_PEN_AREA_ID for
invalid active area id.
ERR_APP_AREA for active
area already added to other
input context, and SYS_OK for
successful operation

Removing Pen Input Area From IC

STATUS PenRemoveAreaFromIC()
PenRemoveAreaFromIC(AREA | API allow the removing of
_ID areald) active area from the IC so that

when active area is not
required for any situation,
they could be suspended and
not deleted, i.e it does not free
up the memory.

This API will eliminate the
need to delete and recreate
area when needed. To use the
active are again use
PenAddAreaTolC().

Return

- ERR_APP_IC_ID
for invalid input
context or

- SYS_OK for
successful operation

PPG-436 PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Pen Input Handling Services

from Moetarola

Modifying Active Area parameters

PenSetAreaMode(), PenSetAreaPos(), and PenSetAreaType() are
APIs for modifying the parameters in the active area data structure.
They are provided to eliminate the need to delete and recreate the
active if there is a change in position, type or mode. The same active
area could be reused by modifying the affected parameters with the

following APIs:
STATUS PenSetAreaMode() sets the
PenSetAreaMode(AREA_ID mode into the active area to
areald, AREA_MODE mode) CONTINUOUS_MODE,

STROKE_MODE or
CONFINED_MODE.
Return

- ERR_PEN_AREA ID
for invalid active
area id, or

— SYS_OK for
successful operation

PPSM-GT User Guide PPG-437

Pen Input Handling Services
Changing Active Area In Area Link List

““Digital DNA

from Moetarola

STATUS
PenSetAreaPos(AREA _ID
areald, S16 xSrc, S16 ySrc, S16
xDest, S16 yDest)

STATUS
PenSetAreaType(AREA_ID
areald, AREA_TYPE type)

PenSetAreaPos() sets the
active area coordinates in the
specific active area.

Return

- ERR_PEN_AREA ID
for invalid active
area id, or

— SYS_OK for
successful operation

PenSetAreaType() sets the
active area type for the
specific active area to
ICON_AREA, INPUT_AREA
or KEY_AREA(reserved for
softkeyboard).

Return

- ERR_PEN_AREA ID
for invalid active
area id, or

- SYS_OK for
successful operation

Changing Active Area In Area Link List

PenBringAreaBack(), PenBringAreaBackward(),
PenBringAreaForward(), PenBringAreaFront(),
PenMoveAreaToTop() are APIs provided for manipulating the
active areas position in the active area list. In overlapping active

PPG-438

PPSM-GT User Guide

als
f“[ﬁgitﬂlﬂ"ﬂ Pen Input Handling Services

frem Metarola Changing Active Area In Area Link List

area situation, these APIs would be useful to bring active area to
front or back depending on the requirement.

STATUS PenBringAreaBack() moves
PenBringAreaBack(AREA _ID the active area to tail of the
areald) active area list in the input
context it belongs to.
Return

- ERR_PEN_AREA ID
for invalid active
area id,

- ERR_APP_IC ID
for Active area
doesn't belong to a
valid input context,
and

— SYS_OK for
successful operation

STATUS PenBringAreaBackward()
PenBringAreaBackward(AREA_ | moves the active area one step
ID areald) towards the tail of the active
area list in input context.
Return

- ERR_PEN_AREA ID
for invalid active
area id, or

— SYS_OK for
successful operation

STATUS PenBringAreaForward()
PenBringAreaForward(AREA | | moves the active area one step
D areald) towards the head of the active
area list in input context.
Return

- ERR_PEN_AREA ID
for invalid active
area id, or

— SYS_OK for
successful
operation.

PPSM-GT User Guide PPG-439

Pen Input Handling Services
Changing Active Area In Area Link List

““Digital DNA

from Moetarola

STATUS
PenBringAreaFront(AREA _ID
areald)

STATUS
PenMoveAreaToTop(IC_IDicld,
AREA 1D areald)

PenBringAreaFront() moves
the active area to the front of
the active area list in the same
input context.

Return

- ERR_PEN_AREA ID
for invalid active
area id, or

— SYS_OK for
successful operation

PenMoveAreaToTop() moves
the active area to the top of
the active area list of the
specified input context.
Return

— ERR_APP_IC_ID
for invalid input
context id,

- ERR_PEN_AREA ID
for invalid active
area id,

— ERR_APP_AREA
for the area is not in
the input context,
and

— SYS_OK for
successful operation

PPG—440

PPSM-GT User Guide

““Digital DNA

from Moetarola

Pen Input Handling Services
Deleting Active Area

Deleting Active Area

STATUS
PenDeleteArea(AREA_ID
areald)

PenDeleteArea() APl is used
to delete active area that are
no longer in used. It free the
active area memory and
remove the active area from
input context if it’s attached to
any input context.

Return

- ERR_PEN_AREA ID
for invalid active
area id, or

— SYS_OK for
successful operation

Display and General Setup

Enabling Pen Calibration

STATUS PenCalibrate(U8
logoFlag)

Align the input device withthe
LCD display. Also displayed
Motorola logo and the crosses
for pen calibration.

Boolean input :

< TRUE for calibration and
e FALSE no calibration.

Mapping Touch Screen Coordinates

U16 PenMapX(U16 x)
U16 PenMapY(U16 y)

PenMapX() converts the
touch panel x coordinate to
LCD display x coordinate.
PenMapY() converts the
touch panel y coordinate to
LCD display y coordinate

PPSM-GT User Guide

PPG-441

Pen Input Handling Services
Getting IC from Active Area

““Digital DNA

from Moetarola

Setting up the Ring Buffer

STATUS
PenSetRingBuffer(APP_ID
appld, U16 bufferSize)

PenSetRingBuffer() sets the
ring buffer size for saving pen
sampling data temporarily.
Return

- ERR_APP_ID for
invalid application
id, or

— SYS_OK for
successful operation

Getting IC from Active Area

STATUS
PenGetlCFromArea(AREA_ID
areald, P_IC_ID picld)

PenGetlICFromArea returns
the input context that is bind
to the active area list, and
Return

— ERR_MEM_NO for
invalid memory
pointer or

— SYS_OK for
successful
operation.

Getting Areald From Event

STATUS
PenGetArealdFromEvent(P_EV
ENT pEvent, P_AREA_ID
pAreald)

PenGetArealdFromEvent()

gets the active area id. from

the event message sent from
pen task.

Return

- ERR_MEM_NO for
invalid memory
pointer, or

- SYS_OK for
successful operation

PPG-442 PPSM-GT User Guide

Pen Input Handling Services
Getting Area Mode

““Digital DNA

from Moetarola

Getting Area Mode

STATUS PenGetAreaMode() returns
PenGetAreaMode(AREA_ID the active area mode for the
areald, P_AREA_MODE pMode) | specified active area id.
Return

- ERR_MEM_NO for
invalid memory
pointer,

- ERR_PEN_AREA ID
for invalid active
area id, and

— SYS_OK for
successful operation

Getting Active Area Position
STATUS

PenGetAreaPos() returns the

PenGetAreaPos(AREA ID
areald, P_S16 pXSrc, P_S16
pYSrc, P_S16 pXDest, P_S16
pYDest)

active area position for the
specified active area id.
Return

- ERR_MEM_NO for
invalid memory
pointer,

- ERR_PEN_AREA ID
for invalid active
area id, and

— SYS_OK for
successful operation

PPSM-GT User Guide

PPG—443

Pen Input Handling Services
Getting Active Area Type

““Digital DNA

from Moetarola

Getting Active Area Type

STATUS
PenGetAreaType(AREA_ID
areald, P_AREA TYPE pType)

PenGetAreaType() returns
the active area type for the
specified active area id.
Return

- ERR_MEM_NO for
invalid memory
pointer,

- ERR_PEN_AREA ID
for invalid active
area id, and

— SYS_OK for
successful operation

PPG-444 PPSM-GT User Guide

““Digital DNA

from Moetarola

Pen Input Handling Services
Getting Pen Info

Getting Pen Info

STATUS
PenGetEchoMode(AREA_ID
areald, P_U8 pEchoMode)

STATUS
PenGetlnputTimeout(IC_ID
icld, P_TICK plnputTimeout)

PenGetEchoMode() returns
the echo mode for the
specified active area id.

Return

- ERR_MEM_NO for
invalid memory
pointer,

- ERR_PEN_AREA ID
for invalid active
area id, and

— SYS_OK for
successful operation

PenGetlnputTimeout()
returns the pen input time-out
for the specific input context.
The input time-out is the time
between the pen up event and
the interrupt to signal the
time-out. So if the pen touches
the panel within this time-out
length, no event will be sent to
the task linked to the input
context.

Return

- ERR_MEM_NO for
invalid memory
pointer,

- ERR_APP_IC_ID
for invalid input
context id, and

— SYS_OK for
successful operation

PPSM-GT User Guide

PPG—445

Pen Input Handling Services
Getting Pen Info

““Digital DNA

from Moetarola

STATUSPenGetPenColor(IC_ID
icld, P_COLOR pPenCaolor)

STATUS PenGetPenSize(IC_ID
icld, P_U8 pPenSize)

PenGetPenColor() returns the
pen echo color for the specific
input context.

Return

- ERR_MEM_NO for
invalid memory
pointer,

— ERR_APP_IC_ID
for invalid input
context id, and

— SYS_OK for
successful
operation.

PenGetPenSize() returns the
pen echo size in pixels for the
specific input context.

Return

- ERR_MEM_NO for
invalid memory
pointer,

- ERR_APP_IC_ID
for invalid input
context id, and

— SYS_OK for
successful
operation.

PPG-446 PPSM-GT User Guide

““Digital DNA

from Moetarola

Pen Input Handling Services
Getting Pen Info

STATUS PenGetPos(P_S16 pX,
P_S16 pY)

STATUS PenGetPosFromEvent(
P_EVENT pEvent, P_POINT
*pPoints, P_U16
pNumberOfPoints)

PenGetPos() returns the
current pen coordinate in LCD
coordinate where the top left
hand corner of the LCD is
always (0, 0).

Return

- ERR_MEM_NO for
invalid memory
pointer, or

— SYS_OK for
successful
operation.

PenGetPosFromEvent()
returns the stroke data and the
number of points in the stroke
from the event sent from pen
task.

Return

- ERR_MEM_NO for
invalid memory
pointer, or

— SYS_OK for
successful
operation.

PPSM-GT User Guide

PPG-447

Pen Input Handling Services

““Digital DNA

Summary from Metorola
VOID PenGetSample() PenGetSample() is supposed
to be called by sampling timer
to get the pen sample points
periodically. User may have
different periodic timer and
this can be called by the user
defined periodic timer to send
pen sample point to pen task
STATUS PenGetSamplingRate()
PenGetSamplingRate(IC_ID returns the pen sampling rate
icld, P_PEN_RATE pPenRate) for the specific input context.
Return
— ERR_MEM_NO for
invalid memory
pointer,
- ERR_APP_IC_ID
for invalid input
context id, and
— SYS_OK for
successful
operation.
Summary
This chapter provides information on the input context and the
active area. Input context are basically memory buffers that stored
the information on pen input time-out, sampling rate, pen size in
number of pixels, pen color, active area list, and task ID. All this
information provide the input parameters and the echo
characteristics of the pen input. Active Areas are areas on the touch
screen panel that provide an easy method for application to receive
pen input sample. APIs are also provide to setup the characteristics
of the active area to enable different type of pen inputs.
PPG-448 PPSM-GT User Guide

als
"l‘[hgltaln"ﬁ Handwriting Recognitipn Input I'—|'andling Services
from Motarcla Handwriting Recognition Input Fundamental

25

Handwriting Recognition
Input Handling Services

PPSM-GT supports input pad that could be used as handwriting
recognition input pad. When enabled, the system will capture all
inputs stroke between pen down and pen up, and send the inputs to
the handwriting engine for recognition.

The system also handle the saving and restoring of the background
image that was covered by the input pad, when the input pad is
closed.

This chapter is organised as followed:

< Handwriting Recognition Input Fundamental

e Programming using Input Pad Handling Services
e Summary

Handwriting Recognition Input Fundamental

The handwriting recognition services are essentially a group of
specially defined input pads designed for capturing input data for
pen stroke inputs. It consists of a number of square boxes in a row
by column format layout (refer to Figure 25.1).

PPSM-GT User Guide PPG-449

als
Handwriting Recognition Input Handling Services f“[ﬁgimln"ﬁ
Handwriting Recognition Input Fundamental from Metarala

Figure 25.1 An Example Input Pad with 1 row by 4 column layout

AN

It serves as an interface between the user and the underlying
handwriting recognition engine. It captures the stroke data
generated from the user’s handwriting input, and passes these data
to the handwriting recognition engine for processing. (Refer to
Figure 25.2 for the flow of input and output data passing through
the input pad).

PPSM-GT provides APIs for installing and uninstalling handwriting
engine into PPSM-GT system. When the handwriting engine is
installed, any hand writing input will be sent to the HWR engine for
recognition.

PPG-450 PPSM-GT User Guide

als
"l‘[hgltaln"ﬁ Handwriting Recognition Input Handling Servic.es
from Motarcla The Input Pad Mechanism

Figure 25.2 Data flow of Handwriting Recognition Input Pad
User’s handwriting

Open/Close Stroke data

Handwriting

L PPSM .
Application Recognition
Input Pad Enai
ngine
Character candidates Character candidates

and error code

The Input Pad Mechanism

The user writes a character within an input box to input it into the
system. The system proceeds to recognize a character when the user
starts writing in a different box, or when a predefined time has
passed since the user lifts the pen, whichever occurs first. The
characters are recognized in the order they are entered, independent
of the box location. The application must define its own mechanism
to determine when character input is finished and close the input
pad (e.g. the user clicks on a close input pad button created by the
application).

Only ONE instance of the input pad is supported per main task. If
the user opened an input pad in one of the tasks, an attempt to open
another the input pad would fail.

PPSM-GT User Guide PPG-451

Handwriting Recognition Input Handling Services
Programming using Input Pad Handling Services

““Digital DNA

from Moetarola

Programming using Input Pad Handling Services

Opening Handwriting Character Input

STATUS InpOpen(P_INP_ID
pld, HWR_ID hwrld, TASK_ID
taskld, U16 xPos, U16 yPos, U16
numRow, U16 numCol, U16
areaWidth, U16 areaHeight,
TICK timeout, U8 echoSize)

An application can open the
input pad anywhere within
the panning screen. The
application needs to specify
the Pointer to input pad ID,
HWR ID, xy-coordinate of the
upper left corner of the input
pad, the number of rows and
columns of input boxes, and
the size of each input box
width and height (in units of
pixel), timeout(no more than
1sec) and ink echo size.

If the input pad is not already
opened by another application
and that the specified layout
fits within the panning screen,
it will be displayed at the
specified location ready for
user’s input.

The area of the panning screen
covered by the input pad is
saved at the time this function
is called. Any changes to this
covered area by the
application after this function
is called will not be recorded
by the system.

The result will be send to the
task specified by the task Id.

PPG—452

PPSM-GT User Guide

als
III"""'l:ﬁgi'tjallI:]Hlﬂ: Handwriting Recognition Input Handling Services

from Moetarola

Accessing a general Input Pad

Accessing a general Input Pad

STATUS InpDrawPad(INP_ID
inpld)

InpDrawPad() draws an
input pad on the screen. It also
enable the automatic clear and
restore the background image
after the input pad being
closed

Setting Handwriting Input pad Sampling Rate

STATUS
InpSetSamplingRate(INP_ID id,
PEN_RATE time)

The default length of
sampling rate for InpOpen()
is 1 second. To change the
sampling rate
InpSetSamplingRate() will set
the specified sampling rate.

Setting the Pen Echo Color

STATUS InpSetColor(INP_ID
id, COLOR color)

The default ink echo color for
InpOpen() is black. To change
the color InpSetColor() will
set the specified color.

Terminating Handwriting Character Input

STATUS InpClose(INP_ID id)

InpClose() closes the input
pad that has been opened
either by InpOpen() or
InpDrawPad(). After it is
closed, no more handwriting
recognition messages will be
generated from the system to
the application. The original
image covered by the input
pad is restored by the system.

PPSM-GT User Guide

PPG-453

Handwriting Recognition Input Handling Services

Installing HWR engine

““Digital DNA

from Moetarola

Installing HWR engine

STATUS
InplnstallHWR(P_HWR_ID pld,
P_VOID resetEng, P_VOID
initEng, P_VOID processStk,
P_VOID recgzinp, U32 stackSize)

InpInstallHWR() is for
installing 3rd party hand
writing engine into PPSM-GT
system. The input parameters
are pointer to HWR ID, and
pointer to HWR engine
functions and stack size. The
stack size is for the proper
operation of the HWR engine.

Reading HWR engine.

STATUS
InpGetCandidates(P_TEXT*
pCandidates, P_U16 pNum,
P_INP_ID plnpld)

It gets the HWR candidates
from input pad and event

Uninstalling HWR engine

STATUS
InpUninstalHWR(HWR_ID id)

It uninstalls a hand writing
recognization engine in PPSM

Checking HWR engine

U8 InplsHWRId(HWR_ID id)

It tests if a number isa HWR
engine ID

Checking Input Pad

U8 Inplsinpld(INP_ID id)

It tests if a number is an input
pad ID

Bring the input pad to the top of the IC

STATUS InpTop(INP_ID id)

It tops an input pad on all the
IC in the application

PPG-454

PPSM-GT User Guide

als
f“[ﬁgimln"ﬁ Handwriting Recognition Input Handling Services
from Metorola Summary

Summary

The PPSM-GT handwriting recognition services provide a meant to
capture the pen stroke input and tranfer the data to the hand
writing recognition engine for recognition. The PPSM-GT HWR
services acts as a interface between HWR pads and the HWR
engine. PPSM-GT also provides API to handle the HWR engine.

PPSM-GT User Guide PPG-455

als
Handwriting Recognition Input Handling Services "‘["E'tﬂlﬂ"ﬁ
Summary from Muotarola

PPG-456 PPSM-GT User Guide

““Digital DNA

from Moetarola

Section 7

Appendixes

This section contains the following appendixes:

= Appendix A, “Coding Conventions”—describes the coding
conventions used throughout the PPSM-GT.

= Appendix B, “Error Message Handling,” —describes the error
code and messages used throughout the PPSM-GT

= Appendix C, “How To Make ROM,” —describes how to make
ROM after the development is completed.

= Appendix D, “PPSM-GT APIs Reference Card,” —provides a
quick lookup chart for all PPSM-GT’s APIs.

PPG-457 PPSM-GT User Guide

““Digital DNA

from Moetarola

PPG-458 PPSM-GT User Guide

als
Coding Conventions f“[ﬁgitﬂlﬂ"ﬁ

The Importance of Consistency from Metarcla

A

Coding Conventions

The intent of this document is to relay to the user the coding
conventions used to write PPSM_GT program. Most of the PPSM-
GT routines are written in C and only a small portion of hardware
dependence routines are written in 68K assembly language.

The goal of these conventions is to provide for consistent layout and
formatting throughout all PPSM-GT code. Consistency makes the
code easier to document and, most importantly, easier to scan.

The Importance of Consistency

These conventions were not conceived to make life difficult for
PPSM-GT programmers; their goal is to make it easier for customers
to read the code. Experience teaches us that densely packed code
with no consistent formatting inhibits understanding because the
reader can never see a pattern in how the code is laid out. Thus, the
code is hard to read.

With frameworks, the user often needs to be able to read the code in
order to understand how a given feature works, as it is unrealistic to
expect the documentation to cover every conceivable topic.
Therefore, it is important to have consistent coding throughout the
framework.

These coding conventions do not cover every aspect of coding with
C, and purposefully avoid some of the more religious conventions
in favor of conventions that are more layout oriented.

However, there are some general conventions regarding C
presented here that are targeted at avoiding common pitfalls with
C, as well as issues that might result in wasted space.

PPG-459

PPSM-GT User Guide

als
Coding Conventions f“[ﬁgitﬂlﬂ"ﬁ

Fonts from Moetarola

Fonts

Code should always use a monospace font. The examples shown in
this document use Courier New 12 point.

Tabs and Spaces

In PPSM-GT code, a tab is equivalent to an indent. Tabs are never
used to generate spaces within a line. A tab is equivalent to three
spaces.

Where a tab is used as the first indent for a line, any subsequent
horizontal alignment that takes place within the line is done with
spaces. This convention allows alignment to work properly with
different tab widths.

Naming Conventions

This section outlines the naming conventions for elements like
classes, constants, and globals.

The basic naming convention follows the form where the first
character of each significant word is capitalized. For example:

e Knl Cr eat eTask
e AppCreate

Labels

All labels are in upper case, underscores are permitted. For
example:

< DISPLAY_MODE

e DEFAULT_MODE

e OK

< UNKNOWN

PPG-460 PPSM-GT User Guide

afs
"l"[ﬁgitaID"A Coding Conventions

from Metorola Local Variables

Local Variables

All local variables start with lower case, with capitalized words in
the variable names. There are no underscores between words. For
example:

e xPos
= yPos

datalLen
- temp
e rate

Global Variables

Global variables are prefaced with a lowercase “g” followed by a
name conforming to the standard convention. For example:

e gCurrentTask
e glrptMask
= gSystemClock

Local Pointer Variables

All local pointer variables start with a lower case “p”, with
capitalized words in the variable names. There are no underscores
between words. For example:

= pSourceAddr
e pDestAddr
e pTaskTable
= pReturnSize

Global Pointer Variables
Same as local pointer variables, except that all global variable names
start with a lower case “gp”. For example:

e gpSysList

= gpPhoneBook

e gpSrcMem

PPSM-GT User Guide PPG-461

als
Coding Conventions f‘_mgitﬂlnuﬁ

Local Variables

from Moetarola

Listing 25.1

Local Variables

Local variable names always start with the first character of the first
word in lowercase. Then, the first character of each significant word
in the name is capitalized. For example:

e arrowNdth = 20;
- arrowRect (0, 0, 20, 20);

Function and Method Names

Function and method names follow the normal naming convention;
the first character of each significant word capitalized. This is

shown in Listing 25.1. For example:
= Penlnit()

= PagerCheck()

= DrawDot()

Example function names

Voi d Pager Check()

{

U8 nunmOf Mesage;
U8 | engt hOf Message;

CheckMessage(nunf Message, | engt hOf Message) ;

}

Parameters

Parameters follow the same naming conventions as local variables
in that the first character is lowercase, followed by capitalizing the
first character of each significant word in the name. Listing 25.2
shows examples of how parameters have been formatted.

PPG-462

PPSM-GT User Guide

afs
"l‘["‘gitaID"A Coding Conventions

from Moetarola Macros

Listing 25.2 Example parameters

CheckMessage(
U8 numOf Message,
U8 | engt hOf Message) ;

Macros

Macros are always all uppercase with an underscore (_) separating
each significant word. For example:

- FOUR_CHAR CODE
- DEFI NE_DERI VED COVPONENT
= NET_COVPONENT

Comments

There can never be enough code comments in a program. Within
the body of a method or function, comments appear above the line
of code being documented. These comments are typically done
using the double slash (//) comment style. The primary reason for
placing comments above the line as opposed to alongside is that it is
highly annoying to have to continually scroll horizontally in order
to read the comment.

Short comments use the // form, while long multi-line comments
use the
/*...*/ form. Examples of this convention are shown in Listing 25.3.

Listing 25.3 Example code comments

/1l build a rectangle that represents the local frane of the view
frame(0, 0, GetWdth(), GetHeight());

/*
This is areally long corment that spans nmultiple |ines
and therefore has been wapped with the alternate comment
form NOTE: This not a requirenment for |ong conmments. The

PPSM-GT User Guide PPG-463

als
Coding Conventions f“[ﬁgitﬂlﬂ"ﬁ

The Implementation’s Identifier Space is respected from Metorola

*/

comment style is also used fromtine to tine.

File Layout

The Implementation’s Identifier Space is
respected

The PPSM-GT has reserved all identifiers that begin with an
underscore (_). This includes macros, local variable names, classes,
function names, and more.

An identifier never starts with an underscore. A few include guards
currently violate this standard, so take special care when dealing
with them.

In order to make the layout of files easier, a set of stationery files is
provided. These have the basic layout already set up, and can be
used to create new files with the desired layout.

Where ever possible, the width of a line of code has been kept
reasonable. This minimizes the amount of horizontal scrolling
necessary to read the entire line. It is far better to wrap the line so
that it is all visible than to have it disappearing of the right edge of
the window.

This is also important when printing a file. By keeping lines short,
code is not lost off the edge of the page.

The headers provided in the sample files have been laid out to fit a
page. They can then be used as guides as to when a line is reaching a
width that would be greater than a typical page.

File Headers

A header is placed at the top of both the header and implementation
files and contains the Motorola Semiconductor Hong Kong Limited
copyright notice.Additionally, the header contains the name of the
file, objective of the file, the creation date, the modification date,
and—optionally—the author.

PPG-464

PPSM-GT User Guide

afs
"l‘["‘gitaID"A Coding Conventions

from Metorola File Headers

Separator lines have been laid out in the header to indicate the
typical width of the printed page. This can then be used to set the
width of a window in order to provide a guide as to where the lines
wrap. Listing 25.4 shows a typical PPSM-GT header.

Listing 25.4 A typical file header

/**

(c) copyright Mtorola Sem conductor Hong Kong Limted 1998-2001
ALL RI GHTS RESERVED.

This exanple is the sole property of Mdtorola Inc. This software
cannot be distributed in whole or in part. This software is
provided as is and in no event shall Mtorola, Inc. be liable for
any direct, special, incidental, or consequential damages ari sing
out of or connected with a users posession or use of this software
package, even if Mdtorol a has advance notice of the possibility of
such damages.

**/

Fi | e Nanme: gr phDeno. c
Initial Creation Date: 990825

Modi fication Date: $Date:$

bj ect i ve:

This section can be used to describe what this file contains and
what the code is used for, as well as any other useful

information. The inplenentation file should typically contain a
detail ed Theory of Operation description, as it nmakes |life easier

for the user.
*

**/

NOTE The separators in the example above are much shorter than would
typically be used in a source file due to the formatting of this
document.

PPSM-GT User Guide PPG-465

als
Coding Conventions f‘_mgitﬂlnuﬁ

from Moetarola

PPG-466 PPSM-GT User Guide

als
'T-mgitﬂlnﬂﬁ Error Message Handling

from Motarcla PPSM-GT Core Error Handling

B

Error Message Handling

There are a few different ways PPSM-GT handles it's error messages and
each required a different way to access the error messages. This chapter
will cover the types of error messages and how to get them.

NOTE Developers are encouraged to include error checking code in their
program to capture and address improper system preformance.

The following are the different ways of handling error messages:
* PPSM-GT Core Error Handling
» Socket Services Additional Error Handling

PPSM-GT Core Error Handling

In all the PPSM-GT core services except for networking services, the error

messages are returned with each API call. The way to get them is to include
the variable “status” to store the returned error code and checking it to take
neccessary action as shown in code examgrior Checking for PPSM-

GT core servicégrror Checking for PPSM-GT core services,”

Listing B.1 Error Checking for PPSM-GT core services

status = MenReset Regi on(regionld);

i f(status == SYS_(OK)
{
sprintf(tenpStrN, "Reset Success\n");
el se

PPSM-GT User Guide PPG-467

ats
Error Message Handling f‘_mgitﬂln"ﬁ

PPSM-GT Core Error Handling from Metarala

sprintf(tenpStrN, "Reset Fail\n);

TableB.1 showsall the possible error codesin PPSM-GT cores services.
To get the definition of the error messages, please refer to the calling APIs
in the PPSM-GT API reference manual. For example if when using the
KnlCreateTask() APl and the SYS ERR error message is encountered,
then please refer to the KnlCreateTask() API for the description of the error

message.

The error messages are organized in such away that they are specific to the
calling API. The same error messages meant different things for the
specific API. Thisis especially true for system message such as SYS OK
and SYS ERR. They are used very often throughout the PPSM-GT design.
A SYS ERR message in RtcSetTime() APl means the time setting is
invalid whereas the same SYS _ERR error message in AudPlayMelody()
APl means that the melody music count is zero. It is therefore unwise to
generaize. Pleaserefer to the individual API for the definition of the error
message when you encountered one.

PPG-468

PPSM-GT User Guide

als
ﬁ-mgitﬂln"ﬁ Error Message Handling

from Motarcla PPSM-GT Core Error Handling

Table B.1 PPSM-GT Error messages and Definitions

Error Messages

System Error Messages

SYS OK

SYS ERR

Kernel services error message
ERR_KNL_TASK_ID
ERR_KNL_NO _MEMORY
ERR_KNL_IN_IRPT
ERR_KNL_PRIORITY
ERR_KNL_SEMA_ID
ERR_KNL_SEMA_TASK
ERR_KNL_SEMA_INIT
ERR_KNL_SEMA_COUNT
ERR_KNL_SEMA_TIME
ERR_KNL_SUSPEND_ LV
ERR_KNL_STACK
ERR_KNL_SWAP _DISABLE
ERR _KNL_REG ID
ERR_KNL_TASK_MODE

Event Management services error messages
ERR_EVT_INVALID
ERR_EVT_CHANNEL_ID
ERR_EVT_BROADCAST_ID
ERR_EVT_PORT_ID
ERR_EVT_NO_PORT
ERR_EVT_ADD_TASK
ERR_EVT_EVENT_INUSE
ERR_EVT_BROADCAST_INUSE
ERR_EVT_CHANNEL_ELM
ERR_EVT_TASK_NOTFOUND

PPSM-GT User Guide PPG-469

ats
Error Message Handling lII"'\"'I:Hgital.I:]".ﬂ:

PPSM-GT Core Error Handling from Metarala

Error Messages
ERR_EVT_BRDCST_NO _EVENT
ERR_EVT_BRDCST_LIMIT
ERR EVT _TYPE
ERR_EVT_TIMEOUT

Memory management services error messages
ERR_MEM_NO
ERR_MEM_REGION_ID
ERR_MEM_CREATE_REGION
ERR_MEM_DATA_SIZE
ERR_MEM_INVALID_ADDR
Alarm services error messages
ERR_ALM_NO
ERR_ALM_PERIOD

RTC handling services error messages
ERR_RTC_SECOND
ERR_RTC_MINUTE

ERR _RTC HOUR

ERR_RTC DAY
ERR_RTC_MONTH
ERR_RTC_YEAR

ERR_RTC _TMOUT
ERR_RTC_INIT

SCl management Services Error Messages
ERR_SCI_INVALID_ACCESS
ERR_SCI_INVALID_TMOUT
ERR_SCI_MODE
ERR_SCI_BAUD
ERR_SCI_PARITY
ERR_SCI_STOPBIT
ERR_SCI_CHARLEN

PPG-470 PPSM-GT User Guide

als
ﬁ-mgitﬂln"ﬁ Error Message Handling

from Motarcla PPSM-GT Core Error Handling

Error Messages
ERR_SCI_BUSY
ERR_SCI_FLAG
ERR_SCI_NO_REQUEST
ERR_SCI_INVALID_TXDELAY
ERR_SCI_PORT_ID
ERR_SCI_PORT_INUSE
ERR_SCI_RX_ON
ERR_SCI_TX_ON
ERR_SCI_NO_CTRL
ERR_SCI_NOT_BIND
ERR_SCI_DELAY
ERR_SCI_TX_BUSY
ERR_SCI_RX_BUSY
ERR_SCI_NO_RX
ERR_SCI_NO_TX
ERR_SCI_TASK_ID
ERR_SCI_RX_TMOUT
ERR_SCI_TX_TMOUT
ERR_SCI_RX_FIFO LVL
ERR_SCI_TX_FIFO_LVL
ERR_SCI_UART_INUSE
ERR_SCI_UART_PORT
ERR_SCI_FIFO LEVEL
Audio handling services error messages
ERR_AUD_INUSE
ERR_AUD_SAM
ERR_AUD_REGS
ERR_AUD_TONEDUR
ERR_AUD_TONEVOL
Power management services error messages

PPSM-GT User Guide PPG-471

ats
Error Message Handling lII"'\"'I:Hgital.I:]".ﬂ:

PPSM-GT Core Error Handling from Metarala

Error Messages
ERR_PWR_MODE
ERR_PWR_IDLE_LIMIT
ERR _PWR_IDLE_DISABLE
Software Timer handling services error messages
ERR_SWT_ID
ERR_SWT_TIME_LIMIT
ERR_SWT_POINTER
Application services error messages
ERR_APP_IC_ID
ERR_APP_AREA
ERR_APP_ID
ERR_APP_PAN_INFO
ERR_APP TASK_ID
Interrupt service routine error messages
ERR_ISR_UNDEF
ERR_ISR_OCCUPIED
ERR_ ISR _LV_RANGE
ERR_ ISR _LV_UNCONFIG
IrDA services error messages
ERR_IRD_STATUS SUCCESS
ERR_IRD_STATUS FAILED
ERR_IRC_STATUS SUCCESS
ERR IRC STATUS PENDING
ERR_IRC_STATUS FAILED
ERR_OBX_STATUS_SUCCESS
ERR_OBX_STATUS FAILED
ERR_OBX_STATUS PENDING
ERR_OBX_STATUS DISCONNECT
ERR_OBX_STATUS NO CONNECT
ERR_OBX_STATUS MEDIA BUSY

PPG-472 PPSM-GT User Guide

als
ﬁ-mgitﬂln"ﬁ Error Message Handling

from Motarcla PPSM-GT Core Error Handling

Error Messages

ERR_OBX_STATUS INVALID HANDLE
ERR_OBX_STATUS PACKET_TOO_SMALL
ERR_OBX_STATUS BUSY

Networking services error message
ERR_NET_NO BUFFER
ERR_NET_USER

ERR _NET PARAMETER
ERR_NET_HOST
ERR_NET_HARDWARE
ERR_NET_UNKNOWN_DOMAIN_NAME
ERR_NET _HANDSHAKE

Text management services error messages
ERR _TXT_ID

ERR _TXT_IC_ID

ERR _TXT_GC_ID

ERR_TXT_MAPPING
ERR_TXT_FONT_TYPE
ERR_TXT_FONT_STYLE
ERR_TXT_FONT_COLOR
ERR_TXT_CURSOR_POS
ERR_TXT_X_COOR
ERR_TXT_Y_COOR

ERR TXT _TMPLT WT

ERR TXT TMPLT HT
ERR_TXT_CURSOR_X
ERR_TXT_CURSOR_Y
ERR_TXT_ZERO_SPC
ERR_TXT_FORMAT
ERR_TXT_NOT_FIT

ERR_TXT_LINE WT

PPSM-GT User Guide PPG-473

ats
Error Message Handling lII"'\"'I:Hgital.I:]".ﬂ:

PPSM-GT Core Error Handling from Metarala

Error Messages
ERR_TXT_FONT_SIZE
ERR_TXT_BIT_LEN
ERR_TXT_NULL_STRING
ERR_TXT_PAN_INIT
ERR _TXT _LCD X
ERR TXT _LCD_Y
ERR_TXT_LCD
ERR_TXT_GPX
ERR_TXT_ARG

Graphic manipulation services error message
ERR_GPX_GC_ID
ERR_GPX_NO_MEM
ERR_GPX_NUM
ERR_GPX_COLOR
ERR_GPX_STYLE
ERR_GPX_COORDINATE
ERR_GPX_X_POS
ERR_GPX_Y_POS
ERR_GPX_WIDTH
ERR_GPX_HEIGHT
ERR_GPX_PAN_INIT
ERR_GPX_PAN_ADDRESS
ERR_GPX_PAN_WIDTH
ERR_GPX_PAN_HEIGHT
ERR_GPX_LCD_X
ERR GPX_LCD_Y
ERR_GPX_LCD_RADIUS
ERR_GPX_LCD_FONT
ERR_GPX_CURSOR_INIT
ERR_GPX_DOT_WIDTH

PPG-474 PPSM-GT User Guide

als
III"'\-I:Hgital,I:]",ﬂ: Error Message Handling

from Motarcla PPSM-GT Core Error Handling

Error Messages
ERR_GPX_FILL_PATTERN
ERR_GPX_FILL_SPACE

Software Keyboard module error codes
ERR_SKY_ID

ERR_SKY_TASK_ID

ERR_SKY_APP_ID

ERR_SKY_IC ID

ERR_SKY_GC_ID
ERR_SKY_PANNING_SCREEN
ERR_SKY_NOT_USE

ERR_SKY_USED

ERR_SKY_KB_WT

ERR_SKY_KB_HT

ERR_SKY_OPEN

ERR_SKY_CLOSE

ERR_SKY_XY

ERR_SKY_KEY_SIZE
ERR_SKY_REPEAT

ERR_SKY_NO_KEY

Input pad handling services error messages
ERR_INP_ID

ERR_INP_HWRID

ERR_INP_DRAWN
ERR_INP_NO_CANDIDATE
ERR_INP_COORDINATE

Pen input handling services error messages
ERR_PEN_AREA_ID

ERR_PEN_RATE

ERR_PEN_EVENT_ID

PPSM-GT User Guide PPG-475

ats
Error Message Handling f‘_mgitﬂln"ﬁ

Socket Services Additional Error Handling from Metarcla

Socket Services Additional Error Handling

Listing B.2

In addition, PPSM-GT networking services, has additional error handling
that enable developer to get more information when error occurred while
using most of the networking functions.

Most of the networking functions return a value of -1 when thereis an
error. Theerror code is stored in errno, and can also be retrieved using the
getsockopt() function, as shown in “Example to retrive networking error

messages”

Example to retrive networking error messages

int errcode,

errlen;

.11 = connect (s, (struct Netsockaddr *)&socka,
si zeof (socka));

if (il <0
{
il = errno;
i f (getsockopt (s, SOL_SOCKET, SO ERRCR,
&errcode, &errlen) >= 0)
i1l = errcode;
printf(“connect: error %d\n”, il);
[* additional error handling */
}

Herethevalue of errnois saved before calling getsockopt(), in case this call
fails and causes errno to be overwritten. The getsockopt() function should
be used when possible in PPSM-GT because errno is not reentrant.

If acall to socket() returns -1, there is no socket number to refer to when
trying to retrieve the error code. In this case, the error code must be
retrieved from errno.

The gethostbyname r() functions return a pointer to a host data structure.
If these functionsfail, then anull pointer is returned.

Table B.2 shows the error code and message for the networking services.

PPG-476

PPSM-GT User Guide

““Digital DNA

from Moetarola

Error Message Handling

Socket Services Additional Error Handling

Table B.2

Socket Services Error Messages

Error Messages Error Description
Code
NE_PARAM -10 user parameter error
EHOSTUNREACH -11 host not reachable
ETIMEDOUT -12 timeout
ECONNABORTED -14 protocol error
ENOBUFS -15 no buffer space
EBADF -16 connection block invalid
EFAULT -17 invalid pointer argument
EWOULDBLOCK -18 operation would block
EMSGSIZE -19 message too long
ENOPROTOOPT -20 Protocol not available
EDESTADDRREQ -50 Destination address
required
EPROTOTYPE -52 Protocol wrong type for
socket
EPROTONOSUPPORT -54 Protocol not supported
ESOCKTNOSUPPORT -55 Socket Type not supported
EOPNOTSUPP -56 Operation not supported on
socket
EPFNOSUPPORT -57 Protocol family not sup-
ported
EAFNOSUPPORT -58 Address family not sup-
ported by protocol family
EADDRINUSE -59 Address already in use
EADDRNOTAVAIL -60 Can't assign requested
address
ENETDOWN -61 Network is down
ENETUNREACH -62 Network is unreachable
ENETRESET -63 Network dropped connec-
tion because of reset
ECONNRESET -65 Connection reset by peer
EISCONN -67 Socket is already con-

nected

PPSM-GT User Guide

PPG-477

ats
Error Message Handling f‘_mgitﬂln"ﬁ

from Moetarola

Error Messages Error Description
Code
ENOTCONN -68 Socket is not connected
ESHUTDOWN -69 Can't send after socket
shutdown
ECONNREFUSED -72 Connection refused
EHOSTDOWN -73 Host isdown
EALREADY -76 operation already in
progress
EINPROGRESS =77 operation now in progress

PPG-478 PPSM-GT User Guide

als
How To Make ROM f‘_mgitﬂlnﬂﬁ

Assumptions: from Muotarola

C

How To Make ROM

Making ROM is normally the final steps in a product development
cycle. Application program developed in the RAM development
environment, is now really to be tested in the ROM or Flash
environment; an environment that is similar to the actual product.
In this appendix, the following assumption are made and the scope
of discussion will be confined to these assumptions.

Assumptions:

= The target platform is the on-board flash memory for the
DragonBall MC68EZ328 and the MC68VZ328 based system
boards.

= Embedded 68K CodeWarrior and SDS singe step compiler and
linker are the developement tools used.

= WinBbug is the download program used for downloading
program to the target platform.
This appendix consists of the following sections:
= Making ROM Fundamentals
= Making ROM Procedures

e Summary.
e Code Examples

PPG-479 PPSM-GT User Guide

How To Make ROM

““Digital DNA

Making ROM Fundamentals frem Metarola

Making ROM Fundamentals

The method of building a program on the target board flash
memories involved the followings:

1. A flash writing program that is able to write to the Flash
memory of the target board with the block of data in the
RAM area of the target board.

2. The blocks of data in the RAM area are actually the
application program of the device chopped into blocks of
data.

3. A download program that is able to download the flash
writing program and the blocks of data into the RAM area.

Making ROM Procedures

Making the ROM will focus on what need to be done to get the
create the flash writing program, and how to use the download
utility program supply with PPSM-GT.

Before making the ROM
Before making the ROM, the following are the preparation works:
Find out the memory map of the target board

It is essential to partition the available memory space of the system
development board for different uses. Typical mapping includes
regions for text, initialized data, un-initialized data and dynamic
heap memory (for malloc()).

Read the data sheet and write a flash copy program

Different flash memories commonly have different flash-burning
procedures. The flash copy program must hence be tailor-made to
each flash model in order to write data into that particular flash
model properly. An example of a flash copy program for the VZ-
ADS board is attached in the Code Examples Listing C.6.

PPG-480

PPSM-GT User Guide

als
"'[ﬁgimln"ﬁ How To Make ROM

from Motarcla Before making the ROM

Make the target program workable for download first

The target program shall be tested on the on-board RAM using
CodeWarrior first. Ensuring a workable program before writing to
flash could reduce debug time.

Prepare an initialization B-record

The chip selects of the MC68VZ328 processor on the development
board can be initialized with a B-record file. The WinBug utility is
used in this step. After the chip selects are properly configured, the
memory map of the target broad shall be as expected. An example
for VZ-ADS is included in the Code Examples under VZADS.LCF.

Write an assembly boot code

The boot code shall be able to configure the system clock and chip
selects for memory mapping. At the end of the boot code a jump
statement is usually included to start the OS or kernel. For PPSM-
GT, the boot code shall jump to a function named “START”. The
followings are the:

« Boot Strap Code requirement(boot.s)

« 68K Start-up requirement

e Chip Selects requirement

= Peripheral Devices requirement.

Boot Strap Code requirement(boot.s)

The boot strap code performs the following functions:
= Starts the 68K core upon reset

= Map the chip-selects of MC68VZ328 to run on a particular
hardware platform

= Initialization of peripheral devices on the MC68VZ328
= Jump into PPSM-GT start-up code
Depending on the size and address of ROM that are used, the chip

selects inside boot.s need to be changed accordingly. An example of
the boot.s can be found in the Code Examples under boot.s

PPSM-GT User Guide PPG-481

How To Make ROM
Before making the ROM

““Digital DNA

from Moetarola

Figure C.1

68K Start-up requirement

In 68K architecture, the first 256 locations in the memory address
space, 0x0 to 0x400, are reserved for system vector usage and cannot
be over-written with random values. The first two 32-bit words
locations (address 0x00 and 0x04) are defined for the start program
counter address and the stack address upon power reset.

In order to make this assignment of addresses re-locatable at link
time, rather than hard-coding the addresses at compilation time,
two new regions, rom_reset and rom_code, are defined by PPSM-
GT in the linker specification file to perform the mapping.

Memory map for boot strap code

0x000 A
PC/Stack
0x008
rom_reset
Vectors
0x400 y
A
Boot Strap Code rom_code
0x1000 |
PPSM-GT Application Tasks

ROM_RESET This is used to map the 68K first 256 locations. In
the boot strap code, it is defined as:

SECTIONrom reset; section declaration

DC.L MON _STACKTOP; stack address for boot code
DC.L romstart-ROVADDR absol ute address of boot
code

DCB.L 254,0 ; interrupt vector space

PPG-482

PPSM-GT User Guide

als
f“[ﬁgimln"ﬁ How To Make ROM

frem Metarola Making the ROM

The labels MON_STACKTOP and rom_start declared in this region
are resolved with their absolute address only during link time. This
implementation makes the values for these locations dynamic and
system integration can be independent to the absolute location and
size of the hardware system.

ROMADDR is declared in the Linker Specification File.

ROM_CODE This regions is declared to store the boot strap
code. Because this code is NOT part of PPSM-GT library, they are
declared and executed in the beginning of the memory map to
avoid memory conflict.

The first line of this region MUST declare the label rom_start. This is
required by the region rom_reset to work out the PC start address.

The last line of this region should be a" jmp START" instruction.
This is used to start PPSM-GT start-up code. The label START is
pre-defined as the start location for the startup code.

Chip Selects requirement

For the M68VZ328ADS development board, Chip-Select group A is
used for ROM and Chip-Select group B is used for RAM. Please
refer to the MC68VZ328 Integrated Processor User’s Manual,
MC68328UM/ AD, for details on chip select programming.

Peripheral Devices requirement

Initialization of the peripherals such as default interrupt vector,
watchdog and LCD controller. Please refer to the MC68VZ328
Integrated Processor User’s Manual, MC68VZ328UM/AD, for
details on chip select programming.

Making the ROM

Making the ROM requires two procedures as shown in Figure C.2.
There is a development tool dependent procedures and a download
program procedure. The development tools dependent procedures
is unique and development toold specified. In this appendix, only
the Metrowerks code warrior and the SDS single step procedures
will be discussed.

PPSM-GT User Guide PPG-483

How To Make ROM :F::[ﬁgitalnﬂﬂ

Making the ROM from Muotonola

Figure C.2 ROM making procedure

4 Download target program to
VZADS board’'s RAM for testing

Write boot code and Icf file

Write a custom-fit flash copy progra

Devel opment
Tool dependent To the flash model on-board
procedure
Create a new project with the working
version replaced with new files creat
Generate S-record with new files i,_ed
Download Convert S-record to B-record
Program

procedure _ _
Use WinBBug to write to flash

Metrowerk Code Warrior procedure

Write a linker command file

A linker command file (Icf) instructs the CodeWarrior linker where
in memory to place each segment of the program. For details on
writing a Icf, please refer to the CodeWarrior manual — Targeting
Embedded 68K, and Linker Command File Syntax. A detailed
example is included in the Code Examples under Listing C.4.

When writing a program for PPSM-GT, attention shall be drawn to
the following four values:

_startof _bss Starting address of initialized data. Have to be
aliases with word (16-bit).
_sizeof bss The size of initialized data in byte.

PPG-484 PPSM-GT User Guide

:(::mgitalnﬂﬁ How To Make ROM

frem Metarola Making the ROM

___heap_addr Starting address of heap memory. Have to be
aliases with word (16-bit).

___heap_size The size of heap memory.

Use CodeWarrior to output an S-record

1. Create a new project (for flash) by cloning the working,
tested project as shown in Figure C.3

2. Add the prepared linker command file (VZADS_ROM.Icf),
boot code file (Reset.s), and flash copy program
(flash_m68328vz_ads.s) to the newly created projected.

3. De-select the old Icf and select the new Icf so the linker knows
which one to read. Select the other two newly added files as
well as shown in Figure C.4.

4. Build the new project with “Generate S-record” option
enabled.

5. Proceed to “Convert the S-record to B-record” on page 490

Figure C.3 Creating a new target

New Targek x|

I arne for new target:

|PP5 t_E2K_4bpp_Flazh

— M ew target contains:

" Emphty target

t* iClone existing target:E

e eetonno000nnooooDooooooannO00 Ao 00 DEooSTEEnaaa oA

|P'F'S M_E2K_4bpp_debug -

| 1] I Cancel

PPSM-GT User Guide PPG-485

}E-

How To Make ROM mgrtalD"A
Making the ROM from Motorol
Figure C.4 Selecting the new link specified file
! mEmpty_Base_Sample_68K.mcp - | I:Ilil
| # PPSM_ESK_dbpp Flash = | i@ & B »
Files | Link Drderl TargetSI
% | File | Code | Data ¥4 |-
Elﬁapplin:atin:un 4K, 93 - = -
----- @l Empty_StingsAndldentifiers. cpp 1] 217 » =
----- ~@8 Empty_Base_Sampledpp.cpp 2644 218 - =l
----- @ PPSMspe.c 41 25 . =l
----- - MEEESEBpp&m b air. cpp 1728 144 » =l
----- ads_BAE_ rruw lcf h'a nda =
r_“‘lf-:unts 208 15K =
-] =td_appearance 13K, . =l
-3 MEBE Libraries 121K Tk - =l
-{Z3 PP5SM Libranes ak. 22K - =
w BB YZADS_Foaom.cf n'a n'a =l
« [l Resets a 0 e =l
¢ B fash_mB3328vz_adss a 0 = =l
B ppsmegt MAC Font_db.a 476K, 181k - ;lﬂ
27 files G225k, 230K o

PPG-486 PPSM-GT User Guide

““Digital DNA

from Moetarola

How To Make ROM
SDS single step procedure

NOTE

Listing C.1

SDS single step procedure

This section is for SDS single step user only.

SDS Linker Supplications File for ROM

The SDS Linker Supplications File for ROM as shown in Listing C.1
is different to that for RAM system. The main difference being that
some of the defined regions need to go into ROM address, and some
regions need to go into RAM address. In general, regions that are
Read-Only, such as constants, strings and code, go into ROM area;
while Read/Write regions, such as ram, stack and heap space go
into RAM area.

SDS Linker Specification File Example for ROM

partition { overlay {
region {} romreset[addr=0x0];/* reset
vector in ROM */
region {} rom code[addr =0x400];/* start of
boot strap code */
region {} code[addr=0x1000];/* start of
application code */
region {} const;/* constant data */
region {} string;/* constant strings */
DATA = $; /* pre-defined constants for
initialized variables */
LCDPHYSW DTH = 320;/* LCD display width */
LCDPHYSHEI GAT = 240;/* LCD di splay height */
LCDVI RTW DTH = 640;/* LCD virtual width */
LCDVI RTHEI GHT = 480;/* LCD virtual height */
UARTRCVBUF = 256;/* system UART receive
buffer size(in #bytes) */
} areaz;
} ROM addr =0x400000, si ze=0x100000] ; /* 1Mbyte ROM
*/
partition { overlay {
region {} data[addr=0x400];/* initialized on
reset */

PPSM-GT User Guide PPG-487

How To Make ROM

““Digital DNA

SDS Linker Supplications File for ROM from Metarala

region {} ranfroundsi ze=4];/* zeroed on reset
*/

region {} mall oc[size=0x80000];/* malloc
space */

region {} stack[size=0x4000];/* stack */

STKTOP = $;/* SP reset value */
} areal; } RAM addr=0x0, size=0x100000];/* 1M
byte RAM */

In this example, a system that has 1 MByte of ROM space mapped
from address location 0x400000 and 1 MByte of RAM memory
mapped from address location 0x0 has the following characteristics:

= The ROM area starts at base address 0x400000

= The region rom_reset starts from offset 0x0 from the ROM base
address, which is 0x400000

= The region rom_code starts from offset 0x400 from the ROM
base address, which is 0x400400

= As much executable code space in ROM as required, round to 4-
byte boundary starting from 0x401000

= As much constant data space in ROM as required, round to 4-
byte boundary

= As much constant strings space in ROM as required, round to 4-
byte boundary

= DATA symbol to point to the downloadable address of the
initialized constants to pre-initialized variables

= A LCD physical display screen of 320 pixels wide by 240 pixels
high

= A panning screen of 640 pixels wide by 480 pixels high

= A 256 byte internal UART receive buffer

= The RAM area starts at base address 0x0

= As much initialized data space as required starting from an
offset of 0x400, round to 4-byte boundary

= As much zeroed uninitialized data space as required, round to 4-
byte boundary

= 512 KByte of heap space for dynamic memory allocation
= 128 KByte of stack space for system context switching
= A STKTOP symbol to point to the address of the 128 KByte stack

PPG-488

PPSM-GT User Guide

““Digital DNA

from Moetarola

How To Make ROM
Generating S-Record File

Listing C.2

Generating S-Record File

After the PPSM-GT application has linked with the ROM spc file,
the SDS tools generates an output file in a proprietary format that is
not suitable to download to ROMs.

SDS provides a tool, the loader tool, that allows the conversion from
this output file into S-Record format.

Loader Options

To convert .OUT file into S-Record file, the following options are
used:

Options
-d mot generate Motorola S-Record format
output file
-0 the full name of the output file
<path>\<filenam
e>.dwn

-m data, DATA Copy the initial values of initialized data
into ROM area

-w <address> Generate S-Record with offset <address>
which is the base address of ROM

Loader Commands

Convert .OUT file format to Motorola S-Record format

down -d mot <filename>.out -m data, DATA -0
<path>\<filename>.dwn -w <address>

Loader command

down -d not sanple.out -mdata, DATA -0 sanple.dwn
-w 0x400000

This will convert the sample.out to S-Record format named
sample.dwn which will be burned into ROM address of 0x400000.

PPSM-GT User Guide PPG-489

als
How To Make ROM f“[ﬁgitﬂl.“"ﬁ

Convert the S-record to B-record from Moetorola

Listing C.3 Loader command

down -d not sanpl e.out -m data, DATA -o sanple. dwn

This will convert the sample.out to S-Record format named
sample.dwn which will be burned into ROM address of 0x0.

Convert the S-record to B-record

The S-record file is not yet ready to be copied to flash; it must be
converted to a B-record file first. The stob.exe utility is a convenient
tool for this conversion process. The utility has an intuitive
interface hence the steps are not detailed in this document.

Using Windows Bbug to write the flash memory and run the
target program

Steps in operating WinBbug and running the target program:

1. Switch the VZ-ADS board to bootstrap mode.

2. Under the platform menu, select processor model and which
UART the PC is connected to.

3. Select Communications (Ctrl+U) and set the PC terminal
details.

4. Select Init (Ctrl+1) and choose the prepared initialization B-
record.

5. Load the target program into RAM by selecting Load
(Ctrl+L). Choose the target program B-record in the dialogue
box.

6. Type Go <address> to execute the flash copy program where
<address> is specified in the Icf file (where the flash copy
program starts in RAM).

7. Reset the VZ-ADS board and power off. Switch the VZ-ADS
out og bootstrap mode then power on.

8. The target program shall start running.

PPG-490 PPSM-GT User Guide

als
"'[ﬁgimln"ﬁ How To Make ROM

from Metorola Summary

Summary

This appendix outlines the procedure to build and run a program
from the on-board flash memory for the DragonBall MC68EZ328
and the MC68VZ328 based system boards. Readers are assumed to
use embedded 68K CodeWarrior as their compiler and linker and
are expected to have fully tested their target program in RAM.
Finally, the utility WinBbug utility program is used for
downloading the program into the ADS board.

NOTE The examples throughout this document are based on the
M68VZ328 ADS v1.0 (VZ-ADS) with DragonBall-VZ (MC68VZ328)
system development board.

Code Examples

Listing C.4 VZADS.LCF

/* Sanpl e Li nker Command File for M683VZ28ADS ver 1.0 */
/* Location to reconfig if using custom hardware instead of
M68VZ328ADS */

/* 1. RAM buffer hol ding ROMinage before flashing */
/* 2. Some RAM | ocation to hold flash program */
/* 4. beginning of application data RAM | eaving room */
/* in case we Wi sh to use RAM exception vector |ater */
/* (beware of vector table or nonitor footprint in RAM */
*/
MEMORY {
FLASH BUFFER(RWK) : ORIG N = 0x00010000, LENGTH = 0x00
FLASH CODE(RX) ORI G N = 0x8000, LENGTH = 0x8000
TEXT (RX) : ORIG@ N = 0x01000000, LENGTH = 0x200000
DATA (RWK): ORIG N = 0x00000400, LENGTH = 0x200000
}

KEEP_SECTI ON{ .reset}
FORCE_ACTI VE{ copy_to_flash}

PPSM-GT User Guide PPG-491

als
How To Make ROM f“[ﬁgitﬂl.“"ﬁ

Code Examples frem Metarola

SECTI ONS {
.flash_buffer

{
___FBUF_START = .;
} > FLASH BUFFER

.flash :

{
*(.flashinit)
} > FLASH CODE

/[* init boot code that nust be run in ROM */
/* code and read only data in ROM */
.mai n_application : AT(ADDR(.flash_buffer))
{
___FLASH _START = .
*(.reset)
= ALI G\(0x4);
*(.text)
= ALI G\(0x4);
*(.rodata)
. = ALI GN\(0x4);
} > TEXT

/* initialized data and C++ code will be copy to RAM by
runtime function */

.cpp_code : AT(ADDR(.flash_buffer) +
SI ZEOF(. mai n_appl i cation))

{
_DATA ROM = ADDR(. mai n_application) +
SI ZEOF(. mai n_appl i cation);
_DATA RAM = .

= ALI G\N(0x4);
*(. exception)

= ALI G\N(0x4);
__exception_table start__ = .;
EXCEPTI ON
__exception_table_end__ = .;

PPG-492 PPSM-GT User Guide

als
"'[ﬁgimln"ﬁ How To Make ROM

frem Motarola Code Examples

= ALI G\(0x4);
__sinit__ = .;
STATICINIT

. = ALI GN\(0x4);
} > DATA

.data : AT(ADDR(.flash_buffer) + SIZECF(.main_application) +
SI ZECF(. cpp_code))

{
= ALI GN(0x4);

__START_DATA = .
*(.data)
__END DATA = .

= ALI GN(0x4) ;
__START_SDATA = .;
*(.sdata)
__END SDATA = .

. = ALI GN(0x4) ;
__SDA BASE = .; /* A5 set to mddle of data
and bss */
} >> DATA

/[* uninitialized data in RAM */
.uninitialized data :
{
= ALI G\(0x4);

__START_SBSS = .

*(.sbss)

* (SCOMVION)

__END SBSS = .

. = ALI GN\(0x4);
__START_BSS = .
*(. bss)

* (COVMON)
__END BSS = .

= ALI GN(0x4);

PPSM-GT User Guide PPG-493

als
How To Make ROM f‘_mgitﬂlnﬂﬁ

Code Examples frem Metarola
___START_HEAP = .
} >> DATA
/* ROMtable is a list record of source, destination and size
*/
/* for menory | ocations need to be copy fromROMto RAM | ast
*/

/* record have null in all field */
.ronp : AT(ADDR(.flash_buffer) + SIZECF(.mai n_application) +
SI ZECOF(. cpp_code) + Sl ZEOF(. data))

{

__S ronp = ADDR(. nai n_application) +

SI ZEOF(. mai n_appl i cation) + SIZEOF(.cpp_code) + SIZEOF(.data);
VRI TEW _DATA ROM ;
VWRI TEW _DATA RAM ;
VWRI TEW SI ZEOF(. cpp_code) + SI ZEOF(.data));
VRI TEW 0) ;
VWRI TEW 0) ;
VWRI TEW 0) ;

___FBUF_END = ADDR(.flash_buffer) + SIZEO-(. nai n_application)
+ SI ZEOF(. cpp_code) + SIZEOF(.data) + SIZEOF(.ronp);

/* The follow ng val ues nust be defined for PPSM GI */

___heap_addr = __ START_HEAP; /* heap grows in opposite
direction of stack */

___heap_si ze = 0x50000; /* heap size set to 0x50000
byt es (500KB) */

_startof _bss = _ START_BSS;

_sizeof _bss = END BSS - _ START_BSS;

Listing C.5 boot.s

chkkkhkkhkhkhkkhkkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhhkhkAhkhhkhkhkhhkhkhkhhkhkAhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkkhkkk
1

* k-
1

: This is the boot routine for the MC68VZ328 ADS board. Product

PPG-494 PPSM-GT User Guide

als
f“[ﬁgimln"ﬁ How To Make ROM

frem Motarola Code Examples

; engineers should exam ne all the configurations carefully and
; change them according to their systemrequirenents.

rhkkkhkkhkhkhkhkhkhkhkkhkhhkhhkkhkhhkhhkkhhkkhkhkhkhhkkhkhhkkhkhkkhkhhkkhkhkkhkhhkhhkkhkhkhkkhhkkhkhkhkkhkhkhkhhkkhkhkhkhhkh %k
1

* % -
1

MON_BOOT. equ___reset; Boot entry point
MON_STACKTOP. equ$4100; Initial stack

MB28BASE .equ $FFFFFO00; Base address for systemregisters
; SI M8 System Configuration Registers
SCR . equ(MB28BASE+$000)

; Chip Select Registers

; CS G oup Base Registers
GRPBASEA. equ(MB28BASE+$100)
GRPBASEB. equ(MB28BASE+$102)
GRPBASEC. equ(MB28BASE+$104)
GRPBASED. equ(MB28BASE+$106)
; CS Registers

CSA . equ(MB28BASE+$110)
CSB . equ(MB28BASE+$112)
CSC . equ(M328BASE+$114)
CSD . equ(MB28BASE+$116)

CSCR . equ(MB28BASE+$10A)
DRAMCFG. equ(MB28BASE+$C00)
DRAMMC . equ(M328BASE+$C00)
DRAMCTL. equ(MB28BASE+$C02)
DRAMC . equ(M328BASE+$C02)
SDCTRL . equ(MB28BASE+$C04)
EMUCS . equ(MB28BASE+$118)
CSCTR . equ(MB28BASE+$150)

; PLL Registers

PLLCR . equ(M328BASE+$200); Control Reg
PLLFSR . equ(MB28BASE+$202); Freq Sel ect Reg
PLLTSR .equ(M328BASE+$204); Test Reg

; Power Control Registers

PPSM-GT User Guide PPG-495

als
How To Make ROM f“[ﬁgitﬂl.“"ﬁ

Code Examples frem Metarola

PCTLR . equ(M328BASE+$206); Control Reg
; Interrupt Registers

I VR . equ(M328BASE+$300); Interrupt Vector Reg
ICR . equ(M328BASE+$302); Interrupt Control Reg
I MR . equ(M328BASE+$304); Interrupt Mask Reg

| SR . equ(M328BASE+$30C); Interrupt Status Reg

I PR . equ(M328BASE+$310); Interrupt Pendi ng Reg

; PO Regi sters

; Port A Registers

PADI R . equ(M328BASE+$400); Direction Reg
PADATA . equ(MB28BASE+$401); Data Reg

PAPUEN . equ(M328BASE+$402); Pullup Enabl e Reg

; Port B Registers

PBDI R . equ(M328BASE+$408); Direction Reg
PBDATA . equ(MB28BASE+$409); Data Reg

PBPUEN . equ(M328BASE+$40A); Pul | up Enabl e Reg
PBSEL . equ(M328BASE+$40B); Sel ect Reg

; Port C Registers

PCDI R . equ(M328BASE+$410); Direction Reg

PCDATA . equ(MB28BASE+$411); Data Reg

PCPUEN . equ(M328BASE+$412); Pullup Enabl e Reg
PCPDEN . equ(M328BASE+$412); Pull-down Enabl e Reg
PCSEL . equ(M328BASE+$413); Sel ect Reg

; Port D Registers

PDDI R . equ(M328BASE+$418); Direction Reg
PDDATA . equ(MB28BASE+$419); Data Reg

PDPUEN . equ(M328BASE+$41A); Pul lup Enabl e Reg
PDSEL . equ(M328BASE+$41B); Sel ect Reg

PDPCL . equ(M328BASE+$41C); Pol arity Reg

PDI RQEN . equ(M328BASE+$41D) ; | RQ Enabl e Reg
PDI RQEDGE. equ(M328BASE+$41F); | RQ Edge Reg

; Port E Registers
PEDI R . equ(M328BASE+$420); Direction Reg

PPG-496 PPSM-GT User Guide

““Digital DNA

from Moetarola

How To Make ROM
Code Examples

PEDATA . equ(M328BASE+$421); Data Reg
PEPUEN . equ(M328BASE+$422); Pul lup Enabl e Reg
PESEL . equ(M328BASE+$423); Sel ect Reg

; Port F Registers

PFDI R . equ(M328BASE+$428); Direction Reg
PFDATA . equ(MB28BASE+$429); Data Reg

PFPUEN . equ(M328BASE+$42A); Pul | up Enabl e Reg
PFSEL . equ(M328BASE+$42B); Sel ect Reg

; Port G Registers

PGDI R . equ(M328BASE+$430); Direction Reg
PGDATA . equ(MB28BASE+$431); Data Reg

PGPUEN . equ(M328BASE+$432); Pul lup Enabl e Reg
PGSEL . equ(M328BASE+$433); Sel ect Reg

PKSEL . equ(M328BASE+$443); Sel ect Reg
PVBEL . equ(M328BASE+$44B); Sel ect Reg

; PWM Regi sters

PWC . equ(M328BASE+$500); Control Reg
PWE . equ(M328BASE+$502); Sanple Reg
PWVCNT . equ(MB28BASE+$504) ; Count er

; Timer Registers

; Timer 1 Registers

TCTL1 . equ(M328BASE+$600); Control Reg
TPRERL . equ(M328BASE+$602); Prescal ar Reg
TCWP1 . equ(MB28BASE+$604); Conpare Reg
TCR1L . equ(M328BASE+$606); Capture Reg
TCN1 . equ(MB28BASE+$608); Counter
TSTATL1. equ(MB28BASE+$60A) ; St atus Reg

; Wat chdog Regi sters
WCR . equ(MB28BASE+$B0A); Control Reg

; SPlI Registers

; SPI Master Registers

SPI MDATA. equ(M328BASE+$800) ; Control / St at us Reg
SPI MCONT. equ(M328BASE+$802) ; Dat a Reg

; UART Registers

PPSM-GT User Guide

PPG—-497

als
How To Make ROM f“[ﬁgitﬂl.“"ﬁ

Code Examples frem Metarola

USTCNT . equ(M328BASE+$900); Status Control Reg

UBAUD . equ(MB28BASE+$902); Baud Control Reg

UARTRX . equ(M328BASE+$904); Rx Reg

UARTTX . equ(MB28BASE+$906); Tx Reg

UARTM SC. equ(MB28BASE+$908); M sc Reg

UARTNI PR. equ(MB28BASE+$90A) ; Non-Integer Prescal ar Reg

; LCDC Registers

LSSA . equ(M328BASE+$A00); Screen Start Addr Reg
LVPW . equ(M328BASE+$A05); Virtual Page Wdth Reg
LXMAX . equ(M328BASE+$A08); Screen Wdth Reg

LYMAX . equ(M328BASE+3$A0A); Screen Hei ght Reg

LCXP . equ(M328BASE+$A18); Cursor X Position

LCYP . equ(M328BASE+$AlA); Cursor Y Position

LOWCH . equ(MB28BASE+$A1C); Cursor Wdth & Height Reg
LBLKC . equ(M328BASE+$ALlF); Blink Control Reg

LPI CF . equ(M328BASE+$A20); Panel Interface Config Reg
LPOLCF . equ(MB28BASE+$A21); Polarity Config Reg
LACDRC . equ(M328BASE+$A23); ACD (M Rate Control Reg
LPXCD . equ(M328BASE+$A25); Pi xel O ock Divider Reg
LCKCON . equ(M328BASE+$A27); C ocking Control Reg
LRRA . equ(M328BASE+$A29); Last Buffer Addr Reg

LOTCR . equ(M328BASE+$A2B) ; Cctet Term nal Count Reg
LPOSR . equ(M328BASE+$A2D) ; Panni ng O f set Reg

LFRCM . equ(M328BASE+$A31); Frane Rate Control Mdd Reg
LGPMR . equ(M328BASE+$A32); Gray Pal ette Mappi ng Reg
LI RQR . equ(MB28BASE+$A34); Interrupt Control Reg

; RTC Regi sters

RTCHVSR. equ(MB28BASE+$B00); Hrs M ns Secs Reg
RTCALMOR. equ(MB28BASE+$B04); Al arm Regi ster 0
RTCDAY . equ(MB28BASE+$B08); RTC date reg

RTCWD . equ(M328BASE+$B0A); RTC watch dog tiner reg
RTCCTL . equ(M328BASE+$B0C); Control Reg

RTCl SR equ(M328BASE+$BOE) ; Interrupt Status Reg
RTClI ENR. equ(M328BASE+$B10); Interrupt Enabl e Reg
RSTPWCH . equ(M328BASE+$B12) ; Stopwatch M nutes

; ICEM registers

| CEMACR . equ (M28BASE+$D00)
| CEMAMR . equ (M328BASE+$D04)
| CEMCCR . equ (MB28BASE+$D08)

PPG-498 PPSM-GT User Guide

als
f“[ﬁgimln"ﬁ How To Make ROM

frem Motarola Code Examples

| CEMCMR . equ (M328BASE+$DOA)
| CEMCR . equ (M328BASE+$D0OC)
| CEMBR . equ (M328BASE+$DOE)

ER I S S S S S b b S I S S I S R S I S b I b R R R S S S A S b I b S S S I
kkhkkhkkhkhkkkkkk*k*

* RESET OPTI ONS

R I S S S S S b b S S S R R S I S S A I b S R R S S S b I b S S S S

kkhkkkhhkkhkkikkhkkhk*x

.section .reset
rom base:
;-- SECTIONromreset - SP, start addr & space for Exception
Vectors

. DC. LMON_STACKTOP; stack pointer

. DC. LMON_BQOOT; program counter

. Ski p(62*4); space for Mtorola defined Exception Vectors

.skip(192*4); space for the 192 User defined Exception
Vectors

.global __ reset
___reset:

ckkkkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkkhhkhkhkkhhkhkhkkhkkhkhkhkhkkhkhkhkhkkhkkk
1

;* Systeminitialization *
s khkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkkhkkhhhhhkhhhhhhk*k
nove. b #$18, SCR ; Di sabl e Doubl e Map

kkhkkkhhkkhkhkhkkhhkhkhkhkhhkhhkhkhhkhhkhkhhkhhhkhhkhkihkhhkkikkhhkkihkhkhkk*k

;* Primary boot inmmge is at start of flash.
;* Secondary boot inmmge is at start+0x10000.
;* If this is the primary inmage and PD2 is | ow,
;* boot alternate inage.
kkhkkkhkhkkhkkhkhkkhhkkhkhkhkkhhkhkhkhkkhhkhhhkhhkhkkhhkhkhkhkkhhkhkhkkhkkhkhkhkkhkkhkkhkk*k
lea.l 0O(PC), AO; get PC
nove. | A0, DO
and. | #$10000, DO; is this secondary inage?
bne. sboot trk; if so, don’t check swtch,

; just boot this inmage

ori.b #$0F, PDSEL

PPSM-GT User Guide PPG-499

als
How To Make ROM f“[ﬁgitﬂl.“"ﬁ

Code Examples frem Metarola

nove. b #$03, PDDI R

nove. b #$FF, PDPUEN

nove. b PDDATA, DO

andi . b #$04, DO

bne. sboot _trk; if PD2 high, boot this inmage

nove. | $01010000, SP; otherw se boot alternate inage
nove. | $01010004, A0

jmp (A0)

chkkkkhkkhkkhkhkkhkhkhkhkhhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkhhkhkhkkhkhkhkhkkhkkhkhkhkhkkhkkk
1

; Booting MetroTRK

ckkkkhkkhkkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkkhkhkhkhkkhkkhkhkhkhkkhkkk

boot _trk:
nove. b #$9, PGSEL ; config PG/ DTACK to GPI/ O, i nput
;move. w #$2480, PLLCR ; ??MHz Syscl k, enabl e cl ko
nove.w #$2400, PLLCR ; ??MHz Syscl k, enabl e cl ko
nove. | #MON_STACKTOP, A7 ; Install stack pointer
nove.w #$2700, sr ; mask off all interrupts
nove. w #$00, RTCWD ; disabl e watch dog
nove. w #$08, | CEMCR ; disable | CEM vect or hardmap
nove. w #$07, | CEMSR ; clear level 7 interrupt

chkkkhkkkhkhkkhkhkkhkkhkhkkhkhhkkhkkhkkkhkhkkhkkhkhkkhkhkkhkhhkhk*kx
1

:* Port Initialization *

; *kkhkkhkhkkhkhkhkhhkhkhkhkhhkhkhkhkhhrkhhkhkhkhkhkhkkhkhhx

nove. b #$03, PFSEL ;. sel ect A23- A20, CLKO, CSAl

nove. b #$00, PBSEL ; Config port B for chip select
A B, C and D

nove. b #$00, PESEL : sel ect *DWE

nove. b #$F1, PKSEL
nove.b #$00, PMSEL

rhkkkkkhkhkkhkhkkkhkhkkhkhkhkkhkhkkhhkkhkkhkkhkkhkhkkhkkhk*kx
1

;* Chip Select initialization *
s khkkkkkhhhhhhhhhhhhhhkhkkhkhkhkhkkhkkhkhkhkhk*k

rhkkkkkhkkkhkkhkkkhkhkkhkhkkkhkkhkkhhkkhk*k
1

. Fl ash

ckkkkkhkkhkkkkhkkhkhkhkkhkkhkkkhkkhkkhkkkk*k
1

PPG-500 PPSM-GT User Guide

als
f“mgitalnﬂﬁ How To Make ROM

frem Motarola Code Examples

move. w #$0800, GRPBASEA ; GROUPA BASE(FLASH), Start
add. =0x1000000
nove. w #%$0199, CSA :

chkkkkhkkhkkhkkhkkhkhkkhkkhkkhkkhkhx
1

; SDRAM 64M bit, Single Band, Latency 2

chkkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkkhkkhkhkhkkhkhkkhkkhkhx
1

nove. w #$0000, GRPBASED

nmove. w #$0281, CSD

nove. w #$0040, CSCR ; Chip Sel Control Reg
nmove. w #$0000, DRAMC ; Disabl e DRAM Control |l er
nove. w #$CO3F, SDCTRL

nove.w #$4020, DRAMMC

nove. w #$8000, DRAMC

clrow dO

del ay
addi .w #1,d0
cnp.w #$FFFF, dO
bne del ay

nove. w #$C83F, SDCTRL ; issue precharge comm
nop

nop

nop

nop

nop

nop

nop

nop

nop

nop

nove. w #$DO3F, SDCTRL ; enabl e refresh
nop

nop

nop

nop

nop

nop

nop

nop

PPSM-GT User Guide PPG-501

als
How To Make ROM f‘_mgitﬂlnﬂﬁ

Code Examples frem Metarola

nop
nop
nmove. w #$D43F, SDCTRL ;1 ssue node conmmand
nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

ckkkkhkkhkkhkhkhkhkhkhkhhkhkhkhkhkhkhkhhkhkhkhhkhkhkkhhkhkhkkhhkhkhkkhkhkhkhkhkkhkhkhkhkkhkkk
1

;* End of Systeminitialization *

rhkkkkAhkhkkhkhkhkhhkkhkhhkhkhkkhhkkhkhkkhkhkhkkhkhhkkhkhkkhkhkkhkhkkkhkkhkkhkhkkhkhkhkkhkhkkhkhh*k
1

clr.l do
clr.l dil
clr.l d2
clr.l d3
clr.l d4
clr.l ds
clr.l dé
clr.l d7

ckhkkkkkhkkkkhkkhkkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkkhkkhkhkhkkhkhkhkk*k
1

:* LCD Initization Code *

ckhkkkkkhkkhkhkkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkkhkkhkkhkhkhkkhkhkhkk*k
1

nove. b #0, PCSEL

nove. b #0, PCPDEN

nove. | #$100403E, LSSA
nmove. w #160, LXMAX
nmove. w #239, LYMAX
nove. b #10, LVPW

nove. b #$08, LPI CF
nove. b #3$01, LPOLCF
nove. b #$00, LACDRC

PPG-502 PPSM-GT User Guide

als
"'[ﬁgimln"ﬁ How To Make ROM

frem Motarola Code Examples

nove. b #3$02, LPXCD

nove. b #3514, LRRA

nove. b #3$00, LPCSR

nove. b #$00, LCKCON : di sable LCDC

nove. b #$80, LCKCON ; enable LCDC, Ows, 16-bit

chkkhkhkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhkhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkk
1

*kkkk k%

; Program Interrupt Controller

chkkhkhkkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhk ik hkhkhkhkhkhkhkkk
1

*kkk k%

nove. b #$40, 1 VR
nove. | #$007FFFFF, | VR ;enable NM interrupt

chkkhkkhkkhkhkhkAhkhkhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhkhkhkhkhhkhkhkhhkk
1

*kkkk k%

: Runtine initialization

chkkkkhkkhkhkhkhkhkhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkhkhkhhkkk
1

*kkk k%

.extern START
JMP START; junp to MNstartup code

Listing C.6 flash_m68328vz_ads.s

; Code to copy data frommenory into Fujitsu MBM2IOLV16OT fl ash.
; It assunes 1 flash chip in word node.

; This code assunes a top-boot device. It also assunes

; that the starting flash address is at the begi nning

PPSM-GT User Guide PPG-503

als
How To Make ROM f“[ﬁgitﬂl.“"ﬁ

Code Examples frem Metarola

. of a sector.

FLASH_BASE. equ$01000000

CPU_SPEED. equl6 ; 16 MHz

DLOOP_CYCLES. equ26; SUBI.L #,Dn -> 16; BNE. S -> 10
DELAY_TI ME. equ20; 20ns max delay after sector wite
DELAY_COUNT. equ(CPU_SPEED* 1000000* DELAY_TI ME/ 1000) / DLOOP_CYCLES

.section .flashinit
.extern __ FBUF_START
.extern __ FBUF_END
.extern __ FLASH START
. gl obal copy_to_flash
copy_to_flash:

; Set up registers:

; a0 - flash i mage source start addr (in RAM
; al - flash imge source end addr (in RAM

; a2 - flash image dest addr (in FLASH)

nove. | #_ FBUF_START, a0; source addr of flash image
nove. | # FBUF_END, al; end addr of source flash imge
nove. | #__ FLASH START, a2; dest addr of flash inmage

move. | #$555*2,d1; | oad commuand offset 1 to dil
nove. | #$2aa*2, d2; | oad command offset 2 to d2

. Erase the next sector. Each sector nust be erased before it
; can be progranmed.

erase_| oop:
cnp.la0,al ; if done copying, verify
bl e do_conpare

nmove. | a2, do

PPG-504 PPSM-GT User Guide

als
f“[ﬁgimln"ﬁ How To Make ROM

frem Motarola Code Examples

and. | #$f f e00000, dO; cal c. base addr of current chip
nove. | dO, a3

nove. W#$aa, (d1.1,a3); unlock step 1

nove. w#$55, (d2.1,a3); unlock step 2

nove. w#$80, (d1.1,a3); sector erase setup

nove. W#$aa, (d1.1,a3); unlock step 1

nove. w#$55, (d2.1,a3); unlock step 2

nove. w#$30, (a2); erase current sector
erase_verify | oop

nove. W a2), d0; check sector data

cnp. w#sffff, dO; erased?

bne. serase _verify loop; if not, keep checking

do_program
; Get the sector size, which depends on the sector offset.
; This code assunes a top-boot device. It also assunes
; that the starting flash address is at the begi nning
; of a sector.

nove. | a2, dO

sub.l1a3,d0 ; get offset of sector

cnp. | #$001f 0000, dO; is it sa3l1l or higher?
bge. scheck _sa31; if so, do nore tests

nove. | #$00010000, dO; ot herw se, size is 64K
bra program.| oop

check_sa3l:
cnp. | #$001f 8000, d0; is it sa32 or higher?
bge. scheck _sa32; if so, do nore test
nove. | #$00008000, dO; ot herw se, size is 32K
bra program.| oop

check_sa32:
cnp. | #$001f c000, dO; is it sa34?
bge. ssi ze_sa34; if so, get sa34 size
nove. | #$00002000, dO; ot herw se, size is 8K
bra program.| oop

si ze_sa34:
nove. | #00004000, dO; sa34 size is 16K

PPSM-GT User Guide PPG-505

als
How To Make ROM f“[ﬁgitﬂl.“"ﬁ

Code Examples frem Metarola

program | oop:

nove. W#$aa, (d1.1,a3); unlock step 1
nove. w#$55, (d2.1,a3); unlock step 2
nove. w#$a0, (d1.1,a3); program comand

nove. w(a0), d3

nove. w3, (a2); wite data to flash
programverify | oop

cnp.wW a2),d3; data witten?

bne. sprogramverify_loop; if not, wait

add. | #2,a0 :; next word
add. | #2,a2 :; next word

cnp.la0,al ; done copying?
bl e. sdo_conpare; if so, verify

sub. | #2,d0 ; next word
beq erase_loop; if end of sector, erase next
bra. sprogram | oop; otherw se, copy next word

; Verify that the flash contents were witten correctly.
do_conpare:

nove. | #__ FBUF_START, a0; source addr of flash image

nove. | # FBUF_END, al; end addr of source flash imge

nove. | # FLASH START, a2; dest addr of flash inage

conpar e_| oop

cnp. W ai) +, (a2) +
bne prog fail

cnp.la0,al ; is entire imge verified?
bgt conpare_l oop; if not, repeat

t rap#0 ; done
nop

prog fail:
trap#l ; failed

PPG-506 PPSM-GT User Guide

““Digital DNA

from Moetarola

How To Make ROM
Code Examples

nop

Listing C.7

Initialization Code

kkhkkkhkhkkhkkhhkkhhkhhkhkrhkhhhkhhkhhhkhhkhkhhkhhkhkrhkhhkhkrkhkhkhhkhhkhkhkkhhkhkikkikkk*x

* VZ-ADS | nit

*

B- Record

kkhkkkhkhkkhkkhhkkhkhkhhkhkhhkhhhkhhkhhhkhhkhkhhkhhkhkrhkhkkhkhkikhkhkkihkhhkhkhkkhhkkikkikkk*x

FFFFFO000118
FFFFFBOB0100
FFFFF42B0103
FFFFF40B0100
FFFFFDODO0108
FFFFFDOEO107
FFFFF4230100

FFFFF3000140

SCR init D sabl e Doubl e Map

Di sabl e WD
enabl e cl ko
enabl e chip

sel ect

di sabl e hardnap

cl ear | evel

7 interrupt

set PE3 as *DWE

I VR

FFFFF30404007FFFFF | MR

* k% *

CSA

* k%

FFFFF100020800 G oup Base Add 16M
FFFFF110020199 Chip Sel

kkhkkkhkhkkhkkikkhkk*k

SDRAM Confi g

kkkkkhkkkkkkkk

FFFFF44301F1 PKSEL
FFFFF44B0100 PNSEL

CSD

FFFFF106020000 Group Base Add
FFFFF116020281 Chip Sel

FFFFF10A020040 Chip Sel

DRAM Contorl | er
FFFFFC02020000 DRAMC
FFFFFC0402C03F SDRAM Contro

Contr ol

PPSM-GT User Guide

PPG-507

als
How To Make ROM f‘_mgitﬂlnﬂﬁ

from Moetarola

FFFFFC00024020 DRAMMC
FFFFFC02028000 DRAMC

SDRAM Cont r ol

FFFFFC0402C83F i ssue precharge command
FFFFFC0402D03F enabl e refresh
FFFFFC0402D43F i ssue node conmand

kkhkkkkkk*k*%x

Init LCDC

*kkkkkk kK

FFFFF4130100 Di sable Port C
FFFFFA0O0040000403E LSSA=0x403E
FFFFFAO05010A LVPW
FFFFFA080200A0 LXMAX
FFFFFAOAO0200EF LYMAX
FFFFFA200108 LPI CF
FFFFFA210101 LPOLCF
FFFFFA230100 LACD
FFFFFA250102 LPXCD
FFFFFA290114 LRRA
FFFFFA2B0118 LOTCR
FFFFFA2D0100 LPCSR
FFFFFA270100 Di sable LCD
FFFFFA270182 Enabl e LCD

PPG-508 PPSM-GT User Guide

als
f"[ﬁgitﬂlﬂ"ﬂ PPSM-GT APIs Reference Card

from Moetarola

PPSM-GT APIs Reference
Card

PPSM-GT API Look Up Card

Function Declaration

Alarm Services

STATUS AlmCreate(P_U32 alarmlid, U16 year, U8 month, U8 day, U8 hour, U8 minute,
U8 type);

void AlImDelete(ALARM _ID aarmid, TASK _ID taskld);

void AlImDelBefor e(U16 year, U8 month, U8 day, U8 hour, U8 minute, TASK_ID taskld);
void AlImDelAfter (U16 year, U8 month, U8 day, U8 hour, U8 minute, TASK_ID taskld);
void AlImDeleteAll(TASK_ID taskld);

STATUS AImGetCurrent(ALARM_ID aarmid, P_U32 taskld, P_U16 year, P_U8
month, P_U8 day, P_U8 hour, P_U8 minute, P_U8 type);

ALARM_ID AlmGetld(void);

STATUS AlmGetldByTime(P_U32 aarmid, U16 year, U8 month, U8 day, U8 hour, U8
minute);

STATUS AImGetNext(ALARM_ID aarmid, P_U32 taskld, P_U16 year, P_U8 month,
P_U8 day, P_U8 hour, P_U8 minute, P_U8 type);

STATUS AlmSetPeriodl d(P_U32 alarmid, U8 period);

Application Services
STATUS AppAddIC(APP_ID appld, IC_ID icld);
STATUS AppBindPaninfo(APP_ID appld, SCREEN _ID paninfo);

PPSM-GT User Guide PPG-509

als
PPSM-GT APIs Reference Card fr[ﬁgitﬂlﬂ"ﬂ

from Moetarola

Function Declaration

STATUS AppCreate(P_APP_ID pAppld, P_TEXT pName, P_VOID entryCallback,
P_VOID exitCallback, U16 iconWidth, U16 iconHeight, P_U8 plconlmage, U16
ringBufferSize);

STATUS AppCreateGC(P_GC_ID pGCld, U16 horz, U16 vert);

STATUS AppCreatePanScreen(P_SCREEN_ID pScreenid, U16 horz, U16 vert);
STATUS AppDelete(APP_ID appld);

STATUS AppDeleteGC(GC_ID gcld);

STATUS AppDeletePanScreen(SCREEN _ID screenld);

STATUS AppGetAppldFromIC(IC_ID icld, P_APP_ID pAppld);

APP_ID AppGetCurrent();

STATUS AppGetCurrPanScreen(P_SCREEN_ID pScreenid);

STATUS AppGetDownAppld(P_EVENT pEvent, P_APP_ID pAppld);
STATUS AppGetFirstl C(APP_ID appld, P_IC_ID pIC);

STATUS AppGetlcon(APP_ID appld, P_U16 plconWidth, P_U16 plconHeight, P_U8 *
plconlmage);

STATUS AppGetName(APP_ID appld, P_TEXT * pName);

STATUS AppGetNext(APP_ID appld, P_APP_ID pAppld);

STATUS AppGetPaninfo(APP_ID appld, SCREEN_ID * pPaninfo);
STATUS AppGetPanScreen(GC_ID gcld, P_SCREEN_ID pScreenld);
U16 AppGetPanScreenHeight(void);

U16 AppGetPanScreenWidth(void);

STATUS AppGetPrev(APP_ID appld, P_APP_ID pAppld);

STATUS AppMovel CToTop(APP_ID appld, IC_ID icld);

STATUS AppRemovel C(IC_ID icld);

STATUS AppRemovePaninfo(APP_ID appld);

STATUS AppSetCurrPanScreen(SCREEN_ID screenld);

STATUS AppSetPanScreen(GC_ID gcld, SCREEN_ID screenid);
STATUS AppSwapl CList(APP_ID appld, IC_ID newlC, P_IC_ID pIC);
STATUS AppSwitch(APP_ID appld);

Audio Handling Services

PPG-510 PPSM-GT User Guide

als
fr[ﬁgitﬂlﬂ"ﬂ PPSM-GT APIs Reference Card

from Moetarola

Function Declaration

STATUS AudGetCount(P_U16 playcounter);
Ul6 AudGetNotel ength(void);

STATUS AudGetName(P_U16 pmfname);
STATUS AudGetNumofNote(P_U16 sumofnote);
U8 AudGetStatus(void);

Ul6 AudGetToneDur(void);

STATUS AudPlayTone(P_U16 toneData, U32 toneSize, U16 toneDuration, U8
autoRepeat);

STATUS AudPlayM elody(void);
STATUS AudPauseM elody(void);
STATUS AudPlayWave(P_U8 waveData, U32 waveSize, U8 samplingRate);

STATUS AudAdvPlayWave(P_U8 waveData, U32 waveSize, U8 prescaler, U8 repeat,
U8 clksel);

STATUS AudSetM elody(P_PMF pmf);
STATUS AudSetTone(void);

STATUS AudStopMelody(void);
STATUS AudStopTone(void);
STATUS AudStopWave(void);

Download Application Services

STATUS AppCreateTask(P_TASK_ID pTaskld, APP_ID appld, P_VOID pFunc, U32
stackSize);

STATUS AppConvertlmage(U32 imagePtr, P_APP_ID pAppld, P TASK ID pTaskld);
STATUS AppDeletel mage(APP_ID appld);
STATUS AppDeleteTask(APP_ID appld, TASK_ID taskld);

Event Management Services

STATUS EvtAddToChannel(TASK_ID taskld, CHANNEL _ID channelld);
EVTTYPE EvtAllocType(VOID)

EVTTYPE EvtCheck(VOID);

BRDCST_ID EvtCreateBroadcast(VOID);

PPSM-GT User Guide PPG-511

als
PPSM-GT APIs Reference Card fr[ﬁgitﬂlﬂ"ﬂ

from Moetarola

Function Declaration

CHANNEL_ID EvtCreateChannel(VOID);

EVTPORT _ID EvtCreatePort(VOID);

STATUS EvtDeeteBroadcast(BRDCST _ID broadcastid);
STATUS EvtDeeteChannel(CHANNEL _ID channelld);
STATUS EvtDeetePort(EVTPORT _ID eventportld);

STATUS EvtDeInQueue(EVTTY PE)

STATUS EvtFlushQueue(VOID)

STATUS EvtFreeType(EVTTY PE)

EVTTYPE EvtGet(VOID);

CHANNEL _ID EvtGetBrdcstChannel(BRDCST _ID broadcastid);
P_EVENT EvtGetBrdcstEvent(BRDCST_ID broadcastld);
TASK_ID EvtGetChLastTask(CHANNEL_ID channelld);

Ul6 EvtGetChNumTask(CHANNEL _ID channelld);

TASK_ID EvtGetChTask(CHANNEL _ID channelld, P_U32 pTemp);
P_EVENT EvtGetEvent(VOID);

EVTTYPE EvtGetType(VOID);

Ul6 EvtGetUsage(P_EVENT pEvent);

STATUS EvtlnitEvent(P_EVENT pEvent, EVTTY PE eventType);
us EvtlsBrdcstld(BRDCST_ID broadcastld);

us EvtlsChannelld(CHANNEL _ID channelld);

us EvtlsErasable(P_EVENT pEvent);

BOOL EvtlsTypeAvailable(EVTTY PE)

U8 EvtlsWakeup(P_EVENT pEvent);

STATUS EvtRegister Type(EVTTY PE)

STATUS EvtRmBrdcstFromCh(BRDCST_ID broadcastld);
VOID EvtRmCurrEvent(VOID);

STATUS EvtRmTaskFromCh(TASK_ID taskld, CHANNEL_ID channelld);
STATUS EvtSend(P_EVENT pEvent, TASK_ID taskld);
STATUS EvtSendUrgent(P_EVENT pEvent, TASK_ID taskld)

PPG-512 PPSM-GT User Guide

als
fr[ﬁgitﬂlﬂ"ﬂ PPSM-GT APIs Reference Card

from Moetarola

Function Declaration

STATUS EvtSendBrdcstEvent(BRDCST _ID broadcastid, CHANNEL _ID chaneelld,
TICK milliseconds);

STATUS EvtSetBrdcstEvent(BRDCST _ID broadcastid, P_ EVENT pEvent);
STATUS EvtSetErasable(P_EVENT pEvent);

STATUS EvtSetUnerasable(P_EVENT pEvent);

STATUS EvtSetUnwakeup(P_EVENT pEvent);

STATUS EvtSetWakeup(P_EVENT pEvent);

STATUS EvtWait(EVTTY PE evtType, TICK milliseconds)

STATUS EvtWaitMultiple(U16 numOfType, EVTTY PE* pEvtType, TICK
milliseconds, BOOL waitAll)

Graphic Manipulation Services

STATUS GpxChangeDisplay(U16 xPos, U16 yPos);

STATUS GpxDeleteCur sor (SCREEN_ID screenld);

STATUS GpxDrawArc(U16 x1, U16y1, U16 x2, U16 y2);

STATUS GpxDrawCircle(U16 xCenter, U16 yCenter, U16 radius);

STATUS GpxDrawDot(U16 xPos, U16 yPos);

STATUS GpxDrawEllipse(U16 xCenter, U16 yCenter, U16 xLength, U16 yL ength);
STATUS GpxDrawL ing(U16 xSrc, U16 ySrc, U16 xDest, U16 yDest, U16 dotLine);
STATUS GpxDrawRec(U16 xSrc, U16 ySrc, U16 xDest, U16 yDest, U16 dotLine);
STATUS GpxDrawVector (U16 numberOfPoints, P_POINT pPoints, U8 mode);

STATUS GpxExchangeRec(P_U8 pBitmap, U16 xSrc, U16 ySrc, U16 xDest, U16
yDest);

STATUS GpxFillRec(U16 xSrc, U16 ySrc, U16 xDest, U16 yDest);

STATUS GpxFillScreen(COLOR color);

U8 GpxGetBrightness(VOID);

STATUS GpxGetColor (P_COLOR pColor);

STATUS GpxGetContrast(P_DENSITY pLevel1l, P DENSITY pLevel2);
STATUS GpxGetCur sor Pos(SCREEN _ID screenid, P_U16 pXPos, P_U16 pY Pos);
STATUS GpxGetCur sor Status(SCREEN_ 1D screenld, P_U8 pStatus);

Ul6 GpxGetDisplayHeight(void);

PPSM-GT User Guide PPG-513

als
PPSM-GT APIs Reference Card fr[ﬁgitﬂlﬂ"ﬂ

from Moetarola

Function Declaration

Ul6 GpxGetDisplayWidth(void);

STATUS GpxGetDisplayOrigin(SCREEN_ID screenld, P_U16 pXPos, P_U16 pY Pos);
STATUS GpxGetDotWidth(P_U8 pWidth);

U8 GpxGetL CDRefreshRate(void);

STATUS GpxGetPatternFill(P_U8 pMode, P_COLOR pBackColor, P_U8
pBorderMode, P_US8 pFill Space);

STATUS GpxGetStyle(P_STYLE pStyle);
STATUS GpxInitCursor (SCREEN_ID screenld);
STATUS GpxInvRec(U16 xSrc, U16 ySrc, U16 xDest, U16 yDest);

STATUS GpxPutChar (P_U8 pChar, U16 xPos, U16 yPos, U16 font, U16 width, U16
height);

STATUS GpxPutRec(P_U8 pBitmap, U16 xSrc, U16 ySrc, U16 xDest, U16 yDest);
STATUS GpxSaveRec(P_U8 pBitmap, U16 xSrc, U16 ySrc, U16 xDest, U16 yDest);
VOID GpxSetBrightness(U8 brightness);

STATUS GpxSetColor (COLOR color);

STATUS GpxSetContrast(DENSITY levell, DENSITY level2);

STATUS GpxSetCur sor Blink(SCREEN_ID screenid, U8 frequency);

STATUS GpxSetCur sor Pos(SCREEN_ID screenld, U16 xPos, U16 yPos);

STATUS GpxSetCursor Size(SCREEN _ID screenld, U8 cursorWidth, U8 cursorHeight);
STATUS GpxSetCur sor Status(SCREEN _ID screenld, U8 status);

STATUS GpxSetDisplayOrigin(SCREEN_ID screenlid, U16 xPos, U16 yPos);
STATUS GpxSetDotWidth(U8 width);

VOID GpxSetL CDRefreshRate(U8 refreshRateSet);

STATUS GpxSetPatter nFill(U8 mode, COLOR backColor, U8 borderMode, U8
fillSpace);
STATUS GpxSetStyle(STYLE style);

Handwriting Recognition Handling Services
STATUS InpClose(INP_ID id)
STATUS InpDrawPad(INP_ID inpld)

PPG-514 PPSM-GT User Guide

als
fr[ﬁgitﬂlﬂ"ﬂ PPSM-GT APIs Reference Card

from Moetarola

Function Declaration

STATUS InpGetCandidates(P_TEXT* pCandidates, P_U16 pNum, P_INP_ID
pinpld)

STATUS InplnstallHWR(P_HWR_ID pld, P_VOID reseteng, P_VOID initEng,
P_VOID processStk, P_VOID recgzinp, U32 stackSize)

U8 Inplsinpld(INP_ID id)
U8 InpIsHWRIA(HWR_ID id)

STATUS InpOpen(P_INP_ID pld, HWR_ID hwrld, TASK_ID taskld, U16 xPos, U16
yPos, U16 numRow, U16 numCol, U16 areaWidth, U16 areaHeight, TICK timeout, U8
echoSize)

STATUS InpSetColor(INP_ID id, COLOR color)

STATUS InpSetSamplingRate(INP_ID id, PEN_RATE time)
STATUS InpTop(INP_ID id)

STATUS InpUninstallHWR(HWR_ID id)

Interrupt Service Routine Services

U8 |srGetlrptLv(U32 module)

U8 I srlslnUse(U32 module)

STATUS IsrRelease(U32 irptFlag);

STATUS IsrRequest(U32 module, PFIRTHANDLER pflrptHandler, U32 arg);
STATUS Isr SetlrptL v(U32 module, U8 irptLevel)

Kernel Services

STATUS KnIBindGC(TASK_ID taskld, GC_ID gcld)
STATUS KnlChangePriority(TASK_ID taskld, U8 priority)
SEMA_ID KnlCreateSemaphore(VOID)

STATUS KnlCreateTask(P_TASK _ID pTaskld, P_VOID pFunc, const TEXT
pName[], U32 stackSize, S8 priority, KNL_MODE mode)

STATUS KnlCreateTaskWith(P_TASK _ID pTaskld, P_VOID pFunc, const TEXT
pName[], U32 stackSize, U32 arg, S8 priority, KNL_MODE mode)

STATUS KnlDeleteTask(TASK_ID taskid)
STATUS KnlDelSemaphore(SEMA_ID semald, U8 flag)

PPSM-GT User Guide PPG-515

als
PPSM-GT APIs Reference Card fr[ﬁgitﬂlﬂ"ﬂ

from Moetarola

Function Declaration

EVTPORT_ID KnlGetEventPort(TASK_ID taskld)

STATUS KnlIDisableSwap(VOID)

STATUS KnlEnableSwap(VOID)

GC_ID KnlGetGC(TASK_ID taskld)

STATUS KnlGetMemUsed(TASK_ID taskld)

STATUS KnlGetOSVersion(P_U32 major, P_U32 minor)

STATUS KnlGetPriority(TASK_ID taskld)

STATUS KnlGetStackInfo(TASK_ID taskld, P_VOID *start, P_VOID *end)
U32 KnlGetStatus(TASK_ID taskld)

TASK_ID KnlGetTaskld(VOID)

U8 Knllisinlrpt(VOID)

U8 KnllsSemald(SEMA_ID semald)

U8 KnllsTaskld(TASK_ID taskld);

STATUS KnlResume(TASK_ID taskld)

STATUS KnlSetEventPort(TASK_ID tasklid, EVTPORT_ID portid)
STATUS KnlSetSemaphore(SEMA _ID semald, U16 max, U16 init, BOOL fifo)
STATUS KnlSignalSemaphore(SEMA_ID semald)

STATUS KnlSuspend(TASK_ID taskid)

STATUS KnlSuspendFor(TICK milliseconds, SWT_ID swtld)
STATUS KnlWaitSemaphore(SEMA _ID semald, TICK milliseconds)
STATUS KnlYield(VOID)

IrDA Services

STATUS IrdSetDevicelnfo(P_U8 info, U8 len)
STATUS IrdInit(U8 port)

STATUS IrdDelnit(void)

STATUS IrdSetMaxTurnAroundTime(U8 MaxTat)
STATUS IrdInitTransceiver(void)

STATUS IrdShutDownTransceiver(void)

STATUS IrcClose(void)

PPG-516 PPSM-GT User Guide

als
fr[ﬁgitﬂlﬂ"ﬂ PPSM-GT APIs Reference Card

from Moetarola

Function Declaration

void IrcGetFormat(P_U32 format)

void IrcGetStatusEventCause(P_U16 eventCause)
BOOL IrclsDeviceBusy(void)

STATUS IrcOpen(TASK_ID AppCallback)

U16 IrcRead(P_U8 buff, U16 len)

void IrcSetFormat(U32 format)

STATUS IrcWrite(P_U8 buff, U16 len)

STATUS ObxInit (TASK_ID AppCallback)
STATUS ObxDeinit(void)

STATUS ObxSavelnbox (P_U8 buff, U16 len)
STATUS ObxGetInboxLen (void)

STATUS ObxSaveName (P_U8 buff, U8 len)

U8 ObxGetNameLen (void)

STATUS ObxPutOutbox (P_U8 buff, U16 len)
void ObxAbort()

STATUS ObxConnect(void)

STATUS ObxConReq(void)

STATUS ObxClientDisconnect(void)

STATUS ObxDiscReq(BOOL Force)

STATUS ObxPut(void)

ObxAbortReason ObxGetAbortReason(void)
BOOL ObxHeaderBuildUnicode (ObxHeaderType Type, P_U8 Value, U16 Len)
BOOL ObxHeaderBuild4Byte (ObxHeaderType Type, U32 Value)

Memory Management Services

STATUS MemAddRegion(P_ MEM_REGION_ID pRegld, P_U32 startAddr, U32
endAddr)

P_VOID MemCalloc(U32 size);
P_VOID MemCallocFrom(MEM_REGION _ID regionld, U32 size, TASK _ID taskld);
STATUS MemCopy(P_US8 src_addr, P_U8 dest_addr, U32 size);

PPSM-GT User Guide PPG-517

als
PPSM-GT APIs Reference Card fr[ﬁgitﬂlﬂ"ﬂ

from Moetarola

Function Declaration

STATUS MemDelRegion(MEM_REGION_ID regionid)

void MemFreg(P_VOID pUsedMem);

STATUS MemGetAvailSizeeMEM_REGION_ID regionld, P_U32 pSizeAvail);
S32 MemGetAvailStack(void);

STATUS MemGetOrgRegionSizeMEM_REGION_ID regionld, P_U32 pSize);
STATUS MemGetTaskUsed(TASK_ID taskld, P_U32inSize);

U32 MemGetTotalUsed(void);

P_VOID MemMalloc(U32 size);

P_VOID MemMallocFrom(MEM_REGION_ID regionld, U32 size, TASK _ID taskld);
P_VOID MemRealloc(P_VOID p, U32 size);

STATUS MemResetRegion(MEM_REGION_ID regionld)

STATUS MemResizeRegion(MEM_REGION_ID regionld, U32 endAddr)

Networking Services

Networking Configuration and Setup Services

STATUS Netlnit(void)

VOID NetDeinit(void)

VOID NetConfigDNS(P_S8 ipAddress, U8 which)

VOID NetConfigGateway(P_S8 ipAddress)

VOID NetConfigl SPAccount(P_S8 UserID, P_S8 Password, P_U8 PhoneNum)
VOID NetConfigL ocalHostl P(P_S8 ipAddress)

VOID NetConfigM achineName(P_S8 Name)

VOID NetConfigM odem(P_S8 comPort,NET_DRIVER comDriver, P_S8 baudRate)
VOID NetConfigPPP(P_S8 UserID, P_S8 Password)

STATUS NetDNSResolve(P_S8 Fullname, IP_ADDR* iidp)

Transport Services

S32 accept(S32 S, St ruct sockaddr * Name, P_S32 NameL en)
S32bind(S32 S, St ruct sockaddr * Name, S32 NameL en)

S32 closesocket(S32 S)

S32 connect(S32 S, St ruct sockaddr * Name, S32 NameL en)

PPG-518 PPSM-GT User Guide

als
fr[ﬁgitﬂlﬂ"ﬂ PPSM-GT APIs Reference Card

from Moetarola

Function Declaration

S32 socket(S32 Domain, S32 Type, S32 Protocol)
S32 fentlsocket(S32 S, S32 Cmd, S32 Arg)

Struct hostent* gethostbyaddr _r(P_S8 addr, S32 Len, S32 Type, struct hostent* resuilt,
P_S8 Buffer, S32 BufLen, P_S32 H_errnop)

Struct hostent* gethostbyname_r (P_S8 hnp, struct hostent* result, P_S8 buffer, S32
buflen, P_S32 h_errnop)

S32 getpeername(S32 S, St ruct sockaddr * peer, P_S32 addrLen)

S32 getsockname(S32 S, St ruct sockaddr * Name, P_S32 Namel en)
S32 getsockopt(S32 S, S32 level, S32 Optname, P_S8 Optval, P_S32 Optlen)
U32 htonl(U32 Val)

U16 htons(U16 Val)
U32 iaddr(Const P_S8 Dotted)

P_S8intoa(Struct in_addr Addr)

S32 ioctlsocket(S32 s, S32 Request, P_S32 Arg)
S32 listen(S32 S, S32 Backlog)

U32 ntohl(U32 Val)

U16 ntohs(U16 Val)

S32 readsocket(S32 S, P_S8 buf, S32 Len)
S32recv(S32 S, P_S8 buf, S32 Len, S32 Flags)

S32 revfrom(S32 S, P_S8 buf, S32 len, S32 flags, St r uct sockaddr * from, P_S32
fromLen)

S32recvmsg(S32 S, St ruct nmsghdr * Msg, S32 Flags)

S32 selectsocket(S32 Nfds, Fd_set* Readfds, Fd_set* Writefds, Fd_set* Exceptfds, Struct
timeval* Timeout)

S32 send(S32 S, P_S8 Buf, S32 Len, S32 Flags)

S32 sendmsg(S32 S, Struct msghdr* msg, S32 flags)

S32 sendto(S32 s, P_S8 buf, S32 len, S32 flags, struct sockaddr* to, S32 toL en)
S32 setsockopt(S32 S, S32 Level, S32 Optname, P_S8 Optval, S32 Optlen)

S32 shutdown(S32 S, S32 How)

S32 writesocket(S32 S, P_S8 Buf, S32 Len)

PPSM-GT User Guide PPG-519

als
PPSM-GT APIs Reference Card fr[ﬁgitﬂlﬂ"ﬂ

from Moetarola

Function Declaration

Pen Input Handling Services

STATUS PenAddAreaTolC(IC_ID icld, AREA_ID areald);

STATUS PenBindTaskTol C(TASK_ID taskid, IC_ID icld);

STATUS PenBringAreaBack(AREA _ID areald);

STATUS PenBringAreaBackwar d(AREA_ID areald);

STATUS PenBringAreaForwar d(AREA_ID areald);

STATUS PenBringAreaFront(AREA_ID areald);

STATUS PenCalibrate(U8 logoFlag);

STATUS PenCreateArea(P_AREA_|ID pAreald);

STATUS PenCreatel C(P_IC_ID pIC);

STATUS PenDeleteArea(AREA_ID areald);

STATUS PenDeletel C(IC_ID icld, U8 deleteAllArea);

STATUS PenGetArealdFromEvent(P_EVENT event, P AREA_ID pAreald);
STATUS PenGetAreaM ode(AREA_ID areald, P AREA_MODE pMode);

STATUS PenGetAreaPos(AREA _ID areald, P_S16 pXSrc, P_S16 pY Src, P_S16
pXDest, P_S16 pY Dest);

STATUS PenGetAreaType(AREA_ID areald, P_AREA_TY PE pType);
STATUS PenGetEchoM ode(AREA _ID areald, P_U8 pEchoMode);
STATUS PenGetl CFromArea(AREA _|ID areald, P_IC _ID plcld);
STATUS PenGetlnputTimeout(IC _ID icld, P_TICK plnputTimeout);
STATUS PenGetPenColor (IC_ID icld, P_COLOR pPenColor);
STATUS PenGetPenSize(IC_ID icld, P_U8 pPenSize);

STATUS PenGetPos(P_S16 pX, P_S16 pY);

STATUS PenGetPosFromEvent(P_EVENT event, P_POINT *pPoints, P_U16
numberOfPoints);

VOID PenGetSample();
STATUS PenGetSamplingRate(IC_ID icld, P_PEN_RATE pPenRate);

STATUS PeninitArea(AREA_ID areald, S16 xSrc, S16 ySrc, S16 xDest, S16 yDest, U8
type, U8 mode, U8 panPosFlag, U8 echoMode);

STATUS PenlnitIC(IC_ID icld, TASK_ID taskld, TICK penlnputTimeout, PEN_RATE
samplingRate, U8 iconScan, U8 penSize, COLOR penCaolor);

PPG-520 PPSM-GT User Guide

als
fr[ﬁgitﬂlﬂ"ﬂ PPSM-GT APIs Reference Card

from Moetarola

Function Declaration

U16 PenM apX(U16 x);

Ul16 PenMapY (U16);

STATUS PenMoveAreaToTop(IC _ID icld, AREA_ID areald);
STATUS PenRemoveAreaFroml C(AREA _ID areald);

STATUS PenSetAreaM ode(AREA _ID areald, AREA_MODE mode);
STATUS PenSetAreaPos(AREA_ID areald, S16 xSrc, S16 ySrc, S16 xDest, S16 yDest);
STATUS PenSetAreaType(AREA_|ID areald, AREA_TY PE type);
STATUS PenSetEchoM ode(AREA _ID areald, U8 echoMode);
STATUS PenSetlnputTimeout(IC_ID icld, TICK time);

STATUS PenSetPenColor (IC_ID icld, COLOR penColor);

STATUS PenSetPenSize(IC_ID icld, U8 penSize);

STATUS PenSetRingBuffer (APP_ID appld, U16 bufferSize);
STATUS PenSetSamplingRate(IC_ID icld, PEN_RATE rate);

Power Management Services

STATUS PwrDisnotifyDoze(TASK _ID taskld);
u32 Pwr GetDeviceStatus(VOID);

u32 Pwr GetEnter Sleep(VOID);

u32 Pwr GetEnter Doze(VOID);

u32 Pwr GetExitDoze(VOID);

u32 Pwr GetExitSleep(VOID);

u32 Pwr Getl dle(VOID);

Ul6 Pwr Getl dleTime(VOID);
POWERMODE PwrGetM ode(VOID);

u32 Pwr GetSysClk(VOID);

us PwrlsldieEnable(VOID);

STATUS PwrNotifyDoze(TASK _ID taskld);
STATUS PwrRestartldle(VOID);

VOID Pwr SetEnter Doze(U32 device);
VOID Pwr SetEnter Sleep(U32 device);

PPSM-GT User Guide PPG-521

als
PPSM-GT APIs Reference Card fr[ﬁgitﬂlﬂ"ﬂ

from Moetarola

Function Declaration

VOID Pwr SetExitDoze(U32 device);
VOID Pwr SetExitSleep(U32 device);
VOID Pwr Setl dle(U32 device);

STATUS PwrSetldleTime(U16 second);
STATUS Pwr SetM ode(POWERMODE mode)
STATUS PwrStopldle(VOID);

RTC Handling Services

STATUS RtcSetTime(U8 hour, U8 minute, U8 second);

STATUS RtcGetTime(P_U8 hour, P_U8 minute, P_U8 second);

STATUS RtcSetDate(U16 year, U8 month, U8 day);

STATUS RtcGetDate(P_U16 year, P_U8 month, P_US8 day);

STATUS RtcGetDayofWeek (U16 year, U8 month, U8 day, P_U8 dayofweek);
void RtclsLeapYear(U16 year, P_U8 leapyear);

STATUS RtcValidDate(U16 year, U8 month, U8 day);

STATUS RtcValidTime(U8 hour, U8 minute, U8 second);

STATUS RtcSetDateTime(U16 year, U8 month, U8 day, U8 hour, U8 minute, U8
second);

STATUS RtcGetDateTime(P_U16 year, P_U8 month, P_U8 day, P_U8 hour, P_U8
minute, P_U8 second);

STATUS RtcGetGM Time(P_U16 year, P_U8 month, P_U8 day, P_U8 hour, P_U8
minute, P_U8 second)

STATUS RtcGetGM T Offset(P_S8 Gmitoffset)
STATUS RtcSetGM T Offset (S8 Gmitoffset)

Sci Management Services
STATUS SciBindPort(SClI_PORT _ID portld, U8 uartPort);
STATUS SciClose(SCI_PORT _ID portld);

STATUS SciConfig(SCl_PORT _ID portld, U8 mode, U8 baudRate, U8 parity, U8
stopBits, U8 charLen);

STATUS SciCreate(P_SCI_PORT_ID portld);

PPG-522 PPSM-GT User Guide

als
fr[ﬁgitﬂlﬂ"ﬂ PPSM-GT APIs Reference Card

from Moetarola

Function Declaration

STATUS SciCtsStatus(SClI_PORT _ID portld);

STATUS SciFlowCtrl(SCI_PORT _ID portld, U8 control Type);
STATUS SciFlushFifo(SCI_PORT _ID portld, U8 fifoFlag);

STATUS SciGetConfig(SCl_PORT _ID portld, P_U8 pMode, P_U32 pBaudRate, P_U8
pParity, P_U8 pStopBits, P_U8 pCharLen);

VOID SciGetData(P_U16 pData);
STATUS SciOpen(SCI_PORT _ID portld);
STATUS SciRevCtrI(SCI_PORT _ID portld, U8 control Type);

STATUS SciReadData(SCl_PORT _ID portld, P_U8 pData, U16 bufSize, P_U16
pSizeRead);

STATUS SciReceive(SCI_PORT_ID portld, U8 receiveFl ag);
STATUS SciRtsStatus(SCI_PORT_ID portld);
STATUS SciSend(SCI_PORT_ID portld, U8 sendFlag, P_U8 pData, U32 datalen);

STATUS SciSendAbort(SCI_PORT _ID portld, U8 abortFlag, P_U8 * ppSendData,
P_U32 sendSize);

STATUS SciSendCtrl(SCI_PORT_ID portld, U8 control Type);

STATUS SciSetDelay(SCI_PORT _ID portld, U8 type, U16 delay);

STATUS SciSetFifoL evel(SCI_PORT _ID portld, U8 fifoFlag, U8 fifoLevel);
STATUS SciSetRxBufSize(SClI_PORT _ID portld, U16 newSize);

STATUS SciSetTargetTask(SCI_PORT_ID portld, TASK_ID taskld);

void SciSetTimeout(P_SCI_TMOUT pTmout, TICK timeout, EVTTYPE portld)
STATUS SciUnbindPort(SCI_PORT_ID portld);

Software Keyboard Services

STATUS SkyBind(SKY_ID skyld, APP_ID appld);

STATUS SkyClosg(SKY _ID skyld);

STATUS SkyCreate(SKY_ID skyld);

STATUS SkyOpen(SKY _ID skyld);

STATUS SkyOpenDefK B(SKY _ID skyld, U16 xPos, U16 yPos);

STATUS SkyOpenK B(SKY_ID skyld, U16 xPos, U16 yPos, U16 keyWidth, U16
keyHeight, U16 numCol, U16 numRow, P_U16 pKeyMap, P_U8 bitmap);

PPSM-GT User Guide PPG-523

als
PPSM-GT APIs Reference Card fr[ﬁgitﬂlﬂ"ﬂ

from Moetarola

Function Declaration
VOID SkyReadK ey(P_U16 pKey);
STATUS SkySetAutoRepeat(SKY _ID skyld, U16 beginTime, U16 repeatTime);

STATUS SkySetKeyMap(SKY _ID skyld, P_U16 keyMap, P_U8 keyBmp, U16 bmpWt,
U16 bmpHt);

STATUS SkySetK eySize(SKY _ID skyld, U16 keyWt, U16 keyHt);
STATUS SkySetOrigin(SKY_ID skyld, U16 xPos, U16 yPos);

Software Timer Handling Services

SWT_ID SwtCreate(VOID);

STATUS SwtDelete(SWT_ID swtld);

TICK SwtDiffRefTime(TICK beginTime, TICK endTime)
STATUS SwtGetCount(SWT_ID swtld, P_TICK pCount)
P_EVENT SwtGetEvent(SWT_ID swtld, P_U16 pSize)

u32 SwtGetResolution(VOID);

STATUS SwtGetTaskld(SWT_ID swtld, P_TASK_ID pTaskld);

STATUS SwtInitTimer(SWT_ID swtld, TASK_ID taskld, TICK count, TICK
reload, P_EVENT pEvent, U16 size, P_VOID func, U32 arg)

us SwtlsinUse(SWT_ID swtld);

us SwitlsSwtld(SWT_ID swtld);

TICK SwtReadRef Time(VOID);

STATUS SwtRestartTimer (SWT_ID swtld, TICK count);
STATUS SwtSetArg(SWT_ID swtld, U32 arg);

STATUS SwtSetCount(SWT_ID swtld, TICK count);
STATUS SwtSetEvent(SWT _ID swtld, P_EVENT pEvent, U16 eventSize)
STATUS SwtSetFunc(SWT _ID swtld, P_VOID func, U32 arg)
STATUS SwtSetTaskld(SWT_ID swtld, TASK_ID taskld);
STATUS SwtStartTimer (SWT_ID swtld);

STATUS SwtStopTimer (SWT_ID swtld);

Text Management Services

PPG-524 PPSM-GT User Guide

als
f"[ﬁgitﬂlﬂ"ﬂ PPSM-GT APIs Reference Card

from Moetarola

Function Declaration
STATUS TxtCreateTmplt(P_TMPLT _ID templateld);
STATUS TxtDeleteT mplt(TMPLT_ID templatel d);

STATUS TxtMap(TMPLT_ID templateld, U8 bitLen, P_TEXT buffer, U16 size, P_U8
pNextLine);

STATUS TxtPrintf(TMPLT_ID templateld, P_U8 pFormatStr, P_VOID argList)
STATUS TxtReadCurPos(TMPLT_ID templateld, P_U16 cursor);

STATUS TxtSetCurPos(TMPLT _ID templateld, U16 cursor);

STATUS TxtSetCur XY (TMPLT_ID templateld, U16 xPos, U16 yPos);

STATUS TxtSetFontColor(TMPLT _ID templateld, COLOR fontColor);

STATUS TxtSetFontStyle(TMPLT_ID templateld, STYLE fontStyle);

STATUS TxtSetFontType(TMPLT_ID templateld, FONT_TY PE fontType);
STATUS TxtSetLineWt(TMPLT_ID templateld, U16 lineWt);

STATUS TxtSetTmpltOrigin(TMPLT_ID templateld, U16 xSrc, U16 ySrc);
STATUS TxtSetTmpltSize(TMPLT_ID templateld, U16 width, U16 height);

STATUS TxtSetupTmplt(TMPLT _ID templateld, FONT_TYPE fontType, STYLE
outputStyle, COLOR greyLevel, U16 xPos, U16 yPos, U16 width, U16 height);

STATUS TxtUnmap(TMPLT_ID templateld);

PPSM-GT User Guide PPG-525

als
PPSM-GT APIs Reference Card f‘_mgitﬂlnuﬂ

from Moetarola

PPG-526 PPSM-GT User Guide

Motorola
PPSM-GT User Guide

Version 1.1

Credits

writing lead: | Jeffrey Chia
other writers: | Smita Manathkar

engineering, | Casper Mok, Kent Ip, Alex Yu, Frank Ma,
documentation review: | Sarah Chiu, Eric Chan, Minna Lai, Jason

Ma, Christina Ying, Leila He, Patrick Lam
Document review & editing: | Nicholas Evans

Special Thanks | John Roseborough, Mary Thomas

““Digital DNA

from Moetarola

PPG-528 PPSM-GT User Guide

